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Abstract
This paper proves the existence, for a translat ion-invariant preorder on a

divisible commutat ive group, of a complete preorder extending the preorder in
quest ion and sat isfying translation invariance. We also prove that the extension
may inherit a property of cont inuity. As an applicat ion, we prove the existence
of a complete translat ion-invariant strict preorder on R which t ransgressesscalar
invariance and also the existence of a complete translat ion-invariant preorder
sat isfying the social choice axioms strong Pareto and …xed–step-anonymity on a
set N0  where isa divisiblecommutat ivegroup. Moreover, the two extension
results areused to makescalar invariance appear asa consequenceof translation
invariance under a cont inuity requirement.

1- Int roduct ion
(Szpilrajn 1930) extension theorem may be stated as follows. For any re‡ex-

ive and transit ive binary relat ion (i.e. a preorder) on a given set , there exists a
complete preorder which is an extension of the given preorder. Szpilrajn theo-
rem proved of great ut ility in mathemat ical social choice theory as in someother
branches of mathemat ics. There exists today stronger versions of Szpilrajn the-
orem, requiring weaker assumpt ions on the init ial binary relat ion or imposing
addit ional condit ions on the relat ion extension. We refer to (Alcantud-Diaz
2014) for an overview on the applicat ions and extensions of Szpilrajn theorem.

The present paper establishes the existence, for any preorder on a divisible
commutat ive group sat isfying translation invariance, of a complete preorder
extending the given preorder and sat isfying translation invariance (sect ion 3,
theorem 1). In (Demuynck-Lauwers 2009) the existence of an extension under
the condit ions translation invariance and scalar invariance is proven. However,
the result proved here is stronger in the sense that it is freed from the scalar
invariance assumpt ion. The proof of theorem 1 follows the same diagram as
the proof of Szpilrajn theorem. Start ing from a preorder sat isfying translation
invariance, one adds comparisons on some pairs of alternat ives in such a way
that translation invariance remains sat is…ed. Then, an argument based on
Zorn’s lemma makes it possible to extend the procedure to the whole space.

We also prove a second extension theorem which asserts that the former
extension result (theorem 1) holds under an addit ional requirement of cont inuity
(sect ion 4, theorem 2). The proof is an adaptat ion of the proof of (Ja¤ray 1975)
to the translation invariance case. It relies on theconstruct ion of a relat ion that

1 I am grat eful t o an anonymous referee who, when reviewing anot her paper, guided me
t owards t he issue of ext ending a preorder under t ranslat ion-invariance.
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is used to " clean" the extended preorder given by theorem 1 from undesirable
rankings that t ransgress the cont inuity requirement.

As an applicat ion, we give two examples, the …rst of which shows the exis-
tence of a complete t ranslat ion-invariant strict preorder on R which transgresses
scalar invariance and the second shows the existence of a complete translat ion-
invariant preorder sat isfying the social choice axioms strong Pareto and …xed–
step-anonymity on a set N0  where  is a divisible commutat ive group.

Moreover, theorems 1 and 2 are used to make scalar invariance appear as a
consequenceof translation invariance under a cont inuity requirement (Corollary
2, sect ion 5) or under a Pareto axiom (Theorem 3, sect ion 6).

2- Preliminaries
N0 is the set of posit ive integers.  is the set of rat ional numbers. (+ )

is a divisible commutat ive group.  being a binary relat ion on  and   two
elements of ,  is denoted  % ,[ and non()] is denoted  Â 
and [ and ] is denoted  »  . The symbols ·  ¸   are used for the
natural order on R, except in example 1, sect ion 4. A re‡exive and transit ive
binary relat ion on  is a preorder on . If, on top of that , for all   either
 %  or  -  , it is a complete preorder. A binary relat ion 1 is said to be
a subrelat ion to a binary relat ion 2 , or 2 an extension of 1 if for all  
in 

 %1  =)  %2 

and
 Â1  =)  Â2 

A xiom t ranslat ion invar i ance (T I ) A preorder  sat is…es translation
invariance if:

8( ) 2  £ 8 2  [ %  )  +  %  + ]

A xiom di vi sion invar i ance (D I ) A preorder  sat is…esdivision-invariance
if:

8 2 8 2 N
·
 %  )

1

 %
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¸

Lemma 1 If a preorder  on  sat is…es T I , then there exists a preorder b
on  of which  is a subrelat ion and such that b sat is…es T I and DI .

