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Abstract

This paper proves the existence, for a trandation-invariant preorder on a
divisible commutative group, of a complete preorder extending the preorder in
question and satisfying translation invariance. We also prove that the extension
may inherit a property of continuity. Asan application, we prove the existence
of acompletetrandation-invariant strict preorder on R which transgresses scalar
invariance and also the existence of a complete translation-invariant preorder
satisfying the social choice axioms strong Pareto and . .xed-step-anonymity on a
set XNo_ where X isadivisiblecommutative group. Moreover, the two extension
results are used to make scalar invariance appear as a consequence of translation
invariance under a continuity requirement.

1- Introduction

(Szpilrajn 1930) extension theorem may be stated as follows. For any refex-
ive and transitive binary relation (i.e. a preorder) on a given set, there exists a
complete preorder which is an extension of the given preorder. Szpilrajn theo-
rem proved of great utility in mathematical social choicetheory asin someother
branches of mathematics. There existstoday stronger versions of Szpilrajn the-
orem, requiring weaker assumptions on the initial binary relation or imposing
additional conditions on the relation extension. We refer to (Alcantud-Diaz
2014) for an overview on the applications and extensions of Szpilrajn theorem.

The present paper establishes the existence, for any preorder on a divisible
commutative group satisfying translation invariance, of a complete preorder
extending the given preorder and satisfying translation invariance (section 3,
theorem 1). In (Demuynck-Lauwers 2009) the existence of an extension under
the conditions translation invariance and scalar invariance is proven. However,
the result proved here is stronger in the sense that it is freed from the scalar
invariance assumption. The proof of theorem 1 follows the same diagram as
the proof of Szpilrajn theorem. Starting from a preorder satisfying translation
invariance, one adds comparisons on some pairs of alternatives in such a way
that translation invariance remains satis..ed. Then, an argument based on
Zorn’s lemma makes it possible to extend the procedure to the whole space.

We also prove a second extension theorem which asserts that the former
extension result (theorem 1) holds under an additional requirement of continuity
(section 4, theorem 2). The proof is an adaptation of the proof of (Jarray 1975)
tothe translation invariance case. It relies on the construction of a relation that

I am grateful to an anonymous referee who, when reviewing another paper, guided me
towards the issue of extending a preorder under translation-invariance.



is used to "clean" the extended preorder given by theorem 1 from undesirable
rankings that transgress the continuity requirement.

As an application, we give two examples, the ..rst of which shows the exis-
tence of a completetrandgation-invariant strict preorder on R which transgresses
scalar invariance and the second shows the existence of a complete translation-
invariant preorder satisfying the social choice axioms strong Pareto and ..xed—
step-anonymity on a set XN where X is a divisible commutative group.

Moreover, theorems 1 and 2 are used to make scalar invariance appear as a
consequence of translation invariance under a continuity requirement (Corollary
2, section 5) or under a Pareto axiom (Theorem 3, section 6).

2- Preliminaries

No is the set of positive integers. @ is the set of rational numbers. (X, +)
is a divisible commutative group. B being a binary relation on X and z,y two
elements of X, zBy is denoted z % y,[xBy and non(yBz)] isdenoted z A y
and [zBy and yBz] isdenoted x » g y. Thesymbols - ,, , <, > areused for the
natural order on R, except in example 1, section 4. A refexive and transitive
binary relation on X is a preorder on X. If, on top of that, for all z,y either
x %pyorxz- puy,itisacomplete preorder. A binary relation By issaid to be
a subrelation to a binary relation B, , or B> an extension of By, if for all z,y
in X,

T CVOB1 Yy =) T ‘%32 y

and . .
rAp y=) zAp Yy

Axiom translation invariance (TIl) A preorder R satis..es translation
invariance if:

8(x,y) 2 X £ X, 8u2 X,[t%ry) =+ u%gry+ u]

Axiom division invariance (D1) A preorder R satis..esdivision-invariance
if:

' 1 1
8x2 X, 8n2N, t%ry) —x%r —y
n n

Lemma 1 If apreorder R on X satis..es T, then there exists a preorder R
on X of which R is a subrelation and such that R satis.es T1 and DI.

