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Abstract
This paper proves the existence, for a translation-invariant preorder on a

divisible commutative group, of a complete preorder extending the preorder in

question and satisfying translation invariance. We also prove that the extension

may inherit a property of continuity. As an application, we prove the existence

of a complete translation-invariant strict preorder on R which transgresses scalar
invariance and also the existence of a complete translation-invariant preorder

satisfying the social choice axioms strong Pareto and fixed—step-anonymity on a

setN0  where is a divisible commutative group. Moreover, the two extension

results are used to make scalar invariance appear as a consequence of translation

invariance under a continuity requirement or under a Pareto axiom.

1- Introduction
(Szpilrajn 1930) extension theorem may be stated as follows. For any reflex-

ive and transitive binary relation (i.e. a preorder) on a given set, there exists a

complete preorder which is an extension of the given preorder. Szpilrajn theo-

rem proved of great utility in mathematical social choice theory as in some other

branches of mathematics. There exists today stronger versions of Szpilrajn the-

orem, requiring weaker assumptions on the initial binary relation or imposing

additional conditions on the relation extension. We refer to (Alcantud-Diaz

2014) for an overview on the applications and extensions of Szpilrajn theorem.

The present paper establishes the existence, for any preorder on a divisible

commutative group satisfying translation invariance, of a complete preorder

extending the given preorder and satisfying translation invariance (section 3,

theorem 1). In (Demuynck-Lauwers 2009) the existence of an extension under

the conditions translation invariance and scalar invariance is proven. However,

the result proved here is stronger in the sense that it is freed from the scalar

invariance assumption. The proof of theorem 1 follows the same diagram as

the proof of Szpilrajn theorem. Starting from a preorder satisfying translation

invariance, one adds comparisons on some pairs of alternatives in such a way

that translation invariance remains satisfied. Then, an argument based on

Zorn’s lemma makes it possible to extend the procedure to the whole space.

We also prove a second extension theorem which asserts that the former

extension result (theorem 1) holds under an additional requirement of continuity

(section 4, theorem 2). The proof is an adaptation of the proof of (Jaffray 1975)

to the translation invariance case. It relies on the construction of a relation that

1 I am grateful to an anonymous referee who, when reviewing another paper, guided me

towards the issue of extending a preorder under translation-invariance.
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is used to "clean" the extended preorder given by theorem 1 from undesirable

rankings that transgress the continuity requirement.

As an application, we give two examples, the first of which shows the exis-

tence of a complete translation-invariant strict preorder on R which transgresses
scalar invariance and the second shows the existence of a complete translation-

invariant preorder satisfying the social choice axioms strong Pareto and fixed—

step-anonymity on a set N0  where  is a divisible commutative group.

Moreover, theorems 1 and 2 are used to make scalar invariance appear as a

consequence of translation invariance under a continuity requirement (Corollary

2, section 5) or under a Pareto axiom (Theorem 3, section 6).

2- Preliminaries
N0 is the set of positive integers.  is the set of rational numbers. (+)

is a divisible commutative group.  being a binary relation on  and   two

elements of ,  is denoted  % ,[ and non()] is denoted  Â 

and [ and ] is denoted  ∼ . The symbols ≤≥  are used for the
natural order on R, except in example 1, section 4. A reflexive and transitive

binary relation on  is a preorder on . If, on top of that, for all   either

 %  or  - , it is a complete preorder. A binary relation 1 is said to be

a subrelation to a binary relation 2 , or 2 an extension of 1 if for all  

in 

 %1
 =⇒  %2



and

 Â1
 =⇒  Â2



Axiom translation invariance (TI) A preorder  satisfies translation

invariance if:

∀( ) ∈  ×∀ ∈  [ %  ⇒ +  %  + ]

Axiom division invariance (DI) A preorder satisfies division-invariance

if:

∀ ∈ ∀ ∈ N
∙
 %  ⇒ 1


 %
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¸
Lemma 1 If a preorder  on  satisfies TI, then there exists a preorder b

on  of which  is a subrelation and such that b satisfies TI and DI.

Proof: First, notice that under , it is possible to sum inequalities. Indeed,

by TI, if     are such that  %  and  %  then  +  %  +  and

 +  %  +  By transitivity,  +  %  +  For each positive integer ,

consider the binary relation  defined by

 %  iff  % 

If   are such that  %  we can sum  times this inequality. Thus,

 % . Likewise, it is easily seen that  Â  implies  Â  As a result,
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 is a subrelation to  Moreover,  is reflexive and transitive. It is easily

checked that  satisfies TI.

