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Abstract

This paper analyzes the macroeconomic implications of asset price bubbles and crashes using

an overlapping-generation model with endogenous labor supply. This model highlights the e¤ects

of asset price �uctuations on individuals� labor supply decision, and shows how these �uctuations

can propagate to the aggregate economy through the labor-market channel. We show that asset

bubbles can potentially crowd in productive investment and promote employment. This is more

likely to happen when both the elasticity of intertemporal substitution for consumption and the

Frisch elasticity of labor supply are large.
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1 Introduction

Economists have long been interested in the macroeconomic e¤ects of asset price bubbles and

crashes. In a seminal paper, Tirole (1985) shows that asset price bubbles can be sustained in an

economy with overlapping generations of rational consumers. Weil (1987) extends this research by

including the possibility of bubble burst. Many subsequent studies have adopted a similar OLG

framework to analyze the nature and consequences of asset bubbles.1 The models of Tirole (1985)

and Weil (1987), however, have two features that are at odd with empirical evidence. First, both

of them assume that individual labor supply and total employment are exogenously given. As a

result, the labor market in their models are largely unrelated to and una¤ected by the �uctuations

in asset prices. The data, however, show that aggregate labor input tends to move closely with

asset prices. In particular, the bursting of asset bubbles is often followed by a rapid deterioration in

labor market conditions (see Section 2 for details). Second, both studies suggest that the formation

of asset bubbles will crowd out investment in physical capital and impede economic growth, while

the bursting of these bubbles will have the reverse e¤ects. These predictions are also di¢cult to

square with the data. For instance, private nonresidential �xed investment in the U.S. has increased

signi�cantly during the formation of the �dot-com� bubble in the 1990s and the housing bubble in

the 2000s; and dropped precipitously when these bubbles collapsed. Empirical studies, such as

Chirinko and Schaller (2001, 2011) and Gan (2007), provide solid evidence showing a positive e¤ect

of asset bubbles on private investment in the U.S. and in Japan. Martin and Ventura (2012) also

observe that asset bubbles in these countries are often associated with robust economic growth.

In this paper, we show that these con�icts between theory and evidence can potentially be

resolved by relaxing the assumption of exogenous labor supply. Speci�cally, we consider a two-

period OLG model in which consumers can choose how much time to work, and how much to save

and consume in their �rst period of life. There are two types of assets in this economy: physical

capital and an intrinsically worthless asset. The latter is similar in nature to �at money and

unbacked government debt. Asset bubble is said to occur when this type of asset is traded across

generations at a positive price. Following Weil (1987), we assume that asset bubbles may randomly

crash in any time period. A crash happens when the price of the intrinsically worthless asset falls

abruptly and unexpectedly to its fundamental value which is zero. Thus, unlike the deterministic

model of Tirole (1985), there is a substantial downside risk associated with the intrinsically worthless

asset. A key question is whether this type of risk will spawn uncertainty at the aggregate level. The

1Recent examples include Caballero and Krishnamurthy (2006), Farhi and Tirole (2012) and Ventura (2012) among
many others. For a brief survey of rational bubble theories, see Miao (2014).
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answer depends crucially on the endogeneity of labor supply, and the reason is simple. Suppose

an asset bubble exists in the currrent period. Since the next-period stock of aggregate capital is

predetermined in the current period, it is independent of the next-period state of the asset bubble.

If labor supply is also exogenous as in Weil�s (1987) model, then even if a crash happens next period

it will have no immediate impact on aggregate output and factor prices.2 Hence, the stochastic

bubble does not generate any uncertainty at the aggregate level. This is di¤erent once we allow

for an endogenous labor supply. In general, individuals� labor supply decision is contingent on the

state of the asset bubble. As a result, the possibility of a crash in the future will create uncertainty

in future labor input and future prices, which will in turn a¤ect consumers� choice in the current

period. This provides a simple and intuitive mechanism through which bubbles and crashes can

a¤ect the aggregate economy. The present study provides the �rst attempt to formulate and analyze

this mechanism in a rational bubble model.3 We �nd that the existence of stochastic asset bubbles

can potentially crowd in productive investment, but this happens only if the bubbles can induce

the consumers to work longer hours and cut back consumption when young. These e¤ects are more

likely to take place when both the elasticity of intertemporal substitution (IES) and the Frisch

elasticity of labor supply are large.

Several recent studies have explored other channels through which asset bubbles can crowd in

productive investment and foster economic growth in the context of OLG models. For instance,

Martin and Ventura (2012) and Ventura (2012) present models in which asset bubbles can improve

investment e¢ciency by shifting resources from less productive �rms or countries to more productive

ones. Caballero and Krishnamurthy (2006) and Farhi and Tirole (2012) develop models in which

asset bubbles can facilitate investment by providing liquidity to �nancially constrained �rms. For

analytical convenience, these studies typically ignore the intertemporal substitution in consumption

and the intratemporal substitution between consumption and labor.4 The present study contributes

to this literature by showing that these fundamental economic forces are crucial in understanding

the e¤ects of asset price bubbles and crashes.

The rest of this paper is organized as follows. Section 2 provides evidence showing that aggregate

labor hours and private investment tend to move closely with asset prices during episodes of asset

bubbles. Section 3 describes the setup of the model. Section 4 de�nes the equilibrium concepts and

2We assume that factor markets are competitive so that factor prices (i.e., the rental price of capital and wage
rate) are determined by the marginal products of capital and labor.

3 In an earlier study (Shi and Suen, 2014), we extend the deterministic model of Tirole (1985) to allow for an
endogenous labor supply, and show that asset bubbles can potentially crowd in private investment. This study,
however, does not consider the possibility of bubble crashes.

4 In addition to an exogenous labor supply, these studies also assume that consumers (or investors) are risk neutral
and only care about old-age consumption. Thus, the consumers will save all their income when young.
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investigates the main properties of the model. Section 5 concludes.

2 Two Cases of Asset Bubbles in the U.S.

In this section, we use two recent cases of asset bubbles in the United States to demonstrate the

pattern of comovement among asset prices, aggregate labor hours and private investment. The �rst

case study is the �dot-com bubble� which is formed during the second half of the 1990s.5 The

second case is the housing price bubble in the 2000s.6 Unless otherwise stated, all the data reported

below are obtained from the Federal Reserve Economic Data (FRED) website.

Figure 1 shows the Dow Jones Industrial Average index during 1995-2003 and compares it to the

aggregate weekly hours index in the Current Employment Survey (CES) data. Figure 2 compares

the Dow Jones index to private nonresidential �xed investment (de�ated by GDP de�ator) over

the period 1995Q1-2003Q4. These diagrams show that both aggregate labor hours and private

investment have moved closely with stock prices during the �dotcom bubble� episode. Between

1995 and 2000, aggregate labor hours and real private nonresidential investment have recorded an

average annual growth rate of 2.6 percent and 7.1 percent, respectively. Both �gures are much

higher than their long-term values.7 Similar patterns can be observed during the housing price

bubble episode. Figures 3 and 4 show the Case-Shiller 20-City Home Price Index over the period

2003-2010, and compare it to the same measures of aggregate labor hours and private investment.

Between mid-2003 and mid-2006, aggregate labor hours and private investment have been growing

at an average annual rate of 2.4 percent and 5.6 percent, respectively. These are again much higher

than their long-term values.

