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Abstract 
The main objective of this study is to derive semi parametric GARCH (1, 1) estimator under 
serially dependent innovations. The specific objectives are to show that the derived estimator is 
not only consistent but also asymptotically normal. Normally, the GARCH (1, 1) estimator is 
derived through quasi-maximum likelihood estimation technique and then consistency and 
asymptotic normality are proved using the weak law of large numbers and Linde-berg central 
limit theorem respectively. In this study, we apply the quasi-maximum likelihood estimation 
technique to derive the GARCH (1, 1) estimator under the assumption that the innovations are 
serially dependent. Allowing serial dependence of the innovations has however brought 
problems in terms of methodology. Firstly, we cannot split the joint probability distribution into 
a product of marginal distributions as is normally done. Rather, the study splits the joint 
distribution into a product of conditional densities to get around this problem. Secondly, we 
cannot use the weak laws of large numbers or/and the Linde-berg central limit theorem. We 
therefore employ the martingale techniques to achieve the specific objectives. Having derived 
the semi parametric GARCH (1, 1) estimator, we have therefore shown that the derived estimator 
not only converges almost surely to the true population parameter but also converges in 
distribution to the normal distribution with the highest possible convergence rate similar to that 
of parametric estimators 

 

 

 

Key Words: GARCH(1,1), semi parametric , Quasi Maximum Likelihood Estimation, Martingale 

                                                           

1 Economics Department, Chancellor College, University of Malawi, P.O.Box 280, Zomba, Malawi :  Email: 

luciuscassim@gmail.com  or lcassim@cc.ac.mw  

mailto:luciuscassim@gmail.com
mailto:lcassim@cc.ac.mw


1 

 

 

1. INTRODUCTION 

1.1 Background of the study 
Recently, volatility modelling has been a very active and extensive research area in 
empirical finance and time series econometrics for both academics and practitioners 
(Chung, 2012). Chung (2012) argued that volatility is important in investment, security 
valuation, pricing derivatives, calculating measures of risk, and hedging against portfolio 
risk. The simplest way to estimate volatility would be to use standard deviation, which is 
time-invariant (Chung, 2012). However, Tsay (2010) showed that this approach is 
contradicted by empirical evidence. According to Tsay (2010),there are some financial 
data empirical regularities that violate the constant volatility assumption which include: 
(i) existence of volatility clusters; (ii) evolution of volatility over time in a continuous 
manner; (iii) variability in volatility within some fixed range; and (iv) difference in 
volatility reaction to big increases and decreases, which is known as the leverage effect. 
As a consequence, volatility has been modelled as a time-dependent variable and not as a 
time-invariant standard deviation. 
 

There are several approaches to modelling time-dependent volatility in financial 
literature. The first is deterministic approach. This approach models volatility as 
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conditional variance expressed as a function of lagged conditional variance and lagged 
squared innovations. Deterministic models come under parametric, semi-parametric or 
non-parametric sub- approaches depending on the assumptions about the structure of the 
volatility. At one extreme, parametric models make explicit both the functional form of 
the volatility model, while assuming a specific probability distribution of the innovations. 
The most popular parametric structure is the Generalized Autoregressive Conditional 
Heteroskedaticity (GARCH here-in-after) (see Hansen & Lunde, 2001) and many 
variants of GARCH type models that have been proposed in the literature (see Taylor, 
1986; Engle & Ng., 1993; Zakoian, 1994; Glosten & Runkle, 1993; Geweke, 1986; 
Pantula, 1986; Higging & Bera, 1992; Sentana, 1995; Hentshel, 1995; Duan, 1997) where 
volatility is a deterministic function of its own lagged values and lagged squared 
innovations. At the other extreme, nonparametric approach makes no specification of the 
volatility model and no explicit assumption of the probability distribution of the 
innovations. It lets the data guide the process (Buhlman & McNeil, 2000). Semi 
parametric estimation approaches are a hybrid of the two extremes. Under this, the 
volatility model is explicitly specified but the distribution of the innovations is left 
unspecified. 