Consider the binary relation b = ∪∈N0

defined on  by  %   iff there is  such that  % .

 is a subrelation to b. Moreover, b is reflexive and transitive. It is a

preorder. Since for each positive integer ,  satisfies TI, we deduce that b
satisfies TI. The lemma is proved if we show that b satisfies DI. Let  be a

positive integer, and   such that  %   There exists a positive integer such

that  % . Thus  % . We can write that as ( 1

) % ( 1


).

Thus 1

 %

1

, what implies 1


 %  1


 b satisfies DI.¥

Remark 1 (1) It is easily seen that b is the minimal preorder satisfying

TI and DI, of which  is a subrelation. (2) If  is complete, since  is a

subrelation to b, we have necessarily  = b. This shows that if the preorder is
complete, TI implies DI.

3- The translation-invariant extension theorem
Theorem 1 Let  be a preorder on  satisfying TI. Then there exists a

complete preorder on  satisfying TI, of which  is a subrelation.

Proof: If  is a complete preorder, there is nothing to prove. Suppose

that  is not complete. Consider the preorder b built in the proof of lemma

1, and the set < of all preorders on  satisfying TI and DI, and of which 

is a subrelation. < is not empty since b ∈ <. Let () be a chain in <, i.e.
for any 0  is a subrelation to 0 or 0 is a subrelation to  . Notice

that (1) the relation ∪ () defined on  by:  [∪ ()]  iff there is  such

that  is a preorder, (2) it satisfies TI and DI, (3)  is a subrelation to

∪ ()  (4) for all ,  is a subrelation to ∪ ()  Hence, in the set <,
every chain admits an upper bound. According to Zorn’s lemma, < admits at
least a maximal element. Denote  such a maximal element in <. Suppose we
can prove the following claim:

Claim 1 For any non complete 0 in < and any pair of 0-incomparable
alternatives (0 0)  there exists a preorder 

0
1 in < to which 0 is a subrelation

and such that 0 and 0 are 
0
1−comparable.

Then, if were not complete, there would exist a preorder in < to which
is a strict subrelation. This would contradict that is maximal in < Therefore,
if the claim holds,  would be necessarily complete.  would be the preorder

we are looking for.

What remains of the proof is devoted to establish claim 1. This is done

through the following 6 steps.

If there is no non complete preorder in <, the theorem is proved since <
is not empty. Let 0 be a non complete preorder in < and 0 0 be two

0−incomparable elements of 

Consider the binary relation  on :  %  iff either  %0  or there is

a positive rational  such that −  = (0 − 0)
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We prove successively that the two clauses of the definition of  are exclusive

(step 1), that the indifference relations are equal (step 2), that 0 is a subrelation
to  (step 3), that  is weakly acyclic (this prepares for transitivity) (step 4),

that 0 is a subrelation to the transitive closure of  (step 5), that the transitive
closure of  satisfies TI and DI (step 6). The transitive closure of  is then

the required preorder.

Step 1: the two clauses are exclusive. If there is a positive rational 

such that −  = (0− 0) then   are 
0−incomparable. Suppose not. For

instance suppose  %0  By TI, − %0 0 By DI, for all positive integer ,
1

(− ) %0 0 Recall that it is possible to sum inequalities (see the proof of

lemma 1). We sum  times the inequality 1

(− ) %0 0  being a positive

integer. We obtain 

(− ) %0 0 Take 


=  It gives 0 − 0 %0 0, what

contradicts 0 0 being incomparable. The case  %0  is similar.

Step 2: equivalence of indifferences. Clearly,  ∼0  ⇒  ∼ 

We show now that  ∼  entails  ∼0  According to the definition of ,

it is enough to prove that  and  are necessarily 0−comparable. Suppose
not. Then  %  implies that there is some positive rational  such that

 −  = (0 − 0) We have also  %  Thus, for some positive rational 0,
 −  = 0(0 − 0) We see that this gives 

0(0 − 0) = −(0 − 0) what

implies 0 − 0 = 0 because  
0 are both positive. But that contradicts 0 0

being 0−incomparable.
Step 3: 0 is a subrelation to  This is a direct consequence of  %0

 =⇒  %  (definition of ) and  ∼  ⇔  ∼0  (step 2).