3 The Model

3.1 The Environment

Time is discrete and is denoted by t 2 f0; 1; 2; :::g : The economy under study is inhabited by an

in�nite sequence of overlapping generations. In each period, a new generation of identical consumers

5Both the Dow Jones index and the S&P 500 have tripled between January 1995 and January 2000; and collapsed
shortly afterward. Ofek and Richardson (2002) and LeRoy (2004) provide detailed account on why this surge in stock
prices cannot be explained by the growth in fundamentals (e.g., corporate earnings and dividends), and thus suggest
the existence of an asset bubble.

6According to the Case-Shiller 20-City Home Price Index, housing prices in the U.S. have increased by 46 percent
between June 2003 and June 2010. Shiller (2007) and many other studies argue that this surge represents a substantial
deviation from the fundamentals (e.g., rent and construction costs).

7The average annual growth rate of the same labor hours index was 1.5 percent during 1963-2013. The average
annual growth rate of real private nonresidential investment was 3.1 percent during 1943-2012.
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is born. The size of generation t is given by Nt = (1 + n)
t ; with n > 0: Each consumer lives two

periods, which we will refer to as the young age and the old age. In each period, each consumer

has one unit of time which can be allocated between work and leisure. Retirement is mandatory

in the old age, so the labor supply of old consumers is zero. Young consumers, on the other hand,

can choose how much time to spend on work and how much to save and consume. There is a single

commodity in this economy which can be used for consumption and capital accumulation. All prices

are expressed in terms of this commodity.

Consider a consumer who is born in period t � 0: Let cy;t; co;t+1 and lt denote, respectively,

his young-age consumption, old-age consumption and labor supply when young. The consumer�s

expected lifetime utility is given by

Et

"
c1��y;t

1� �
�A

l1+ t

1 +  
+ �

c1��o;t+1

1� �

#
; (1)

where � > 0 is the coe¢cient of relative risk aversion and the reciprocal of the elasticity of intertem-

poral substitution (EIS) for consumption,  � 0 is the reciprocal of the Frisch elasticity of labor

supply, � 2 (0; 1) is the subjective discount factor and A is a positive constant.8 The consumer

can invest in two types of assets: physical capital and an intrinsically worthless asset. The latter

is called �intrinsically worthless� because it has no consumption value and cannot be used in the

production of goods. The only motivation for holding this asset is to resell it at a higher price in the

next period. The total supply of the intrinsically worthless asset is �xed and is denoted by M > 0:9

Let ept+1 � 0 be the price of the intrinsically worthless asset in period t+1; which is unknown in

period t: Since the fundamental value of this asset is zero, any strictly positive price will be referred

to as an asset bubble. Following Weil (1987), we assume that ept+1 can be separated into a random

component "t+1 and a deterministic component pt+1 according to ept+1 � "t+1pt+1: The random

component, or asset price shock, is exogenous and follows a Markov chain with two possible states

f0; 1g ; transition probabilities

Pr f"t+1 = 1j"t = 1g = q 2 (0; 1) ;

Pr f"t+1 = 0j"t = 0g = 1;

8All young consumers will supply one unit of labor inelastically if A = 0: In this case, our model is identical to the
production economy in Weil (1987).

9 In period 0; all assets are owned by a group of �initial-old� consumers. The decisions of these consumers are
trivial and do not play any role in the following analysis.
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and initial value "0 = 1: The asset price shock is the only source of uncertainty in this economy. On

the other hand, the time path of the deterministic component, fptg
1
t=0 ; is endogenously determined

in equilibrium. At the beginning of each period t, the value of "t is revealed and publicly observed.

Suppose "t = 1 and pt > 0 so that an asset bubble exists in period t: Then, with probability q;

the price of the intrinsically worthless asset will remain on the deterministic time path in the next

period (i.e., ept+1 = pt+1); and with probability (1� q) ; it will drop to zero. One can think of the

latter scenario as the result of a sudden, unanticipated change in market sentiment which triggers

a crash in the �nancial market. The parameter q can be interpreted as the persistence of asset

bubbles. Since the probability of moving from state " = 1 to state " = 0 is strictly positive, every

asset bubble will eventually crash (in other words, ept will converge in probability to zero as t tends

to in�nity). The timing of the crash, however, is uncertain. Figure 5 shows the probability tree

diagram for the asset price shock. The dark line in the diagram traces the time path of "t before

the crash. We will refer to this as the pre-crash economy and the other parts of the diagram as the

post-crash economy. Once the crash state is reached, ept will remain zero forever. Hence, there is no

incentive to hold the intrinsically worthless asset in the post-crash economy.

3.2 Consumer�s Problem

We now analyze the consumer�s problem both before and after the crash. To distinguish between

these two states of the world, all variables in the post-crash economy will be indicated by a hat

(^). First, consider the consumer�s problem in the post-crash economy, which is deterministic.

Speci�cally, this is given by

max
bcy;t;bst;blt;bco;t+1

"
bc1��y;t

1� �
�A

bl1+ t

1 +  
+ �

bc1��o;t+1

1� �

#

subject to the budget constraints:

bcy;t + bst = bwtblt; and bco;t+1 = bRt+1bst;

where bst denotes savings in physical capital, bwt is the market wage rate, and bRt+1 is the gross return

from savings between periods t and t+ 1: The solution of this problem is given by

bcy;t =
�
� bRt+1

�� 1
� bco;t+1 =

bwtblt

1 + �
1
�

�
bRt+1

� 1
�
�1
; (2)
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blt = A
� 1
�+ 

�
1 + �

1
�

�
bRt+1

� 1
�
�1
� �
�+ 

bw
1��
�+ 

t ; (3)

bst = �
�
bRt+1

�
bwtblt; where �

�
bRt+1

�
�

�
1
�

�
bRt+1

� 1
�
�1

1 + �
1
�

�
bRt+1

� 1
�
�1
: (4)

The function � : R+ ! [0; 1] de�ned in (4) summarizes two e¤ects of interest rate on savings.

First, holding other things constant, a higher interest rate will bring more interest income in the

old age. This creates an income e¤ect which encourages young-age consumption and discourages

saving. Second, a higher interest rate will make old-age consumption cheaper relative to young-age

consumption. This creates an intertemporal substitution e¤ect which promotes saving. The latter

e¤ect dominates if and only if � < 1: In this case, � (�) is a strictly increasing function. The two

e¤ects exactly cancel out when � = 1. In this case, � (�) is a positive constant. The consumer�s

propensity to consume in the post-crash economy is given by

bcy;t
bwtblt

= 1� �
�
bRt+1

�
=

�
1 + �

1
�

�
bRt+1

� 1
�
�1
��1

: (5)

Next, consider the consumer�s problem in the post-crash economy. Let mt be the consumer�s

demand for the intrinsically worthless asset in period t: A young consumer now faces the following

budget constraint

cy;t + st + ptmt = wtlt: (6)

Except in some special cases (which we will discuss below), the gross return from physical capital

between periods t and t + 1 will depend on the realization of "t+1 and is thus uncertain in period

t: Let Rt+1 and bRt+1 denote, respectively, the gross return when "t+1 = 1 and "t+1 = 0: The

consumer�s old-age consumption is then given by

co;t+1 =

8
><
>:

Rt+1st + pt+1mt with probability q;

bRt+1st with probability 1� q:
(7)

Taking
n
wt; pt; pt+1; Rt+1; bRt+1

o
as given, the consumer�s problem is to choose an allocation

fcy;t; st; lt;mt; co;t+1g so as to maximize his expected lifetime utility in (1), subject to the budget

constraints in (6) and (7), and the non-negativity constraint: mt � 0:10 The Euler equation for

10Given a constant-relative-risk-aversion (CRRA) utility function, it is never optimal for the consumer to choose
cy;t = 0 or co;t+1 = 0; regardless of the state of the asset bubble. Hence, the non-negativity constraint for these
variables is never binding. It is also never optimal to have st � 0 and lt = 0: Suppose the contrary that st � 0; then
the consumer will end up having co;t+1 � 0 when "t+1 = 0; which cannot be optimal. This, together with mt � 0;
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consumption and the optimality condition for labor supply are given by

c��y;t = �

�
qRt+1 (Rt+1st + pt+1mt)

�� + (1� q) bRt+1
�
bRt+1st

����
; (8)

wtc
��
y;t = Al t : (9)

The optimal choice of mt is determined by

ptc
��
y;t � �Et

�
ept+1 (co;t+1)��

�
= �qpt+1 (Rt+1st + pt+1mt)

�� ; (10)

with equality holds in the �rst part if mt > 0: Equation (10) states it is optimal to choose mt = 0

if the marginal cost of holding this asset (which is ptc
��
y;t ) exceeds the marginal bene�t (which is

�Et
�
ept+1 (co;t+1)��

�
). This equation can be rewritten as

pt � Et

"
�

�
co;t+1
cy;t

���
ept+1

#
;

which is the standard consumption-based asset pricing equation.

