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1 Introduction

In a series of influential papers, Abadie and Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015)

proposed the Synthetic Control (SC) method as an alternative to estimate treatment effects in comparative

case studies when there is only one treated unit. The main idea of the SC method is to use the pre-treatment

periods to estimate weights such that a weighted average of the control units reconstructs the pre-treatment

outcomes of the treated unit, and then use these weights to compute the counterfactual of the treated unit in

case it were not treated. According to Athey and Imbens (2017), “the simplicity of the idea, and the obvious

improvement over the standard methods, have made this a widely used method in the short period of time

since its inception”, making it “arguably the most important innovation in the policy evaluation literature in

the last 15 years”. As one of the main advantages that helped popularize the method, Abadie et al. (2010)

derive conditions under which the SC estimator would allow confounding unobserved characteristics with

time-varying effects, as long as we can fit a long set of pre-intervention periods.1

In this paper, we revisit the conditions under which the SC estimator is unbiased in a linear factor model

setting. We show that the SC estimator is generally biased if treatment assignment is correlated with unob-

served confounders, even when the number of pre-treatment periods goes to infinity, and in settings where

one should expect to have an almost perfect pre-treatment fit. While our results suggest that researchers

should be more careful in interpreting the identification assumptions required for the SC method, we show

that, with a slight modification, the SC method can substantially improve in terms of bias and variance

relative to standard methods.

In a model with “stationary” common factors, we show that the SC weights converge in probability to

weights that do not, in general, reconstruct the factor loadings of the treated unit when the number of

pre-treatment periods (T0) goes to infinity.2,3 This happens because the SC weights converge to weights

that simultaneously attempt to match the factor loadings of the treated unit and to minimize the variance

of a linear combination of the transitory shocks. Therefore, weights that reconstruct the factor loadings of

the treated unit are not generally the solution to this problem, even if such weights exist. While in many

1Abadie et al. (2010) derive this result based on a linear factor model for the potential outcomes. However, they point out

that the SC estimator can be useful in more general contexts.

2We refer to “stationary” in quotation marks because we only need the assumption that pre-treatment averages of the first

and second moments of the common factors converge when the number of pre-treatment periods goes to infinity for this result.

3We focus on the SC specification that uses all pre-treatment periods as economic predictors. Ferman et al. (2017) provide

conditions under which the SC estimator using this specification is asymptotically equivalent to SC estimators using alternative

specifications. We also consider the case of the average of the pre-treatment periods and the average of the pre-treatment

periods plus other covariates as predictors in Appendix A.5.
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SC applications T0 may not be large enough to justify large-T0 asymptotics (see, for example, Doudchenko

and Imbens (2016)), our results should be interpreted as the SC weights not converging to weights that

reconstruct the factor loadings of the treated unit, even when T0 is large. We also show that the SC weights

are biased estimators for weights that reconstruct the factor loadings of the treated unit when T0 is finite.

Moreover, based on our Monte Carlo (MC) simulations, the SC weights should be, on average, even farther

from weights that reconstruct the factor loadings of the treated unit when T0 is small.

As a consequence, the SC estimator is, in general, biased if treatment assignment is correlated with the

unobserved heterogeneity, even when the number of pre-treatment periods goes to infinity.4 The intuition is

the following: if treatment assignment is correlated with common factors in the post-treatment periods, then

we would need a SC unit that is affected in exactly the same way by these common factors as the treated

unit, but did not receive the treatment. This would be attained with weights that reconstruct the factor

loadings of the treated units. However, since the SC weights do not converge, in general, to weights that

satisfy this condition, the distribution of the SC estimator will still depend on the common factors, implying

in a biased estimator when selection depends on the unobserved heterogeneity.5 These results do not rely

on the fact that the SC unit is constrained to convex combinations of control units, which implies that they

also apply to the panel data approach suggested by Hsiao et al. (2012).

One important implication of the SC restriction to convex combinations of the control units is that the

SC estimator may be biased even if treatment assignment is only correlated with time-invariant unobserved

variables, which is essentially the identification assumption of the difference-in-differences (DID) model. We

therefore recommend a slight modification in the SC method, where we demean the data using information

from the pre-intervention period, and then construct the SC estimator using the demeaned data.6 If selection

into treatment is only correlated with time-invariant common factors, then this demeaned SC estimator is

unbiased. Assuming stability in the first and second moments of common factors and transitory shocks before

and after the treatment, we also guarantee that this demeaned SC estimator has a lower asymptotic mean

4This is true whether we define asymptotic bias based on the expected value of the asymptotic distribution or on the limit

of the expected value of the estimator. Details in Appendix A.4

5Ando and Sävje (2013) point out that the SC estimator can be biased if there is no set of weights that reconstructs the

factor loadings of the treated unit. However, they do not analyze in detail the minimization problem that is used to estimate

the SC weights. In contrast, we show that this minimization problem inherently leads to weights that do not reconstruct the

factor loadings of the treated unit, even if such weights exist. Moreover, we show that this potential problem persists even

when the number of pre-treatment periods is large.

6Demeaning the data before applying the SC estimator is equivalent to relaxing the non-intercept constraint, as suggested,

in parallel to our paper, by Doudchenko and Imbens (2016). Unlike Doudchenko and Imbens (2016), we formally analyze the

implication of this modification to the bias of the SC estimator.
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squared error (MSE) relative to DID. However, if selection into treatment is correlated with time-varying

common factors, then both the demeaned SC and the DID estimators would be asymptotically biased. For

a particular class of linear factor models, we show that the demeaned SC estimator dominates the DID

estimator in terms of asymptotic bias and asymptotic MSE.7 Overall, while we show that the SC method

is, in general, asymptotically biased if treatment assignment is correlated with time-varying confounders, we

also show that it can still provide important improvement over DID. Our MC simulations suggest that such

improvement relative to DID can be attained even when the pre-treatment match is imperfect and/or T0 is

small.8

Our results for models with “stationary” common factors are not as conflicting with the results from

Abadie et al. (2010) as it might appear at first glance. The asymptotic bias of the SC estimator, in this case,

goes to zero when the variance of the transitory shocks is small, in which case one should expect to have

a close-to-perfect pre-treatment match and, therefore, Abadie et al. (2010) would recommend using the SC

method.9 When a subset of the common factors is non-stationary, however, we show that the asymptotic

bias may not go to zero even in situations where one would expect a close-to-perfect pre-treatment fit. In

a model with a combination of I(1) common factors and/or deterministic polynomial trends in addition to

I(0) common factors, we show that the demeaned SC weights will converge to weights that reconstruct the

factor loadings associated to the non-stationary common trends of the treated unit, but that will generally

fail to reconstruct the factor loadings associated with the I(0) common factors.10 Therefore, in this setting,

non-stationary common trends will not generate asymptotic bias in the demeaned SC estimator, but we

need that treatment assignment is uncorrelated with the I(0) common factors to guarantee asymptotic

unbiasedness.11 In this setting, a close-to-perfect pre-treatment match for a long set of pre-intervention

7This result is only valid for a particular set of linear factor models. We provide a very specific example in which the

asymptotic bias and the MSE of the SC can be larger in Appendix A.3.

8We also provide in Appendix A.5.4 an instrumental variables estimator for the SC weights that generates an asymptot-

ically unbiased SC estimator under additional assumptions on the error structure, which would be valid if, for example, the

idiosyncratic error is serially uncorrelated and all the common factors are serially correlated. The idea behind this strategy is

similar to the strategy outlined by Heckman and Scheinkman (1987).

9An important caveat is that the placebo test suggested by Abadie et al. (2010) may lead to over-rejection even when the

variance of the transitory shocks is close to zero. This happens because, while the bias would be small in this scenario, the

variance of the SC estimator would be small as well. See our companion paper Ferman and Pinto (2017) for details.

10We assume existence of weights that perfectly reconstructs the factor loadings of the treated unit associated with the

non-stationary trends. In a setting with I(1) common factors, this is equivalent to assume that the vector of outcomes is

cointegrated. If there were no set of weights that satisfies this condition, then the asymptotic distribution of the SC estimator

would depend on the non-stationary common trends.

11The result that non-stationary common trends do not generate asymptotic bias is not valid for the original SC weights,
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periods does not guarantee that the asymptotic bias of the SC estimator is close to zero. Given that, we

recommend that researchers applying the SC method should also assess the pre-treatment fit of the SC

estimator after de-trending the data.12 We show that prominent SC applications that display a seemingly

perfect pre-treatment fit in the original data does not provide such a perfect pre-treatment fit once the data

is de-trended.

Our paper is related to a recent literature that analyzes the asymptotic properties of the SC estimator and

of generalizations of the method. Gobillon and Magnac (2016) derive conditions under which the assumption

of perfect match from Abadie et al. (2010) can be satisfied when both the number of pre-treatment periods

and the number of control units go to infinity. Gobillon and Magnac (2016), Xu (2017), and Athey et al.

(2017) provide alternative estimation methods that are asymptotically valid when the number of both pre-

treatment periods and controls increase.13 Unlike these papers, we consider the case with a finite number of

control units, as do Abadie et al. (2010). We show that, in this case, the SC estimator can be biased even

when T0 → ∞, and even when the pre-treatment fit is almost perfect. Carvalho et al. (2015) and Carvalho

et al. (2016) also propose an alternative method that is related to the SC estimator, and derive conditions

under which their estimator yields a consistent estimator. However, in a linear factor model as the one we

consider, their assumptions would essentially exclude the possibility that treatment assignment is correlated

with the unobserved heterogeneity, which is our main focus.14 Amjad et al. (2017) suggest an interesting

de-noising algorithm that leads to a consistent estimator even when the number of control units is fixed.

Their method, however, relies on the assumption that transitory shocks are independent across units and

providing another reason to demean the data before applying the SC method.

12We do not imply that one should not use the SC method when the data is non-stationary. On the contrary, we show that

the SC method is very efficient in dealing with non-stationary trends. The only caveat is that measures of pre-intervention fit

could be misleading as diagnostic tests, as they may hide important discrepancies in the factor loadings associated to stationary

common factors beyond these non-stationary trends. Given that, we recommend alternative diagnostic tests. Another possibility

would be to apply the SC method on a transformation of the data that makes it stationary.

13Bai (2009) and Moon and Weidner (2015) consider the asymptotic properties of estimators in linear factor models when

the number of time periods and the number of cross-sectional units jointly go to infinity, without restricting to the particular

case of estimation of treatment effects.

14Their main assumption is that the outcomes of the control units are independent of treatment assignment. However, in

our setting, if we assume that transitory shocks are uncorrelated with the treatment assignment, then the potential outcomes of

the treated unit being correlated with treatment assignment implies that treatment assignment is correlated with the common

factors. If this is the case, then it cannot be that the outcomes of the control units are independent of the treatment assignment.

In an extension, Carvalho et al. (2015) consider the case in which the intervention also affects the control units. They model

that as a structural change in the common factors after the treatment, in which case they find that their estimator would be

biased. Note, however, that they do not treat such change in the common factors as selection on unobservables. Instead, they

consider this as a case in which the intervention affects all units.
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time. Under this assumption, an IV-like SC estimator we present in Appendix A.5.4 would also be valid.

We do not focus on this strategy because it relies on the assumption that the time-series correlation of the

outcome variable can only be driven by serial correlation in the common factors. Moreover, Amjad et al.

(2017) assume that both common factors and factor loadings are deterministic, making it harder to model

selection on unobservables. Finally, building on our paper, Powell (2017) proposes a 2-step estimation in

which the SC unit is constructed based on the fitted values of the outcomes on unit-specific time trends.

However, we show that the demeaned SC method is already very efficient in controlling for polynomial

time trends, so the possibility of asymptotic bias in the SC estimator would come from correlation between

treatment assignment and common factors beyond such time trends, which would not generally be captured

in the strategy proposed by Powell (2017).

The remainder of this paper proceeds as follows. We start Section 2 with a brief review of the SC

estimator. We highlight in this section that we rely on different assumptions relative to Abadie et al. (2010).

In Section 3, we show that, in a model such that pre-treatment averages of the first and second moments

of the common factors converge, the SC estimator is, in general, asymptotically biased. In Section 4, we

contrast the SC estimator with the DID estimator, and propose the demeaned SC estimator. In Section 5,

we consider a setting in which pre-treatment averages of the common factor diverge, and we show that, in

this case, the SC estimator can be asymptotically biased even if we have a close-to-perfect pre-treatment

match. We revisit the applications from Abadie and Gardeazabal (2003), Abadie et al. (2010), and Abadie

et al. (2015) in light of these results. In Section 6, we present a particular class of linear factor models in

which we consider the asymptotic properties of the SC estimator, and MC simulations with finite T0. We

conclude in Section 7.

2 Base Model

Suppose we have a balanced panel of J + 1 units indexed by i observed on a total of T periods. We want

to estimate the treatment effect of a policy change that affected only unit j = 1, and we have information

before and after the policy change. Let T0 be the number of pre-intervention periods. Since we want

to consider the asymptotic behavior of the SC estimator when T0 → ∞, we label the periods as t ∈

{−T0+1, ...,−1, 0, 1, ..., T1}, where T1 = T −T0 is the total number of post-treatment periods. The potential

outcomes are given by





yit(0) = δt + λtµi + εit

yit(1) = αit + yit(0)

(1)
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where δt is an unknown common factor with constant factor loadings across units, λt is a (1× F ) vector of

common factors, µi is a (F × 1) vector of unknown factor loadings, and the error terms εit are unobserved

transitory shocks. We only observe yit = dityit(1)+(1−dit)yit(0), where dit = 1 if unit i is treated at time t.

Since we hold the number of units (J + 1) fixed and look at asymptotics when the number of pre-treatment

periods goes to infinity, we treat the vector of unknown factor loads (µi) as fixed and the common factors

(λt) as random variables. In order to simplify the exposition of our main results, we consider the model

without observed covariates Zi. In Appendix Section A.5.2 we consider the model with covariates. The main

goal of the SC method is to estimate the effect of the treatment for unit 1 for each post-treatment t, that is

{α11, ..., α1T1
}.

Since the SC estimator is only well defined if it actually happened that one unit received treatment in

a given period, all results of the paper are conditional on that. Let D(j, t) be a dummy variable equal

to 1 if unit j starts to be treated after period t, while all other units do not receive treatment. Without

loss of generality, we consider that unit 1 is treated and that treatment starts after t = 0, so D(1, 0) = 1.

Assumption 1 defines the sample a researcher observes in the SC problem.

Assumption 1 (conditional sample) We observe a realization of {y1t, ..., yJ+1,t}T1

t=−T0+1 conditional on

D(1, 0) = 1.

We also impose that the treatment assignment is not informative about the first moment of the transitory

shocks.

Assumption 2 (transitory shocks) E[εjt|D(1, 0) = 1] = E[εjt] = 0 for all j and t.

Assumption 2 implies that transitory shocks are mean-independent from the treatment assignment. How-

ever, we still allow for the possibility that treatment assignment to unit 1 is correlated with the unobserved

common factors. More specifically, we allow for E[λt|D(1, 0) = 1] 6= E[λt]. To better understand the impli-

cations of this possibility, suppose that the treatment is more likely to happen in unit j at time t if λtµj

is high, and let λ1
t be a common factor that strongly affects unit 1.15 Under these conditions, the fact

that unit 1 is treated after t = 0 is informative about the common factor λ1
t , because one should expect

E[λ1
t |D(1, 0) = 1] > E[λ1

t ]. We allow for dependence between treatment assignment and common factors

both before and after the start of the treatment. So we can consider, for example, a case in which treatment

is triggered in unit 1 by a sequence of positive shocks on λtµ1 even before t = 0.