Step 4:  is weakly-acyclic. We show that for all    in  :  % 

and  %  ⇒  %  or non( % ).

One of the four following cases is implied by  %  and  %  (1)  %0 

and  %0  (2) there are  0 such that − = (0−0) and − = 0(0−0)
(3)  %0  and there is 0 such that −  = 0(0−0) (4) there is  such that
−  = (0 − 0) and  %0  Consider successively the four cases:

(1) By transitivity of 0 :  %0  Thus,  % 

(2) − = (0−0) and − = 0(0−0) entails − = (+0)(0−0).
Thus  % 

(3) Suppose we had  %  We would have either  %0  or  −  =

00(0 − 0) Both possibilities contradict  %0  and  −  = 0(0 − 0)

Indeed, with  %0   %0  gives  %0  what contradicts − = 0(0−0)
(step 1); whereas  −  = 0(0 − 0) with  −  = 00(0 − 0) implies  −  =

(0+ 00)(0− 0) what contradicts  %0  As a result, we have non( % )

(4) This case is similar to (3)

Remark 2 Let    be such that  %  and  % . Weak acyclicity

entails that if one of the comparisons  %  and  %  is a strict preference,

then either the comparison on ( ) is  Â  or  and  are −incomparable.
Step 5: 0 is a subrelation to the transitive closure of  Consider

 the transitive closure of  defined by:  %  if there is a sequence ()

=1

such that  % 1 1 % 2 and  %  It is clear that  %0  implies

 %  (step 3: 0 is a subrelation to ). It is enough to prove that  % 

implies non( Â0 ).
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For a positive integer  consider the statement : "If there is a sequence

()

=1 such that  % 1 % 2 %  %  then non( Â0 )." Let’s

prove by induction that  is true for all positive integers. Notice that when

the sequence () has  terms, there is + 1 successive comparisons.

 = 1 : We have  % 1 %  By step 4, we have  %  or non( % ).

Both possibilities contradict  Â0 . So, we have non( Â0 ).

Suppose that  is true and let’s show that +1 is true. Consider the

sequence of + 2 comparisons:  % 1 % 2 % +1 % .

Each one of these comparisons comes either from the clause  %0  or

the clause  −  = (0 − 0) of the definition of  If there is two successive

comparisons coming from the clause  %0  say  %0 +1 %0 +2 (with

 = 0   + 2 and the convention: 0 =  and +2 = ), by transitivity

of 0 we have:  %  % +2 %  which constitutes a sequence of

 + 1 comparisons. By  we have non( Â0 ). If there is two successive

comparisons coming from the clause − = (0−0) say  % +1 % +2,

then  − +1 = (0 − 0) and +1 − +2 = 0(0 − 0) Thus,  − +2 =

( + 0) (0 − 0) so that  % +2 We have again reduced the number of

comparisons to + 1 Thus, we have also non( Â0 ). It remains to consider

the cases where the comparisons are alternate. Two cases must be considered:

+ 2 even and + 2 odd.

+ 2 even: The sequence of comparisons either begin or ends with a com-

parison from 0 Suppose it begins with a comparison from 0:  %0 1 %

2 %0 +1 %  Apply  to 1 % 2 %0 +1 % . It gives

non( Â0 1). Since  %0 1, we cannot have  Â0  If the sequence of

comparisons ends with a comparison from 0 the proof is similar. So it is

omitted.

 + 2 odd: If the sequence of comparisons begins with a comparison from

0 the proof is also similar. So it is omitted. If the sequence of comparisons
begins with a comparison from the clause −  = (0 − 0) we have

 % 1 %0 2 %0 +1 %  (1)

Denote ( 1) by (1 1)  (2 3) by (2 2) 
¡
2(−1) 2−1

¢
by
¡
 

¢
with  = 1  +1

2
and the convention 0 =  and +2 =  Since comparisons

 % 1 2 % 3−1 %  +1 %  come from the clause  −  =

(0−0) we have − =  (0 − 0) for  = 1,...,
+3
2
Moreover, according

to (1),  %0 +1 for  = 1 
+1
2
 Thus

1 − 1(0 − 0) % 02

2 − 2(0 − 0) % 03



(+1)2 − (+1)2(0 − 0) % 0(+3)2

We can sum these inequalities (this is established in the proof of lemma 1).
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We obtain

1 +

(+1)2X
2

 −
(+1)2X

2

 (0 − 0) %0

(+1)2X
2

 + (+3)2

By TI we obtain

1 −
(+1)2X

1

 (0 − 0) %0 (+3)2

But 1 = 1 and (+3)2 =  Denote  =
P(+1)2
1  Thus

− (0 − 0) %0 

By TI,  −  %0 (0 − 0) If we had  Â0  it would give 0 Â0

 −  %0  (0 − 0)  By transitivity of 
0 and by TI, 0 and 0 would be

0−comparable, which is not the case. As a result, we have non(  Â0 ).