Proof: First, noticethat under R, it is possibleto sum inequalities. Indeed,
by TI, if a,b,u,v are such that a %gr b and u %gr v, then a + u %r b+ u and
b+ u %gr b+ v. By transitivity, a + u %gr b+ v. For each positive integer n,
consider the binary relation R,, de..ned by

x Yor, Y 17 nx Yor ny

If z,y are such that = %g y, we can sum n times this inequality. Thus,
x %r, y. Likewise, it is easily seen that « Ar y impliesxz Ag,, y. As a result,



R is a subrélation to R,,. Moreover, R,, is retexive and transitive. It is easily
checked that R,, satis.esT1.
Consider the binary relation

R = [ n2 No RrL

de..ned on X by x %p y i= thereis n such that = %, y.

R is a subrelation to R. Moreover, R is retexive and transitive. It is a
preorder. Since for each positive integer n, R, satis..es T1, we deduce that R
satis..es T1. The lemma is proved if we show that R satis.es DI. Let n be a
positiveinteger, and x, y such that = %p y. Thereexistsa positiveinteger m such
that = %g,, y. Thus ma %r my. We can write that as mn(1z) %r mn(Ly).
Thus Lz %, Ly, what implies 1z %5 1y. R satis..es DI.¥

Remark 1 (1) It is easily seen that R is the minimal preorder satisfying
T1 and DI, of which R is a subrdation. (2) If R is complete, since R is a
subrelation to R, we have necessarily R = R. This showsthat if the preorder is

complete, T1 impliesDI.

3- Thetranslation-invariant extension theorem

Theorem 1 Let R be a preorder on X satisfying T1. Then there exists a
complete preorder on X satisfying T, of which R is a subrédation.

Proof: If R is a complete preorder, there is nothing to prove. Suppose
that R is not complete. Consider the preorder R built in the proof of lemma
1, and the set < of all preorders on X satisfying Tl and DI, and of which R
is a subrdation. < is not empty since R 2 <. Let (R,) be a chainin <, i.e.
for any a,a®, R, is a subrelation to R.o or R.ois a subrelation to R, . Notice
that (1) therelation [ , (R.) de..ned on X by: z[[ o (Ra)]y iz thereis o such
that xRy, is a preorder, (2) it satis..es Tl and DI, (3) R is a subrelation to
[ o (Rs), (4) for al o, R, is a subrdation to [ , (R,). Hence, in the sat <,
every chain admits an upper bound. According to Zorn’s lemma, < admits at
least a maximal element. Denote M such a maximal element in <. Suppose we
can prove the following claim:

Claim 1 For any non complete R® in < and any pair of R%incomparable
alternatives (zo, yo) , thereexists a preorder R in < towhich RCisa subrelation
and such that o and yo are RYj comparable.

Then, if M werenot complete, therewould exist a preorder in < to which M
isastrict subrelation. Thiswould contradict that M ismaximal in <. Therefore,
if the claim holds, M would be necessarily complete. M would be the preorder
we are looking for.

What remains of the proof is devoted to establish claim 1. This is done
through the following 6 steps.

If there is no non complete preorder in <, the theorem is proved since <
is not empty. Let R° be a non complete preorder in < and zg,yo be two
RY incomparable elements of X.

Consider the binary relation B on X: = %g y in either x %o y or thereis
a positive rational g such that x| y= q(xo | vo).



We prove successively that the two clauses of the de. .nition of B are exclusive
(step 1), that theindirerencereationsareequal (step 2), that R%isa subrelation
to B (step 3), that B is weakly acyclic (this prepares for transitivity) (step 4),
that R%isa subrelation tothetransitiveclosureof B (step 5), that the transitive
closure of B satis..es Tl and DI (step 6). The transitive closure of B is then
the required preorder.

Step 1: the two clauses are exclusive. |f thereis a positive rational ¢
such that | vy = q(z0i wo),then z,y are RY incomparable. Suppose not. For
instancesupposex Yoroy. By T1, zj y %re 0. By DI, for all positive integer n,

(x| y) Y%ro 0. Recall that it is powbleto sum mequalltl&c (see the proof of
Iemma 1). Wesum m tlm&sthelnequallty (zi y) Y%re 0, m being a positive
integer. We obtain 2 (z | y) %ge 0. Take o = q. It giveszg i yo Yoro 0, what
contradicts xg, yo bei ng incomparable. The case y Yogo x is similar.