In order to present the main intuition of the SC estimator, we assume that there exists a stable linear

combination of the control units that absorbs all time correlated shocks of unit 1, λtµ1. However, this

15That is, the factor loading of unit 1 associated with this common factor, µ1
1
, is large.
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assumption is not necessary for any of our main results. Following the original SC papers, we restrict to

convex combinations of the control units. We relax these constraints in Section 4.

Assumption 3 (existence of weights)

∃ w∗ ∈ R
J | µ1 =

∑

j 6=1

w∗
jµj ,

∑

j 6=1

w∗
j = 1, and w∗

j ≥ 0

There is no guarantee that there is only one set of weights that satisfies Assumption 3, so we define

Φ = {w ∈ R
J | µ1 =

∑
j 6=1 wjµj ,

∑
j 6=1 wj = 1, and wj ≥ 0} as the set of weights that satisfy this condition.

For all our main results, it may be that Assumption 3 does not hold, which implies Φ = ∅.

If we knew w∗ ∈ Φ, then we could consider an infeasible SC estimator using these weights, α̂∗
1t =

y1t −
∑

j 6=1 w
∗
j yit. For a given t > 0, we would have

α̂∗
1t = y1t −

∑

j 6=1

w∗
j yit = α1t +


ε1t −

∑

j 6=1

w∗
j εjt


 . (2)

We consider the expected value of α̂∗
1t conditional on D(1, 0) = 1 (Assumption 1). Therefore, under

Assumption 2, E[α̂∗
1t|D(1, 0) = 1] = α1t, which implies that this infeasible SC estimator is unbiased. Intu-

itively, the infeasible SC estimator constructs a SC unit for the counterfactual of y1t that is affected in the

same way as unit 1 by each of the common factors (that is, µ1 =
∑

j 6=1 w
∗
jµj), but did not receive treatment.

Therefore, the only difference between unit 1 and this SC unit, beyond the treatment effect, would be given

by the transitory shocks, which we assumed are not related to the treatment assignment (Assumption 2).

This guarantees that a SC estimator, using these infeasible weights, provides an unbiased estimator. Since

there might be multiple weights in Φ, we define the infeasible SC estimator from equation 2 considering

w∗ ∈ Φ that minimizes var(α̂∗
1t).

It is important to note that Abadie et al. (2010) do note make any assumption on the existence of

weights that reconstruct the factor loadings of the treated unit. Instead, they consider that there is a set

of weights that satisfies y1t =
∑

j 6=1 w
∗
j yjt for all t ≤ 0. While subtle, this reflects a crucial difference

between our setting and the setting considered in the original SC papers. Abadie et al. (2010) and Abadie

et al. (2015) consider the properties of the SC estimator conditional on having a good pre-intervention fit.

As stated by Abadie et al. (2015), they “do not recommend using this method when the pretreatment fit is

poor or the number of pretreatment periods is small”. Abadie et al. (2010) provide conditions under which

y1t =
∑

j 6=1 w
∗
j yjt for all t ≤ 0 (for large T0) implies that Assumption 3 must hold approximately. In this

case, the bias of the SC estimator would be bounded by a function that goes to zero when T0 increases. We
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depart from the original SC setting in that we do not condition on having a perfect pre-intervention fit. The

motivation to analyze the SC method in our setting is that, even if Assumption 3 is valid, in a model with

only “stationary” factors, the probability that we find a perfect pre-intervention fit goes to zero when T0

increases, unless the variance of the transitory shocks is equal to zero. Still, we show in Section 4 that the

SC method can provide important improvement over the DID estimator, even if the pre-intervention fit is

imperfect. Moreover, we also show in Section 5 that, if a subset of the common factors is non-stationary,

then the SC estimator may be asymptotically biased even if the pre-treatment fit is almost perfect.

In order to implement their method, Abadie et al. (2010) recommend a minimization problem using the

pre-intervention data to estimate the SC weights. They define a set of K predictors where X1 is a (K × 1)

vector containing the predictors for the treated unit, and X0 is a (K × J) matrix of economic predictors for

the control units.16 The SC weights are estimated by minimizing ||X1−X0w||V subject to
∑J+1

i=2 wj = 1 and

wj ≥ 0, where V is a (K ×K) positive semidefinite matrix. They discuss different possibilities for choosing

the matrix V , including an iterative process where V is chosen such that the solution to the ||X1 −X0w||V
optimization problem minimizes the pre-intervention prediction error. In other words, let YP

1 be a (T0 × 1)

vector of pre-intervention outcomes for the treated unit, while YP
0 be a (T0 × J) matrix of pre-intervention

outcomes for the control units. Then the SC weights would be chosen as ŵ(V ∗) such that V ∗ minimizes

||YP
1 −YP

0 ŵ(V )||.

We focus on the case where one includes all pre-intervention outcome values as predictors. In this case,

the matrix V that minimizes the second step of the nested optimization problem would be the identity

matrix (see Kaul et al. (2015) and Doudchenko and Imbens (2016)), so the optimization problem suggested

by Abadie et al. (2010) to estimate the weights simplifies to

ŵ = argmin
w∈W

1

T0

0∑

t=−T0+1


y1t −

∑

j 6=1

wjyjt



2

(3)

where W = {ŵ ∈ R
J |wj ≥ 0 and

∑
j 6=1 wj = 1}.

Ferman et al. (2017) provide conditions under which the SC estimator using all pre-treatment outcomes

as predictors will be asymptotically equivalent when T0 → ∞ to any alternative SC estimator such that the

number of pre-treatment outcomes used as predictors goes to infinity with T0.
17 Therefore, our results are

also valid for these SC specifications under these conditions. In Appendix A.5 we also consider SC estimators

16Predictors can be, for example, linear combinations of the pre-intervention values of the outcome variable or other covariates

not affected by the treatment.

17Ferman et al. (2017) show that this will be true if we assume that, for any subsequence {tk}k∈N with tk > tk−1, pre-

treatment averages of second moments of the outcomes converge in probability to the same values.
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using (1) the average of the pre-intervention outcomes as predictor, and (2) other time-invariant covariates

in addition to the average of the pre-intervention outcomes as predictors.

3 Asymptotic Bias with “stationary” common factors

We start assuming that pre-treatment averages of the first and second moments of the common factors and

the transitory shocks converge. Let ǫt = (ε1t, ..., εJ+1,t).

Assumption 4 (convergence of pre-treatment averages) Conditional onD(1, 0) = 1, 1
T0

∑0
t=−T0+1 λt

p→

ω0,
1
T0

∑0
t=−T0+1 ǫt

p→ 0, 1
T0

∑0
t=−T0+1 λ

′
tλt

p→ Ω0 positive semi-definite, 1
T0

∑0
t=−T0+1 ǫtǫ

′
t

p→ σ2
εIJ+1, and

1
T0

∑0
t=−T0+1 ǫtλt

p→ 0 when T0 → ∞.

Assumption 4 allows for serial correlation for both transitory shocks and common factors. We assume

1
T0

∑0
t=−T0+1 ǫtǫ

′
t

p→ σ2
εIJ+1 in order to simplify the exposition of our results. However, this can be easily

replace by 1
T0

∑0
t=−T0+1 ǫtǫ

′
t

p→ Σ for any positive definite (J+1)×(J+1) matrix Σ, so that transitory shocks

are correlated across j. Assumption 4 would be satisfied if the processes ǫt and λt are weakly stationary and

second order ergodic in the pre-treatment period conditional on D(1, 0) = 1, and ǫt and λt are independent.

However, such assumption would be too restrictive, and would not allow for important possibilities in the

treatment selection process. Recall that Assumption 2 allows for E[λt|D(1, 0) = 1] 6= E[λt], even for t ≤ 0,

which will happen if treatment assignment to unit 1 is correlated with common factors before treatment

starts. In this case, it would be too restrictive to impose the assumption that, conditional on D(1, 0) = 1,

λt is stationary, even if only for the pre-treatment periods.

We show first the convergence of ŵ.

Proposition 1 Under Assumptions 1, 2 and 4, we have that ŵ
p→ w̄ when T0 → ∞, where µ1 6=

∑
j 6=1 w̄jµj ,

unless σ2
ε = 0 or ∃w ∈ Φ|w ∈ argmin

w∈W

{∑
j 6=1(wj)

2
}

Proof. Details in Appendix A.1.1

The intuition of Proposition 1 is that we can treat the SC weights as an M-estimator, so we have that ŵ

converges in probability to w̄ such that

w̄ = argmin
w∈W



σ2

ε


1 +

∑

j 6=1

(wj)
2


+


µ1 −

∑

j 6=1

wjµj




′

Ω0


µ1 −

∑

j 6=1

wjµj





 (4)

which is the probability limit of the M-estimator objective function (equation 3).

This objective function has two parts. The first one reflects that different choices of weights will generate

different weighted averages of the idiosyncratic shocks εit. In this simpler case, if we consider the specification
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that restricts weights to sum one, then this part would be minimized when we set all weights equal to 1
J
.18

The second part reflects the presence of common factors λt that would remain after we choose the weights

to construct the SC unit. If Assumption 3 is satisfied, then we can set this part equal to zero by choosing

w∗ ∈ Φ. Now start from w∗ ∈ Φ and move in the direction of weights that minimize the first part of this

expression. Since w∗ ∈ Φ minimizes the second part, there is only a second order loss in doing so. On the

contrary, since we are moving in the direction of weights that minimize the first part, there is a first order

gain in doing so. This will always be true, unless σ2
ε = 0 or ∃w ∈ Φ such that w ∈ argmin

w∈W

{∑
j 6=1(wj)

2
}
.

Therefore, the SC weights will not generally converge to weights that reconstruct the factor loadings of the

treated unit. If Φ = ∅, then Proposition 1 trivially holds. Another intuition for this result is that the

outcomes of the controls are proxy variables for the factor loadings, but they are measured with error. We

present this interpretation in more detail in Appendix A.2.

For a given t > 0, the SC estimator is given by

α̂1t = y1t −
∑

j 6=1

ŵjyit
d→ α1t +


ε1t −

∑

j 6=1

w̄jεjt


+ λt


µ1 −

∑

j 6=1

w̄jµj


 when T0 → ∞. (5)

Note that α̂1t converges in distribution to the parameter we want to estimate (α1t) plus linear combina-

tions of contemporaneous transitory shocks and common factors. Therefore, the SC estimator will be asymp-

totically unbiased if, conditional D(1, 0) = 1, the expected values of these linear combinations of transitory

shocks and common factors are equal to zero.19 More specifically, we need that E[ε1t−
∑

j 6=1 w̄jεjt|D(1, 0) =

1] = 0 and E[λt(µ1 −
∑

j 6=1 w̄jµj)|D(1, 0) = 1] = 0. While the first equality is guaranteed by Assumption 2,

the second one may not hold if treatment assignment is correlated with the unobserved heterogeneity.

Since µ1 6=∑j 6=1 w̄jµj , the SC estimator will only be asymptotically unbiased, in general, if we impose an

additional assumption that E
[
λk
t |D(1, 0) = 1

]
= 0 for all common factors k such that µk

1 6=
∑

j 6=1 w̄jµ
k
j . In

order to better understand the intuition behind this result, we consider a special case in which, conditional

on D(1, 0) = 1, λt is stationary for t ≤ 0. In this case, we can assume, without loss of generality, that

ω1
0 = E[λ1

t ] = 1 and ωk
0 = E[λk

t ] = 0 for k > 0. Therefore, the SC estimator will only be asymptotically

unbiased if the weights turn out to recover unit 1 fixed effect (that is, µ1
1 =

∑
j 6=1 µ

1
j ) and treatment

assignment is uncorrelated with time-varying unobserved common factors (that is, E[λk
t |D(1, 0) = 1] = 0

18If we do not impose this restriction, then this part would be minimized setting all weights equal to zero, and our main

argument would remain valid.

19We consider the definition of asymptotic unbiasedness as the expected value of the asymptotic distribution of α̂1t − α1t

equal to zero. An alternative definition is that E[α̂1t − α1t] → 0. We show in Appendix A.4 that these two definitions are

equivalent in this setting under standard assumptions.
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for t > 0 and k > 1). Importantly, this implies that the SC estimator may be asymptotically biased even

in settings in which the DID estimator is unbiased, as the DID estimator takes into account unobserved

characteristics that are fixed over time, while the SC estimator would not necessarily do so. We discuss

this issue in more detail in Section 4. We also discuss in Section 4 the implications of this result for the

asymptotic MSE of the SC estimator.

While many SC applications does not have a large number of pre-treatment periods to justify large-T0

asymptotics (see, for example, Doudchenko and Imbens (2016)), our results should be interpreted as the SC

weights not converging to weights that reconstruct the factor loadings of the treated unit even when T0 is

large. In Appendix A.2, we show that, with finite T0, the SC weights will be biased estimators for w∗. The

intuition for this result is that the SC method uses the vector of control outcomes as a proxy for the vector

common factors. That is, we can write the potential outcome of the treated unit as a linear combination

of the control units using a set of weights w∗ ∈ Φ. However, in this case the control outcomes will be,

by construction, correlated with the error in this model. The intuition is that the transitory shocks would

behave as a measurement error in these proxy variables, which leads to bias. In Section 6, we show that, in

our MC simulations, the SC weights are, on average, even further from weights that reconstruct the factor

loadings of the treated unit when T0 is finite.

The discrepancy of our results with the results from Abadie et al. (2010) arises because we rely on different

assumptions. Abadie et al. (2010) consider the properties of the SC estimator conditional on having a perfect

fit in the pre-treatment period in the data at hand. They do not consider the asymptotic properties of the

SC estimator when T0 goes to infinity. Instead, they provide conditions under which the bias of the SC

estimator is bounded by a term that goes to zero when T0 increases, if the pre-treatment fit is perfect. Our

results are not as conflicting with the results from Abadie et al. (2010) as they may appear at first glance.

In a model with “stationary” common factors, the probability that one would actually have a dataset at

hand such that the SC weights provide a close-to-perfect pre-intervention fit with a moderate T0 is close to

zero, unless the variance of the transitory shocks is small. Therefore, our results agree with the theoretical

results from Abadie et al. (2010) in that the aymptotic bias of the SC estimator should be small in situations

where one would expect to have a close-to-perfect fit for a large T0. An important caveat is that the placebo

test suggested by Abadie et al. (2010) may lead to over-rejection even when the variance of the transitory

shocks is close to zero. In this case, the asymptotic bias of the SC estimator will be close to zero. However,

the variance of the SC estimator, which depends on a linear combination of the transitory shocks, will be

close to zero as well. Therefore, even a small bias may lead to over-rejection under the null in this setting.

We exploit in detail the implications of our results for the placebo test suggested by Abadie et al. (2010)

in a companion paper (Ferman and Pinto (2017)). Moreover, in Section 5 we show that the SC estimator
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may remain biased even in settings where one would expect a close-to-perfect pre-treatment fit if we have

non-stationary common factors.

In Appendix A.5 we consider alternative specifications used in the SC method to estimate the weights.

In particular, we consider the specification that uses the pre-treatment average of the outcome variable as

predictor, and the specification that uses the pre-treatment average of the outcome variable and other time-

invariant covariates as predictors. In both cases, we show that the objective function used to calculate the

weights converge in probability to a function that can, in general, have multiple minima. If Φ is non-empty,

then w ∈ Φ will be one solution. However, there might be w /∈ Φ that also minimizes this function, so there

is no guarantee that the SC weights in these specifications will converge in probability to weights in Φ.