Step 5 is proved.

Remark 3 0 is a subrelation to  , but  is not.

Step 6:  satisfies TI. As 0 is translation-invariant,  is clearly

translation-invariant. It is easily deduced that  is also translation-invariant.

Likewise, it is easily seen that  satisfiesDI. Thus,  is the required preorder.¥
Corollary 1 Let  be a reflexive binary relation satisfying TI. Then there

exists a complete preorder satisfying TI, of which  is a subrelation, iff  is a

subrelation to its transitive closure.

Proof: Necessity: the condition that  is a subrelation to its transitive

closure is necessary and sufficient for the existence of a complete preorder of

which  is a subrelation (Suzumura 1976, Bossert 2008). Sufficiency: denote

 the transitive closure of  It easily seen that  is a preorder satisfying

TI. Apply theorem 1 to  to deduce that there exists a complete preorder

satisfying TI, of which  is a subrelation. Since  is a subrelation to , it is

also a subrelation to the complete preorder.¥

4- Examples of application
Example 1: A translation-invariant and complete strict preorder on R with

  0  1

Notice that only in this example, the symbols ≤≥  are used for some-

thing else than the natural order on R Consider the following binary relation
- on R :

 -  if there is two nonnegative rationals  0 such that −  = − + 0

- is reflexive, transitive and satisfies TI. Moreover, - is a strict preorder,

which means that  -  and  -  implies  =  Indeed  −  = − + 0
and  −  = −1 + 01 yields 0 = ( − ) + ( − ) = −( + 1) + (

0 + 01).
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Thus ( + 1) = (0 + 01). We must have 
0 + 01 = 0 otherwise  would be

rational. Thus we have also  + 1 = 0. Since  1 
0 01 are nonnegative, we

have  = 1 = 0 = 01 = 0 and  = 

Theorem 1 asserts the existence of a translation-invariant and complete pre-

order, say ≤ of which - is a subrelation. ≤ is strict like -  Observe that

≤ respects the natural order of rationals. But it does not coincide with the

natural order of reals. Moreover it does not satisfy scalar invariance since if

you multiply 0  1 by  the inequality is reversed. Finally, ≤ is not continuous.
Consider a positive sequence of rational () such that lim  =

1

 TI allows

to multiply an inequality by a positive rational. Multiplying   0 by  yields

  0 = 0 for all  But lim  = 1  0 A question then arises: can

scalar invariance still be transgressed under TI and continuity? An answer is

provided in section 5.

Example 2: Existence of a translation-invariant, strong-Pareto, fixed—step-

anonymous and complete preorder on N0  where  is a divisible commutative

group equipped with a complete preorder  satisfying TI.

It is possible to demonstrate the existence of such a preorder using the ultra-

filter technique, as in (Fleurbaey-Michel 2003, Lauwers 2009). We demonstrate

here this existence without using ultrafilters, which are highly nonconstructive

objects. Although our theorem 1 also makes use of the axiom of choice, one may

consider that our method is nevertheless more constructive in the sense that it

indicates the concrete steps of adding comparisons.

Let  = N0 , let 0 be a preorder on  We first give the following defini-

tions:

Fixed-step permutation: (Fleurbaey-Michel 2003)  is a fixed-step per-

mutation if there exist  ∈ N0 such that for all  ∈ N0  ({1  }) =
{1  }.
Axiom fixed-step-anonymity: Denote  () the sequence obtained by

permuting the components of  ∈  according to the permutation . 0 is
fixed-step-anonymous if for all  ∈  and fixed-step permutation  we have

 ∼0  () 

Axiom strong Pareto: 0 is strong Pareto if, for all   ∈  such that

∀ ∈ N0  %  and  Â  for some   we have  Â0  (  denote the

 component of resp.  ).

Pareto axioms capture the idea that an increase of the components of a

vector must increase the ranking of the vector. Anonymity axioms express a

requirement of symmetry in the treatment of individuals or dates.