 

The second approach is stochastic volatility (SV) approach. This is where an innovation 
(a stochastic component) is added to the deterministic component of volatility. The most 
popular stochastic volatility model is the one proposed by Shephard (2008). According to 
Shephard (2008), adding an innovation substantially increases the model flexibility in 
describing the evolution of volatility but it increases the difficulty in parameter 
estimation. Shephard (2008) showed that SV models do not perform any better than 
deterministic models. Shephard (2008) claimed that deterministic modelling is the most 
popularly used approach in literature, even though recently stochastic volatility approach 
has been gaining ground. It has been shown that stochastic volatility models produce no 
statistically better results over the deterministic approach (see Shephard, 2008). 

 
Among the sub-approaches of deterministic modelling, the parametric approach is used 
the most in financial literature (Chung, 2012). Just like any estimation technique, it has 
its pros and cons. The main advantage of using parametric approach is that the estimators 
converge at higher rate than those of non-parametric approach, though almost at the same 
rate as semi-parametric approach (Yang & Song, 2012). However, the parametric 
approach suffers from a high risk of getting inconsistent estimators if the model and/or 
the probability distribution of the innovations are not correctly specified. Using semi-
parametric/non-parametric approaches increases the flexibility of the model as they do 
not impose strict assumptions on the model specification/probability distribution. This 
flexibility comes at the expense of low rate of convergence of the estimators 
asymptotically in the case of non-parametric approach. Other than that, non-parametric 
models do not perform any better than the parametric approach unless there is leverage 
effect (Buhlman & McNeil, 2000). In fact, Buhlman and McNeil (2000) stressed that 
non-parametric models should only be used when there is evidence of leverage effect 
because that is the only time that they perform better than the parametric models. This is 
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why non-parametric approaches are not highly used to estimate volatility in financial 
literature. 

As we have already stated earlier, semi parametric approach is a hybrid of parametric and 
non-parametric approaches. Just like the non-parametric approach it introduces flexibility 
in the model while producing estimators that converge almost at the same rate (very high 
speed of convergence) as the parametric approach (Yang & Song, 2012). One would 
therefore expect semi parametric approach to be extensively used and developed in the 
literature. Surprisingly, very few theoretical papers (e.g. Linton & Mammen, 2003; Drost 
& Klassenn, 1996; Yang & Song, 2012; Engle & Gonzale-Rivera,1991) have employed 
semi-parametric approach though it produces estimators that converge at the same rate as 
the parametric estimators while being more flexible (Buhlman & McNeil, 2000). 

 
To the contrary, parametric deterministic models have been extensively developed (e.g. 
the ARCH model of Engle(1982); the GARCH model of Bollerslev(1986); the I-GARCH 
model of Taylor(1986); the T-GARCH model of Zakoian(1994); the H-GARCH model 
of Hentshel(1995); the TS-GARCH, the NA-GARCH and the V-GARCH models of 
Engle & Ng(1993); and the Aug-GARCH model of Duan(1997) ). These are theoretical 
papers that have been trying to extend and develop the parametric deterministic 
modelling further. There are also a lot more empirical papers that have applied these 
models but we will not mention them here since our interest is theoretical not empirical in 
this study. 

 

GARCH models define the time-varying variance as a deterministic function of past 
squared innovations and lagged conditional variances (Bollerslev, 1986). That is to say, 
in general terms, a GARCH model with order  )1(p   and  )1(q   is defined as;  

                                  
  ttt xfy   ,

                                                                       (1.01)
 

                                      ttt z    
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Here,  ,,   are non-negative parameters,  L   is a lag operator,  x t   are factors affecting  

y t  , t  are innovations, t   is the conditional standard deviation of the innovations and  

zt   are independent standardized innovations. It should be mentioned here that equation 
(1.01) is called conditional mean equation while equation (1.02) is called conditional 
variance equation. This technically means that GARCH (1, 1) is defined as; 

                    
    ,tt xfy

                                                                                (1.03)
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GARCH (1, 1) model is popularly used in parameterization of volatility in financial 
literature (Hansen & Lunde, 2001). This is partly because of their simple specification 
and interpretability (Chung, 2012; Hansen & Lunde, 2001). Additionally, although the 
model doesn't take into account the leverage effect, it outperforms other volatility 
models, in terms of volatility predictive power (see Hansen & Lunde, 2001; and White, 
2001). In fact, Hansen and Lunde (2001) compared a total of about 330 volatility models 
and GARCH (1, 1) outperformed all of them in terms of ability to predict volatility. 
Parametric estimation of the GARCH (1, 1) is mostly done by using nonlinear maximum 
(or quasi-maximum) likelihood estimation based on two key assumptions (Bollerslev, 
1986; Chung, 2012; Buhlman & McNeil, 2000; Drost & Klassenn., 1996); (1) that the 
innovations have a specific known density law, mostly the normal distribution and (2) 
that the innovations are independently and identically distributed (here-in after referred to 
as i.i.d). 