4 Comparison to DID & alternative SC estimators

We show in Section 3 that the SC estimator can be asymptotically biased even in situations where the DID

estimator is unbiased. In contrast to the SC estimator, the DID estimator for the treatment effect in a given

post-intervention period t > 0, under Assumption 4, would be given by

α̂DID
1t = y1t −

1

J

∑

j 6=1

yjt −
1

T0

T0∑

τ=1


y1τ − 1

J

∑

j 6=1

yjτ




d→ α1t +


ε1t −

1

J

∑

j 6=1

εjt


+ (λt − ω0)


µ1 −

1

J

∑

j 6=1

µj


 when T0 → ∞. (6)

Therefore, the DID estimator will be asymptotically unbiased if E[λt|D(1, 0) = 1] = ω0, which means that

the fact that unit 1 is treated after period t = 0 is not informative about the first moment of the common

factors relative to their pre-treatment averages. Intuitively, the unit fixed effects control for any difference in

unobserved variables that remain constant (in expectation) before and after the treatment. Moreover, the

DID allows for arbitrary correlation between treatment assignment and δt (which is captured by the time

effects). However, the DID estimator will be biased if the fact that unit 1 is treated after period t = 0 is

informative about variations in the common factors relative to their pre-treatment mean.

As an alternative to the standard SC estimator, we suggest a modification in which we calculate the

pre-treatment average for all units and demean the data. This is equivalent to a generalization of the SC

method suggested, in parallel to our paper, by Doudchenko and Imbens (2016), which includes an intercept

parameter in the minimization problem to estimate the SC weights and construct the counterfactual. Here

we formally consider the implications of this alternative on the bias and MSE of the SC estimator.

The demeaned SC estimator is given by α̂SC′

1t = y1t−
∑

j 6=1 ŵ
SC′

j yjt− (ȳ1−
∑

j 6=1 ŵ
SC′

j ȳj), where ȳj is the
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pre-treatment average of unit j, and the weights ŵSC′

= {ŵSC′

j }J+1
j=2 are given by

ŵSC′

= argmin
w∈W

1

T0

0∑

t=−T0+1


y1t −

∑

j 6=1

wjyjt −


ȳ1 −

∑

j 6=1

wj ȳj





2

. (7)

Proposition 2 Under Assumptions 1, 2 and 4, we have that ŵSC′ p→ w̄SC′

when T0 → ∞, where µ1 6=
∑

j 6=1 w̄
SC′

j µj , unless σ
2
ε = 0 or ∃w ∈ Φ|w ∈ argmin

w∈W

{∑
j 6=1(wj)

2
}
. Moreover, for t > 0,

α̂SC′

1t
d→ α1t +


ε1t −

∑

j 6=1

w̄SC′

j εjt


+ (λt − ω0)


µ1 −

∑

j 6=1

w̄SC′

j µj


 when T0 → ∞. (8)

Proof.

See details in Appendix A.1.2

Therefore, the demeaned SC estimator is asymptotically unbiased under the same conditions as the DID

estimator. Moreover, under the DID assumptions, both estimators are unbiased even for finite T0. With

additional assumptions on (ε1t, ..., εJ+1,t, λ
′
t) in the post-treatment periods, we can also assure that the

demeaned SC estimator is asymptotically more efficient than DID.

Assumption 5 (Stability in the pre- and post-treatment periods) For t > 0, E[λt|D(1, 0) = 1] =

ω0, E[ǫt|D(1, 0) = 1] = 0, E[λ′
tλt|D(1, 0) = 1] = Ω0, and E[ǫtǫ

′
t|D(1, 0) = 1] = σ2

εIJ+1, cov(ǫt, λt|D(1, 0) =

1) = 0.

Assumptions 4 and 5 imply that transitory shocks and common factors have the same first and second

moments in the pre- and post-treatment periods. From Proposition 2, Assumption 5 implies that the

demeaned SC estimator is asymptotically unbiased. We now show that this assumption also implies that

the demeaned SC estimator has lower asymptotic MSE than both the DID estimator and the infeasible SC

estimator.

Proposition 3 Under Assumptions 1, 2, 4, and 5, the demeaned SC estimator (α̂SC′

1t ) dominates both the

DID estimator (α̂DID
1t ) and the infeasible SC estimator (α̂∗

1t) in terms of asymptotic MSE when T0 → ∞.

Proof.

See details in Appendix A.1.3

The intuition of this result is that, under Assumption 5, the demeaned SC weights converge to weights

that minimize a function Γ(w) such that Γ(w̄SC′

) = a.var(α̂SC′

1t |D(1, 0) = 1), Γ(w∗) = a.var(α̂∗
1t|D(1, 0) = 1),

and Γ({ 1
J
, ..., 1

J
}) = a.var(α̂ DID

1t |D(1, 0) = 1). Therefore, it must be that the asymptotic variance of α̂SC′

1t is
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weakly lower than the variance of both α̂∗
1t and α̂ DID

1t . Moreover, these three estimators are unbiased under

these assumptions.

The demeaned SC estimator dominates the infeasible one, in terms of MSE, because the infeasible SC

estimator focuses on eliminating the common factors, even if this means using a linear combination of

the transitory shocks with higher variance. In contrast, the demeaned SC estimator provides a better

balance in terms of the variance of the common factors and transitory shocks. This dominance of the

demeaned SC estimator, however, relies crucially on the assumption that the first and second moments of

the common factors and transitory shocks remain stable before and after the treatment. If we had that

E[λ′
tλt|D(1, 0) = 1] 6= Ω0 for t > 0, then Γ(w) would not provide the variance of the estimators with weights

w. Therefore, it would not be possible to guarantee that the demeaned SC estimator has lower variance,

even if the three estimators are unbiased.

If we had that E[λt|D(1, 0) = 1] 6= ω0 for t > 0, then both the demeaned SC and the DID estimators would

be asymptotically biased, while the infeasible SC estimator would remain unbiased. The asymptotic bias of

α̂SC′

1t would be given by (E[λt|D(1, 0) = 1]− ω0)(µ1 −
∑

j 6=1 w̄
SC′

j µj). Therefore, provided µ1 6=∑j 6=1 w̄
SC′

j µj

(which, in general, will happen), the infeasible SC estimator will dominate the demeaned SC estimator

in terms of asymptotic MSE if (E[λt|D(1, 0) = 1] − ω0) is large enough. In other words, once we relax

Assumption 5, we cannot guarantee that the demeaned SC estimator provides a better prediction in terms

of MSE relative to the infeasible one. Moreover, if the bias of the demeaned SC estimator is large enough,

then the infeasible SC estimator will be better in terms of MSE relative to the demeaned SC estimator.

In general, it is not possible to rank the demeaned SC and the DID estimators in terms of bias and

MSE if treatment assignment is correlated with time-varying common factors. We provide in Appendix A.3

an example in which the DID can have a smaller bias and MSE relative to the demeaned SC estimator.

This might happen when selection into treatment depends on common factors with low variance, and it

happens that a simple average of the controls provides a good match for the factor loadings associated with

these common factors. For the particular class of linear factor models we present in Section 6, however,

the asymptotic bias and the MSE of the demeaned SC estimator will always be lower relative to the DID

estimator, provided that there is stability in the variance of common factors and transitory shocks before

and after the treatment.

In addition to including an intercept, Doudchenko and Imbens (2016) also consider the possibility of

relaxing the non-negative and the adding-up constraints in the SC model. We show in Appendix A.5.3 that

our main result that the SC estimator will be asymptotically biased if there is selection on time-varying
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unobservables still apply if we relax these conditions.20 The panel data approach suggested by Hsiao et al.

(2012) is essentially the same as the SC estimator using all outcome lags as predictors, and relaxing the

no-intercept, adding-up, and non-negativity constraints. Therefore, our result on asymptotic bias is also

valid for the estimator suggested by Hsiao et al. (2012). Note also that relaxing the adding-up constraint

implies that the SC estimator may be biased if the time effect δt is correlated with the treatment assignment.

We also present in Appendix A.5.4 an instrumental variables estimator for the SC weights that generates

an asymptotically unbiased SC estimator under additional assumptions on the error structure, which would

be valid if, for example, the idiosyncratic error is serially uncorrelated and all the common factors are serially

correlated. The main idea is that, under these assumptions, one could use the lag outcome of the control

units as instrumental variables to estimate parameters that reconstruct the factor loadings of the treated

unit.

5 Model with “explosive” common factors

Many SC applications present time-series patterns that are not consistent with Assumption 4, including the

applications considered by Abadie and Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015).

This will be the case whenever we consider outcome variables that exhibit non-stationarities, such as GDP

and average wages. We consider now the case in which the first and second moments of a subset of the

common factors diverge. We modify the model to





yit(0) = λtµi + γtθi + εit

yit(1) = αit + yit(0)

(9)

where λt = (λ1
t , ..., λ

F0

t ) is a (1×F0) vector of I(0) common factors, and γt = (γ1
t , ..., γ

F1

t ) is a (1×F1) vector

of common factors that are I(1) and/or polynomial time trends tf , while µi and θi are the vectors of factor

loadings associated with these common factors. The time effect δt can be either included in vector λt or γt.

Differently from the previous sections, in order to consider the possibility that treatment starts after a large

number of periods in which some common factors may be I(1) and/or polynomial time trends, we label the

periods as t = 1, ..., T0, T0 + 1, ..., T . We modify Assumption 4 to determine the behavior of the common

factors and the transitory shocks in the pre-treatment periods.

Assumption 4′ (stochastic processes) Conditional on D(1, T0) = 1, the process zt = (ε1t, ..., εJ+1,t, λt)

20In this case, since we do not constraint the weights to sum 1, we need to adjust Assumption 4 so that it also includes

convergence of the pre-treatment averages of the first and second moments of δt.
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is I(0) and weakly stationary with finite fourth moments, while the components of γt are I(1) and/or

polynomial time trends tf for t = 1, ..., T0.

Assumption 4′ restricts the behavior of the common factors in the pre-treatment periods. However, this

assumption allows for correlation between treatment assignment and common factors in the post-intervention

periods. For example, if γk
t = γk

t−1 + ηt, then Assumption 4′ implies that ηt has mean zero for all t ≤ T0.

However, it may be that E[ηt|D(1, T0)] 6= 0 for t > T0. This assumption could be easily relaxed to allow for

E[ηt|D(1, T0)] 6= 0 for a fixed number of periods prior to the start of the treatment.

We also modify Assumption 3 to state that there are weights that reconstruct the factor loadings of unit

1 associated with the non-stationary common trends.

Assumption 3′ (existence of weights)

∃ w∗ ∈ W | θ1 =
∑

j 6=1

w∗
j θj

where W is the set of possible weights given the constrains on the weights the researcher is willing to consider.

For example, Abadie et al. (2010) suggest W = {w ∈ R
J | ∑j 6=1 w

∗
j = 1, and w∗

j ≥ 0}, while Hsiao et al.

(2012) allows for W = R
J . Let Φ1 be the set of weights in W that reconstruct the factor loadings of unit 1

associated with the I(1) common factors. Assumption 3′ implies that Φ1 6= ∅.

In a setting in which γt is a vector of I(1) common factors, Assumption 3′ implies that the vector

of outcomes yt = (y1t, ..., yJ+1,t)
′ is co-integrated. Importantly, differently from our results in Section 3,

Assumption 3′ is key for our results in this section. However, we do not need to assume existence of weights

in Φ1 that also reconstruct the factor loadings of unit 1 associated with the I(0) common factors, so it may

be that Φ = ∅, where Φ is the set of weights that reconstruct all factor loadings.

We consider an asymptotic exercise where T0 → ∞ with “explosive” common factors, so it is not possible

to fix the label of the post-treatment periods, as we do in Sections 3 and 4. Instead, we consider the

asymptotic distribution of the estimator for the effect of the treatment τ periods after the start of the

treatment.

Proposition 4 Under Assumptions 1, 2, 3′, and 4′, we have that, for t = T0 + τ , τ > 0,

α̂SC′

1t
d→ α1t +


ε1t −

∑

j 6=1

w̄jεjt


+ (λt − ω0)


µ1 −

∑

j 6=1

w̄jµj


 when T0 → ∞ (10)

where µ1 6=∑j 6=1 w̄jµj , unless σ
2
ε = 0 or ∃w ∈ Φ|w ∈ argmin

w∈W

{∑
j 6=1(wj)

2
}
.
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Proof.

Details in Appendix A.1.4.

Proposition 4 has two important implications. First, if Assumption 3′ is valid, then the asymptotic

distribution of the demeaned SC estimator does not depend on the non-stationary common trends. The

intuition of this result is the following. The demeaned SC weights will converge to weights that reconstruct

the factor loadings of the treated unit associated with the non-stationary common trends. Interestingly,

while ŵ will generally be only
√
T0−consistent when Φ1 is not a singleton, we show that there are linear

combinations of ŵ that will converge at a faster rate, implying that γt(θ1 − ∑j 6=1 ŵjθj)
p→ 0, despite

the fact that γt explodes when T0 → ∞. Therefore, such non-stationary common trends will not lead

to asymptotic bias in the SC estimator. Second, the demeaned SC estimator will be biased if there is

correlation between treatment assignment and the I(0) common factors. The intuition is that the demeaned

SC weights will converge in probability to weights in Φ1 that minimize the variance of the I(0) process

ut = y1t −
∑

j 6=1 wjyjt = λt(µ1 −∑j 6=1 wjµj) + (ε1t −
∑

j 6=1 wjεjt). Following the same arguments as in

Proposition 1, ŵ will not eliminate the I(0) common factors, unless we have that σ2
ε = 0 or it coincides that

there is a w ∈ Φ that also minimizes the linear combination of transitory shocks.

The result that the asymptotic distribution of the SC estimator does not depend on the non-stationary

common trends depends crucially on Assumption 3′. If there were no linear combination of the control units

that reconstruct the factor loadings of the treated unit associated to the non-stationary common trends,

then the asymptotic distribution of the SC estimator would trivially depend on these common trends, which

might lead to bias in the SC estimator.

Proposition 4 remains valid when we relax the adding-up and/or the non-negativity constraints, with

minor variations in the conditions for unbiasedness.21 However, these results are not valid when we consider

the no-intercept constraint, as the original SC estimator does. When the intercept is not included, it remains

true that ŵ
p→ w̄ ∈ Φ1. However, in this case, the weights will not converge fast enough to compensate the

fact that γt explodes. See an example in Appendix A.6.2. This provides another reason to use the demeaned

instead of the original SC estimator.

An important feature of this setting is that, as T0 → ∞, the pre-treatment fit will become close to

perfect, which is the case in which Abadie et al. (2010) recommend that the SC method should be used.

As a measure of goodness of pre-treatment fit, we consider a pre-treatment normalized mean squared error

21Relaxing the adding-up constraint makes the estimator biased if δt is correlated with treatment assignment and if it is

I(0). If δt is I(1), then the weights will converge to sum one even when such restriction is not imposed, so this would not

generate bias. Including or not the non-negative constraint does not alter the conditions for unbiasedness, although it may be

that assumption 3′ is valid in a model without the non-negativity constraints, but not valid in a model with these constraints.
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index, as suggested by Ferman et al. (2017):

R̃2 = 1−
1
T0

∑T0

t=1 (y1t − ŷ1t)
2

1
T0

∑T0

t=1 (y1t − y1)
2

(11)

where ŷ1t is the outcome of the SC unit and y1 =
∑T0

t=1 y1t

T0
. This measure is always lower than one, and it

is close to one when the pre-treatment fit is close to perfect.22 In this setting with non-stationary common

trends, the numerator will converge to the variance of an I(0) process, while the denominator will diverge

as T0 → ∞. Therefore, in these cases, we show that the SC estimator can be asymptotically biased even

conditional on a close-to-perfect pre-treatment fit.23

Therefore, in a setting with non-stationary trends, a seemingly perfect pre-treatment fit might hide

important possibilities for asymptotic bias in the SC method. While this perfect pre-treatment fit would

be indicative that the SC estimator was able to eliminate potential bias coming from correlations between

treatment assignment and non-stationary common factors, this would not guarantee unbiasedness if there

is a correlation between treatment assignment and common factors beyond such non-stationary trends.