Step 2: equivalence of indimerences. Clearly, z »roy ) = »p y.
We show now that =z » g y entails x » o y. According to the de..nition of B,
it is enough to prove that = and y are necessarily R% comparable. Suppose
not. Then = %p y implies that there is some positive rational ¢ such that
zi y=qzoi yo). We have also y %p =. Thus, for some positive rational ¢°,
yi © = qAzoi o). We see that this gives Xz i %) = i q(xoi wo), what
implies 29 | yo = 0 because ¢, ¢° are both positive. But that contradicts g, o
being R% incomparable.

Step 3: R%is a subrelation to B. Thisisa direct consequence of 2 %ro
y=) x%py (de.nitionof B)andxz» gy, z» gy (step 2).

Step 4: Bis weakly-acyclic. We show that for all z,y,zin X 1z %p y
and y Y%p z) x %p z or non(z %g x).

One of the four following casesisimplied by x % y and y %p 2. (1) x Yoro y
and y %o z, (2) thereareq, ¢°such that zj v = ¢(zoj vo) and yj z = ¢Yzoj o),
(3) = %po y and thereis¢®such that yi z = ¢%zoi ), (4) thereis ¢ such that
i y= q(xoi yo) and y Y%pro z. Consider successively the four cases:

(1) By transitivity of R%: 2 %go 2. Thus, = % 2.

(2 zj y=q(zoi yo) and yj z= ¢%zoi yo) entailszj 2= (g+ ¢ (woi o).
Thus z %p =.

(8) Suppose we had z %p =. We would have either z Y%go z Or 2| = =
q¢®™(zo | o). Both possibilities contradict = %po y and y | z = (xo i %)
Indeed, with x Y%po y, 2z Y%ero = QiVes z Y%ro y What contradictsyj z = ¢Xxo o)
(step 1); whereas y | z = ¢Azoi o) With 2z == ¢™zoi wo) impliesy | x =
(¢°+ ¢ (z0 | wo), what contradicts = Y%po y. As a result, we have non(z % x).

(4) This caseis similar to (3)

Remark 2 Let z,y,z be such that z %g y and y %p z. Weak acyclicity
entails that if one of the comparisons x %p y and y %g z is a strict preference,
then dither the comparison on (z,z) isz A z or 2 and z are Bj incomparable.

Step 5: R%is a subrelation to the transitive closure of B. Consider
B the transitive closure of B de..ned by: = % y if there is a sequence (z;).
such that = %pg 21,21 Y%p zo... and z, %p y. It is clear that  Y%go y implies
T %p y (step 3 ROis a subrelation to B). It is enough to prove that x Y5 Y
implies non(y A go ).



For a positive integer n, consider the statement @,,: "If thereis a sequence
(z:)1 such that = %g 2z %p 2.... %p 2, %p y, then non(y Ao )." Let’s
prove by induction that @,, istrue for all positive integers. Notice that when
the sequence (z;) has n terms, thereisn + 1 successive comparisons.

n=1:Wehavex %p z1 %p y. By step 4, we have = %p y or non(y %p x).
Both possibilities contradict y A zo . So, we have non(y A o ).

Suppose that @,, is true and let’s show that @, is true. Consider the
sequence of n + 2 comparisons: x Y%p z1 Y%p 22.... Yo Zn+ 1 %oB Y.

Each one of these comparisons comes either from the clause x %go y or
theclause x| y = qg(xzo0j wo) of the de..nition of B. If there is two successive
comparisons coming from the clause x Y%ro y, S8y 2zp %R0 Zp+ 1 Yor0 2p+ 2 (With
p = 0,...,n+ 2 and the convention: 2y = z and z,,> = y), by transitivity
of R we have: = %g 2y Yop Zpi2.... Yop y Which constitutes a sequence of
n + 1 comparisons. By Q,, we have non(y Axo z). If there is two successive
comparisons coming from theclause zj v = q(zoi yo), Sy zp %B 2p+ 1 YoB Zp+ 2,
then z, i 2zps1 = q(woi o) and zps 1§ 2pr2= q%wo i o). ThUS, 2, | 2ps2 =
(¢+ ¢ (z0i yo) so that zp %oB zp+ 2. We have again reduced the number of
comparisons to n + 1. Thus, we have also non(y A 1o z). It remains to consider
the cases where the comparisons are alternate. Two cases must be considered:
n+ 2 even and n + 2 odd.