Pr oof: First , not ice that under , it is possible to sum inequalit ies. Indeed,
by T I , if     are such that  %  and  %  then  +  %  +  and
 +  %  +  By transit ivity,  +  %  +  For each posit ive integer ,
consider the binary relat ion  de…ned by

 %  i¤  % 

If   are such that  %  we can sum  t imes this inequality. Thus,
 % . Likewise, it is easily seen that  Â  implies  Â  As a result ,
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 is a subrelat ion to  Moreover,  is re‡exive and transit ive. It is easily
checked that  sat is…es T I .

Consider the binary relat ion

b = [ 2 N0

de…ned on  by  %  i¤ there is  such that  % .
 is a subrelat ion to b. Moreover, b is re‡exive and transit ive. It is a

preorder. Since for each posit ive integer ,  sat is…es T I , we deduce that b
sat is…es T I . The lemma is proved if we show that b sat is…es D I . Let  be a
posit ive integer, and   such that  %  Thereexistsa posit ive integer  such
that  % . Thus  % . We can write that as ( 1

) % ( 1
).

Thus 1

 %

1

, what implies 1


 %

1

 b sat is…es DI.¥

Remar k 1 (1) It is easily seen that b is the minimal preorder sat isfying
T I and D I , of which  is a subrelat ion. (2) If  is complete, since  is a
subrelat ion to b, we have necessarily  = b. This shows that if the preorder is
complete, T I implies D I .

3- The translat ion-invariant extension theorem
T heor em 1 Let  be a preorder on  sat isfying T I . Then there exists a

complete preorder on  sat isfying T I , of which  is a subrelat ion.
Pr oof: If  is a complete preorder, there is nothing to prove. Suppose

that  is not complete. Consider the preorder b built in the proof of lemma
1, and the set < of all preorders on  sat isfying T I and DI , and of which 
is a subrelat ion. < is not empty since b 2 < . Let () be a chain in < , i.e.
for any 0  is a subrelat ion to 0 or 0is a subrelat ion to  . Not ice
that (1) the relat ion [  () de…ned on  by:  [[  ()]  i¤ there is  such
that  is a preorder, (2) it sat is…es T I and D I , (3)  is a subrelat ion to
[  ()  (4) for all ,  is a subrelat ion to [  ()  Hence, in the set < ,
every chain admits an upper bound. According to Zorn’s lemma, < admits at
least a maximal element. Denote such a maximal element in <. Suppose we
can prove the following claim:

Claim 1 For any non complete 0 in < and any pair of 0-incomparable
alternat ives (0 0)  thereexists a preorder 0

1 in < to which 0 isa subrelat ion
and such that 0 and 0 are 0

1¡ comparable.
Then, if  were not complete, therewould exist a preorder in < to which 

isa strict subrelat ion. This would contradict that  is maximal in <  Therefore,
if the claim holds,  would be necessarily complete.  would be the preorder
we are looking for.

What remains of the proof is devoted to establish claim 1. This is done
through the following 6 steps.

If there is no non complete preorder in < , the theorem is proved since <
is not empty. Let 0 be a non complete preorder in < and 0 0 be two
0¡ incomparable elements of 

Consider the binary relat ion  on :  %  i¤ either  %0  or there is
a posit ive rat ional  such that  ¡  = (0 ¡ 0)
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Weprovesuccessively that the two clauses of thede…nit ion of  areexclusive
(step 1), that the indi¤erencerelat ionsareequal (step 2), that 0 isa subrelat ion
to  (step 3), that  is weakly acyclic (this prepares for t ransit ivity) (step 4),
that 0 is a subrelat ion to the transit iveclosureof  (step 5), that the transit ive
closure of  sat is…es T I and DI (step 6). The transit ive closure of  is then
the required preorder.