We now explore the conditions under which the optimal choice ofmt is strictly positive. Consider

a young consumer who initially choosesmt = 0: Suppose now he is considering increasing it to �=pt >

0; where � > 0 is in�nitesimal. In order to balance his budget, the consumer will simultaneously

reduce st by �: De�ne �t+1 � pt+1=pt as the gross return from the intrinsically worthless asset when

"t+1 = 1: Increasing mt from zero to �=pt will generate an expected return of q�t+1�; which will in

turn increase expected future utility by q�t+1 (Rt+1st)
�� �: At the same time, the reduction in st

will lower expected future utility by

�
qRt+1 (Rt+1st)

�� + (1� q) bRt+1
�
bRt+1st

����
�: (11)

Such an increase in mt is desirable if and only if

q�t+1 (Rt+1st)
�� � >

�
qRt+1 (Rt+1st)

�� + (1� q) bRt+1
�
bRt+1st

����
�;

means that consumers will never borrow. Finally, since labor income is the only source of lifetime income, it is never
optimal to choose lt = 0:
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which can be simpli�ed to become

q�t+1 >

2
4q + (1� q)

 
bRt+1
Rt+1

!1��3
5Rt+1: (12)

Equation (12) states that the consumer is willing to hold the intrinsically worthless asset if and only

if its expected return q�t+1 exceeds a certain threshold. This threshold level is determined by three

factors: (i) the persistence of asset bubble q; (ii) the state-dependent returns from physical capital

Rt+1 and bRt+1; and (iii) the preference parameter �: If the gross return from physical capital is not

state-dependent, i.e., Rt+1 = bRt+1; then the above condition becomes q�t+1 > Rt+1: If the utility

function for consumption is logarithmic, i.e., � = 1; then the expression in (11) can be simpli�ed to

s�1t �: In this case, both the marginal bene�t and the marginal cost of increasing mt are independent

of bRt+1; and the condition in (12) will again be simpli�ed to become q�t+1 > Rt+1:

Suppose the condition in (12) is valid. Then the optimal investment in the intrinsically worthless

asset, denoted by at � ptmt; is given by

at � ptmt =
pt
pt+1

�

t+1 bRt+1 �Rt+1

�
st; (13)

where


t+1 �

"
q (�t+1 �Rt+1)

(1� q) bRt+1

# 1
�

: (14)

It is straightforward to show that 
t+1 bRt+1 > Rt+1 is equivalent to (12). The consumer�s propensity

to consume in the pre-crash economy is given by

cy;t
wtlt

=

(
1 +

(�q�t+1)
1
�


t+1 bRt+1

�
1 +

pt
pt+1

�

t+1 bRt+1 �Rt+1

��)�1
: (15)

The formal derivation of (15) is shown in the Appendix.

3.3 Production

On the supply side of the economy, there is a large number of identical �rms. In each period t, each

�rm hires labor (Lt) and physical capital (Kt) from the competitive factor markets, and produces

output (Yt) according to a Cobb-Douglas production function

Yt = K�
t L

1��
t ; with � 2 (0; 1) :
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Since the production function exhibits constant returns to scale, we can focus on the problem faced

by a single representative �rm. We assume that physical capital is fully depreciated after one period,

so that Rt coincides with the rental price of physical capital at time t: The representative �rm�s

problem is given by

max
Kt;Lt

�
K�
t L

1��
t �RtKt � wtLt

	
;

and the �rst-order conditions are

Rt = �K��1
t L1��t and wt = (1� �)K

�
t L

��
t : (16)

Since the �rm�s problem is not directly a¤ected by the asset price shock, the above equations are

valid both before and after the asset bubble crashes.

4 Equilibrium

In this section, we will de�ne and characterize an equilibrium in which the intrinsically worthless

asset is valued at some point, i.e., ept > 0 for some t: We will refer to this type of equilibrium as a

bubbly equilibrium. Such an equilibrium will have to take into account the stochastic timing of the

crash, as well as the interactions between the pre-crash and post-crash economies. Firstly, given

the timing of events, the equilibrium allocations in the pre-crash economy will determine the initial

state of the post-crash economy. Secondly, when the consumers are making their decisions before

the crash, say in some period t; their anticipated value of bRt+1 will have to be consistent with a

post-crash equilibrium in the following period. Thus, the equilibrium quantities and prices in the

post-crash economy will also a¤ect the equilibrium outcomes before the crash.11

4.1 Post-crash Equilibrium

We begin by fully characterizing the equilibrium of the post-crash economy. Suppose the crash

happens in some period T > 0; i.e., "T�1 = 1 and "T = 0: Then the economy is free of asset bubbles

from period T onward. Given an initial value bKT > 0; a post-crash equilibrium is made up of

sequences of allocation
n
bcy;t; bst;blt;bco;t

o1
t=T

; aggregate inputs
n
bKt; bLt

o1
t=T

; and prices
n
bwt; bRt

o1
t=T

such that for all t � T; (i) the allocation
n
bcy;t; bst;blt;bco;t+1

o
solves the consumer�s problem in period

11The second type of interaction is absent from Weil�s (1987) model.
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t given bwt and bRt+1; (ii) old-age consumption in period T is determined by

NT�1bco;T = bRT bKT ;

(iii) the aggregate inputs
n
bKt; bLt

o
solve the representative �rm�s problem in period t given bwt and

bRt; and (iv) all markets clear in every period, i.e., bLt = Nt
blt and bKt+1 = Ntbst for all t:

De�ne bkt � bKt=Nt: Then the equilibrium dynamics of bkt and bRt are determined by12

bkt+1 =
1� �

� (1 + n)

2
64

�
1
�

�
bRt+1

� 1
�
�1

1 + �
1
�

�
bRt+1

� 1
�
�1

3
75 bRtbkt; (17)

bR�t bkt = ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt+1

� 1
�
�1
� �
�+ 

; (18)

where � � 1

1��
+ �

1��
1��
�+ 

> 0: The initial value bkT = bKT =NT is predetermined in the pre-crash

economy. Once the equilibrium time path of bkt and bRt are known, all other variables in the post-

crash equilibrium can be uniquely determined.

For any � > 0; the dynamical system in (17)-(18) has a unique steady state, which we will refer

to as the post-crash steady state. This result is formally stated in Proposition 1. All proofs can be

found in the Appendix.