n + 2 even: The sequence of comparisons either begin or ends with a com-
parison from R Suppose it begins with a comparison from R%: x Y%go 21 %
29.... cVoRo Zn+ 1 %op Y. Apply @, to z Y% 2o.... cVoRo Zn+ 1 %op Y. It giv&s
non(y Ago z1). Since z %go z1, we cannot have y A o z. If the sequence of
comparisons ends with a comparison from RO, the proof is similar. So it is
omitted.

n+ 2 odd: If the sequence of comparisons begins with a comparison from
RC the proof is also similar. So it is omitted. If the sequence of comparisons
begins with a comparison from the clause x| y = ¢(xzoi o), We have

x cyoB Z9 cyo}:go Z2.... ‘VORO Zn+ 1 cyoB Yy (1)

Denote (x, z1) by (a1, B1) » (22, 23) by (02, Ba) .. Za(p1 1) 22, by |ap,ﬁp¢
withp=1, .., Lz‘ and the convention zp = z and z,,2 = y. Since comparisons
x Yo 21,22 Yo 23...2n; 1 YoB Zn,2n+1 Yep y come from the clause x| y =
q(woi yo), wehaveay,i B,= q,(zoi vo) for p= 1,...,243  Moreover, according
to (1), B, %ero apy 1 for p=1,.., 251 Thus

ati q(zoi yo) % roaz
azi @(roi Yo) % roas

Qs 1) /21 Ans 1)/2(T0 i Yo) Yo RO+ 3)/2

We can sum these inequalities (thisis established in the proof of lemma 1).



We obtain

(TLX1)/2 (TLX1)/2 ('er1)/2

a1 + ap | ap (To i Yo) Yero Qp + Q4 3)/2
2 2 2

By T we obtain

(TLX1)/2

at j @p (T0 i Yo) Yor0 Q(ny 3) /2
1

(n+ 1

P
But a1 = 2y and o4 3)2 = y. Denoteg = )/2 gp- Thus

i q(xoi Yo) Yoroy

By Tl, zi y %nro q(zo i vo). If we had y Ago z, it would give 0 A go
zi y %o q(zoj yo). By transitivity of R and by T1, 2o and yo would be
R% comparable, which is not the case. As a result, we have non( y Ao ).
Step 5is proved.

Remark 3 R%is a subrelation to B , but B is not.

Step 6: B satis.es Tl. As R is trandation-invariant, B is clearly
trangation-invariant. It is easily deduced that B is also trangation-invariant.
Likewisg, it iseasily seen that B satis..esD|. Thus, B istherequired preorder.¥

Corollary 1 Let B be a retexive binary relation satisfying T1. Then there
exists a complete preorder satisfying T 1, of which B is a subrelation, in Bisa
subrelation to its transitive closure.

Proof: Necessity: the condition that B is a subrelation to its transitive
closure is necessary and su¢ cient for the existence of a complete preorder of
which B is a subrélation (Suzumura 1976, Bossert 2008). Sug¢ ciency: denote
B the transitive closure of B. It easily seen that B is a preorder satisfying
TI. Apply theorem 1 to B to deduce that there exists a complete preorder
satisfying T1, of which B is a subrelation. Since B is a subrélation to B, it is
also a subréation to the complete preorder.¥

4- Examples of application

Example 1: A translation-invariant and complete strict preorder on R with
T<0< 1.

Notice that only in this example, the symbols - , | , <, > are used for some-
thing else than the natural order on R. Consider the following binary relation
- onR:

x - y if there is two nonnegative rationals ¢, ¢® such that =i y = ¢+ ¢*

- isretexive, transitive and satis..es T|. Moreover, - is a strict preorder,
which meansthat = - yand y - = impliesz = 5. Indeed 2| y = | ¢+ ¢*
andyj == g+ ¢imyiedsO= (zj v)+ (yi ) = i (g+ a1) + (¢°+ ¢])m.