St ep 1: t he two clauses ar e exclusive. If there is a posit ive rat ional 
such that  ¡  = (0 ¡ 0) then   are0¡ incomparable. Suppose not. For
instance suppose  %0  By T I ,  ¡  %0 0 By DI , for all posit ive integer ,
1
 ( ¡ ) %0 0 Recall that it is possible to sum inequalit ies (see the proof of
lemma 1). We sum  t imes the inequality 1

 ( ¡ ) %0 0  being a posit ive
integer. We obtain 


( ¡ ) %0 0 Take 


=  It gives 0 ¡ 0 %0 0, what

cont radicts 0 0 being incomparable. The case  %0  is similar.
St ep 2: equivalence of indi¤erences. Clearly,  » 0  )  »  

We show now that  »   entails  » 0  According to the de…nit ion of ,
it is enough to prove that  and  are necessarily 0¡ comparable. Suppose
not. Then  %  implies that there is some posit ive rat ional  such that
 ¡  = (0 ¡ 0) We have also  %  Thus, for some posit ive rat ional 0,
 ¡  = 0(0 ¡ 0) We see that this gives 0(0 ¡ 0) = ¡ (0 ¡ 0) what
implies 0 ¡ 0 = 0 because  0 are both posit ive. But that contradicts 0 0

being 0¡ incomparable.
St ep 3: 0 is a subr elat ion t o  This is a direct consequence of  %0

 =)  %  (de…nit ion of ) and  »   ,  » 0  (step 2).
St ep 4:  i s weakly-acycl ic. We show that for all    in  :  % 

and  %  )  %  or non( % ).
One of the four following cases is implied by  %  and  %  (1)  %0 

and  %0  (2) thereare 0 such that ¡  = (0¡ 0) and ¡  = 0(0¡ 0)
(3)  %0  and there is 0 such that  ¡  = 0(0 ¡ 0) (4) there is  such that
 ¡  = (0 ¡ 0) and  %0  Consider successively the four cases:

(1) By transit ivity of 0 :  %0  Thus,  % 
(2) ¡  = (0 ¡ 0) and  ¡  = 0(0 ¡ 0) entails¡  = (+ 0)(0 ¡ 0).

Thus  % 
(3) Suppose we had  %  We would have either  %0  or  ¡  =

00(0 ¡ 0) Both possibilit ies cont radict  %0  and  ¡  = 0(0 ¡ 0)
Indeed, with  %0   %0  gives  %0  what contradicts  ¡  = 0(0 ¡ 0)
(step 1); whereas  ¡  = 0(0 ¡ 0) with  ¡  = 00(0 ¡ 0) implies  ¡  =
(0+ 00)(0 ¡ 0) what contradicts  %0  As a result , we have non( % )

(4) This case is similar to (3)
Remar k 2 Let    be such that  %  and  % . Weak acyclicity

entails that if one of the comparisons  %  and  %  is a strict preference,
then either the comparison on ( ) is  Â  or  and  are¡ incomparable.

St ep 5: 0 i s a subr elat ion t o t he t r ansit ive closur e of  Consider
 the transit ive closure of  de…ned by:  %  if there is a sequence ()


= 1

such that  % 1 1 % 2 and  %  It is clear that  %0  implies
 %  (step 3: 0 is a subrelat ion to ). It is enough to prove that  % 
implies non( Â0 ).
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For a posit ive integer  consider the statement : " If there is a sequence
()= 1 such that  % 1 % 2 %  %  then non( Â0 )." Let ’s
prove by induct ion that  is t rue for all posit ive integers. Not ice that when
the sequence () has  terms, there is  + 1 successive comparisons.

 = 1 : We have  % 1 %  By step 4, we have  %  or non( % ).
Both possibilit ies contradict  Â0 . So, we have non( Â0 ).

Suppose that  is t rue and let ’s show that + 1 is t rue. Consider the
sequence of  + 2 comparisons:  % 1 % 2 % + 1 % .