The fixed-step catching-up  For all   ∈ RN0   %  iff there

exist  ∈ N0 such that, for all  ∈ N0 with    we have

X
=1

 ≥
X
=1



 is a fixed—step-anonymous preorder (Fleurbaey-Michel 2003).
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Proposition 1: There exists a translation-invariant, strong-Pareto, fixed-

step-anonymous and complete preorder on RN0 
Proof: Apply theorem 1 to  There exists a translation-invariant and

complete preorder 0 on  of which  is a subrelation.  being a subrelation
to 0 entails that 0 satisfies strong Pareto and fixed—step-anonymity. 0 is the
required preorder.¥

5- Scalar invariance as a consequence of TI and a
continuity requirement
For a given nontrivial preorder  on a divisible commutative group, +()

is the associated upper-order-topology, i.e. the topology generated by the base

of open intervals: +() = {{ ∈  :  ≺ }   ∈ } 
Theorem 2: Let  be a preorder on  satisfying TI. Then there exists a

complete preorder 0 on  satisfying TI, of which  is a subrelation, and such

that +(
0) ⊂ +().

Proof: The following proof is an adaptation of the proof of (Jaffray 1975) to

a translation-invariant preorder. We start from a translation-invariant complete

preorder which extends , whose existence is guaranteed by theorem 1. We

then apply a clause2 to "clean up" rankings that do not respect the upper-

order-topology. It turns out that this clause is also translation-invariant, which

makes it possible to build the desired preorder.

Let 1 be a complete preorder extending  and satisfying TI. Let   ∈ .

Consider the following clause :

( ): "There exists  ∈ +() containing  such that, for all 
0 ∈ +()

containing we can find 0 ∈ 0 such that for all  ∈  we have  ≺1
0 "

Because 1 satisfies TI, it is easily seen that if ( ) is true, (+ +)

is true for all  in  Moreover, if ( ) is true, it is clear that we cannot have

( ) true. Thus, we can define a asymmetric relation 2 checking TI as

follows:  ≺2
 iff ( ) is true.

We prove now that 2 is negatively transitive, i.e.

not( ≺2
) and not( ≺2

) implies not( ≺2
)

We have:

Not( ≺2
)⇐⇒ for all 1 ∈ +() containing  there exists 

0
1 ∈ +()

containing  such that [for all 01in 0
1, there exists 

00
1 in 1 such that 

00
1 %1

01].
Not( ≺2

)⇐⇒ for all 2 ∈ +() containing  there exists 
0
2 ∈ +()

containing  such that [for all 02in 0
2, there exists 

00
2 in 2 such that 

00
2 %1

02].
Let 1 be in +() containing  and 0

1 be the interval which existence

is asserted by the clause "not( ≺2
)". Take 0

1 as the interval 2 of the

2This clause combines the two clauses proposed by (Jaffray 1975) in the proof of his theorem

1, the first of which defines a preorder on +() and the second a preorder on .
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clause "not( ≺3
)". Thus, there exists 0

2 ∈ +() containing  such that

[for all 02in 0
2, there exists 

00
2 in 0

1 such that 
00
2 %1

02]. Now apply the

clause "not( ≺2
)" for 002 instead of 

0
1 and deduce that there exists 

00
1 in

1 such that 
00
1 %1

002  By transitivity of 2 
00
1 %1

002 and 002 %1
02 gives

001 %1
02

Summing up: for some 1 in +() containing  we have found 
0
2 ∈ +()

containing  such that [for all 02in 
0
2 there exists 

00
1 in 1 such that 

00
1 %1

01].
This is exactly the clause not( ≺2

).

Since asymmetry and negative transitivity imply transitivity, 2 is transi-

tive.