Thus (g + ¢1) = (¢°+ ¢?)7. We must have ¢°+ ¢ = 0 otherwise = would be
rational. Thus we have also ¢ + ¢; = 0. Since ¢, ¢, ¢% ¢? are nonnegative, we
haveq= q1 = ¢°= ¢§ = 0 and = = y.

Theorem 1 assertsthe existence of a trandation-invariant and complete pre-
order, say - , of which - is a subrelation. - is strict like - . Observe that

respects the natural order of rationals. But it does not coincide with the
natural order of reals. Moreover it does not satisfy scalar invariance since if
you multiply 0 < 1 by = theinequality isreversed. Finally, - isnot continuous.
Consider a positive sequence of rational (¢,,) such that limg, = % TI allows
to multiply an inequality by a positive rational. Multiplying = < 0 by ¢, yields
gnm < qn.0 = 0 for all n. But limg,7m = 1 > 0. A question then arises: can
scalar invariance still be transgressed under T| and continuity? An answer is
provided in section 5.

Example 2: Existenceof atrandation-invariant, strong-Pareto, . xed—step-
anonymous and complete preorder on XN where X is a divisible commutative
group equipped with a complete preorder R satisfying T 1.

It ispossible to demonstratethe existence of such a preorder using the ultra-
.Iter technique, asin (Fleurbaey-Michel 2003, Lauwers 2009). We demonstrate
here this existence without using ultra..lters, which are highly nonconstructive
objects. Although our theorem 1 also makes use of the axiom of choice, one may
consider that our method is nevertheless more constructive in the sense that it
indicates the concrete steps of adding comparisons.

Let Y = XN |et RObe apreorder on Y. We .rst give the following de. .ni-
tions:

Fixed-step permutation: (Fleurbaey-Michel 2003) o is a . xed-step per-
mutation if there exist £ 2 No such that for all n 2 Ng, o(f1,...,kng) =
f1,...,kng.

Axiom ..xed-step-anonymity: Denote o (x) the sequence obtained by
permuting the components of 2 2 Y according to the permutation 0. R° is
. xed-step-anonymous if for all z 2 Y and . xed-step permutation o, we have
T » goo(x).

Axiom strong Pareto: RCis strong Pareto if, for all x,y 2 Y such that
812 Ng z; %r y; and z; Ag y; for some j , we have x A o y (;,y; denote the
it" component of resp. z,y).

Pareto axioms capture the idea that an increase of the components of a
vector must increase the ranking of the vector. Anonymity axioms express a
requirement of symmetry in the treatment of individuals or dates.

The ..xed-step catching-up SC. For al z,y 2 RNo| 2 %gs y in there
exist k,m 2 No such that, for all n 2 Ng with n > m, we have

)Qn )Qn

SC'is a . xed-step-anonymous preorder (Fleurbaey-Miche 2003).



Proposition 1: There exists a trandation-invariant, strong-Pareto, . xed-
step-anonymous and complete preorder on RNo.

Proof: Apply theorem 1 to SC. There exists a trandation-invariant and
complete preorder R%on Y of which SC isa subréation. SC being a subrelation
to ROentails that RO satis..es strong Pareto and ..xed-step-anonymity. R°isthe
required preorder.¥

5 Scalar invariance as a consequence of Tl and a
continuity requirement

For a given nontrivial preorder R on adivisiblecommutativegroup X, 7, (R)
is the associated upper-order-topology, i.e. the topology generated by the base
of open intervals: 3, (R) = ffz2 X :2 Ap ag,a 2 Xg.

Theorem 2: Let R be apreorder on X satisfying T1. Then there exists a
complete preorder R0on X satisfying T, of which R is a subrelation, and such
that 7, (RY Y2 7, (R).

Proof: Thefollowing proof is an adaptation of the proof of (Jarray 1975) to
atrandation-invariant preorder. We start from atranslation-invariant complete
preorder which extends R, whose existence is guaranteed by theorem 1. We
then apply a clause® to "clean up" rankings that do not respect the upper-
order-topology. It turnsout that this clause is also translation-invariant, which
makes it possible to build the desired preorder.