Each one of these comparisons comes either from the clause  %0  or
the clause  ¡  = (0 ¡ 0) of the de…nit ion of  If t here is two successive
comparisons coming from the clause  %0  say  %0 + 1 %0 + 2 (with
 = 0   + 2 and the convent ion: 0 =  and + 2 = ), by t ransit ivity
of 0 we have:  %  % + 2 %  which const itutes a sequence of
 + 1 comparisons. By  we have non( Â0 ). If there is two successive
comparisons coming from theclause¡  = (0 ¡ 0) say  % + 1 % + 2,
t hen  ¡ + 1 = (0 ¡ 0) and + 1 ¡ + 2 = 0(0 ¡ 0) Thus,  ¡ + 2 =
( + 0) (0 ¡ 0) so that  % + 2 We have again reduced the number of
comparisons to  + 1 Thus, we have also non( Â0 ). It remains to consider
the cases where the comparisons are alternate. Two cases must be considered:
 + 2 even and  + 2 odd.

 + 2 even: The sequence of comparisons either begin or ends with a com-
parison from 0 Suppose it begins with a comparison from 0:  %0 1 %

2 %0 + 1 %  Apply  to 1 % 2 %0 + 1 % . It gives
non( Â0 1). Since  %0 1, we cannot have  Â0  If the sequence of
comparisons ends with a comparison from 0 the proof is similar. So it is
omit ted.

 + 2 odd: If the sequence of comparisons begins with a comparison from
0 t he proof is also similar. So it is omit ted. If the sequence of comparisons
begins with a comparison from the clause  ¡  = (0 ¡ 0) we have

 % 1 %0 2 %0 + 1 %  (1)

Denote ( 1) by (1 1)  (2 3) by (2 2) 
¡
2(¡ 1)  2¡ 1

¢
by

¡
 

¢

with  = 1  + 1
2 and the convent ion 0 =  and + 2 =  Since comparisons

 % 1 2 % 3¡ 1 %  + 1 %  come from the clause  ¡  =
(0 ¡ 0) we have ¡  =  (0 ¡ 0) for  = 1,...,+ 3

2  Moreover, according
to (1),  %0 + 1 for  = 1  + 1

2  Thus

1 ¡ 1(0 ¡ 0) % 02

2 ¡ 2(0 ¡ 0) % 03



(+ 1)2 ¡ (+ 1)2(0 ¡ 0) % 0(+ 3)2

We can sum these inequalit ies (this is established in the proof of lemma 1).
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We obtain

1 +
(+ 1)2X

2

 ¡
(+ 1)2X

2

 (0 ¡ 0) %0

(+ 1)2X

2

 + (+ 3)2

By T I we obtain

1 ¡
(+ 1)2X

1

 (0 ¡ 0) %0 (+ 3)2

But 1 = 1 and (+ 3)2 =  Denote  =
P (+ 1)2

1  Thus

 ¡ (0 ¡ 0) %0 

By T I ,  ¡  %0 (0 ¡ 0) If we had  Â0  it would give 0 Â0

 ¡  %0  (0 ¡ 0)  By transit ivity of 0 and by T I , 0 and 0 would be
0¡ comparable, which is not the case. As a result , we have non(  Â0 ).
Step 5 is proved.

Remar k 3 0 is a subrelat ion to  , but  is not .
St ep 6:  sat is…es T I . As 0 is t ranslat ion-invariant ,  is clearly

t ranslat ion-invariant . It is easily deduced that  is also t ranslat ion-invariant .
Likewise, it is easily seen that  sat is…es D I . Thus,  is the required preorder.¥

Cor ol lar y 1 Let  be a re‡exive binary relat ion sat isfying T I . Then there
exists a complete preorder sat isfying T I , of which  is a subrelat ion, i¤  is a
subrelat ion to it s t ransit ive closure.

Pr oof: Necessity: the condit ion that  is a subrelat ion to its t ransit ive
closure is necessary and su¢ cient for the existence of a complete preorder of
which  is a subrelat ion (Suzumura 1976, Bossert 2008). Su¢ ciency: denote
 the transit ive closure of  It easily seen that  is a preorder sat isfying
T I . Apply theorem 1 to  to deduce that there exists a complete preorder
sat isfying T I , of which  is a subrelat ion. Since  is a subrelat ion to , it is
also a subrelat ion to the complete preorder.¥

4- Examples of application
Example 1: A translat ion-invariant and complete strict preorder on R with

  0  1
Not ice that only in this example, the symbols ·  ¸   are used for some-

thing else than the natural order on R Consider the following binary relat ion
- on R :