Therefore, we recommend that researchers should also present the pre-treatment fit after eliminating non-

stationary trends as a diagnosis test for the SC estimator.24 To illustrate this point, we consider the three

influential applications presented by Abadie and Gardeazabal (2003), Abadie et al. (2010) and Abadie et

al. (2015). We present in Figure 1.A the per capita GDP time series for the Basque Country and for other

Spanish regions, while in Figure 1.B we replicate Figure 1 from Abadie and Gardeazabal (2003), which

displays per capita GDP of the Basque Country contrasted with the per capita GDP of a synthetic control

unit constructed to provide a counterfactual for the Basque Country without terrorism. The pre-treatment

fit in this case is seemingly perfect, with an R̃2 = 0.99. However, the per capita GDP series is clearly

non-stationary, with all regions displaying similar trends before the intervention. Therefore, based on our

results presented in Propositions 4, despite the seemingly perfect pre-treatment fit, it may still be that the

SC estimator is biased if there is a correlation between treatment assignment and common factors beyond

this non-stationary trend.

22Differently from the R2 measure, this measure can be negative, which would suggest a poor pre-treatment fit.

23Note that, in their proof, Abadie et al. (2010) assume that there exists a constant λ̄ such that |λf
t | ≤ λ̄ for all t = 1, ..., T

and f = 1, ..., F , where λt = (λ1
t , ..., λ

F
t ) is the vector of common factors. Under this and other additional assumptions, they

show that the bias of the SC estimator can be bounded by a function that depends on λ̄ and T0 if we have a perfect match

in the pre-treatment outcomes. In order to guarantee that this function goes to zero when T0 increases, however, we need to

assume that the condition on λ̄ remains valid when T0 increases. This will not be the case if some components of λt increase

without bound when T0 increases. Therefore, our result does not contradicts the result from Abadie et al. (2010).

24Wooldridge (1991) provides a similar solution for computing the R2 in regressions with trending and/or seasonal data.
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In order to assess this possibility, we consider two different ways to de-trend the data, so we can have a

better assessment on whether factor loadings associated with stationary common factors are well matched.

In both cases, we subtract the outcome of the treated and control units by constant terms {at}Tt=1. Note that,

under the adding-up constraint (
∑

j 6=1 wj = 1), the SC weights and the SC estimator will be numerically the

same whether we estimate with the original data or with ỹjt = yjt − at. We first subtract the average of the

control units at time t (at =
1
J

∑
j 6=1 yjt) for both treated and control units. Therefore, if the non-stationarity

comes from a common factor δt that affects every unit in the same way, then the series ỹjt = yjt− 1
J

∑
j′ 6=1 yj′t

would not display non-stationary trends. As shown in Figure 1.C, in this case, the treated and SC units do

not display a non-stationary trend, and the pre-treatment fit for this de-trended series would not be as good

as in the previous case, with an R̃2 = 0.65. We get similar results if we de-trend by fitting a polynomial a(t)

to the synthetic control series, with an R̃2 = 0.67 (Figure 1.D).25

We consider in Figure 2 the application from Abadie et al. (2010), who estimate the effects of California’s

tobacco control program. This empirical application also presents a seemingly perfect pre-treatment fit, with

an R̃2 = 0.96, but with a highly non-stationary trend. Our first strategy to de-trend the data by subtracting

the controls’ average outcomes still leads to a non-stationary series, suggesting that the non-stationary

common factors cannot be resumed into a simple time effect δt. When we consider a polynomial a(t), then

the pre-treatment fit for the de-trended series is very low. Finally, we consider in Figure 3 the study on the

economic impact of the 1990 German reunification on West Germany, by Abadie et al. (2015). Again, this

application displays a seemingly perfect pre-treatment fit (R̃2 = 0.99), but a more modest pre-treatment fit

when we de-trend the data using a time polynomial (R̃2 = 0.70). Overall, our results point out that the

diagnosis based on the pre-treatment fit for non-stationary series should be considered with caution, as they

may hide discrepancies in common factors beyond non-stationary trends that may lead to asymptotic bias

in the SC estimator.

Importantly, our results do not imply that one should not use the SC method when the data is non-

stationary. On the contrary, we show that the SC method is very efficient in dealing with non-stationary

trends. Indeed, in these three applications, the seemingly perfect pre-treatment fit when we consider the

outcomes in level suggest that the method is being highly successful in taking into account non-stationary

trends, which is an important advantage of the method relative to alternatives such as DID. The only

caveat is that measures of pre-intervention fit could be misleading as diagnostic tests, as they may hide

important discrepancies in the factor loadings associated to the stationary common factors. One suggestion

is to calculate the measures of pre-intervention fit with a de-trended series. Another possibility would be to

25We used a polynomial of order 5 to fit the entire time series of the synthetic control unit (including both pre- and

post-periods. Then we consider the de-trended series ỹjt = yjt − â(t).
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apply the SC method on a transformation of the data that makes it stationary. In this case, however, the

estimator would not be numerically the same as the estimator using the original data.

6 Particular Class of Linear Factor Models & Monte Carlo Simu-

lations

We consider now in detail a particular class of linear factor models in which all units are divided into groups

that follow different times trends. We present both theoretical and MC simulations for these models. In

Section 6.1 we consider the case with stationary common factors, while in Section 6.2 we consider a case in

which there are both I(1) and I(0) common factors.

6.1 Model with stationary common factors

We consider first a model in which the J +1 units are divided into K groups, where for each j we have that

yjt(0) = δt + λk
t + εjt (12)

for some k = 1, ...,K. As in Section 3, let t = −T0 + 1, ..., 0, 1, ..., T1. We assume that 1
T0

∑0
t=−T0+1 λ

k
t

p→ 0,

1
T0

∑0
t=−T0+1(λ

k
t )

2 p→ 1, 1
T0

∑0
t=−T0+1 εjt

p→ 0, 1
T0

∑0
t=−T0+1 ε

2
jt

p→ σ2
ε and 1

T0

∑0
t=−T0+1 λ

k
t εjt

p→ 0 .

6.1.1 Asymptotic Results

Consider first an extreme case in which K = 2, so the first half of the J + 1 units follows the parallel

trend given by λ1
t , while the other half follows the parallel trend given by λ2

t . In this case, an infeasible SC

estimator would only assign positive weights to units in the first group.

We calculate, for this particular class of linear factor models, the asymptotic proportion of misallocated

weights of the SC estimator using all pre-treatment lags as predictors. From the minimization problem 4,

we have that, when T0 → ∞, the proportion of misallocated weights converges to

γ2(σ
2
ε , J) =

J+1∑

j= J+1

2
+1

w̄j =
J + 1

J2 + 2× J × σ2
ε − 1

× σ2
ε (13)

where γK(σ2
ε , J) is the proportion of misallocated weights when the J + 1 groups are divided in K groups.

We present in Figure 4.A the relationship between asymptotic misallocation of weights, variance of the

transitory shocks, and number of control units. For a fixed J , the proportion of misallocated weights
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converges to zero when σ2
ε → 0, while this proportion converges to J+1

2J (the proportion of misallocated

weights of DID) when σ2
ε → ∞. This is consistent with the results we have in Section 3. Moreover, for a

given σ2
ε , the proportion of misallocated weights converges to zero when the number of control units goes

to infinity. This is consistent with Gobillon and Magnac (2016), who derive support conditions so that the

assumptions from Abadie et al. (2010) for unbiasedness are satisfied when both T0 and J go to infinity.

In this example, the SC estimator, for t > 0, converges to

α̂1t
d→ α1t +


ε1t −

∑

j 6=1

w̄jεjt


+ λ1

t × γ2(σ
2
ε , J)− λ2

t × γ2(σ
2
ε , J) (14)

so the potential bias due to correlation between treatment assignment and common factors (for example,

E[λ1
t |D(1, 0) = 1] 6= 0 for t > 0) will directly depend on the proportion of misallocated weights.

We consider now another extreme case in which the J + 1 units are divided into K = J+1
2 groups that

follow the same parallel trend. In this case, each unit has a pair that follows its same parallel trend, while

all other units follow different parallel trends. The proportion of misallocated weights converges to

γ J+1

2

(σ2
ε , J) =

J+1∑

j=3

w̄j =
J − 1

J(1 + σ2
ε) + 1

× σ2
ε . (15)

We present the relationship between misallocation of weights, variance of the transitory shocks, and

number of control units in Figure 4.B. Again, the proportion of misallocated weights converges to zero when

σ2
ε → 0 and to the proportion of misallocated weights of DID when σ2

ε → ∞ (in this case, J−1
J

). Differently

from the previous case, however, for a given σ2
ε , the proportion of misallocated weights converges to

σ2
ε

1+σ2
ε

when J → ∞. Therefore, the SC estimator would remain asymptotically biased even when the number of

control units is large. This happens because, in this model, the number of common factors increases with J ,

so the conditions derived by Gobillon and Magnac (2016) are not satisfied.

In both cases, the proportion of misallocated weights is always lower than the proportion of misallocated

weights of DID. Therefore, in this particular class of linear factor models, the asymptotic bias of the SC

estimator will always be lower than the asymptotic bias of DID. If we further assume that the variance of

common factors and transitory shocks remain constant in the pre- and post-intervention periods, then we

also have that the SC estimator will have lower variance and, therefore, lower MSE relative to the DID

estimator. However, this is not a general result, as we show in Appendix A.3.

Finally, we compare the asymptotic MSE between the feasible and the infeasible SC estimator in this par-

ticular class of linear factor models. As outlined in Section 4, assuming that common factors and transitory

shocks are stable before and after the intervention, the feasible SC estimator has a lower asymptotic MSE
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relative to the infeasible one. However, if the feasible SC estimator is asymptotically biased, and the bias is

large enough, then it will have a higher asymptotic MSE relative to the infeasible SC estimator. We illustrate

these features in Table 1. Considering 20 units divided in 10 groups of 2 (columns 1 to 3), the feasible SC

estimator has a lower asymptotic MSE for the estimator of α1t, for t > 0, when E[λt|D(1, 0) = 1] = 1. How-

ever, when the correlation between treatment assignment and common factors is larger, then the feasible SC

estimator has a higher asymptotic MSE relative to the infeasible one. When the number of post-treatment

periods is greater than one (that is, T1 > 1), if we consider estimators for the average treatment effect across

all post-treatment periods, then the ratio of asymptotic MSE for the feasible and infeasible SC estimators

would be substantially higher. In this case, the infeasible SC estimator dominates the feasible one in terms

of asymptotic MSE even when E[λt|D(1, 0) = 1] = 1 (panel ii of Table 1). This happens because averaging

across post-treatment periods does not affect the asymptotic bias, while it reduces the variance of both

estimators. In columns 4 to 6, we present the case in which 20 units are divided in 2 groups of 10. In this

case, the difference between the two estimators is much smaller, although it also shows that the feasible SC

estimator has a higher asymptotic MSE when its bias is large enough. While, of course, the infeasible SC

estimator would not be available in real applications, these results highlight that researchers applying the

SC estimator should be aware that it may have a non-trivial asymptotic MSE if there is correlation between

treatment assignment and unobserved common factors.

6.1.2 Monte Carlo Simulations

The results presented in Section 6.1.1 are based on large-T0 asymptotics. We now consider, in MC sim-

ulations, the finite T0 properties of the SC estimator, both unconditional and conditional on a good pre-

treatment fit. We present MC simulations using a data generating process (DGP) based on equation 12. We

consider in our MC simulations J + 1 = 20, λk
t normally distributed following an AR(1) process with 0.5

serial correlation parameter, εjt ∼ N(0, σ2
ε), and T − T0 = 10. We also impose that there is no treatment

effect, i.e., yjt = yjt(0) = yjt(1) for each time period t ∈ {−T0 + 1, ..., 0, 1, ..., T1}. We consider variations in

DGP in the following dimensions:

• The number of pre-intervention periods: T0 ∈ {5, 20, 50, 100}.

• The variance of the transitory shocks: σ2
ε ∈ {0.1, 0.5, 1}.

• The number of groups with different λk
t : K = 2 (2 groups of 10) or K = 10 (10 groups of 2)

For each simulation, we calculate the SC estimator that uses all pre-treatment outcome lags as predictors,

and calculate the proportion of misallocated weights. We also evaluate whether the SC method provides
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a good pre-intervention fit and calculate the proportion of misallocated weights conditional on a good pre-

intervention fit. In order to determine that the SC estimator provided a good fit, we consider a pre-treatment

normalized mean squared error index, presented in equation 11. For each scenario, we generate 20,000

simulations.

In columns 1 to 3 of Table 2, we present the proportion of misallocated weights when K = 10 for different

values of T0 and σ2
ε . Consistent with our analytical results from Section 6.1.1, the misallocation of weights is

increasing with the variance of the transitory shocks. With T0 = 100, the proportion of misallocated weights

is close to the asymptotic values, while the proportion of misallocated weights is substantially higher when

T0 is small. From equation 14, there is a direct link between misallocation of weights and the bias of the SC

estimator (for a given E[λt|D(1, 0) = 1]). Therefore, if there is correlation between treatment assignment and

common factors, then the bias of the SC estimator should be expected to be much larger than its asymptotic

values when T0 is small.

We present in columns 4 to 6 of Table 2 the probability that the SC method provides a good fit when

we define good fit as R̃2 > 0.8. As expected, with a large T0 the SC method only provides a good pre-

intervention fit if the variance of the transitory shock is low. If the variance of the transitory shocks is

higher, then the probability that the SC method provides a good match is approximately zero, unless the

number of pre-treatment periods is rather low. These results suggest that, in a model with stationary factors,

the SC estimator would only provide a close-to-perfect pre-treatment fit with a moderate number of pre-

treatment periods if the variance of the transitory shocks is low, in which case the bias of the SC estimator

would be relatively small. With T0 = 20 and σ2
ε = 0.5 or σ2

ε = 1, the probability of having a good fit is,

respectively, equal to 1.3% and 0.1%. Interestingly, when we condition on having a good pre-treatment fit

the proportion of misallocated weights reduces, but still remains quite high (for example, it goes from 50%

to 33% when σ2
ε = 0.5 and from 65% to 45% when σ2

ε = 1). These results are presented in Table 2, columns

7 to 9. In Appendix Table A.1 we replicate Table 2 using a more stringent definition of good fit, which is

equal to one if R̃2 > 0.9. In this case, conditioning has a larger effect in reducing the discrepancy of factor

loadings between the treated and the SC units, but at the expense of having a lower probability of accepting

that the pre-treatment fit is good. These results suggest that, with stationary data, the SC estimator would

only provide a close-to-perfect match with a moderate T0, and therefore be close to unbiased, when the

variance of the transitory shocks converges to zero. In Appendix Table A.2 we also consider the case with 2

groups of 10 units each (K = 2). All results are qualitatively the same.