 
1.2 Problem statement  

As we have seen in section 1.1, GARCH (1, 1) is the most used volatility model in 
financial literature and parametric approach is the most used approach in estimating 
GARCH (1, 1) model in literature. The parametric estimation of GARCH (1, 1) model is 
based on the following two key assumptions. Firstly, the innovations have a known 
distribution e.g. mostly, normal distribution or, recently, the student t-distribution (Rossi., 
2004; Bollerslev, 1987; Gallant & Hsieh, 1989; Baillie & Bollerslev, 1987). Secondly, 
the innovations are i.i.d (Rossi., 2004; Bollerslev., 1987; Gallant & Hsieh, 1989; Baillie 
& Bollerslev, 1987). On the one hand, the i.i.d assumption technically means that the 
innovations are treated as having the same probability distribution (i.e. identically 
distributed). For example, if one assumes that the innovations have a student t 
distribution then each and every realisation of the innovations’ stochastic process is 
assumed to have a student t distribution, without exceptions. On the other hand, the i.i.d 
assumption also means that the innovations are taken to be statistically independent(i.e. 
independent).In other words, the value of an innovation today does not, in any way, 
influence the value of an innovation tomorrow or any other future values of innovations. 
This study then observes that the two key assumptions(i.e. the assumption that the 
innovations have a specific known distribution and that the innovations are statistically 
independent(within the i.i.d assumption)) that the parametric approach relies on expose 
the derived estimators to very high risk of inconsistency as explained in detail in the 
following paragraphs. 
 
Assuming a specific distribution exposes the model to high risk of producing inconsistent 
estimators in the event that the assumed distribution is not correct (Chung, 2012; Dahl & 
Levine, 2010). Further, financial time series often exhibit leptokurtosis; meaning that 
their distribution is symmetrical in shape, similar to a normal distribution, but the centre 
peak is much higher with fatter tails (Holly & Montifort, 2010; Chung, 2012; Drost & 
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Klassenn, 1996; Bollerslev, 1986; Gallant & Hsieh, 1989; Baillie & Bollerslev, 1987). 
Therefore, assuming normality of the innovations may technically lead to wrong 
likelihood functions and hence inconsistent results. How then can one address the issue of 
non-normality in literature? The issue of non-normality has been generally addressed in 
general econometric literature. It is possible to obtain consistent results even if the 
innovations are not normally distributed. One of the ways is to use non-parametric 
estimation approach where you do not make any assumption about the distribution. This, 
as we have already discussed above, provide flexibility in estimation such that there is no 
chance of making a wrong specification. But, as we have stated above, literature shows 
that non-parametric approaches are only good for volatility models with confirmed 
leverage effect. GARCH (1, 1), unfortunately, does not take leverage effect into account. 
Another way is to use parametric approach but under quasi maximum likelihood 
estimation principle. Hood and Koopman (1953) demonstrated that the conditionally 
Gaussian Maximum Likelihood estimator is consistent and asymptotically Gaussian, even 
if the true distribution is not conditionally Gaussian, as long as the first two conditional 
moments are well specified. They coined the label quasi maximum likelihood 
estimator"(QMLE here-in after) for this kind of estimator. So it means QMLE would still 
be consistent in the face of non-normal innovations in this case. 
 