 -  if t here is two nonnegat ive rat ionals  0 such that  ¡  = ¡  + 0

- is re‡exive, t ransit ive and sat is…es T I . Moreover, - is a strict preorder,
which means that  -  and  -  implies  =  Indeed  ¡  = ¡  + 0
and  ¡  = ¡ 1 + 0

1 yields 0 = ( ¡ ) + ( ¡ ) = ¡ ( + 1) + (0 + 0
1).
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Thus ( + 1) = (0 + 0
1). We must have 0 + 0

1 = 0 otherwise  would be
rat ional. Thus we have also  + 1 = 0. Since  1 

0 0
1 are nonnegat ive, we

have  = 1 = 0 = 0
1 = 0 and  = 

Theorem 1 asserts the existence of a translat ion-invariant and complete pre-
order, say ·  of which - is a subrelat ion. · is strict like -  Observe that
· respects the natural order of rat ionals. But it does not coincide with the
natural order of reals. Moreover it does not sat isfy scalar invariance since if
you mult iply 0  1 by  the inequality is reversed. Finally, · is not cont inuous.
Consider a posit ive sequence of rat ional () such that lim  = 1

  T I allows
to mult iply an inequality by a posit ive rat ional. Mult iplying   0 by  yields
  0 = 0 for all  But lim  = 1  0 A quest ion then arises: can
scalar invariance st ill be transgressed under T I and cont inuity? An answer is
provided in sect ion 5.

Example 2: Existenceof a translat ion-invariant , st rong-Pareto, …xed–step-
anonymous and complete preorder on N0  where is a divisible commutat ive
group equipped with a complete preorder  sat isfying T I .

It is possible to demonstrate the existenceof such a preorder using the ult ra-
…lter technique, as in (Fleurbaey-Michel 2003, Lauwers 2009). We demonstrate
here this existence without using ult ra…lters, which are highly nonconstruct ive
objects. Although our theorem 1 also makes use of the axiom of choice, onemay
consider that our method is nevertheless more construct ive in the sense that it
indicates the concrete steps of adding comparisons.

Let  = N0 , let 0 be a preorder on  We …rst give the following de…ni-
t ions:

Fixed-st ep per mut at ion: (Fleurbaey-Michel 2003)  is a …xed-step per-
mutat ion if there exist  2 N0 such that for all  2 N0  (f 1  g) =
f 1  g.

A xiom …xed-step-anonymi ty : Denote  () the sequence obtained by
permut ing the components of  2  according to the permutat ion . 0 is
…xed-step-anonymous if for all  2  and …xed-step permutat ion  we have
 » 0  () 

A xiom strong Pareto : 0 is strong Pareto if, for all   2  such that
8 2 N0  %  and  Â  for some   we have  Â0  (  denote the
 component of resp.  ).

Pareto axioms capture the idea that an increase of the components of a
vector must increase the ranking of the vector. Anonymity axioms express a
requirement of symmetry in the treatment of individuals or dates.

T he …xed-st ep cat ching-up  For all   2 RN0   %  i¤ there
exist  2 N0 such that , for all  2 N0 with    we have

X

= 1

 ¸
X

= 1



 is a …xed–step-anonymous preorder (Fleurbaey-Michel 2003).
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Pr oposi t ion 1: There exists a t ranslat ion-invariant , st rong-Pareto, …xed-
step-anonymous and complete preorder on RN0 

Pr oof: Apply theorem 1 to  There exists a t ranslat ion-invariant and
complete preorder 0 on  of which  is a subrelat ion.  being a subrelat ion
to 0 entails that 0 sat is…es strong Pareto and …xed–step-anonymity. 0 is the
required preorder.¥

5- Scalar invariance as a consequence of T I and a
continuity requirement

For a given nontrivial preorder  on a divisiblecommutat ivegroup , + ()
is the associated upper-order-topology, i.e. the topology generated by the base
of open intervals: + () = f f  2  :  Á g   2 g 

T heor em 2: Let  be a preorder on  sat isfying T I . Then there exists a
complete preorder 0 on  sat isfying T I , of which  is a subrelat ion, and such
that + (0) ½ + ().