Proposition 1 A unique post-crash steady state exists for any � > 0: The steady-state values
�
bR�;bk�

�
are determined by

�
1
�

�
bR�
� 1
�

1 + �
1
�

�
bR�
� 1
�
�1
=
(1 + n)�

1� �
; (19)

bk� = (1� �)
1��
�+ A

� 1
�+ 

�
1 + �

1
�

�
bR�
� 1
�
�1
� �
�+ 

�
�

bR�

��
: (20)

Next, we consider the stability of the post-crash steady state. If the EIS is no less than one,

i.e., � � 1; then this steady state is globally saddle-path stable. This means starting from any

initial value bkT > 0 there exists a unique set of time paths
n
bkt; bRt+1

o1
t=T

that solves (17)-(18) and

converges to the post-crash steady state. In addition, if bkT is greater (or less) than the steady-state

value bk�; then bkt will decline (or increase) monotonically during the transition and bRt will rise (or

fall) monotonically towards bR�: These results are formally stated in Proposition 2.
12The derivation of these equations and further details of the post-crash economy can be found in an online appendix

available on the author�s website.
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Proposition 2 Suppose � � 1: Then for any initial value bkT > 0; there exists a unique post-

crash equilibrium with
n
bkt; bRt+1

o1
t=T

that converges monotonically to the post-crash steady state.

In particular, the value of bRT is uniquely determined by bRT = �
�
bkT
�
; where � : R+ ! R+ is a

strictly decreasing function. In the transitional dynamics, bRt and bkt will move in opposite directions

so that
�
bkt � bk�

��
bRt � bR�

�
� 0 for all t � T:

When � > 1; the post-crash steady state can be either a sink or a saddle. A sink means that

there are multiple equilibrium time paths that originate from the same initial value bkT > 0 and

converge to the unique post-crash steady state. In other words, local indeterminacy may occur

when � > 1: In this study, we con�ne our attention to equilibrium time paths that can be uniquely

determined. Hence, we focus on the case of � � 1: Intuitively, � � 1 means that the intertemporal

substitution e¤ect of a higher interest rate is no weaker than the income e¤ect. This assumption is

not uncommon in OLG models. For instance, Galor and Ryder (1989) show that this assumption

plays an important role in establishing the existence, uniqueness and global stability of stationary

equilibrium in the absence of labor-leisure choice. Fuster (1999) uses this assumption to establish

the existence and uniqueness of non-stationary equilibrium in a model with uncertain lifetime and

accidental bequest. More recently, Andersen and Bhattacharya (2013) adopt the same assumption

to analyze the welfare implications of unfunded pensions in an OLG model with endogenous labor

supply. In the rational bubble literature, Weil (1987, Section 2) focuses on equilibria in which

the interest elasticity of savings is non-negative. For CRRA utility functions, this elasticity is

nonnegative if and only if � � 1:

4.2 Bubbly Equilibrium

We are now ready to state the complete de�nition of a bubbly equilibrium. Given the initial

conditions, K0 > 0 and "0 = 1; a bubbly equilibrium consists of two sets of allocations, prices

and aggregate inputs, fcy;t; co;t; lt; st;mt; Rt; wt; pt;Kt; Ltg
1
t=0 and

n
bcy;t;bco;t;blt; bst; bRt; bwt; bKt; bLt

o1
t=0

;

that satisfy the following conditions in every period t � 0:

1. If "t = 0, then
n
bcy;� ;bco;� ;bl� ; bs� ; bR� ; bw� ; bK� ; bL�

o1
�=t

form a post-crash equilibrium.

2. If "t = 1; then

(i) given
n
wt; pt; pt+1; Rt+1; bRt+1

o
; the allocation fcy;t; co;t+1; lt; st;mtg solves the consumer�s

problem in period t; i.e., (6)-(10) are satis�ed;

(ii) given Rt and wt; the aggregate inputs Kt and Lt solve the �rm�s problem in period t;

12



(iii) all markets clear in every period, i.e., Lt = Ntlt; Kt+1 = Ntst and Ntmt =M for all t;

(iv) if "t+1 = 0; then bKt+1 = Kt+1:

The last condition states that if the crash happens in period t + 1; then Kt+1 will provide the

initial condition for the post-crash equilibrium.

Before proceeding further, we �rst highlight the main di¤erence between our model and the one

in Weil (1987). In both models, the stock of aggregate capital is predetermined in the previous

period. Thus, Kt+1 is contingent on "t but not on "t+1: In the production economy of Weil (1987),

every young consumer supplies one unit of labor inelastically regardless of the state of the asset

bubble; hence Lt+1 = bLt+1 = Nt+1; for all t: Since neither Kt+1 nor Lt+1 depend on "t+1; a bubble

crash in period t + 1 will have no immediate impact on aggregate output and factor prices. In

particular, the gross return from physical capital is never a¤ected by the realization of the asset

price shock, so that Rt+1 = bRt+1 for all t: Thus, the stochastic bubble does not generate any

aggregate uncertainty in Weil�s model. Di¤erently, in our model, the equilibrium quantity of Lt+1

is endogenously determined by individuals� labor supply decisions. If the optimal choice of lt+1 is

contingent on "t+1; then asset price �uctuations will a¤ect the aggregate economy through the labor

market. Our next proposition shows that this mechanism is operative only if � 6= 1:

Proposition 3 Suppose the utility function for consumption is logarithmic, i.e., � = 1: Then the

optimal labor supply is constant over time and does not depend on the state of the asset bubble.

Speci�cally,

lt = blt =
�
1 + �

A

� 1
1+ 

; for all t � 0:

This result holds because the income and substitution e¤ects of wage rate on labor supply

cancel out each other when � = 1: As a result, individual labor supply is independent of current

consumption and current wage rate. Without the labor-market channel, the asset price shock will

not generate any aggregate uncertainty. Thus, our model is e¤ectively the same as the production

economy in Weil (1987) when � = 1:

When � < 1; the optimal choice of lt is not a constant in general, and it will depend on the

current state of the asset price shock. The rest of this paper is devoted to analyzing the e¤ects

of bubbles and crashes in this case. To simplify the analysis, suppose the economy is initially in

a pre-crash steady state. Speci�cally, a pre-crash steady state is a stationary equilibrium in the

pre-crash economy with the following features: (i) the market wage rate (w�) and the expected

return from the bubbly asset (q��) are identical in every period; and (ii) the state-contingent

13



returns for physical capital are identical in every period. Let R� be the return for physical captial

if the asset bubble prevails in the next period and bR�0 be the return if it crashes. These two

conditions ensure that every cohort of young consumers in the pre-crash economy faces the same

economic conditions and thus make the same choices. Formally, a pre-crash steady state consists

of a set of values
n
c�y; c

�
o; l

�; s�; a�; R�; bR�0; w�; ��; k�
o
such that the following are true in the bubbly

equilibrium de�ned earlier: if "t = 1; then pt+1=pt = ��; Kt = Ntk
�; Lt = Ntl

�; ptmt = a� > 0;

and (cy;t; co;t; st; lt; Rt; wt) =
�
c�y; c

�
o; s

�; l�; R�; w�
�
: Once the asset bubble crashes, the post-crash

economy will begin with initial conditions k� and bR�0 � � (k�) and converge to the post-crash steady

state
�
bR�;bk�

�
:

A pre-crash steady state can be characterized as follows: Using the market-clearing condition

for the intrinsically worthless asset, i.e., Ntmt = M; and the stationary conditions: pt+1=pt = ��

and ptmt = pt+1mt+1 = a�; we can get

pt+1
pt

= �� =
mt

mt+1
=
Nt+1

Nt
= 1 + n:

Thus, before the crash happens, the price of the intrinsically worthless asset is growing determinis-

tically at rate n: Given bR�0 > 0; the values fR�; w�; l�; k�; a�g are uniquely determined by