In this particular class of linear factor models, the proportion of misallocated weights is always lower

than the proportion of misallocated weights of the DID estimator, which implies in a lower bias if treatment

assignment is correlated with common factors. This is true even when the pre-treatment match is not perfect
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and when the number of pre-treatment periods is very small. From Section 4, we also know that, if common

factors are stationary for both pre- and post-treatment periods, then a demeaned SC estimator is unbiased

and has a lower asymptotic variance than DID. Since this DGP has no time-invariant factor, this is true

for the standard SC estimator as well. We present in Table 3 the DID/SC ratio of standard errors. With

T0 = 100, the DID standard error is 2.4 times higher than the SC standard errors when σ2
ε = 0.1. When

σ2
ε is higher, the advantage of the SC estimator is reduced, although the DID standard error is still 1.3

(1.1) times higher when σ2
ε is equal to 0.5 (1). This is expected given that, in this model, the SC estimator

converges to the DID estimator when σ2
ε → ∞. More strikingly, the variance of the SC estimator is lower

than the variance of DID even when the number of pre-treatment periods is small. These results suggest

that the SC estimator can still improve relative to DID even when the number of pre-treatment periods is

not large and when the pre-treatment fit is not perfect, situations in which Abadie et al. (2015) suggest the

method should not be used. However, a very important qualification is that, in these cases, the SC estimator

requires stronger identification assumptions than stated in the original SC papers. More specifically, it is

generally asymptotically biased if treatment assignment is correlated with time-varying confounders.

6.2 Model with “explosive” common factors

We consider now a model in which a subset of the common factors is I(1). We consider the following DGP:

yjt(0) = δt + λk
t + γr

t + εjt (16)

for some k = 1, ...,K and r = 1, ..., R. We maintain that λk
t is stationary, while γr

t follows a random walk.

6.2.1 Asymptotic results

Based on our results from Section 5, the SC weights will converge to weights in Φ1 that minimize the second

moment of the I(0) process that remains after we eliminate the I(1) common factor. Consider the case

K = 10 and R = 2. Therefore, units j = 2, ..., 10 follow the same non-stationary path γ1
t as the treated

unit, although only unit j = 2 also follows the same stationary path λ1
t as the treated unit. In this case,

asymptotically, all weights would be allocated among units 2 to 10, eliminating the relevance of the I(1)

common factor. However, the allocation of weights within these units will not assign all weights to unit 2,

so the I(0) common factor will remain relevant.
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6.2.2 Monte Carlo simulations

In our MC simulations, we maintain that λk
t is normally distributed following an AR(1) process with 0.5

serial correlation parameter, while γr
t follows a random walk. We consider the case K = 10 and R = 2.

The proportion of misallocated weights (in this case, weights not allocated to unit 2) is very similar to

the proportion of misallocated weights in the stationary case (columns 1 to 3 of Table 4). If we consider the

misallocation of weights only for the I(1) factors, then the misallocation of weights is remarkably low with

moderate T0, even when the variance of the transitory shocks is high (columns 4 to 6 of Table 4). The reason

is that, with a moderate T0, the I(1) common factors dominate the transitory shocks, so the SC method

is extremely efficient selecting control units that follow the same non-stationary trend as the treated unit.

For the same reason, the probability of having a dataset with a close-to-perfect pre-treatment fit is also very

high if a subset of the common factors is I(1) (columns 7 to 9 of Table 4). Finally, we show in columns 10 to

12 of Table 4 that conditioning on a close-to-perfect match makes virtually no difference in the proportion

of misallocated weights for the stationary factor.

These results suggest that the SC method works remarkably well to control for I(1) common factors. In

this scenario, one would usually have a close-to-perfect fit, and there would be virtually no bias associated to

the I(1) factors. However, we might have a substantial misallocation of weights for the I(0) common factors

even conditional on a close-to-perfect pre-treatment match. Taken together, these results suggest that the SC

method provides substantial improvement relative to DID in this scenario, as the SC estimator is extremely

efficient in capturing the I(1) factors. Also, if the DID and SC estimators are unbiased, then the variance of

the DID relative to the variance of the SC estimator would be substantially higher, as presented in Table 5.

However, one should be aware that, in this case, the identification assumption only allows for correlation of

treatment assignment with the I(1) factors. Still, this potential bias of the SC estimator due to a correlation

between treatment assignment and the I(0) common shocks, in this particular class of linear factor models,

would be lower than the bias of DID.

7 Conclusion

We revisit the theory behind the SC method in a linear factor model setting. If the model has “stationary”

common factors, in the sense that pre-treatment averages of the first and second moments of the common

factors converge, we show that the SC estimator is biased if treatment assignment is correlated with un-

observed confounders, even when weights that reconstruct the factor loadings of the treated unit exist and

when T0 → ∞. Our simulations suggest that the bias may be larger when T0 is finite. The asymptotic bias
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goes to zero when the variance of the transitory shocks goes to zero, which is exactly the case in which one

would expect to find a good pre-treatment fit. Therefore, our results, under these conditions on the common

factors, are consistent with the results from Abadie et al. (2010). However, if pre-treatment averages of a

subset of the common factors diverge, then we show that the SC estimator can be asymptotically biased

even conditional on a close-to-perfect pre-treatment match.

Our results suggest that researchers should be more careful in interpreting the identification assumptions

required for the SC method. Moreover, we suggest that, in addition to the standard graph comparing treated

and SC units, researchers should also present a graph comparing the treated and SC units after de-trending

the data, so that it is possible to assess whether there might be relevant possibilities for bias arising due to

a correlation between treatment assignment and common factors beyond non-stationary trends. Our results

also have implications for the placebo test suggested in Abadie et al. (2010), as we explore in a companion

paper (Ferman and Pinto (2017)).

Despite these caveats, we show that a demeaned SC estimator can substantially improve relative to

currently available methods, even if the pre-treatment fit is not close to perfect and if T0 is not large. This

is particularly true when a subset of the common factors is non-stationary.

References

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller, “Synthetic Control Methods for Com-
parative Case Studies: Estimating the Effect of California’s Tobacco Control Program,” Journal of the

American Statiscal Association, 2010, 105 (490), 493–505.

, , and , “Comparative Politics and the Synthetic Control Method,” American Journal of Political

Science, 2015, 59 (2), 495–510.

and Javier Gardeazabal, “The Economic Costs of Conflict: A Case Study of the Basque Country,”
American Economic Review, 2003, 93 (1), 113–132.

Amjad, Muhammad Jehangir, Devavrat Shah, and Dennis Shen, “Robust Synthetic Control,” 2017.
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Figure 1: Abadie and Gardeazabal (2003) application

1.A: Raw data 1.B: GDP in level
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Notes: Figure A presents time series for the treated and for the control units used in the empirical application from Abadie
and Gardeazabal (2003). In Figure B we present the time series for the treated and for the SC units. In Figure C we present
the same information as in Figure B after subtracting the control groups’ averages for each time period. In Figure C we present
the same information as in Figure B after subtracting a time trend estimated by fitting a 5th order polynomial on the SC series.
Figures B to D we also report the measure of pre-treatment fit defined in equation 11.
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Figure 2: Abadie et al. (2010) application

2.A: Raw data 2.B: Outcome in level
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Notes: Figure A presents time series for the treated and for the control units used in the empirical application from Abadie
et al. (2010). In Figure B we present the time series for the treated and for the SC units. In Figure C we present the same
information as in Figure B after subtracting the control groups’ averages for each time period. In Figure C we present the same
information as in Figure B after subtracting a time trend estimated by fitting a 5th order polynomial on the SC series. Figures
B to D we also report the measure of pre-treatment fit defined in equation 11.
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Figure 3: Abadie et al. (2015) application

3.A: Raw data 3.B: GDP in level
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Notes: Figure A presents time series for the treated and for the control units used in the empirical application from Abadie
et al. (2015). In Figure B we present the time series for the treated and for the SC units. In Figure C we present the same
information as in Figure B after subtracting the control groups’ averages for each time period. In Figure C we present the same
information as in Figure B after subtracting a time trend estimated by fitting a 5th order polynomial on the SC series. Figures
B to D we also report the measure of pre-treatment fit defined in equation 11.
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Figure 4: Asymptotic Misallocation of Weights

4.A: K = 2 4.B: K = J+1
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Notes: these figures present the asymptotic misallocation of weights of the SC estimator as a function of the variance of
the transitory shocks for different numbers of control units. Figures 4.A presents results when there are 2 groups of J+1

2
units

each, while Figure 4.B presents results when there are J+1

2
groups of 2 units each. The misallocation of weights is defined as

the proportion of weight allocated to units that do not belong to the group of treated unit.
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Table 1: Asymptotic MSE (Feasible SC estimator / Infeasible SC estimator)

K = J+1
2 = 10 K = 2

σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1
E[λt|D(1, 0) = 1] (1) (2) (3) (4) (5) (6)

Panel i: T1 = 1
1 0.99 0.94 0.88 1.00 1.00 1.00

2 1.09 1.22 1.20 1.00 1.00 1.00

4 1.50 2.34 2.47 1.00 1.02 1.03

Panel ii: T1 = 10
1 1.07 1.14 1.11 1.00 1.00 1.00

2 1.39 2.02 2.12 1.00 1.01 1.02

4 2.67 5.56 6.16 1.01 1.06 1.11
Notes: this table presents the ration of the asymptotic MSE of the feasible and infeasible SC estimator
for the model presented in Section 6.1. We set J + 1 = 20. Columns 1 to 3 present the case in which
these 20 units are divided in 10 groups of 2 units each, while columns 4 to 6 present the case in which
units are divided in 2 groups of 10. Different columns present different values of σ2

ǫ , while σ2
λ
= 1.

Different rows present different values of E[λt|D(1, 0)] for t > 0 (that is, in the post-treatment periods.
Panel i displays the results when there is only one post-treatment periods. Panel ii assumes 10 post-
treatment periods, considering an estimator for the average treatment effect across all post-treatment
periods.
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Table 2: Misallocation of weights and probability of perfect match - stationary model

Misallocation of Probability of perfect Misallocation conditional

weights match (R̃2 > 0.8) on perfect match
σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)
T0 = 5 0.418 0.714 0.807 0.729 0.510 0.469 0.425 0.743 0.833

[0.002] [0.002] [0.002] [0.003] [0.004] [0.004] [0.003] [0.003] [0.002]

T0 = 20 0.197 0.495 0.653 0.639 0.013 0.001 0.174 0.331 0.445
[0.001] [0.001] [0.001] [0.003] [0.001] [0.000] [0.001] [0.008] [0.040]

T0 = 50 0.150 0.415 0.573 0.701 0.000 0.000 0.137 - -
[0.000] [0.001] [0.001] [0.003] [0.000] [0.000] [0.000] - -

T0 = 100 0.130 0.384 0.539 0.766 0.000 0.000 0.122 - -
[0.000] [0.001] [0.001] [0.003] [0.000] [0.000] [0.000] - -

Notes: this table presents MC simulations results from a stationary model. We consider the SC estimator that uses all pre-treatment
outcome lags as economic predictors for a given (T0, σ

2
ε). In all simulations, we set J + 1 = 20 and K = 10, which means that the

20 units are divided into 10 groups of 2 units that follow the same common factor λk
t . Columns 1 to 3 present the proportion of

misallocated weights, which is given by the sum of weights allocated to units 3 to 20. Columns 4 to 6 present the probability that
the pre-treatment match is close to perfect, defined as a R̃2 > 0.8. Columns 7 to 9 present the proportion of misallocated weights
conditional on a perfect match.
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Table 3: DID/SC ratio of standard errors - stationary model

σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1

(1) (2) (3)
T0 = 5 1.585 1.082 1.005

[0.011] [0.007] [0.005]

T0 = 20 2.232 1.231 1.074
[0.014] [0.005] [0.003]

T0 = 50 2.327 1.294 1.101
[0.010] [0.005] [0.004]

T0 = 100 2.389 1.314 1.123
[0.012] [0.005] [0.003]

Notes: this table presents MC simulations results
from a stationary model as in Table 2. We present
the ratio of standard errors of the DID estimator vs.
the SC estimator for different (T0, σ

2
ε) scenarios.
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Table 4: Misallocation of weights and probability of perfect match - non-stationary model

Misallocation of Misallocation of
weights weights (non-stationary factors)

σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1
(1) (2) (3) (4) (5) (6)

T0 = 5 0.372 0.661 0.762 0.107 0.192 0.232
[0.002] [0.002] [0.002] [0.001] [0.002] [0.002]

T0 = 20 0.176 0.441 0.589 0.029 0.069 0.095
[0.001] [0.001] [0.001] [0.000] [0.001] [0.001]

T0 = 50 0.136 0.373 0.518 0.015 0.036 0.050
[0.001] [0.001] [0.001] [0.000] [0.000] [0.000]

T0 = 100 0.120 0.346 0.489 0.009 0.022 0.030
[0.000] [0.001] [0.001] [0.000] [0.000] [0.000]

Probability of perfect Misallocation conditional

match (R̃2 > 0.8) on perfect match
σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1
(7) (8) (9) (10) (11) (12)

T0 = 5 0.846 0.618 0.542 0.377 0.683 0.784
[0.003] [0.003] [0.004] [0.002] [0.003] [0.003]

T0 = 20 0.984 0.556 0.296 0.175 0.427 0.571
[0.001] [0.004] [0.003] [0.001] [0.002] [0.003]

T0 = 50 1.000 0.835 0.550 0.136 0.371 0.515
[0.000] [0.003] [0.004] [0.001] [0.001] [0.001]

T0 = 100 1.000 0.973 0.822 0.120 0.346 0.487
[0.000] [0.001] [0.003] [0.000] [0.001] [0.001]

Notes: this table presents MC simulations results from a model with non-stationary and sta-
tionary common factors. We consider the SC estimator that uses all pre-treatment outcome lags
as economic predictors for a given (T0, σ

2
ε ,K). In all simulations, we set J + 1 = 20, K = 10

(which means that the 20 units are divided into 10 groups of 2 units each that follow the same
stationary common factor λk

t ) and R = 2 (which means that the 20 units are divided into 2
groups of 10 units each that follow the same non-stationary common factor γr

t ). Columns 1 to
3 present the proportion of misallocated weights, which is given by the sum of weights allocated
to units 3 to 20. Columns 4 to 6 present the proportion of misallocated weights considering
only the non-stationary common factor, which is given by the sum of weights allocated to units
11 to 20. Columns 7 to 9 present the probability that the pre-treatment match is close to per-
fect, defined as a R̃2 > 0.8. Columns 10 to 12 present the proportion of misallocated weights
conditional on a perfect match. Standard errors in brackets.

36



Table 5: DID/SC ratio of standard errors - non-stationary model

σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1

(1) (2) (3)
T0 = 5 2.072 1.263 1.115

[0.016] [0.007] [0.005]

T0 = 20 4.374 2.155 1.680
[0.029] [0.011] [0.010]

T0 = 50 6.649 3.190 2.420
[0.040] [0.021] [0.016]

T0 = 100 9.462 4.494 3.369
[0.057] [0.027] [0.022]

Notes: this table presents MC simulations results
from a non-stationary model as in Table 4. We
present the ratio of standard errors of the DID es-
timator vs. the SC estimator for different (T0, σ

2
ε)

scenarios. Standard errors in brackets.
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A Supplemental Appendix: Revisiting the Synthetic Control Es-

timator (For Online Publication)

A.1 Proof of the Main Results

A.1.1 Proposition 1

Proof.

Let y0t = (y2t, ..., yJ+1,t)
′, ε0t = (ε2t, ..., εJ+1,t)

′, and µ0 = (µ2, ..., µJ+1). The SC weights ŵ ∈ R
J are

given by?