Pr oof: The following proof is an adaptat ion of the proof of (Ja¤ray 1975) to
a t ranslat ion-invariant preorder. We start from a translat ion-invariant complete
preorder which extends , whose existence is guaranteed by theorem 1. We
then apply a clause2 to "clean up" rankings that do not respect the upper-
order-topology. It turns out that this clause is also translat ion-invariant , which
makes it possible to build the desired preorder.

Let 1 be a complete preorder extending  and sat isfying T I . Let   2 .
Consider the following clause :

( ): " There exists  2 + () containing  such that , for all 0 2 + ()
containing we can …nd 0 2 0 such that for all  2  we have  Á1 0 "

Because1 sat is…es T I , it is easily seen that if ( ) is t rue, (+  + )
is t rue for all  in  Moreover, if ( ) is t rue, it is clear that we cannot have
( ) t rue. Thus, we can de…ne a asymmet ric relat ion 2 checking T I as
follows:  Á2  i¤ ( ) is t rue.

We prove now that 2 is negat ively t ransit ive, i.e.

not( Á2 ) and not( Á2 ) implies not( Á2 )

We have:
Not( Á2 ) ( ) for all 1 2 + () containing  there exists0

1 2 + ()
containing  such that [for all 0

1 in 0
1, there exists 00

1 in 1 such that 00
1 %1

0
1].

Not( Á2 ) ( ) for all 2 2 + () containing  there exists0
2 2 + ()

containing  such that [for all 0
2 in 0

2, there exists 00
2 in 2 such that 00

2 %1

0
2].

Let 1 be in + () containing  and 0
1 be the interval which existence

is asserted by the clause " not( Á2 )" . Take 0
1 as the interval 2 of the

2T his clause combines the two clauses proposed by (Ja¤ray 1975) in t he proof of his t heorem
1, the …rst of which de…nes a preorder on + () and t he second a preorder on  .
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clause " not( Á3 )" . Thus, there exists 0
2 2 + () containing  such that

[for all 0
2 in 0

2, there exists 00
2 in 0

1 such that 00
2 %1 0

2]. Now apply the
clause " not( Á2 )" for 00

2 instead of 0
1 and deduce that there exists 00

1 in
1 such that 00

1 %1 
00
2  By transit ivity of 2 

00
1 %1 

00
2 and 00

2 %1 0
2 gives

00
1 %1 0

2
Summing up: for some1 in + () containing wehave found 0

2 2 + ()
containing  such that [for all 0

2 in 0
2 thereexists00

1 in 1 such that 00
1 %1 0

1].
This is exact ly the clause not( Á2 ).

Since asymmetry and negat ive transit ivity imply transit ivity, 2 is t ransi-
t ive.

Now let 0 be the following binary relat ion:

 . 0  i¤ [( Á2 ) or not ( Â2 )]

The t ransit ivity and negat ive t ransit ivity of 2 implies the transit ivity of
0 Moreover, 0 is complete and sat is…es T I .

We show now that  is a subrelat ion to 0 Indeed, let   be such that
 Á  In the clause ( ), take  = f  2  :  Á g  We have  2  and
for all 0 containing we have  Á1  for all  2  Hence the clause ( )
is t rue and  Á2  Consequent ly,  Á0  If   are such that  »   the
clause( ) cannot be sat is…ed. To see it , it su¢ ces to not ice that an interval
containing  necessarily contains  and vice versa. If we take 0 =  in the
clause( ), there isno 0 in  such that for all  2  wehave Á1 0 Thus
we have not( Á2 ). In the same way, we have not( Á2 )Consequent ly,
 » 0 

It remains to show that + (0) ½ + () Let  2  We show that any
subset in + (0), the base of open intervals generat ing + (0), is open with
respect to + () Let  2  = f  2  :  Á0 g. By the de…nit ion of 0 there
is in + () containing  such that for all  2 + () containing we can
…nd 0 2  such that for all  2  we have  Á1 0 We can see that this
implies that for all  2  we have  Á0  Hence  ½  Recap: for all 
in  we found  in + () containing  such that  ½ As a result ,  is a
union of open sets of + () It is thus an open set of + ()¥

Remar k 5: Theorem 2 holds if we replace + () and + (0) respect ively
by  ¡ () and  ¡ (0) the lower-order-topologies.