As regards to the statistical independence assumption (within the i.i.d assumption), 
empirical regularities of time series financial returns show the innovations are dependent 
and not independent. The following characteristics are frequently observed in financial 
data (see Holly, 2010; Chung, 2012; Drost & Klassenn, 1996; Engle & Gonzale-Rivera, 
1991). The first is volatility clustering. This is where large changes tend to be followed 
by large changes and small changes tend to be followed by small changes. Second is that 
squared returns exhibit serial correlation whereas little or no serial dependence can be 
detected in the return series itself. In addition, financial returns exhibit fading memory 
i.e., distant innovations have little effect on financial returns compared to recent 
innovations. This means that the i.i.d assumption is not correct when it comes to financial 
time series. That being said, one may wonder as to what exactly is the problem with 
continuing with the statistical independence assumption when in fact the innovations are 
statistically dependent. The statistical independence assumption is very critical when the 
volatility function is allowed to be time dependent. This is because it ensures that the 
parameters entering the conditional mean function are time-independent (Dahl & Levine, 
2010). Dahl and Levine (2010) argued that if the conditional mean function is estimated 
assuming time invariant parameters, when they are time variant, its estimators will be 
inconsistent and the effect of this misspecification will carry over into the volatility 
estimation. Technically, what we are saying here is that the statistical independence 
assumption (within the i.i.d assumption) is not correct in time series financial data. If we 
continue making it, when in fact the innovations are statistically dependent, we are bound 
to get inconsistent estimators. 
 
This means that parametric estimation of GARCH (1, 1) model, the most popular 
estimation technique for GARCH (1, 1), is not appropriate since it is based on 
assumptions that are more ad hoc than based on economic reasoning in finance. This 
paper is coming in to offer an estimation approach that is based on economic reasoning 
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that is in line with empirical financial data regularities by relaxing these two key 
assumptions that the parametric approach is based on. 
 
This study proposes use of semi-parametric estimation approach while relaxing the 
statistical independence assumption. In this way we will solve both the normality issue 
and the statistical independence issue. After all, we have explained in section 1.1 above 
that semi-parametric approach is better than both parametric and non-parametric 
approaches. It must be said however that this paper is not the first to propose semi-
parametric estimation approach to estimating GARCH (1, 1) volatility model. However, 
the papers that have proposed semi-parametric approach in literature (e.g. Linton & 
Mammen, 2003; Drost & Klassenn, 1996; Yang & Song, 2012; Engle & Gonzale-Rivera, 
1991) continue making the statistical independence assumption. Much as this may be 
better than the parametric approach due to increased flexibility in the model, making the 
statistical independence assumption is not really ideal when it comes to volatility 
modelling as we have explained above. This is because there is high risk of getting 
inconsistent estimators in the event that the innovations are statistically dependent. This 
means that the semi-parametric approaches proposed so far are no better than the 
parametric approach. 
 
So, this study proposes a semi-parametric approach while relaxing the statistical 
independence assumption. However, unlike other semi-parametric approaches, instead of 
completely leaving the distribution of the innovations unspecified this study proposes use 
of a family of distributions. The assumption is that the true distribution of the innovations 
is not known but it is assumed to belong to a known family of probability densities. In 
this way, we will be introducing some reasonable flexibility in the model unlike in the 
parametric case. 
 
So the study assumes that the innovations belong to the Generalised Error Distribution 
(GED hereinafter) while allowing them to be serially dependent. Then quasi-maximum 
likelihood estimation is applied to ensure that the estimator is still consistent even when 
the true distribution is not in the GED family. The estimator derived in this manner is 
definitely semi-parametric. This is because, even though the conditional variance 
equation is explicitly specified, the distribution of the innovations is not explicitly 
specified as in parametric case. The distribution is partly specified by assuming that it 
belongs to the GED. In this way flexibility is introduced in the model while relaxing the 
statistical independence assumption. As such, the estimator derived is based on reliable 
assumptions that are in line with financial data empirical regularities explained above. 
 
1.3 Objectives of the study 
The main objective of this paper is to derive the semi-parametric GARCH (1, 1) 
estimator under serially dependent GED innovations. 

To achieve the main objective, the following specific objectives shall be pursued: 

 To show that the semi-parametric GARCH (1, 1) estimator under serially dependent 
GED innovations is consistent. 
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 To prove that the semi-parametric GARCH (1, 1) estimator under serially dependent 
GED innovations is asymptotically normal. 