Now let 0 be the following binary relation:

 .0  iff [( ≺2
) or not( Â2

)]

The transitivity and negative transitivity of 2 implies the transitivity of

0 Moreover, 0 is complete and satisfies TI.
We show now that  is a subrelation to 0 Indeed, let   be such that

 ≺  In the clause ( ), take  = { ∈  :  ≺ }  We have  ∈  and

for all 0 containing we have  ≺1
 for all  ∈  Hence the clause ( )

is true and  ≺2
 Consequently,  ≺0  If   are such that  ∼  the

clause ( ) cannot be satisfied. To see it, it suffices to notice that an interval

containing  necessarily contains  and vice versa. If we take 0 =  in the

clause ( ), there is no 0 in  such that for all  ∈  we have  ≺1
0 Thus

we have not( ≺2
). In the same way, we have not( ≺2

)Consequently,

 ∼0 

It remains to show that +(
0) ⊂ +() Let  ∈  We show that any

subset in +(
0), the base of open intervals generating +(

0), is open with
respect to +() Let  ∈  = { ∈  :  ≺0 }. By the definition of 0 there
is  in +() containing  such that for all  ∈ +() containing we can

find 0 ∈  such that for all  ∈  we have  ≺1
0 We can see that this

implies that for all  ∈  we have  ≺0  Hence  ⊂  Recap: for all 

in  we found  in +() containing  such that  ⊂ As a result,  is a

union of open sets of +() It is thus an open set of +()¥
Remark 5: Theorem 2 holds if we replace +() and +(

0) respectively
by −() and −(0) the lower-order-topologies.
Remark 6: The inclusion +(

0) ⊂ +() entails the upper semicontinuity

of the extension with respect to any topology on  stronger than +(). Upper

semicontinuity is used here in the sense that lower sections { ∈  :  ≺ }
are open. But it is not necessary for the topology on  to be stronger than

+() to have the upper semicontinuity of the extension. For more information

on this issue, see (Jaffray 1975), section 5.

Axiom scalar invariance: For all nonnegative real  and vectors   in

a real vector space equipped with a preorder    %  =⇒  % 

Corollary 2: Let  be a real normed vector space. Denote  the topology

induced by the norm of  Let be a preorder on  satisfyingTI and +() ⊂ 

Let 0 be one of the complete preorders which existence is asserted by theorem

9



2, i.e. a complete preorder of which  is a subrelation, satisfying TI and such

that +(
0) ⊂ +(). Then 0 satisfies scalar invariance.

Proof: We have +(
0) ⊂ . Let  be a nonnegative real and   two

vectors in  such that  %  Using TI and DI we get (− ) %0 0 for any

nonnegative rational number . Let () be a nonnegative sequence of rationals

converging to  The sequence  (− ) converges to  (− )  On the other

hand,  (− ) ∈ + = { ∈  :  %0 0} and + is closed since +(
0) ⊂ .

Thus, the limit of the sequence ( (− ))  which is  (− ), belongs to +.

As a result  (− ) %0 0 What yields, by TI,  %0 

An immediate consequence of corollary 2 is the following:

Corollary 3: Let  be a complete preorder on  , a real normed vector

space, satisfying TI and +() ⊂  where  is the topology induced by the

norm of  . Then  satisfies scalar invariance.

Remark 7: +() ⊂  is a continuity requirement. Under that continuity

requirement and TI, scalar invariance is, in a sense, satisfied since every com-

plete preorder extending the original preorder and satisfying the same axiom of

continuity and TI must satisfy scalar invariance.

Remark 8: (Demuynck-Lauwers 2009) showed that a given preorder sat-

isfying TI and scalar invariance can be extended into a complete preorder

satisfying TI and scalar invariance. Corollary 2 shows that if, in addition,

the initial preorder satisfies upper semicontinuity, then it admits an extension

which also satisfies upper semicontinuity in addition to the axioms TI and scalar

invariance.

Remark 9: While Corollary 3 presents scalar invariance as a consequence of

TI and a condition of continuity, (Weibull 1985) theorem A has shown that un-

der conditions TI, scalar invariance and a continuity requirement called scalar

continuity, a complete preorder verifies a stronger condition of continuity that

results in representability, i.e. the existence of a real-valued order-preserving

continuous function. For more information on scalar continuity and its proper-

ties in the context of a monotone order, see (Mitra-Ozbek 2013).

6- Scalar invariance as a consequence of TI and a
weak Pareto axiom
We are now in the space ∞ =

©
(1 2 ) :  ∈ R and sup || −  +∞

ª
,

where  is a nonnegative real. This space is suitable for studying economic de-

cisions in discrete time, infinite horizon and exponentially growing economy. If

 = 0, the economy remains bounded.

Axiom super weak Pareto: if inf( − )
−  0 then  Â 

The following lemma is a slight strengthening of theorem 4 of (Mabrouk

2011). It will be used to prove theorem 3.