Remar k 6: The inclusion + (0) ½ + () entails the upper semicont inuity
of the extension with respect to any topology on  stronger than + (). Upper
semicont inuity is used here in the sense that lower sect ions f  2  :  Á g
are open. But it is not necessary for the topology on  t o be stronger than
+ () to have the upper semicont inuity of the extension. For more informat ion
on this issue, see (Ja¤ray 1975), sect ion 5.

A xiom scalar i nvar i ance: For all nonnegat ive real  and vectors   in
a real vector space equipped with a preorder    %  =)  % 

Cor ol lar y 2: Let  be a real normed vector space. Denote  the topology
induced by thenorm of  Let  bea preorder on  sat isfying T I and + () ½ 
Let 0 be one of the complete preorders which existence is asserted by theorem

9



2, i.e. a complete preorder of which  is a subrelat ion, sat isfying T I and such
that + (0) ½ + (). Then 0 sat is…es scalar invariance.

Pr oof: We have + (0) ½ . Let  be a nonnegat ive real and   two
vectors in  such that  %  Using T I and DI we get ( ¡ ) %0 0 for any
nonnegat ive rat ional number . Let () be a nonnegat ive sequence of rat ionals
converging to  The sequence  ( ¡ ) converges to  ( ¡ )  On the other
hand,  ( ¡ ) 2 + = f  2  :  %0 0g and + is closed since + (0) ½ .
Thus, the limit of the sequence ( ( ¡ ))  which is  ( ¡ ), belongs to + .
As a result  ( ¡ ) %0 0 What yields, by T I ,  %0 ¥

An immediate consequence of corollary 2 is the following:
Cor ol lar y 3: Let  be a complete preorder on  , a real normed vector

space, sat isfying T I and + () ½  where  is the topology induced by the
norm of  . Then  sat is…es scalar invariance.

Remar k 7: + () ½  is a cont inuity requirement. Under that cont inuity
requirement and T I , scalar invariance is, in a sense, sat is…ed since every com-
plete preorder extending the original preorder and sat isfying the same axiom of
cont inuity and T I must sat isfy scalar invariance.

Remar k 8: (Demuynck-Lauwers 2009) showed that a given preorder sat-
isfying T I and scalar invariance can be extended into a complete preorder
sat isfying T I and scalar invariance. Corollary 2 shows that if, in addit ion,
the init ial preorder sat is…es upper semicont inuity, then it admits an extension
which also sat is…es upper semicont inuity in addit ion to theaxiomsT I and scalar
invariance.

Remar k 9: WhileCorollary 3 presentsscalar invariance as a consequenceof
T I and a condit ion of cont inuity, (Weibull 1985) theorem A has shown that un-
der condit ions T I , scalar invariance and a cont inuity requirement called scalar
continuity, a complete preorder veri…es a stronger condit ion of cont inuity that
results in representability, i.e. the existence of a real-valued order-preserving
cont inuous funct ion. For more informat ion on scalar continuity and its proper-
t ies in the context of a monotone order, see (Mit ra-Ozbek 2013).

6- Scalar invariance as a consequence of T I and a
weak Pareto axiom

Wearenow in thespace 1 =
©

(1 2 ) :  2 R and sup jj ¡   + 1
ª

,
where  is a nonnegat ive real. This space is suitable for studying economic de-
cisions in discrete t ime, in…nite horizon and exponent ially growing economy. If
 = 0, the economy remains bounded.

A xiom super weak Pareto : if inf ( ¡ )¡   0 then  Â 
The following lemma is a slight strengthening of theorem 4 of (Mabrouk

2011). It will be used to prove theorem 3.
Lemma 3: (wrong) If a complete preorder 0 on 1 sat is…es super weak

Pareto and T I , then for every  2 1 such that  Â0 0 there exists a non-zero,
cont inuous, posit ive (in the sense that if  ¸ 0 for all  then () ¸ 0) linear
funct ional  on 1 such that  ()   () )  Â0  and  ()  0

Pr oof: Werefer to theproof of theorem 4 in (Mabrouk 2011). Thenotat ions
there are the same, except for the axiom T I instead of which a weaker axiom
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called "weak inv (+ )" was used in (Mabrouk 2011) 3. For theconvenienceof
thereader, werecall somede…nit ionsand results: 

±

1 + + = f  2 1 : inf ¡  

0g  = f  2 1  %0 0g and  =
©
 2 1 :  =  +   2   2 

±

1 + +

ª
. In

the proof of theorem 4 of (Mabrouk 2011),  is proved to be open and convex
and to have the following propert ies: (i) 0 2  (ii)  2  whenever  2  and
 is a posit ive real.