1 +
h
1 + (�q)�

1
� (1 + n)1�

1
�

i� q

1� q

� 1
�

 
bR�0
1 + n

!1� 1
� �
1�

R�

1 + n

� 1
�

=
1

�

R�

1 + n
; (21)

w� = (1� �)
� �
R�

� �
1��

; (22)

A (l�) +� = �q [(1 + n)w�]1��
"
(1� �)R�

�
� bR�0

#�
; (23)

k� = l�
� �
R�

� 1
1��

; (24)

a� =
�

� bR�0 �R�

�
k�; (25)

where


� �

"
q (1 + n�R�)

(1� q) bR�0

# 1
�

:

A detailed derivation of these equations can be found in the Appendix. Once these values are

known, the remaining variables
�
c�y; c

�
o; s

�
	
can be uniquely determined from the consumer�s budget

constraints. Equations (21)-(24) implicitly de�ne a one-to-one mapping between bR�0 and k�; which
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we will denote by k� = �
�
bR�0
�
: This, together with the mapping bR�0 = �(k�) mentioned in

Proposition 2, can be used to determine the value of bR�0 and k�:

4.3 Expansionary E¤ect of Asset Bubbles

We now turn to the main subject of this paper, which is the potential expansionary e¤ect of asset

bubbles. Speci�cally, we want to identify the conditions under which the pre-crash steady state has

a higher level of labor supply and capital-labor ratio than the post-crash steady state, i.e., l� > bl�

and k� > bk�:13 We begin by stating an intermediate result.

Proposition 4 Suppose � < 1: Then the existence of asset bubble is associated with a higher level

of steady-state interest rate, i.e., R� > bR�:

The above result can be attributed to two factors. Firstly, since aggregate uncertainty exists

before the crash happens, consumers will demand a higher return from savings in the pre-crash

steady state. Secondly, even in the absence of uncertainty, the existence of asset bubble tends to

lower the capital-labor ratio and drives up the steady-state interest rate.14

Using (24), which is valid in both the pre-crash and post-crash economies, we can get

k� = l�
� �
R�

� 1
1��

> bl�
�
�

bR�

� 1
1��

= bk� ,
l�

bl�
>

�
R�

bR�

� 1
1��

> 1: (26)

This shows that asset bubbles can potentially crowd in productive investment, but this happens

only if there is a su¢ciently large expansion in labor supply among the young consumers. In both

economies, optimal labor supply is determined by equation (9), which can be restated as

Al +�t = w1��t

�
cy;t
wtlt

���
: (27)

Equation (27) shows that individual labor supply is jointly determined by the current wage rate and

the propensity to consume when young. Holding the propensity to consume constant, individual

labor supply is an increasing function in wage rate when � < 1. Since R� > bR� implies w� < bw�;

this wage-rate e¤ect alone will lower the supply of labor in the pre-crash steady state. Thus, l� > bl�

13Note that k� > bk� also means that the post-crash economy will start with a higher capital-labor ratio than
its steady-state value. Thus, by the results in Proposition 2, bkt is strictly decreasing towards bk

� in the transition
dynamics.
14See Shi and Suen (2014) Proposition 2 for a proof of this statement. Other rational bubble models, such as Tirole

(1985), Weil (1987), Olivier (2000), and Farhi and Tirole (2012), also predict a higher long-run interest rate in the
presence of asset bubble.
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is possible only if the consumers have a lower propensity to consume before the crash, i.e.,

bc�y
bw�bl�

>
c�y
w�l�

:

Using (5) and (15), one can express these propensities in terms of bR�; R�; bR� and �� = 1 + n:

To summarize, asset bubbles can potentially crowd in productive investment in our model, but

this happens only if these bubbles can induce the young consumers to consume less and work more.

This is more likely to happen when the EIS for consumption (i.e., 1=�) and the Frisch elasticity of

labor supply (i.e., 1= ) are large. The exact conditions for l� > bl� and k� > bk�; expressed in terms

of R�; bR�0 and bR�; are shown in Proposition 5.

Proposition 5 Suppose � < 1: Then l� > bl� if and only if

�
q (1 + n)

bR�

� 1
�
�
R�

bR�

���(1��)
(1��)�

>

� bR�0
R�

;

and the asset bubble can crowd in productive investment, i.e., k� > bk�; if and only if

�
q (1 + n)

bR�

� 1
�
�
R�

bR�

��
h
1+

 +�
(1��)�

i

>

� bR�0
R�

:

4.4 Numerical Examples

In this section we use some numerical examples to illustrate the e¤ects of an asset bubble crash

in our model. We mention at the outset that these examples are only intended to demonstrate

the working of the model and the theoretical results in the previous section. Thus, some of the

parameter values are speci�cally chosen so that asset bubbles can crowd in productive investment.

Suppose one model period takes 30 years. Set the annual subjective discount factor to 0.9950 and

the annual employment growth rate to 1.6 percent.15 These values imply � = (0:9950)30 = 0:8604

and n = (1:0160)30 � 1 = 0:6099: In addition, we set q = 0:90; � = 0:30 and  = 0: Our choice of q

and n implies that the expected return from the intrinsically worthless asset is q (1 + n) = 1:4490:

We consider four di¤erent values of � between 0.10 and 0.30. For each value of �; the parameter A

is chosen so that bl� is 0.50.16 Using these parameter values, we solve for the equilibrium time paths

under the following scenario: Suppose the economy starts from a pre-crash steady state at

15The latter is consistent with the average annual growth rate of U.S. employment over the period 1953-2008.
16Under the assumption of indivisible labor ( = 0), the variable lt is more suitably interpreted as the labor force

participation rate at time t: Thus, we choose a target value of bl� based on the average labor force participation rate
in the United States during the postwar period, which is about 0.50.
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Table 1

Pre-crash and Post-crash Steady States

� = 0:10 � = 0:15 � = 0:20 � = 0:30

Post-crash Pre-crash Post-crash Pre-crash Post-crash Pre-crash Post-crash Pre-crash

R 1.2176 1.4671 1.2416 1.4548 1.2637 1.4485 1.3036 1.4434

cy 0.0832 0.0374 0.0846 0.0538 0.0858 0.0640 0.0878 0.0758

l 0.5000 0.7306 0.5000 0.5862 0.5000 0.5416 0.5000 0.5132

k 0.0676 0.0757 0.0657 0.0614 0.0641 0.0571 0.0613 0.0544

y 0.2743 0.3701 0.2720 0.2980 0.2700 0.2758 0.2664 0.2617

a 0 0.0998 0 0.0559 0 0.0371 0 0.0198

Note: The notation y denotes per-worker output, i.e., y = k�l1��:

time t = 0; and suppose the bubble bursts unexpectedly at time t = 3:17 The economy then con-

verges to the unique post-crash steady state. The transition dynamics in the post-crash economy

is computed using backward shooting method.

Table 1 shows the key variables in the pre-crash and post-crash steady states under di¤erent

values of �: The �rst row reports the value of bR� and R�: In all four cases, the return from physical

capital is higher in the pre-crash steady state than in the post-crash steady state, which is consistent

with the prediction of Proposition 4. In all the reported cases, we have l� > bl� which means labor

supply is higher before the crash. In particular, the gap between l� and bl� widens as � decreases.

This captures an increasingly stronger intertemporal substitution e¤ect which induce the young

consumers to consume less and work more. When � = 0:1; the di¤erence between l� and bl� is

su¢ciently large so that asset bubble can also crowd in productive investment (i.e., k� > bk�).