Let Ry beacomplete preorder extending R and satisfying TI. Let z,y 2 X.
Consider the following clause :

C(z,y): "Thereexists B 2 5, (R) containing = such that, for all Bo? B, (R)
containing y,we can ..nd 2°2 B such that for all 2 2 B, we have z Ag, 2°"

Because R; satis..es T, it iseasily seenthat if C(z,y) istrue, C(z+ h,y+ h)
istruefor all hin X. Moreover, if C(x,y) istrue, it is clear that we cannot have
C(y,z) true. Thus, we can de.ne a asymmetric relation Ry checking T as
follows: = A, y in C(z,y) istrue.

We prove now that Ry is negatively transitive, i.e.

not(z A, y) and not(y A, z) impliesnot(z Ag, z)

We have:
Not(z Ag, y) () forall By 2 3, (R) containing z, there exists BY 2 3, (R)
containing y such that [for all 29in BY, there exists z{ in By such that P %g,
0
.'171]. 3
Not(y Ag, 2) () forall B, 2 3, (R) containing y, there exists BS 2 3, (R)
containing z such that [for all 23in BY, there exists #2 in B, such that =2 %g,
0
.'172].
Let By bein 3, (R) containing = and BY be the interval which existence
is asserted by the clause "not(z Ar, 3)". Take B} as the interval By of the

2T his clause combines the two clauses proposed by (Ja=ray 1975) in the proof of histheorem
1, the ..rst of which de..nes a preorder on 3, (R) and the second a preorder on X.



clause "not(y AR3 z)". Thus, there exists BY 2 j3, (R) containing z such that
[for all 23in BY, there exists =2 in BY such that 2 %g, x3]. Now apply the
clause "not(x Ag, y)" for 29 instead of 29 and deduce that there exists 2P in
By such that 2P %g, 2. By transitivity of Ra, 2P %g, 2P and 2P %g, 23 gives
2P %p, 3.

Summing up: for some By in 3, (R) containing =, we have found B3 2 3, (R)
containing z such that [for all 23in BY thereexists z{in By such that 2P %g, 29].
This is exactly the clause not(z A, ).

Since asymmetry and negative transitivity imply transitivity, Ro is transi-
tive.

Now let RO be the following binary relation:

x. poyin [(xAg, y) or not(z Ag, y)]

The transitivity and negative transitivity of R, implies the transitivity of
RP Moreover, RCis complete and satis.es T1.

We show now that R is a subrelation to RC. Indeed, let =,y be such that
2 Agy. Intheclause C(z,y), take B=f22 X : 2 Ay yg. We have z 2 B and
for all B® containing y,we have z AR1 y for all z 2 B. Hence the clause C(x, y)
istrue and z AR2 y. Consequently, Ao y. If x,y are such that = » p y, the
clause C(z,y) cannot be satis..ed. To seeit, it su¢ cesto noticethat an interval
containing = necessarily contains y and vice versa. If we take B = B in the
clause C(z,y), thereisno 2%in B such that for all z2 B, wehavez Ay, 20 Thus
we have not(x AR2 y). In the same way, we have not(y AR2 x).Consequently,
T » Roy.

It remains to show that 7, (RY Y2 7, (R). Let y 2 X. We show that any
subset in 3, (RY, the base of open intervals generating 7. (R9, is open with
respect to 7, (R). Let 22 B = fz2 X : z Ago yg. By thede. nition of R, there
is B, in 3, (R), containing =, such that for all B, 2 5, (R) containing y,we can
.nd 2°2 B, such that for all z 2 B,, we have z A, 2 We can see that this
implies that for all z 2 B,, we have z A o y. Hence B, - B. Recap: for all =
in B, wefound B, in g, (R) containing = such that B, Y2 B.Asaresult, Bisa
union of open setsof 7, (R). It isthus an open set of 7, (R).¥

Remark 5: Theorem 2 holds if we replace 7, (R) and 7, (RY respectively
by 7; (R) and T, (RY the lower-order-topologies.