Now let  be in 1 such that  Â0 0. The idea is to consider the con-
vex hull 0 of the set  and vector  instead of the set . We have 0 =
f 0 2 1 : 9( ) 2 [01] £  0 =  + (1 ¡ )g  problem: 0 is not open!!...
We show that 0 2 0 Suppose not. There would exist  in [01] with  +
(1 ¡ ) = 0 Since 0 2  and  Â0 0 we have  6= 0 and  6= 1 Thus we
would have 

1¡ 
 +  = 0 But 

1¡ 
 2 . Thus 

1¡ 
 Â0 0. Since  Â0 0

by T I we would have 
1¡  +  Â0 0 A contradict ion. Since 0 2 0, thanks

to Hahn–Banach theorem, there exist a non-zero cont inuous linear funct ional
 support ing 0. This is writ ten: for all 0 in 0, (0)  0 In part icular,
 ()  0 One shows, literally as in the proof of theorem 4 of (Mabrouk 2011),
that for all   in 1 , ()  () )  Â0  and that  is posit ive.¥

T heor em 3: Let  be a preorder on 1 sat isfying T I and super weak
Pareto. Let 0 be one of the complete preorders which existence is asserted by
theorem 1, i.e. a complete preorder of which  is a subrelat ion and sat isfying
T I . Then 0 sat is…es scalar invariance.

Pr oof: Since isa subrelat ion to0, 0also sat is…essuper weak Pareto. Let
  2 1 such that  Â0 . Denote  =  ¡  We have  Â0 0. Apply lemma
3. There exists a non-zero, cont inuous, posit ive linear funct ional  on 1 such
that 80 0 2 1  (0)  (0) ) 0 Â0 0 and  ()  0Let  be a
posit ive real. Mult iplying this inequality by  one gets () =  ()  0
Replace  by  ¡ . Then  () =  (( ¡ )) = ( ¡ ) = () ¡
()  0 Hence, ()  () and  Â0  We have shown that for
all posit ive real  and   2 1   Â0  )  Â0  Moreover,  » 0 
implies  » 0  (since if we had for example  Â0  we could mult iply
this last inequality by 1


and get  Â0  a contradict ion). This proves scalar

invariance.¥
Theorem 3 indicates that scalar invariance is sat is…ed under T I and super

weak Pareto in thesamesenseas in remark 7. T I together with scalar invariance
is called strong invariance in the terminology of (Mit ra-Ozbek 2013)4. If we
accept this just i…cat ion of scalar invariance by T I , we are led to admit that ,
under super weak Pareto, theaxiom , strong invariance is in a way a consequence
of the axiom T I .

An immediate consequence of theorem 3 is the following:
Cor ol lar y 4: Every complete preorder 0 sat isfying T I and super weak

Pareto, sat is…es scalar invariance.

3T he de…nit ion of " weak inv ( + )" is: 8   2  [ Â  )  +  %  + ]  Of
course, lemma 2 holds wit h weak inv ( + ) inst ead of T I .

4 In the t erminology of (D’Aspremont -Gevers 2002), it is called invar iance wi th respect to
common rescaling and individual change of or igin.
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Remar k 10: Since theorem 1 and lemma 3 hold in …nite dimension, it is
also the case for theorem 3 and corollary 4. Consequent ly, when the preorder is
complete and super-weak Pareto, strong invariance is equivalent to T I . Hence,
theorem 18 of (D’Aspremont -Gevers 2002) or example 2 of (Mit ra-Ozbek 2013)
assert ing the linear representability of a complete preorder respect ing T I , scalar
invariance, weak Pareto and another axiom, hold without imposing scalar in-
variance.
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