Figures 6-8 show the time path of interest rate (R), labor supply (l) and capital-labor ratio (k)

before and after the crash. In all four cases, the crash induces an immediate reduction in interest

rate and labor supply. During the transition in the post-crash economy, bRt and bkt move in opposite

directions as predicted by Proposition 2. In the more interesting case where asset bubble crowds in

physical capital (i.e., � = 0:1), labor supply and productive investment fall markedly at the time of

the crash and continue to decline afterward.

17 In other words, we consider a particular sequence of asset price shocks in which "t = 1 for t 2 f0; 1; 2g and "t = 0
for t � 3: As explained earlier, the non-stationary bubbleless equilibrium will always begin with the same initial values
k� and bR�0 regardless of the timing of the crash. Thus, the exact time period when the crash happens is immaterial.
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5 Concluding Remarks

This paper contributes to the stochastic bubble literature by demonstrating the importance of en-

dogenous labor supply and intertemporal substitution in understanding the e¤ects of asset price

bubbles and crashes. In particular, we show that stochastic bubbles can crowd in productive invest-

ment and promote aggregate employment when the intertemporal substitution e¤ect is su¢ciently

strong. We remark that the present study is mainly theoretical in nature and more e¤ort is needed

in order to generate realistic quantitative results. In particular, expanding the consumer�s planning

horizon (and thus reducing the length of each model period) is crucial for matching the model to the

data. Introducing other model features, such as �nancial market imperfections and heterogeneity in

�rm productivity as in Martin and Ventura (2012) and Farhi and Tirole (2012), may also help ex-

pand the range of parameter values under which asset bubbles can crowd in productive investment.

We leave these possibilities for future research.
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Appendix

Derivation of Equation (15)

Consider the consumer�s problem in the pre-crash economy. The �rst-order conditions for an interior

solution of (st;mt; lt) are given by

(wtlt � st � ptmt)
�� = �

�
qRt+1 (Rt+1st + pt+1mt)

�� + (1� q) bRt+1
�
bRt+1st

����
; (28)

(wtlt � st � ptmt)
�� = �q

�
pt+1
pt

�
(Rt+1st + pt+1mt)

�� ; (29)

Al t = wt (wtlt � st � ptmt)
�� : (30)

De�ne �t+1 � pt+1=pt. Combining (28) and (29), and rearranging terms gives

Rt+1st + pt+1mt =

"
q (�t+1 �Rt+1)

(1� q) bRt+1

# 1
�

| {z }

t+1

�
bRt+1st

�
; (31)

which implies

mt =
1

pt+1

�

t+1 bRt+1 �Rt+1

�
st;

st + ptmt =

�
1 +

pt
pt+1

�

t+1 bRt+1 �Rt+1

��
st: (32)

Using (29), (31) and (32), we can get

st =

8
<
:

(�q�t+1)
1
�


t+1 bRt+1 + (�q�t+1)
1
�

h
1 + pt

pt+1

�

t+1 bRt+1 �Rt+1

�i

9
=
;wtlt; (33)

cy;t = wtlt � (st + ptmt) =

8
<
:


t+1 bRt+1

t+1 bRt+1 + (�q�t+1)

1
�

h
1 + pt

pt+1

�

t+1 bRt+1 �Rt+1

�i

9
=
;wtlt: (34)

Equation (15) can be obtained by simplifying the last equation.
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Proof of Proposition 1

In any post-crash steady state, we have bkt+1 = bkt = bk� and bRt+1 = bRt = bR� for all t: Substituting

these into (4) and rearranging terms gives

�
�
bR�
�
�

�
1
�

�
bR�
� 1
�

1 + �
1
�

�
bR�
� 1
�
�1
=
(1 + n)�

1� �
: (35)

Substituting the same steady state conditions into (18) and rearranging terms gives (20). Note that

the function � : R+ ! R+ de�ned in (35) is continuously di¤erentiable and satis�es �(0) = 0.

Straightforward di¤erentiation gives

�0
�
bR
�
=
�
1
� bR 1

�
�1
�
1

�
+ �

1
� bR 1

�
�1
�

�
1 + �

1
� bR 1

�
�1
�2 > 0; for any � > 0:

Hence, there exists a unique value of bR� > 0 that solves (35). Using (20), one can obtain a unique

value of bk� > 0: This proves Proposition 1.

Proof of Proposition 2

First, consider the case when � = 1: Equations (17) and (18) now become

bkt+1 =
1� �

� (1 + n)

�
�

1 + �

�
bRtbkt; and bR

1
1��

t
bkt = �

1
1��

�
1 + �

A

� 1
1+ 

: (36)

Combining the two gives

bkt+1 =
� (1� �)

(1 + �) (1 + n)

�
1 + �

A

� 1��
1+ bk�t :

Since � 2 (0; 1) ; there exists a unique non-trivial steady state bk� > 0 which is globally stable. The

second equation in (36) can be rewritten as

bRt = �

�
1 + �

A

� 1��
1+ �bkt

���1
� �

�
bkt
�
;

where � (�) is a strictly decreasing function.

Next, consider the case when � < 1: To prove that the post-crash steady state is globally saddle-

path stable, we will use the same �phase diagram� approach as in Tirole (1985) and Weil (1987).
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To start, de�ne a function F : R+ ! R+ according to

F (R) = ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�R

1
�
�1
� �
�+ 

R��: (37)

Note that the unique post-crash steady state must satisfy bk� = F
�
bR�
�
: Taking the logarithm of

both sides of (37) and di¤erentiating the resultant expression with respect to R gives

RF 0 (R)

F (R)
=
1� �

� +  

 
�
1
�R

1
�
�1

1 + �
1
�R

1
�
�1
� e�
!
=
1� �

� +  
[� (R)� e�] ;

where e� � (� +  ) �= (1� �) and � (�) is the function de�ned in (4). There are two possible

scenarios: (i) e� � 1 and (ii) e� < 1: Since � (�) is strictly increasing and bounded above by one, in

the �rst scenario we have F 0 (R) < 0 for all R � 0; limR!0F (R) = +1 and limR!1F (R) = 0: In

the second scenario, F (�) is a U-shaped function. Figures B1 and B2 provide a graphical illustration

of these two scenarios. In both diagrams, the function F (�) and the vertical line representing R = bR�

divide the (R; k)-space into four quadrants:

Q1 �
n
(R; k) : k � F (R) ; R � bR�, and (R; k) 6=

�
bR�;bk�

�o
;

Q2 �
n
(R; k) : k > F (R) and R < bR�

o
;

Q3 �
n
(R; k) : k � F (R) ; R � bR�, and (R; k) 6=

�
bR�;bk�

�o
;

Q4 �
n
(R; k) : k < F (R) and R > bR�

o
:

The rest of the proof is divided into a number of intermediate steps. These steps are valid both

when e� � 1 and when e� < 1:

Step 1 For any initial value
�
bRT ;bkT

�
> 0; there exists a unique sequence

n
bRT+1;bkT+1; bRT+2;bkT+2; :::

o

that solves the dynamical system in (17)-(18). Whether this is part of a non-stationary post-crash

equilibrium depends on the location of
�
bRT ;bkT

�
on the (R; k)-space. A solution

n
bRT+1;bkT+1; bRT+2;bkT+2; :::

o

is said to originate from Qn if
�
bRT ;bkT

�
2 Qn; for n 2 f1; 2; 3; 4g : In the �rst step of the proof, it is

shown that any solution that originates from Q1 or Q3 cannot be part of a post-crash equilibrium.