ŵ = arg min
w∈W

1

T0

0∑

t=−T0+1

(y1t − y′
0tw)

2
(17)

where W = {w ∈ R
J |wj ≥ 0 and

∑
j 6=1 wj = 1}.26

Under Assumptions 1 and 4, the objective function Q̂T0
(w) ≡ 1

T0

∑0
t=−T0+1 (y1t − y′

0tw)
2
converges

pointwise in probability to

Q0(w) ≡ σ2
ε(1 +w′w) + (µ1 − µ0w)

′
Ω0 (µ1 − µ0w) (18)

which is a continuous and strictly convex function. Therefore, Q0(w) is uniquely minimized over W , and we

define its minimum as w̄ ∈ W .

We show that this convergence in probability is uniform over w ∈ W . Define ỹ1t = y1t − δt and

ỹ0t = y0t − δti, where i is a J × 1 vector of ones. For any w′,w ∈ W , using the mean value theorem, we can

find a w̃ ∈ W such that

∣∣∣Q̂T0
(w′)− Q̂T0

(w)
∣∣∣ =

∣∣∣∣∣2
(

1

T0

0∑

t=−T0+1

ỹ0tỹ1t −
1

T0

0∑

t=−T0+1

ỹ0tỹ
′
0tw̃

)
· (w′ −w)

∣∣∣∣∣

≤
[(

2

∣∣∣∣∣

∣∣∣∣∣
1

T0

0∑

t=−T0+1

ỹ0tỹ1t

∣∣∣∣∣

∣∣∣∣∣+
∣∣∣∣∣

∣∣∣∣∣
1

T0

0∑

t=−T0+1

ỹ0tỹ
′
0t

∣∣∣∣∣

∣∣∣∣∣× ||w̃||
)
||w′ −w||

] 1
2

. (19)

Define BT0
= 2

∣∣∣
∣∣∣ 1
T0

∑0
t=−T0+1 ỹ0tỹ1t

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣ 1
T0

∑0
t=−T0+1 ỹ0tỹ

′
0t

∣∣∣
∣∣∣ × C. Since W is compact, ||w̃|| is

bounded, so we can find a constant C such that
∣∣∣Q̂T0

(w′)− Q̂T0
(w)

∣∣∣ ≤ BT0
(||w′ −w||)

1
2 . Since ỹ1tỹ0t

26If the number of control units is greater than the number of pre-treatment periods, then the solution to this minimization

problem might not be unique. However, since we consider the asymptotics with T0 → ∞, then we guarantee that, for large

enough T0, the solution will be unique.
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and ỹ0tỹ
′
0t are linear combinations of cross products of λt and εit, from Assumptions 1 and 4 we have that

BT0
converges in probability to a positive constant, so BT0

= Op(1). Note also that Q0(w) is uniformly

continuous on W . Therefore, from Corollary 2.2 of Newey (1991), we have that Q̂T0
converges uniformly in

probability to Q0. Since Q0 is uniquely minimized at w̄, W is a compact space, Q0 is continuous and Q̂T0

converges uniformly to Q0, from Theorem 2.1 of Newey and McFadden (1994), ŵ exists with probability

approaching one, and ŵ
p→ w̄.

Now we show that w̄ does not generally reconstruct the factor loadings. Note that Q0 has two parts. The

first one reflects that different choices of weights will generate different weighted averages of the idiosyncratic

shocks εit. In this simpler case, this part would be minimized when we set all weights equal to 1
J
. Let the

J × 1 vector jJ =
(
1
J
, ..., 1

J

)′ ∈ W . The second part reflects the presence of common factors λt that

would remain after we choose the weights to construct the SC unit. This part is minimized if we choose a

w∗ ∈ Φ = {w ∈ W | µ1 = µ0w}. Suppose that we start at w∗ ∈ Φ and move in the direction of jJ, with

w(∆) = w∗ +∆(jJ −w∗). Note that, for all ∆ ∈ [0, 1], these weights will continue to satisfy the constraints

of the minimization problem. If we consider the derivative of function 18 with respect to ∆ at ∆ = 0, we

have that:

Γ′(w∗) = 2σ2
ε

(
1

J
−w∗′w∗

)
< 0 unless w∗ = jJ or σ2

ε = 0

Therefore, w∗ will not, in general, minimize Q0. This implies that, when T0 → ∞, the SC weights will

converge in probability to weights w̄ that does not reconstruct the factor loadings of the treated unit, unless

it turns out that w∗ also minimizes the variance of this linear combination of the idiosyncratic errors or if

σ2
ε = 0.

A.1.2 Proposition 2

Proof.

The demeaned SC estimator is given by ŵSC′

= argmin
w∈W

Q̂′
T0
(w), where

Q̂′
T0
(w) =

1

T0

0∑

t=−T0+1

(
y1t − y′

0tw −
(

1

T0

0∑

t=−T0+1

y1t −
1

T0

0∑

t=−T0+1

y′
0tw

))2

= Q̂T0
(w)−

(
1

T0

0∑

t=−T0+1

y1t −
1

T0

0∑

t=−T0+1

y′
0tw

)2

. (20)
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Q̂′
T0
(w) converges pointwise in probability to

Q′
0(w) ≡ σ2

ε(1 +w′w) + (µ1 − µ0w)
′
(Ω0 − ω′

0ω0) (µ1 − µ0w) (21)

where Ω0 − ω′
0ω0 is positive semi-definite, so Q′

0(w) is a continuous and convex function.

The proof that ŵSC′ p→ w̄SC′

where w̄SC′

will generally not reconstruct the factor loadings of the treated

unit follows exactly the same steps as the proof of Proposition 1. Therefore

α̂SC′

1t = y1t − y0tŵ
SC′ −

[
1

T0

0∑

t′=−T0+1

y1t −
1

T0

0∑

t′=−T0+1

y′
0tŵ

SC′

]
d→ α1t +

(
ε1t − ε′0tw̄

SC′
)
+ (λt − ω0)

(
µ1 − µ0w̄

SC′
)
. (22)

A.1.3 Proposition 3

Proof.

For any estimator α̂1t(w̃) = y1t − y0tw̃ −
[

1
T0

∑0
t′=−T0+1 y1t − 1

T0

∑0
t′=−T0+1 y

′
0tw̃

]
such that w̃

p→ w,

we have that, under Assumptions 1, 2, 4 and 5,

a.var(α̂1t(w̃)|D(1, 0) = 1) = σ2
ε(1 +w′w) + (µ1 − µ0w)

′
(Ω0 − ω′

0ω0) (µ1 − µ0w) = Q′
0(w), (23)

which implies that a.var(α̂SC′

1t |D(1, 0) = 1) = Q′
0(α̂

SC′

1t ), a.var(α̂DID
1t |D(1, 0) = 1) = Q′

0(α̂
DID
1t ), and

a.var(α̂∗
1t|D(1, 0) = 1) = Q′

0(α̂
∗
1t). By definition of α̂SC′

1t , it must be that Q′
0(α̂

SC′

1t ) ≤ Q′
0(α̂

DID
1t ) and

Q′
0(α̂

SC′

1t ) ≤ Q′
0(α̂

∗
1t).

A.1.4 Proposition 4

Proof.

We show this result for the case without the adding-up, non-negativity, and no intercept constraints. In

Appendix A.6.1 we extend these results for the cases with the adding-up and/or non-negativity constraints.

In Appendix A.6.2 we show that this result is not valid when we use the no intercept constraint.

Note first that we can re-write model 9 as

Yt =




θ′1
...

θ′J+1



γ′
t + ǫ̃t = Θγ′

t + ǫ̃t, (24)
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where γt = (γ1
t , ..., γ

F1

t ), and Θ is a J +1×F matrix with the factor loadings associated with γt for all units

and ǫ̃t is an I(0) vector that includes the stationary common factors and the transitory shocks. Without loss

of generality, we assume that the elements of γt are ordered so that its first element of γt is the deterministic

polynomial trend with highest power, and the last elements are the I(1) common factors.

Suppose there are h linearly independent vectors b ∈ R
J+1 such that b′Θ = 0. In this case, we can

consider the triangular representation

y1t = Γ′y2t + µ∗
1 + z∗t , (25)

where y1t is h× 1, y2t is g × 1, and Γ′ is h× g; z∗t is a h× 1 I(0) series with mean zero and µ∗
1 is an h× 1

vector of constants. Given Assumption 3′, we can write this representation with unit 1 in the vector y1t.

Without loss of generality, we consider the case where y1t = (y1t, ..., yht)
′ and y2t = (yh+1,t, ..., yJ+1,t)

′. We

define the matrix Θj
i as a submatrix with the lines i to j of matrix Θ. Importantly, note that equation 25

implies that Θh
1 = Γ′ΘJ+1

h+1 .

From the definition of y2t, we have that rank(ΘJ+1
h+1) = g. Otherwise, it would be possible to find

another linearly independent vector v ∈ R
J+1 such that v′yt is stationary, which contradicts the fact that

the dimension of such space is h. We consider a linear transformation ỹ2t ≡ Ay2t for some invertible g × g

matrix A such that the matrix Θ̃J+1
h+1 ≡ AΘJ+1

h+1 with elements θ̃j,f has the following property: there exist

integers 1 = f1 < ... < fg ≤ F1 such that θ̃j,fj 6= 0 and θ̃j,f = 0 if f > fj . In words, this transformed vector

ỹ2t is such that its nth element does not contain a common factor of higher order than the highest order

common factors for any element j < n of ỹ2t.

We show that it is possible to construct such matrix given the definition of y2t. We start setting ỹ1,t = yj,t

for some j ∈ {h+ 1, .., J + 1} such that θj,1 6= 0. For the second row, consider linear combinations b′y2t for

some b ∈ R
g and let θ̃f (b) be the f -component of the (1×F1) row vector b′ΘJ+1

h+1 . Consider now the set of all

linear combinations b′y2t such that θ̃1(b) = 0, and let f2 be the largest f ∈ {1, ..., F1} such that θ̃f2(b) 6= 0

for some b in this set. We pick one b such that θ̃1(b) = 0 and θ̃f2(b) 6= 0 and set ỹ2,t = b′y2t. For the third

row, we consider linear combinations of y2t such that θ̃f (b) = 0 for all f ≤ f2, and choose ỹ3,t as a linear

combination b′y2t such that θ̃f3(b) 6= 0. Since, rank(ΘJ+1
h+1) = g, we can continue this construction until we

get ỹg,t = b′y2t for a linear combination b such that θ̃f (b) = 0 for all f ≤ fg−1 with θ̃f (b) 6= 0 for at least

one f > fg−1.

Therefore, we have that

y1t = Γ′A−1ỹ2t + µ∗
1 + z∗t . (26)
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Now closely following the proof of proposition 19.3 in Hamilton (1994), we consider the OLS regression

z∗1t = α+ β′z∗2t + φ′ỹ2t + ut (27)

where z∗1t is the first element of z∗t , and z∗2t = (z∗2t, ..., z
∗
ht)

′.

Now let f̃k be equal to the order of the polynomial common factor γfk
t or equal to 1

2 is γfk
t is an I(1)

common factor. Then OLS estimator for this model is




β̂ − β

α̂

T f̃1
0 φ̂1

...

T
f̃g
0 φ̂g




=




∑
z
∗

2tz
∗

2t
′

T0

∑
z
∗

2t

T0

∑
z
∗

2tỹ1,t

T
f̃1+1

0

. . .
∑

z
∗

2tỹg,t

T
f̃g+1

0∑
z
∗

2t
′

T0
1

∑
ỹ1,t

T
f̃1+1

0

. . .
∑

ỹg,t

T
f̃g+1

0∑
ỹ1,tz

∗

2t
′

T
f̃1+1

0

∑
ỹ1,t

T
f̃1+1

0

∑
ỹ2
1,t

T
2f̃1+1

0

. . .
∑

ỹ1,tỹg,t

T
f̃1+f̃g+1

0

...
...

...
. . .

...
∑

ỹg,tz
∗

2t
′

T
f̃g+1

0

∑
ỹg,t

T
f̃g+1

0

∑
ỹg,tỹ1,t

T
f̃1+f̃g+1

0

. . .
∑

ỹ2
g,t

T
2f̃g+1

0




−1

×




T−1
0

∑
z∗2tut

T−1
0

∑
ut

T
−(1+f̃1)
0

∑
ỹ1,tut

...

T
−(1+f̃g)
0

∑
ỹg,tut




. (28)

Suppose that ỹjt has non-negative coefficients for at least one polynomial common factor for j = 1, ..., g′,

while ỹjt has non-negative coefficients only for I(1) common factors for j = g′ + 1, ..., g. We start showing

that the first matrix in the right hand side of equation 28 converges to a matrix that is almost surely

non-singular. Note that the terms T−1
0

∑
z∗2t and T

−(f̃j+1)
0

∑
z∗2tỹj,t converge in probability to zero, while

T−1
0

∑
z∗2tz

∗
2t

′ p→ E[z∗2tz
∗
2t

′]. Also, for j ∈ {1, ..., g′}, ∑ ỹj,t is dominated by
∑

θ̃j,fj t
f̃j , which implies that

T
−(f̃j+1)
0

∑
ỹj,t

p→ θ̃j,fj/(f̃j+1). Similarly, for (i, j) ∈ {1, ..., g′},∑ ỹj,tỹi,t is dominated by
∑

θ̃j,fj θ̃i,fit
f̃i+f̃j ,

which implies that T
−(f̃j+f̃i+1)
0

∑
ỹj,tỹi,t

p→ θ̃j,fj θ̃i,fi/(f̃i+f̃j+1). Finally, the terms that include interactions

with ỹj,t for j ∈ {g′ + 1, ..., g} will converge in law to functions of an (g − g′)-dimensional Brownian motion

(with exception of those interacted with z∗2t, which, in this case, converge in probability to zero).27 Putting

these results together, we have that




∑
z
∗

2tz
∗

2t
′

T0

∑
z
∗

2t

T0

∑
z
∗

2tỹ1,t

T
f̃1+1

0

. . .
∑

z
∗

2tỹg,t

T
f̃g+1

0∑
z
∗

2t
′

T0
1

∑
ỹ1,t

T
f̃1+1

0

. . .
∑

ỹg,t

T
f̃g+1

0∑
ỹ1,tz

∗

2t
′

T
f̃1+1

0

∑
ỹ1,t

T
f̃1+1

0

∑
ỹ2
1,t

T
2f̃1+1

0

. . .
∑

ỹ1,tỹg,t

T
f̃1+f̃g+1

0

...
...

...
. . .

...
∑

ỹg,tz
∗

2t
′

T
f̃g+1

0

∑
ỹg,t

T
f̃g+1

0

∑
ỹg,tỹ1,t

T
f̃1+f̃g+1

0

. . .
∑

ỹ2
g,t

T
2f̃g+1

0




L→




E[z∗2tz
∗
2t

′]h×h 0h×(g′+1) 0h×(g−g′)

0(g′+1)×h C(g′+1)×(g′+1) D′
(g′+1)×(g−g′)

0(g−g′)×h D(g−g′)×(g′+1) E(g−g′)×(g−g′)



≡ V (29)

where C is a non-random matrix with the limits of the terms T
−(f̃j+f̃i+1)
0

∑
ỹj,tỹi,t and T

−(f̃i+1)
0

∑
ỹi,t for

27See the proof of proposition 19.3 in Hamilton (1994) for details.