Lemma 3: If a complete preorder 0 on ∞ satisfies super weak Pareto and

TI, then for every  ∈ ∞ such that  Â0 0 there exists a non-zero, continuous,

positive (in the sense that if  ≥ 0 for all  then () ≥ 0) linear functional 
on ∞ such that  ()   ()⇒  Â0  and  ()  0

Proof: We refer to the proof of theorem 4 in (Mabrouk 2011). The notations

there are the same, except for the axiom TI instead of which a weaker axiom
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called "weak inv (+)" was used in (Mabrouk 2011)
3. For the convenience of

the reader, we recall some definitions and results: 
◦
∞++ = { ∈ ∞ : inf 

− 
0}  = { ∈ ∞ &0 0} and  =

©
 ∈ ∞ :  = +   ∈   ∈ 

◦
∞++

ª
. In

the proof of theorem 4 of (Mabrouk 2011),  is proved to be open and convex

and to have the following properties: (i) 0 ∈  (ii)  ∈  whenever  ∈  and

 is a positive real.

Now let  be in ∞ such that  Â0 0. The idea is to consider the con-

vex hull 0 of the set  and vector  instead of the set . We have 0 =
{0 ∈ ∞ : ∃( ) ∈ [0 1]× 0 =  + (1− )}  We show that 0 ∈ 0 Sup-
pose not. There would exist  in [0 1] with  + (1 − ) = 0 Since 0 ∈ 

and  Â0 0 we have  6= 0 and  6= 1 Thus we would have 
1− +  = 0

But 
1− ∈ . Thus 

1− Â0 0. Since  Â0 0 by TI we would have

1− +  Â0 0 A contradiction. Since 0 ∈ 0, thanks to Hahn—Banach theo-
rem, there exist a non-zero continuous linear functional  supporting 

0. This
is written: for all 0 in 0, (

0)  0 In particular,  ()  0 One shows,

literally as in the proof of theorem 4 of (Mabrouk 2011), that for all   in ∞
, ()  ()⇒  Â0  and that  is positive.¥
Theorem 3: Let  be a preorder on ∞ satisfying TI and super weak

Pareto. Let 0 be one of the complete preorders which existence is asserted by
theorem 1, i.e. a complete preorder of which  is a subrelation and satisfying

TI. Then 0 satisfies scalar invariance.
Proof: Since is a subrelation to0, 0 also satisfies super weak Pareto. Let

  ∈ ∞ such that  Â0 . Denote  = −We have  Â0 0. Apply lemma

3. There exists a non-zero, continuous, positive linear functional  on 

∞ such

that ∀0 0 ∈ ∞ (
0)  (

0) ⇒ 0 Â0 0 and  ()  0Let  be a

positive real. Multiplying this inequality by  one gets  () =  ()  0

Replace  by − . Then  () =  ((− )) = (− ) = ()−
()  0 Hence, ()  () and  Â0  We have shown that for

all positive real  and   ∈ ∞  Â0  ⇒  Â0  Moreover,  ∼0 

implies  ∼0  (since if we had for example  Â0  we could multiply

this last inequality by 1

and get  Â0  a contradiction). This proves scalar

invariance.¥
Theorem 3 indicates that scalar invariance is satisfied under TI and super

weak Pareto in the same sense as in remark 7. TI together with scalar invariance

is called strong invariance in the terminology of (Mitra-Ozbek 2013)4. If we

accept this justification of scalar invariance by TI, we are led to admit that,

under super weak Pareto, the axiom , strong invariance is in a way a consequence

of the axiom TI.

An immediate consequence of theorem 3 is the following:

Corollary 4: Every complete preorder 0 satisfying TI and super weak
Pareto, satisfies scalar invariance.

3The definition of "weak inv ( + )" is: ∀   ∈  [ Â  ⇒ +  %  + ]  Of

course, lemma 2 holds with weak inv ( + ) instead of TI.
4 In the terminology of (D’Aspremont-Gevers 2002), it is called invariance with respect to

common rescaling and individual change of origin.
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Remark 10: Since theorem 1 and lemma 3 hold in finite dimension, it is

also the case for theorem 3 and corollary 4. Consequently, when the preorder is

complete and super-weak Pareto, strong invariance is equivalent to TI. Hence,

theorem 18 of (D’Aspremont-Gevers 2002) or example 2 of (Mitra-Ozbek 2013)

asserting the linear representability of a complete preorder respecting TI, scalar

invariance, weak Pareto and another axiom, hold without imposing scalar in-

variance.
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