Suppose
�
bRt;bkt

�
is in Q1 for some t � T: This means either (i) bkt < F

�
bRt
�
and bRt � bR�; or

(ii) bkt = F
�
bRt
�
and bRt < bR�: First consider the case when bkt < F

�
bRt
�
and bRt � bR�: Using (18),
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we can obtain

bR�t bkt = ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt+1

� 1
�
�1
� �
�+ 

< ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt
� 1
�
�1
� �
�+ 

;

which implies bRt+1 < bRt � bR�: Recall that the function � (�) de�ned in (4) is strictly increasing

when � < 1. Then it follows from (17) that

bkt+1 =
1� �

� (1 + n)
�
�
bRt+1

�
bRtbkt

<
1� �

� (1 + n)
�
�
bR�
�
bRtbkt �

1� �

� (1 + n)
�
�
bR�
�
bR�bkt = bkt:

The last equality follows from equation (19). This result implies bkt+1 < bkt < F
�
bRt
�
< F

�
bRt+1

�
:

Next, consider the case when bkt = F
�
bRt
�
and bRt < bR�: Equation (18) and bkt = F

�
bRt
�
together

imply bRt+1 = bRt < bR�: This, together with (17), implies bkt+1 < bkt < F
�
bRt
�
= F

�
bRt+1

�
: This

proves the following: Any solution that originates from Q1 is a strictly decreasing sequence and is

con�ned in Q1; i.e.,
�
bRt;bkt

�
2 Q1 for all t � T: Since both bkt and bRt are strictly decreasing over

time, in the long run we will have either bkt = 0 or bRt = 0, which cannot happen in equilibrium.

Using a similar argument, we can show that any solution that originates from Q3 is a strictly

increasing sequence and is con�ned in Q3: Using the young consumer�s budget constraint and the

capital market clearing condition, we can obtain the following condition

bst =
bkt+1
1 + n

< bwtblt � bwt = (1� �)
�
�

bRt

� �
1��

:

Obviously, this will be violated at some point if both bkt and bRt are strictly increasing over time.

Hence, any solution that originates from Q3 cannot be part of a post-crash equilibrium.

Step 2 We now show that any solution that originates fromQ2 will never enterQ4; i.e.,
�
bRT ;bkT

�
2

Q2 implies
�
bRt;bkt

�
=2 Q4, for all t > T ; likewise, any solution that originates from Q4 will never

enter Q2:
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Suppose
�
bRt;bkt

�
is in Q2 for some t � T: Then we have

bR�t bkt = ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt+1

� 1
�
�1
� �
�+ 

> ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt
� 1
�
�1
� �
�+ 

;

which implies bRt+1 > bRt: Suppose the contrary that
�
bRt+1;bkt+1

�
is in Q4; so that bRt+1 > bR� > bRt

and bkt+1 < F
�
bRt+1

�
: Then, using (17) we can get

bRt+1bkt+1 =
1� �

� (1 + n)

2
64

�
1
�

�
bRt+1

� 1
�

1 + �
1
�

�
bRt+1

� 1
�
�1

3
75 bRtbkt

>
1� �

� (1 + n)

2
64

�
1
�

�
bR�
� 1
�

1 + �
1
�

�
bR�
� 1
�
�1

3
75 bRtbkt = bRtbkt: (38)

The second line uses the fact that � (�) is strictly increasing and bRt+1 > bR�: The last equality

follows from the steady-state condition in (19). Since � > 1; we also have bR��1t+1 > bR��1t : This,

together with (18) and (38), implies

bR�t+1bkt+1 > bR�t bkt = ��

"
(1� �)1��

A

# 1
�+ �

1 + �
1
�

�
bRt+1

� 1
�
�1
� �
�+ 

) bkt+1 > F
�
bRt+1

�
;

which gives rise to a contradiction. Hence, any solution that originates from Q2 will never enter Q4:

Using similar arguments, we can show that any solution that originates from Q4 will never enter

Q2:

Step 3 Consider a solution that originates from Q2: As shown in Step 2,
�
bRT ;bkT

�
2 Q2 implies

bRT+1 > bRT : If bRT+1 � bR�; then the economy is in Q3 at time T +1 and by the results in Step 1, we
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know that bRt will diverge to in�nity in the long run. If bRT+1 < bR�; then using (17) we can obtain

bkT+1 =
1� �

� (1 + n)

2
64

�
1
�

�
bRT+1

� 1
�
�1

1 + �
1
�

�
bRT+1

� 1
�
�1

3
75 bRTbkT

<
1� �

� (1 + n)

2
64

�
1
�

�
bR�
� 1
�

1 + �
1
�

�
bR�
� 1
�
�1

3
75bkT = bkT :

There are two possible scenarios: First, if bRT+1 < bR� and bkT+1 � F
�
bRT+1

�
; then the economy

is in Q1 at time T + 1: By the results in Step 1, we know that all subsequent values of bRt will be

strictly less than bR�: Second, if bRT+1 < bR� and F
�
bRT+1

�
< bkT+1; then that means the economy

remains in Q2 at time T + 1: In addition, we have bRT+1 > bRT and bkT > bkT+1 which means the

economy is now getting closer to the steady state
�
bR�;bk�

�
: Thus, any solution that originates from

Q2 has three possible fates: (i) It will enter Q3 at some point and bRt will then diverge to in�nity. (ii)

It will enter Q1 at some point and bRt will be strictly less than bR� afterward. (iii) It will converge

to the post-crash steady state. For reasons explained above, the �rst two types of solutions cannot

be part of an equilibrium. Hence, a solution originating from Q2 is an equilibrium path only if it

converges to the steady state
�
bR�;bk�

�
: The above argument also shows that, along the convergent

path, bkt is decreasing towards bk� while bRt is increasing towards bR�:

Using a similar argument, we can show that any solution originating from Q4 is an equilibrium

path only if it converges to the steady state
�
bR�;bk�

�
; and that along the convergent path, bkt is

increasing towards bk� while bRt is decreasing towards bR�:

Step 4 We now establish the uniqueness of saddle path. Fix bkT > 0: Suppose the contrary that

there exists two saddle paths, denoted by
n
bR0t;bk0t

o1
t=T

and
n
bR00t ;bk00t

o1
t=T

; with bk0T = bk00T = bkT and
bR0T > bR00T > 0: By the results in Step 3, we know that limt!1

bR0t = lim
t!1

bR00t = bR�: Substituting bk0T = bk00T
and bR0T > bR00T into (18) gives

 
bR0T
bR00T

!�
=

2
64
1 + �

1
�

�
bR0T+1

� 1
�
�1

1 + �
1
�

�
bR00T+1

� 1
�
�1

3
75

�
�+ 

> 1;
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which implies bR0T+1 > bR00T+1 > 0: Using (17), we can get

bk0T+1
bk00T+1

=
�
�
bR0T+1

�

�
�
bR00T+1

�
bR0T
bR00T

> 1:

Using (18) again, but now for t = T + 1; gives

 bR0T+1
bR00T+1

!�  bk0T+1
bk00T+1

!
=

2
64
1 + �

1
�

�
bR0T+2

� 1
�
�1

1 + �
1
�

�
bR00T+2

� 1
�
�1

3
75

�
�+ 

> 1;

which implies bR0T+2 > bR00T+2: By an induction argument, we can show that bR0T+j > bR00T+j implies
bk0T+j > bk00T+j , and bR0T+j+1 > bR00T+j+1; for all j � 1: The last result contradicts limt!1

bR0t = lim
t!1

bR00t =
bR�. Hence, we can rule out the possibility of multiple saddle paths.