Remark 6: Theinclusion 7, (R% Y2 7, (R) entails the upper semicontinuity
of the extension with respect to any topology on X stronger than 7, (R). Upper
semicontinuity is used here in the sense that lower sections fz 2 X : z A ag
are open. But it is not necessary for the topology on X to be stronger than
7, (R) to have the upper semicontinuity of the extension. For more information
on this issue, see (Jarray 1975), section 5.

Axiom scalar invariance: For all nonnegative real a and vectors z,y in
areal vector space equipped with a preorder R, Y, x Y%or y =) ax Yor ay.

Corollary 2: Let Y be areal normed vector space. Denote ¢t the topology
induced by thenorm of Y. Let R beapreorder on Y satisfyingT1 and 7, (R) Y2 t.
Let R%be one of the complete preorders which existence is asserted by theorem



2, i.e. a complete preorder of which R is a subreation, satisfying T| and such
that 7, (RY Y27, (R). Then RO satis..es scalar invariance.

Proof: We have 7, (RY) %2 t. Let o be a nonnegative real and =,y two
vectorsin Y such that = %pr y. Using T1 and DI we get g(z | y) Yore O for any
nonnegative rational number ¢. Let (¢,,) be a nonnegative sequence of rationals
converging to «. The sequence g, (zj y) convergesto a(z i y). On the other
hand, ¢, (zj y) 2 C, = f22 Y : 2 %o 0g and C, is closed since 7, (R "2 t.
Thus, the limit of the sequence (¢, (z | v)), whichisa (x| y), belongsto C, .
Asaresult a(zj y) %re 0. What yidds, by T, ax Yore ay.¥

An immediate consequence of corollary 2 is the following:

Corollary 3: Let R be a complete preorder on Y, a real normed vector
space, satisfying Tl and 7, (R) V2 t, where ¢ is the topology induced by the
norm of Y. Then R satis..es scalar invariance.

Remark 7: 7, (R) Y2t is a continuity requirement. Under that continuity
requirement and T, scalar invariance is, in a sense, satis..ed since every com-
plete preorder extending the original preorder and satisfying the same axiom of
continuity and T| must satisfy scalar invariance.

Remark 8: (Demuynck-Lauwers 2009) showed that a given preorder sat-
isfying T| and scalar invariance can be extended into a complete preorder
satisfying T| and scalar invariance. Corallary 2 shows that if, in addition,
the initial preorder satis..es upper semicontinuity, then it admits an extension
which also satis..es upper semicontinuity in addition totheaxiomsT | and scalar
invariance.

Remark 9: WhileCorollary 3 presents scalar invariance as a consequence of
T 1 and a condition of continuity, (Weibull 1985) theorem A has shown that un-
der conditions T |, scalar invariance and a continuity requirement called scalar
continuity, a complete preorder veri..es a stronger condition of continuity that
results in representability, i.e. the existence of a real-valued order-preserving
continuous function. For more information on scalar continuity and its proper-
ties in the context of a monotone order, see (Mitra-Ozbek 2013).

6- Scalar invariance as a consequence of Tl and a
weak Pareto axiom g 2

Wearenowinthespacel] = (z1,72,..):z; 2 Rand supjz;jel ™ < +1
where r is a nonnegative real. This space is suitable for studying economic de-
cisionsin discrete time, in. nite horizon and exponentially growing economy. |f
r = 0, the economy remains bounded.

Axiom super weak Pareto: if inf(z; | yi)el " > Othen z Ay y.

The following lemma is a slight strengthening of theorem 4 of (Mabrouk
2011). It will be used to prove theorem 3.

Lemma 3: (wrong) If a complete preorder R® on I} satis..es super weak
Pareto and T1, then for every w2 I such that u A o 0 there exists a non-zero,
continuous, positive (in the sense that if z; , 0 for all i then ¢(x) , 0) linear
functional ¢, on lj suchthat ¢, (z) > ¢,(y)) =z Agoyand ¢, (u) >0.