42



(i, j) ∈ {1, ..., g′}, E is a random matrix for where the terms T
−(f̃j+f̃i+1)
0

∑
ỹj,tỹi,t for (i, j) ∈ {g′ + 1, ..., g}

converge in law, and D is a random matrix for where the terms T
−(f̃j+f̃i+1)
0

∑
ỹj,tỹi,t and T

−(f̃j+1)
0

∑
ỹj,t

for i ∈ {1, ..., g′ +1} and j ∈ {g′ +1, ..., g} converge in law. Note that E[z∗2tz
∗
2t

′] is non-singular by definition

of z∗2t. It is also easy to show that C is non-singular.28 Following the proof of Proposition 19.3 in Hamilton

(1994), we also have that E is nonsingular with probability one. Therefore, we have that V is non-singular

with probability one.29

Now we show that the second matrix in the right hand side of equation 28 converges in probability

to zero. In this case, note that
∑

ỹj,tut for j = g′ + 1, ..., g is dominated by terms
∑

ξtut where ξt is

I(1), which implies that T
− 3

2

0

∑
ỹj,tut

p→ 0. For j ∈ {1, ..., g′}, note that
∑

ỹj,tut is dominated by a term

∑
tf̃jut. Therefore, T

−(1+f̃j)
0

∑
ỹj,tut converges in probability to zero. Finally, we also have that T−1

∑
ut

and T−1
∑

z∗2tut converge in probability to zero. Therefore, α̂
p→ 0, β̂

p→ β, and T f̃i φ̂′
i

p→ 0. From equations

26 and 27, we have that OLS estimator of y1t on a constant and y2t, ..., yht, ỹh+1,t, ..., ỹJ+1,t is given by

(β̂′ φ̂′+[1 β̂′]Γ′A−1).30 This implies that the OLS estimator of y1t on a constant and y2t, ..., yJ+1,t is given

by ŵ′ = (β̂′ φ̂′A+ [1 β̂′]Γ′).

We are interested in the limiting distribution of α̂1t, which is the effect of the treatment τ = t − T0

periods after the treatment started (t > T0). Note that

α̂SC′

1t = α1t + λt


µ1 −

∑

j 6=1

ŵjµj


+ γt


θ1 −

∑

j 6=1

ŵjθj


+


ε1t −

∑

j 6=1

ŵjεjt




− 1

T0

T0∑

t′=1


λ′

t


µ1 −

∑

j 6=1

ŵjµj


+ γ′

t


θ1 −

∑

j 6=1

ŵjθj


+


ε1t′ −

∑

j 6=1

ŵjεjt′




 . (30)

28When θ̃j,fj 6= 0 and 0 < f1 < ... < fg′ , which will be the case by construction, it is possible to diagonalize this matrix.

For each row j = 2, ..., g′ +1, we can subtract it by row 1 multiplied by
θj

1+fj
, and then divide that by

−fj
1+fj

. This will result in

a matrix with the same entries as the original one, except that rows 2 to g′ + 1 in the first column will be equal to zero. Then

for each row j = 3, ..., g′ + 1 we can subtract it by row 2 multiplied by
θj
θ1

1+2f1
1+f1+fj

, and then divide it by −
fj−f1

1+f1+fj
. This will

transform rows 3 to g′ + 1 in column 2 to zero. Continuing this procedure, we have an upper triangular matrix with diagonal

elements different from zero.

29Note that det(V) = det(E[z∗
2tz

∗
2t

′])det(C −D′E−1D)det(E). We have that det(E[z∗
2tz

∗
2t

′]) 6= 0 and that det(E) 6= 0 with

probability one (which also implies that E−1 exists with probability one). Therefore, we only need that det(C−D′E−1D) 6= 0

to guarantee that V is non-singular. Since C is non-singular, the realizations of D′E−1D such that C −D′E−1D is singular

will have measure zero, which implies that V is non-singular with probability one.

30Those are the estimators associated with z∗
2t and ỹ2t. The estimator for the constant is given by α̂+ [1 − β̂′]µ∗

1
.
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For the term γt

(
θ1 −

∑
j 6=1 ŵjθj

)
, note that

∑

j 6=1

ŵjθj =
[
Θh

2

′
ΘJ+1

h+1

′
]
ŵ =

[
Θh

2

′
ΘJ+1

h+1

′
]




β̂

A′φ̂+ Γ




1

−β̂







= Θh
2

′
β̂ +ΘJ+1

h+1

′
A′φ̂+ΘJ+1

h+1

′
Γ




1

−β̂


 (31)

= Θh
2

′
β̂ +ΘJ+1

h+1

′
A′φ̂+Θh

1

′




1

−β̂


 = θ1 +ΘJ+1

h+1

′
A′φ̂.

Let Λ = diag(T a1

0 , ..., T aF

0 ), where ak is defined such that γk
T0
T−ak

0 converge either to a constant (when

γk
t is a deterministic time trend) or to a distribution (when γk

t is an I(1) common factor). Then

γt


θ1 −

∑

j 6=1

ŵjθj


 = −γtΘ

J+1
h+1

′
A′φ̂ = −γtΛ

−1ΛΘJ+1
h+1

′
A′φ̂. (32)

If γt = tk, then γt = (T0 + (t− T0))
k, which implies that T−k

0 γt = (1+ (t−T0)
T0

)k → 1 when T0 → ∞. If γt

is I(1), then γt = γT0
+
∑t

t′=T0+1 ηt, which implies that T
− 1

2

0 γt converges in distribution to a normal variable

when T0 → ∞. Using the properties of AΘJ+1
h+1 , we also have that the nth row of ΛΘJ+1

h+1

′
A′φ̂ will be given by

T an

0 multiplied by a linear combination of elements φ̂j such that fj ≥ an. Therefore, the random variables

φ̂j that are present in row n converge to zero at a faster rate than T an

0 , so ΛΘJ+1
h+1

′
A′φ̂

p→ 0. That is, we show

that the SC weights will converge to weights that reconstruct the factor loadings of the treated unit associated

with the non-stationary common factors, and the convergence in this case will be fast enough to compensate

the fact that the non-stationary factors explode. Similarly, we have that 1
T0

∑T0

t′=1 γ
′
t(θ1 −

∑
j 6=1 ŵjθj)

p→ 0.

Finally, by definition of ut in equation 27, the OLS estimator converges to weights that minimize var[u2
t ]

subject to w ∈ Φ1, where ut = λt(µ1 − ∑j 6=1 wjµj) + (ε1t −
∑

j 6=1 wjεjt). Therefore, the proof that

ŵ
p→ w̄ /∈ Φ is essentially the same as the proof of Proposition 1.

Combining these results, we have that:

α̂1t
d→ α1t +


ε1t −

∑

j 6=1

w̄jεjt


+ (λt − ω0)


µ1 −

∑

j 6=1

w̄jµj


 (33)

where ω0 = plimT0→∞
1
T0

∑T0

t′=1 λt.
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A.2 Case with finite T0

We consider here the case with T0 fixed. For weights {w∗
j }j 6=1 ∈ Φ, note that:

y1t =

J+1∑

j=1

w∗
j yjt + ηt, for t ≤ 0, where ηt = ε1t −

J+1∑

j=1

w∗
j εjt (34)

Since
∑J+1

j=2 w∗
j = 1, we can write:

ỹ1t =

J∑

j=1

w∗
j ỹjt + ηt (35)

where ỹjt = yjt − yJ+1,t. The SC weights will be given by the OLS regression in 35 with the non-negativity

constraints. We ignore for now the non-negativity constraints. If we let ỹ0t = (ỹ2t, ..., ỹJt)
′, w∗

0 = (w∗
2 , ..., w

∗
J)

′

and ŵ0 = (ŵ2, ..., ŵJ)
′, then we have that ŵ0 =

(∑0
t=−T0+1 ỹ0tỹ

′
0t

)−1∑0
t=−T0+1 ỹ0tỹ1t. We assume that T0

is large enough so that
∑0

t=−T0+1 ỹ0tỹ
′
0t has full rank. Therefore:

E[ŵ0|ỹ0,−T0+1, ..., ỹ0,0] = w∗
0 +

(
0∑

t=−T0+1

ỹ0tỹ
′
0t

)−1 0∑

t=−T0+1

ỹ0tE[ηt|ỹ0,−T0+1, ..., ỹ0,0] (36)

By definition of ηt, we have that E[ηt|ỹ0,−T0+1, ..., ỹ0,0] 6= 0 for t ≤ 0, which implies that ŵ0 is a biased

estimator of w∗
0. Intuitively, the transitory shocks behave as a measurement error when we use the control

outcomes as a proxy for the common factors. Considering the non-negativity constraints would affect the

distribution of ŵ0 because, with finite T0, there will be a positive probability that the solution to the

unrestricted OLS problem will not satisfy the non-negativity constraints. However, this would not change

the conclusion that ŵ0 is a biased estimator of w∗
0.

A.3 Example: SC Estimator vs DID Estimator

We provide an example in which the asymptotic bias of the SC estimator can higher than the asymptotic

bias of the DID estimator. Assume we have 1 treated and 4 control units in a model with 2 common factors.

For simplicity, assume that there is no additive fixed effects and that E[λt] = 0. We have that the factor

loadings are given by:

µ1 =




1

1


 , µ2 =




0.5

1


 , µ3 =




1.5

1


 , µ4 =




0.5

0


 , µ5 =




1.5

1


 (37)

Note that the linear combination 0.5µ2 + w3
1µ3 + w5

1µ5 = µ1 with w3
1 + w5

1 = 0.5 satisfy Assumption
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3. Note also that DID equal weights would set the first factor loading to 1, which is equal to µ1
1, but the

second factor loading would be equal to 0.75 6= µ2
1. We want to show that the SC weights would improve the

construction of the second factor loading but it will distort the combination for the first factor loading. If we

set σ2
ε = E[(λ1

t )
2] = E[(λ2

t )
2] = 1, then the factor loadings of the SC unit would be given by (1.038, 0.8458).

Therefore, there is small loss in the construction of the first factor loading and a gain in the construction

of the second factor loading. Therefore, if selection into treatment is correlated with the common shock λ1
t ,

then the SC estimator would be more asymptotically biased than the DID estimator.

A.4 Definition: Asymptotically Unbiased

We now show that the expected value of the asymptotic distribution will be the same as the limit of the

expected value of the SC estimator in the setting described in Section 3. Let γ be the expected value of the

asymptotic distribution of α̂1t − α1t. Therefore, we have that:

E[α̂1t − α1t] = γ + E


∑

j 6=1

(w̄j − ŵj)εjt


+ E


λt

∑

j 6=1

(w̄j − ŵj)µj




= γ +
∑

j 6=1

E [(w̄j − ŵj)εjt] +
∑

j 6=1

E [λt(w̄j − ŵj)]µj

Therefore:

|E [(w̄j − ŵj)εjt]| ≤ E [|(w̄j − ŵj)εjt|] ≤
√
E [(w̄j − ŵj)2]E [(εjt)2]

Now note that ŵj is a consistent estimator for w̄j and the random variable (w̄j−ŵj)
2 is bounded, because

W is compact. Therefore, the sequence (w̄j − ŵj)
2 is asymptotically uniformly integrable, which implies

that E
[
(w̄j − ŵj)

2
]
→ 0. If we also assume that εit and λf

t for all f = 1, ..., F have finite variance, then

E[α̂1t − α1t] → γ when T0 → ∞.

A.5 Alternatives specifications and alternative estimators

A.5.1 Average of pre-intervention outcome as economic predictor

We consider now another very common specification in SC applications, which is to use the average pre-

treatment outcome as the economic predictor. Note that if one uses only the average pre-treatment outcome

as the economic predictor then the choice of matrix V would be irrelevant. In this case, the minimization
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problem would be given by:

{ŵj}j 6=1 = argminw∈W


 1

T0

0∑

t=−T0+1


y1t −

∑

j 6=1

wjyjt





2

= argminw∈W


 1

T0

0∑

t=−T0+1


ε1t −

∑

j 6=1

wjεjt + λt


µ1 −

∑

j 6=1

wjµj







2

(38)

where W = {{wj}j 6=1 ∈ R
J |wj ≥ 0 and

∑
j 6=1 wj = 1}.

Therefore, under Assumptions 1, 2 and 4, the objective function converges in probability to:

Γ(w) =


E [λt|D(1, 0) = 1]


µ1 −

∑

j 6=1

wjµj





2

(39)

Assuming that there is a time-invariant common factor (that is, λ1
t = 1 for all t) and that the pre-

treatment average of the conditional process λt converges to E[λk
t ] = 0 for k > 1, the objective function

collapses to:

Γ(w) =




µ1

1 −
∑

j 6=1

wjµ
1
j





2

(40)

Therefore, even if we assume that there exists at least one set of weights that reproduces all factor loadings

(Assumption 3), the objective function will only look for weights that approximate the first factor loading.

This is problematic because it might be that assumption 3 is satisfied, but there are weights {w̃j}j 6=1 /∈ Φ

that satisfy µ1
1 =

∑
j 6=1 w̃jµ

1
j . In this case, there is no guarantee that the SC control method will choose

weights that are close to the correct ones. This result is consistent with the MC simulations in Ferman et

al. (2017), who show that this specification performs particularly bad in allocating the weights correctly.

A.5.2 Adding other covariates as predictors

Most SC applications that use the average pre-intervention outcome value as economic predictor also consider

other time invariant covariates as economic predictors. Let Zi be a (R × 1) vector of observed covariates

(not affected by the intervention). Model 45 changes to:





yit(0) = δt + θtZi + λtµi + εit

yit(1) = αit + yit(0)

(41)
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We also modify Assumption 3 so that the weights reproduce both µ1 and Z1.

Assumption 3′′ (existence of weights)

∃ w ∈ W | µ1 =
∑

j 6=1

w∗
jµj , Z1 =

∑

j 6=1

w∗
jZj

Let X1 be an (R + 1 × 1) vector that contains the average pre-intervention outcome and all covariates

for unit 1, while X0 is a (R+ 1× J) matrix that contains the same information for the control units. For a

given V , the first step of the nested optimization problem suggested in Abadie et al. (2010) would be given

by:

ŵ(V ) ∈ argmin
w∈W ||X1 −X0w||V (42)

where W = {{wj}j 6=1 ∈ R
J |wj ≥ 0 and

∑
j 6=1 wj = 1}. Assuming again that there is a time-invariant

common factor (that is, λ1
t = 1 for all t) and that the pre-treatment average of the unconditional process λt

converges to E[λk
t ] = 0 for k > 1, objective function of this minimization problem converges to ||X̄1−X̄0w||V ,

where:

X̄1 − X̄0w =




E[θt|D(1, T0) = 1]
(
Z1 −

∑
j 6=1 wjZj

)
+
(
µ1
1 −

∑
j 6=1 wjµ

1
j

)

(
Z1
1 −∑j 6=1 wjZ

1
j

)

...
(
ZR
1 −

∑
j 6=1 wjZ

R
j

)




(43)

Similarly to the case with only the average pre-intervention outcome value as economic predictor, it

might be that Assumption 3′′ is satisfied, but there are weights {w̃j}j 6=1 that satisfy µ1
1 =

∑
j 6=1 w̃jµ

1
j and

Z1 =
∑

j 6=1 w̃jZj , although µk
1 6=

∑
j 6=1 w̃jµ

k
j for some k > 1. Therefore, there is no guarantee that an

estimator based on this minimization problem would converge to weights that satisfy Assumption 3′′ for any

given matrix V .