In sum, we have shown that any equilibrium path that originates from a given value of bkT > 0

must be unique and converge to the post-crash steady state. Hence, the dynamical system in (17)-

(18) is globally saddle-path stable. The one-to-one relationship between bRT and bkT can be captured

by a function � : R+ ! R+: Since the saddle path is downward sloping in the (R; k)-space, � (�)

must be strictly decreasing. This completes the proof of Proposition 2.

Proof of Proposition 3

In the post-crash economy, optimal labor supply is determined by (3). Setting � = 1 gives

blt =
�
1+�
A

� 1
1+ 

for all t: Next, consider the pre-crash economy. Substituting (34) into (30) and

rearranging terms give

Al +�t = (wt)
1��

8
<
:

t+1 bRt+1 + (�q�t+1)

1
�

h
1 + pt

pt+1

�

t+1 bRt+1 �Rt+1

�i


t+1 bRt+1

9
=
;

�

; (39)

where 
t+1 is de�ned in (14). When � = 1; the right-hand side of the above equation becomes

1 +
�

t+1 bRt+1

��1
(�q�t+1)

�
1 +

pt
pt+1

�

t+1 bRt+1 �Rt+1

��

= 1 +
� (1� q)

�t+1 �Rt+1

�
�t+1 �Rt+1 +

q (�t+1 �Rt+1)

1� q

�
= 1 + �:

Hence, we have Al +1t = 1 + � for all t: This completes the proof of Proposition 3.
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Derivation of Equations (21)-(25)

Recall that the optimal choice of st in the pre-crash economy is determined by equation (33). Using

this and �wtlt = (1� �)Rtkt; we can write the market-clearing condition for physical capital as

(1 + n) kt+1 =

8
<
:

(�q�t+1)
1
�


t+1 bRt+1 + (�q�t+1)
1
�

h
1 + pt

pt+1

�

t+1 bRt+1 �Rt+1

�i

9
=
;

�
1� �

�

�
Rtkt: (40)

Combining (39) and (40) gives

Al +�t = (wt)
1��

(
(�q�t+1)

1
�


t+1 bRt+1

�
1� �

� (1 + n)

�
Rtkt
kt+1

)�
: (41)

Upon setting kt+1 = kt = k�; Rt = Rt+1 = R�; bRt+1 = bR�0 and �t+1 = 1+n; equation (40) becomes

1 + n =

8
<
:

[�q (1 + n)]
1
�


� bR�0 + [�q (1 + n)]
1
�

h
1 + 1

1+n

�

� bR�0 �R�

�i

9
=
;

�
1� �

�

�
R�: (42)

) 1 +
h
1 + (�q)�

1
� (1 + n)1�

1
�

i 
� bR�0
1 + n

!
=
1

�

R�

1 + n
:

Equation (21) can be obtained by rearranging the terms in the above equation. Similarly, after

substituting the stationarity conditions into (41), we can obtain

A (l�) +� = (w�)1��
(
[�q (1 + n)]

1
�


� bR�0

�
1� �

�

�
R�

1 + n

)�
:

Equation (23) follows immediately from this equation. Equations (22) and (24) can be obtained

from (16). Finally, equation (25) can be obtained from (13).

De�ne �� � R�=(1 + n): Then we can rewrite (21) as

	(��) � 1 +
h
1 + (�q)�

1
� (1 + n)1�

1
�

i� q

1� q

� 1
�

 
bR�0
1 + n

!1� 1
�

(1� ��)
1
� =

��

�
: (43)

For any bR�0 > 0 and � > 0; 	 : [0; 1]! R+ is a strictly decreasing function that satis�es 	(0) > 0

and 	(1) = 1 < 1=�: Meanwhile, the right-hand side of the above equation is a straight line that

passes through the origin and 1=� (when �� = 1): Thus, for any bR�0 > 0 and � > 0; there exists a

unique �� 2 (0; 1) that solves (43). Once R� � (1 + n) �� is determined, the value of fk�; w�; l�; a�g

can be uniquely determined using (22)-(25).
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Proof of Proposition 4

The proof of this result is divided into two parts: First, by comparing the optimal labor supply

and capital market clearing condition in the pre-crash and post-crash steady states, we show that

� < 1; a� > 0 and R� � bR� together imply k� � bk�: Thus, by the results in Proposition 2, we will

have bR�0 � bR�: Second, we show that the same conditions � < 1; a� > 0 and R� � bR� also imply
bR�0 > bR�: Hence, there is a contradiction and it must be the case that R� > bR� when � < 1:

We begin by establishing some useful intermediate results. First, in any pre-crash steady state,

a� > 0 if and only 
� bR�0 > R�: Using the de�nition of 
�; we can rewrite this condition as

q (1 + n�R�)

R�
> (1� q)

 
R�

bR�0

!��1
: (44)

Next, we compare the optimal labor supply in the two steady states. In the post-crash steady state,

A
�
bl�
� +�

=

"
(1� �)

�
�

bR�

� �
1��

#1��
�
1
�

�
bR�
� 1
�

�
1� �

�

�
1

1 + n
:

The counterpart of this in the pre-crash steady state is equation (23). Taken together, they imply

�
l�

bl�

� +�
=

�
R�

bR�

���(1��)
1��

�
q (1 + n)

bR�

� 
R�


� bR�0

!�
: (45)

Using (19), we can write

1� �

�

bR�
1 + n

= 1 + ��
1
�

�
bR�
�1� 1

�
:

A similar equation for the pre-crash economy can be obtained from (42), i.e.,

1� �

�

R�

1 + n
= 1 +


� bR�0 �R�
1 + n

+ [�q (1 + n)]�
1
� 
� bR�0:

Combining the two gives

1� �

� (1 + n)

�
R� � bR�

�
=

� bR�0 �R�
1 + n

+ [�q (1 + n)]�
1
� 
� bR�0 � ��

1
�

�
bR�
�1� 1

�
:

Hence, 
� bR�0 > R� and R� � bR� together imply

[q (1 + n)]�
1
� 
� bR�0 �

�
bR�
�1� 1

�
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) 1 �
q (1 + n)

bR�

 
bR�


� bR�0

!�
: (46)

Equations (45)-(46) and R� � bR� then imply l� � bl�: Using (24), we can get

k� = l�
� �
R�

� 1
1��

� bl�
�
�

bR�

� 1
1��

= bk�:

This establishes the �rst part of the proof. On the other hand, using the de�nition of 
�; we can

rewrite (46) as

(1 + n�R�)

1 + n
� (1� q)

 
bR�
bR�0

!��1
: (47)

If � < 1 and R� � bR� are true, then we can combine (44) and (47) to get

(1 + n�R�)

1 + n
� (1� q)

 
bR�
bR�0

!��1
� (1� q)

 
R�

bR�0

!��1
<
q (1 + n�R�)

R�
;

which implies R� < q (1 + n), or equivalently,

(1 + n�R�)

1 + n
> (1� q) :

Equation (47) then implies bR�0 > bR� which is inconsistent with the fact that k� � bk�: Hence, it

must be the case that R� > bR�: This completes the proof of Proposition 4.

Proof of Proposition 5

The necessary and su¢cient condition for l� > bl� follows immediately from (45). Using (24), we

can get

k�

bk�
=
l�

bl�

 
bR�
R�

! 1
1��

:

The necessary and su¢cient condition for k� > bk� is obtained by combining this and (45).
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Figure 1: Aggregate Hours and Dow Jones Index, 1995-2003.
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Figure 3: Aggregate Hours and Home Price Index, June 2003 to June 2010.
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Figure 5: Probability Tree Diagram of the Asset Price Shock.
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Figure B1: Phase Diagram for the case when e� � 1:

Figure B2: Phase Diagram for the case when e� < 1:
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