Proof: Werefer tothe proof of theorem 4 in (Mabrouk 2011). Thenotations
there are the same, except for the axiom T instead of which a weaker axiom
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called "weak inv (a;+ z;)" wasused in (Mabrouk 2011) °. 3. For the convenience of
thereader, werecall somede. nltlonsa@j results: Iy, , = fz 21} infx jeh 7>
09, S=fs2l] [s%rOgand Q = q21] :q= s+p,s28,p2ly ee - In
the proof of theorem 4 of (Mabrouk 2011), @ is proved to be open and convex
and to have the following properties: (i) 02 Q (ii) pg 2 Q whenever ¢ 2 @ and
1 is a positive real.

Now let u bein I such that u Az 0. Theidea is to consider the con-
vex hull Q° of the set Q and vector u instead of the set Q. We have Q° =
f°2 17 :9(\,q) 2[0,11£ Q,¢°= Ag+ (1] Nug. problem: Q°is not open!!...
We show that 0 2 Q° Suppose not. There would exist A in [0, 1] with \g +
(1i Mu=0. SmceOZ Q anduARo 0, we have A 6 0 and A 6 1. Thus we
wouldhave1 Aq+u—0 But 5 q2Q Thus1 AqARoO Since u A o O,

by Tl we would have T Aq+ U ARo 0. A oontradlctlon Since 0 2 Q° thanks
to Hahn—Banach theorem there exist a non-zero continuous linear functional
¢, supporting Q% This is written: for all ¢°in Q% ¢,(¢% > 0. In particular,
v, (u) > 0. One shows, literally asin the proof of theorem 4 of (Mabrouk 2011),
that for all 2,y inlj , ¢, (x) > ¢,(y)) = Agoyandthat ¢, ispositive¥

Theorem 3: Let R be a preorder on I} satisfying T1 and super weak
Pareto. Let R be one of the complete preorders which existence is asserted by
theorem 1, i.e. a complete preorder of which R is a subrelation and satisfying
T1. Then RO satis..es scalar invariance.

Proof: Since Risasubrelation to R®, R0also satis. .es super weak Pareto. Let
x,y2 17 suchthat z Agoy. Denotew = zj y. Wehaveu A zo 0. Apply lemma
3. There exists a non-zero, continuous, positive linear functional ¢, on I such
that 82%4° 2 17,0, (2% > 0, (39 ) 2°Ag y®and ¢, (u) > O.Let o be a
positive real. Multiplying thisinequality by «, one gets ayp,, (v) = ¢, (au) > 0.
Replace u by x| y. Then ¢, (au) = ¢, (x| y) = ¢,(ax| ay) = p,(0z) |
v, (ay) > 0. Hence, ¢, (az) > ¢, (ay) and ax A ro ay. We have shown that for
all positivereal a« and z,y 2 I} ,z Apy) az ARo ay. Moreover, z » go y
implies ax » o ay (since if we had for example oz A o oy, we could multiply
this last inequality by 1a and get = A o y, a contradiction). This proves scalar
invariance. ¥

Theorem 3 indicates that scalar invariance is satis..ed under T| and super
weak Pareto in thesamesenseasin remark 7. T | together with scalar invariance
is called strong invariance in the terminology of (Mitra-Ozbek 2013)%. If we
accept this justi..cation of scalar invariance by T1, we are led to admit that,
under super weak Pareto, the axiom , strong invariance isin away a consequence
of theaxiom T1.

An immediate consequence of theorem 3 is the following:

Corollary 4: Every complete preorder R° satisfying T1 and super weak
Pareto, satis..es scalar invariance.

3The de..nition of "weak inv (a; + z;)" is: 8z,y,u 2 X,[tAry) z+ u%pry+ u]. Of
course, lemma 2 holds with weak inv (a; + z;) instead of TI.

4In the terminology of (D’Aspremont-Gevers 2002), it is called invariance with respect to
common rescaling and individual change of origin.
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Remark 10: Since theorem 1 and lemma 3 hold in .nite dimension, it is
also the case for theorem 3 and corollary 4. Consequently, when the preorder is
complete and super-weak Pareto, strong invariance is equivalent to T 1. Hence,
theorem 18 of (D’ Aspremont-Gevers 2002) or example 2 of (Mitra-Ozbek 2013)
asserting the linear representability of a complete preorder respecting T |, scalar
invariance, weak Pareto and another axiom, hold without imposing scalar in-
variance.
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