The second step in the nested optimization problem is to choose V such that ŵ(V ) minimizes the pre-

intervention prediction error. Note that this problem is essentially given by:

ŵ = argmin
w∈W̃


 1

T0

0∑

t=−T0+1


y1t −

∑

j 6=1

wjyjt





2

(44)

where W̃ ⊆ W is the set of w such that w is the solution to problem 42 for some positive semidefinite matrix
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V . Similarly to the SC estimator that includes all pre-treatment outcomes, there is no guarantee that this

minimization problem will choose weights that satisfy Assumption 3′′ even when T0 → ∞. More specifically,

if the variance of εit is large, then the SC estimator would tend to choose weights that are uniform across the

control units in detriment of weights that satisfy Assumption 3′′. Therefore, it is not possible to guarantee

that this SC estimator would be asymptotically unbiased. MC simulation results in Ferman et al. (2017)

confirm that this SC specification systematically misallocates more weight than alternatives that use a large

number of pre-treatment outcome lags as predictors.

A.5.3 Relaxing constraints on the weights

If we assume that W = R
J instead of the compact set {ŵ ∈ R

J |wj ≥ 0 and
∑

j 6=1 wj = 1}, then we can still

guarantee consistency of the SC weights. The only difference is that we also need to assume convergence of

the pre-treatment averages of δt. In Proposition 1 this was not necessary because the adding-up restriction

implies that δt was always eliminated. Consider the model

yit(0) = λ̇tµ̇i + εit (45)

where λ̇t = (δt, λt) and µ̇i = (1, µi)
′. We modify Assumption 4 to include assumptions on the convergence

of δt.

Assumption 4′′ (convergence of pre-treatment averages) Conditional onD(1, 0) = 1, 1
T0

∑0
t=−T0+1 λ̇t

p→

ω̇0,
1
T0

∑0
t=−T0+1 λ̇

′
tλ̇t

p→ Ω̇0,
1
T0

∑0
t=−T0+1 ǫt

p→ 0, 1
T0

∑0
t=−T0+1 ǫtǫ

′
t

p→ σ2
εIJ+1, εjt ⊥ λ̇s, and

1
T0

∑0
t=−T0+1 ǫtλ̇t

p→

0 when T0 → ∞.

Note first that, under assumptions 1 and 4′′, the objective function converges in probability to

Q̂T0
(w)

p→ Q̇0 (w) ≡ σ2
ε(1 +w′w) + (µ̇1 − µ̇0w)

′
Ω̇0 (µ̇1 − µ̇0w) , (46)

where Q̇0 (w) is continuous and strictly convex. Since W is a convex space, Q̇0 (w) has a unique minimum

that is in the interior of W . Therefore, by Theorem 2.7 of Newey and McFadden (1994), ŵ exists with

probability approaching one and ŵ
p→ w0.

For the case W = {w ∈ R
J | ∑J+1

j=2 wj = 1}, note that the transformed model with y1t − y2t as the

outcome of the treated unit and y3t − y2t, ..., yJ+1,t − y2t as the outcomes of the control units is equivalent

to the original model. Then we can use the same arguments on this modified model.

Consistency when we impose only the non-negativity constraint follows from the same arguments as in

Appendix A.6.1.
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Given that we assure convergence of ŵ, the fact that ŵ does not converge to weights that reconstruct

the factor loadings of the treated unit follows from the same arguments as the proof of Proposition 1. Note

that, without the adding-up constraint, it might be that the asymptotic distribution of the SC estimator

depends on δt.

A.5.4 IV-Like SC Estimator

Consider again equation 34. The key problem is that ηt is correlated with yjt, which implies that the

restricted OLS estimators are biased and inconsistent. Imposing strong assumptions on the structure of the

idiosyncratic error and the common factors, we show that it is possible to consider moment equations that

will be equal to zero if, and only if, {wj}j 6=1 ∈ Φ.

Let y0t = (y2,t, ..., yJ+1,t)
′, µ0 be a (F × J) matrix with columns µj , ǫ0t = (ε2,t, ..., εJ+1,t), and w =

(w2, ..., wJ+1)
′. In this case, we can look at

yt−1(y1t − y′
0tw) = (µ′

0λ
′
t−1 + ǫ0,t−1)λt (µ1 − µ0w) + (µ′

0λ
′
t−1 + ǫ0,t−1)(ε1t − ǫ′0tw) (47)

= µ′
0λ

′
t−1λt (µ1 − µ0w) + ǫ0,t−1λt (µ1 − µ0w) + µ′

0λ
′
t−1(ε1t − ǫ′0tw) + ǫ0,t−1(ε1t − ǫ′0tw).

Under Assumptions 1 and 4, and assuming further that εit is independent across t, then the ob-

jective function given by 1
T0

∑0
t=−T0+1 yt−1(y1t − y′

0tw) converges uniformly to E[y0,t−1(y1t − y′
0tw)] =

µ′
0E[λ

′
t−1λt](µ1 − µ0w)

Therefore, if the (J × F ) matrix µ′
0E[λ

′
t−1λt] has full rank, then the moment conditions equal to zero if,

and only if, w ∈ Φ. One particular case in which this assumption is valid is if λf
t and λf ′

t are uncorrelated

and λf
t is serially correlated for all f = 1, ..., F . Intuitively, under these assumptions, we can use the lagged

outcome values of the control units as instrumental variables for the control units’ outcomes.31 One challenge

to analyze this method is that there might be multiple solutions to the moment condition. Based on the

results by Chernozhukov et al. (2007), it is possible to consistently estimate this set. Therefore, it is possible

to generate an IV-like SC estimator that is, under additional assumptions, asymptotically unbiased.

31The idea of SC-IV is very similar to the IV estimator used in dynamic panel data. In the dynamic panel models, lags of

the outcome are used to deal with the endogeneity that comes from the fact the idiosyncratic errors are correlated with the

lagged depend variable included in the model as covariates. The number of lags that can be used as instruments depends on

the serial correlation of the error terms.
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A.6 Extensions on Proposition 4

A.6.1 Relaxing the adding-up and non-negativity constraints

To show that this result is also valid for the case with adding-up constraint we just have to consider the OLS

regression of y1t − y2t on a constant and y3t − y2t, ..., yJ+1,t − y2t. Under assumption 3′, this transformed

model is also cointegrated, so we can apply our previous result.

We now consider the case with the non-negative constraints. We prove the case W = {w ∈ R
J | wj ≥ 0}.

Including an adding-up constraint then follows directly from a change in variables as we did for the case

without non-negative constraints.

We first show that ŵ
p→ w̄ where w̄ minimizes E[u2

t ] subject to w ∈ Φ1 ∩W . Suppose that w̄ ∈ int(W ).

This implies that w̄ ∈ int(Φ1 ∩W ) relative to Φ1. By convexity of E[u2
t ], w̄ also minimizes E[u2

t ] subject to

Φ1. We know that OLS without the non-negativity constraints converges in probability to w̄. Let ŵu be the

OLS estimator without the non-negativity constraints and ŵr be the OLS estimator with the non-negativity

constraint. Since w̄ ∈ int(W ), then it must be that, for all ε > 0, Pr(|ŵu − w̄| > ε) = 0 with probability

approaching to 1 (w.p.a.1). Since ŵu = ŵr when ŵu ∈ int(W ) (due to convexity of the OLS objective

function), these two estimators are asymptotically equivalent.

Consider now the case in which w̄ is on the boundary of W . This means that w̄j = 0 for at least one

j. Let A = {j|w∗
j = 0}. Note first that w̄ also minimizes E[u2

t ] subject to w ∈ Φ ∩ {w|wj = 0 ∀j ∈ A}.

That is, if we impose the restriction wj = 0 for all j such that w̄j = 0, then we would have the same

minimizer, even if we ignore the other non-negative constraints. Suppose there is an w̃ 6= w̄ that minimizes

E[u2
t ] subject to w ∈ Φ ∩ {w|wj = 0 ∀j ∈ A}. By convexity of the objective function and the fact that

w̄ is in the interior of Φ ∩ W ∩ {w|wj = 0 ∀j ∈ A} relative to Φ ∩ {w|wj = 0 ∀j ∈ A}, there must be

w′ ∈ Φ ∩ W ∩ {w|wj = 0 ∀j ∈ A} ⊂ Φ ∩ W that attains a lower value in the objective function than w̄.

However, this contradicts the fact that w̄ ∈ Φ ∩W is the minimum.

Now let ŵ′ be the OLS estimator subject to {w|wj = 0 ∀j ∈ A}. We have that ŵ′ is consistent for

w̄ (Lemma ??). Now we show that ŵ′ is asymptotically equivalent to ŵ′′, the OLS estimator subject to

{w|wj ≥ 0 ∀j ∈ A}. We prove the case in which A = {j} (there is only one restriction that binds). The

general case follows by induction. Suppose these two estimators are not asymptotically equivalent. Then

there is ε > 0 such that LimPr(|ŵ′ − ŵ′′| > ε) 6= 0. There are two possible cases.

First, suppose that LimPr
(
|ŵ′′

j | > ε′
)
= 0 for all ε′ > 0 (that is, the OLS subject to {w|wj ≥ 0 ∀j ∈ A}

converges in probability to w̄ such that w̄j = 0). However, since the two estimators are not asymptotically

equivalent, for all T ′
0, we can always find a T0 > T ′

0 such that, with positive probability, |ŵ′ − ŵ′′| > ε.

Since {w|wj = 0 ∀j ∈ A} ⊂ {w|wj ≥ 0 ∀j ∈ A} and ŵ′ 6= ŵ′′, then QT0
(ŵ′′) < QT0

(ŵ′), where QT0
() is
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the OLS objective function. Now using the continuity of the OLS objective function and the fact that ŵ′′
j

converges in probability to zero, we can always find T ′
0 such that there will be a positive probability that

QT0
(ŵ′′ − ejŵ

′′
j ) < QT0

(ŵ′). Since ŵ′′ − ejŵ
′′
j ∈ {w|wj = 0 ∀j ∈ A}, this contradicts ŵ′ being OLS subject

to {w|wj = 0 ∀j ∈ A}.

Alternatively, suppose that there exists ε′ > 0 such that LimPr
(
|ŵ′′

j | > ε′
)
6= 0. This means that,

for all T ′
0, we can find T0 > T ′

0 such that there is a positive probability that the solution to OLS on

{w|wj ≥ 0 ∀j ∈ A} is in an interior point ŵ′′ with ŵ′′
j > ε′ > 0. By convexity of QT0

(), this would imply

that ŵ′′ is also the solution to the OLS without any restriction. However, this contradicts the fact that OLS

without non-negativity restriction is consistent (see proof of Proposition 4).

Finally, we show that ŵ′′ and ŵr are asymptotically equivalent. Note that w̄ is in the interior of W

relative to {w|wj ≥ 0 ∀j ∈ A}. Therefore, w.p.a.1, ŵ′′ ∈ W , which implies that ŵ′′ = ŵr.

We still need to show that linear combinations of ŵr converge fast enough to reconstruct the factor

loadings of the treated unit associated with the non-stationary common factors, so that γt(θ1−
∑

j 6=1 ŵ
r
jθj)

p→

0. Let QT0
() be the OLS objective function, and let W̃ = {w̃1, ..., w̃2J} be the set of all possible OLS

estimators when we consider some of the non-negative constraints as equality and ignore the other ones. Let

W̃ ′ ⊂ W̃ be the set of estimators in W̃ such that all non-negative constraints are satisfied. Then we know

that ŵr = argmin
w∈W̃′

QT0
(w).

Suppose first that, for any of the 2J combinations of restrictions, there is at least one w ∈ Φ1 that satisfy

these restrictions. In this case, we know from the first part of the proof that γt

(
θ1 −

∑
j 6=1 w̃

h
j θj

)
p→ 0 for all

h = 1, ..., 2J , where w̃h = (w̃h
2 , ..., w̃

h
J+1)

′. Moreover, since W̃ is finite, then this convergence is uniform in W̃.

Therefore, it must be that γt(θ1 −
∑

j 6=1 ŵ
r
jθj)

p→ 0. Suppose now that for the combination of restrictions

considered for w̃h, with h ∈ {1, ..., 2J}, there is no w ∈ Φ1 that satisfies these restrictions. Since the

parameter space with this combination of restrictions is closed, then ∃η > 0 such that ||θ1−
∑

j 6=1 wjθ0|| > η

for all w that satisfy this combinations of restrictions.32 Therefore, QT0
(w̃h) diverge when T0 → ∞, implying

that, w.p.a.1, ŵr 6= w̃h.

A.6.2 Example with no intercept

We consider now a very simple example to show that it is not possible to guarantee that γt

(
θ1 −

∑
j 6=1 ŵjθj

)
p→

0 if we do not include the intercept. Consider the case in which there are only one treated and one control

unit, and y1t = µ1 + t + u1t while y2t = µ2 + t + u2t. We consider a regression of y1t on y2t without the

32Otherwise, there would be w ∈ Φ1 that satisfies this combination of restrictions.
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intercept. Note that y1t = (µ1 − µ2) + y2t + u1t − u2t = µ+ y2t + ut. Then we have that:

β̂ =

∑T0

t=1 y2ty1t∑T0

t=1 y
2
2t

= 1 +

∑T0

t=1(µµ2 + µt+ µu2t + µ2ut + tut + utu2t)∑T0

t=1(t
2 + µ2

2 + u2
2t + “cross terms”)

(48)

which implies that:

T (β̂ − 1) =
1
T 2

∑T0

t=1(µµ2 + µt+ µu2t + µ2ut + tut + utu2t)
1
T 3

∑T0

t=1(t
2 + µ2

2 + u2
2t + “cross terms”)

p→
1
2µ
1
3

(49)

Therefore, while β̂
p→ 1, it does not converge fast enough so that T (β̂ − 1)

p→ 0, except when µ1 = µ2.
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A.7 Appendix Tables

Table A.1: Misallocation of weights and probability of perfect match - alternative definition of
perfect match

Misallocation of Probability of perfect Misallocation conditional

weights match (R̃2 > 0.9) on perfect match
σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)
T0 = 5 0.418 0.714 0.807 0.490 0.319 0.296 0.448 0.771 0.848

[0.002] [0.002] [0.002] [0.004] [0.003] [0.003] [0.003] [0.003] [0.003]

T0 = 20 0.197 0.495 0.653 0.128 0.000 0.000 0.143 - -
[0.001] [0.001] [0.001] [0.002] [0.000] [0.000] [0.002] - -

T0 = 50 0.150 0.415 0.573 0.032 0.000 0.000 0.102 - -
[0.000] [0.001] [0.001] [0.001] [0.000] [0.000] [0.002] - -

T0 = 100 0.130 0.384 0.539 0.005 0.000 0.000 0.088 - -
[0.000] [0.001] [0.001] [0.000] [0.000] [0.000] [0.003] - -

Notes: this table replicates the results from Table 2 using a more stringent definition of perfect match.
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Table A.2: Misallocation of weights and probability of perfect match - stationary model (K = 2)

Misallocation of Probability of perfect Misallocation conditional

weights match (R̃2 > 0.8) on perfect match
σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1 σ2

ε = 0.1 σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.1 σ2

ε = 0.5 σ2
ε = 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)
T0 = 5 0.092 0.199 0.266 0.842 0.631 0.555 0.086 0.198 0.268

[0.001] [0.001] [0.002] [0.003] [0.003] [0.004] [0.001] [0.002] [0.002]

T0 = 20 0.066 0.140 0.191 0.921 0.167 0.030 0.063 0.100 0.121
[0.000] [0.001] [0.001] [0.002] [0.003] [0.001] [0.000] [0.002] [0.004]

T0 = 50 0.053 0.110 0.155 0.987 0.024 0.000 0.052 0.066 -
[0.000] [0.000] [0.001] [0.001] [0.001] [0.000] [0.000] [0.003] -

T0 = 100 0.044 0.095 0.134 0.999 0.001 0.000 0.044 - -
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] - -

Notes: this table replicates the results from Table 2 using a DGP with K = 2.
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