 
1.4 Significance of the study 

This study contributes to the financial econometrics literature by providing an estimator 
of the GARCH (1, 1) volatility model that allows the relaxation of both the normality 
distribution and the statistical independence assumptions of innovations. In that way, the 
study offers an estimator that is based on assumptions that are in line with empirical 
financial data regularities. 
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1.5 Organization of the study 

The first Chapter focused on introduction. The rest of the paper proceeds as follows: 
Chapter two reviews theoretical literature regarding estimation techniques of GARCH 
(1,1) that have been proposed already in literature; Chapter three outlines the 
methodology employed to achieve the objectives, Chapter four derives and explains the 
main theoretical results of the study and then Chapter five  offers conclusion and 
theoretical implications. 
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2. LITERATURE REVIEW 
 

2.1 Introduction 

It should be mentioned here that ordinarily, this chapter was supposed to review both 
empirical and theoretical literature. However, this is a theoretical paper. As such this 
chapter reviews only the theoretical literature. In this chapter, therefore, we explain more 
on different approaches of estimating deterministic GARCH (1, 1) that have been 
proposed in literature. We expound in turn the three broad approaches of estimating 
volatility models. 
 
2.2 Parametric Approach 

According to Chung (2012), a parametric approach imposes a specific linear structure on 
volatility and a specific probability distribution of the innovations. For GARCH (1, 1) 
model, conditional variance is expressed as a deterministic function of lagged conditional 
variance and the lagged squared innovations as shown in equation (2.01) through 
equation (2.02) below. 

                            
  ttt xfy   ,                                                                              (2.01) 
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Where  ,R,,,,,,, tttt xy   ; t  is the innovation of the model and is generated 

by GARCH (1, 1) process,  L   is the lag operator,  f   is a function,  x t   are factors 

affecting the dependent variable  y t   and     are parameters of the mean equation 

showing how  x t   impact on  y t  , on average and  t   represents conditional variance of  

t  . As can be seen in the model above, mostly the innovations are assumed to be 

Gaussian (see Bollerslev, 1986; Choi, 2004; Andersen, 1996; Hansen & Lunde, 2001). 
Recently, practitioners in the trade have been assuming the student-t distribution and the 
gamma distribution (see Bollerslev, 1986; Bollerslev, 1987; Holly & Pentsak, 2004; 
Holly, 2009; Gallant & Hsieh, 1989; Rossi, 2004; Chung, 2012). From the model, it can 
be seen that, 
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Assuming that the innovations are really normally distributed, the estimation of the 
model is done through Maximum Likelihood Estimation (MLE) procedure. This 
approach involves maximization of a log likelihood function constructed under the 

auxiliary assumption of an i.i.d. distribution for the standardized innovation    
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Where  tl  and  tS  are log likelihood and score functions respectively and    tz  is 

the standard normal function. The score function,  tS , is then solved using a gradient 

numerical method called BHHH algorithm. This algorithm uses equation (2.07) below; 
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Under certain regularity conditions, the ML estimator converges at the rate of T   and is 
asymptotically normally distributed (Davidson., 2000; Davidson & Mackinnon., 
1993).That is, 
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The log-likelihood function in equation (2.04) is determined under the assumption of 
conditional normality, which is more ad hoc than based on statistical or economic 
reasoning. In the empirical literature on GARCH processes, it turns out that conditional 
normality of speculative returns is more an exception than the rule (Hewartz, 2004). As a 
result, assuming normality when in fact the innovations are not normal would result in 
wrong functional form hence inconsistent estimators. As such some researchers (e.g. 
Rossi, 2004; Bollerslev, 1987; Gallant & Hsieh, 1989; Baillie & Bollerslev, 1987) have 
proposed usage of other distributions other than the Gaussian density, for instance student 
t-distribution, the gamma distribution and the generalized error distribution. 
 
If one assumes that the innovations have the student t-distribution with v (>2) degrees of 

freedom then its probability density (  vf t ,| ) will be as specified in equation (2.09) 

below. It must be mentioned here that most derivations and formulae in this subsection 
are taken from Hewartz (2004). 
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Where   .   denotes a gamma function specified in equation (2.10) below. 
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
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 tt z2 Letting , the score functions then can be derived as in equations (2.12) through 
(2.13) below.
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In the same vein, if the innovations have a generalized error distribution (  vf t ,| ); 
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This means that the log likelihood function is given by equation (2.14) below;
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The score functions then can be derived as in equations (2.16) through (2.17) below 
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Just like under normality assumption; the t, gamma and the generalized error score 
functions are also solved using the BHHH algorithm. Similarly, if the true distribution of 
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the innovations is not the specified one, then we are more likely to derive wrong 
likelihood function and hence inconsistent estimators. As such the Maximum likelihood 
procedure (where a specific distribution of the innovations is specified) is not commonly 
used in estimating GARCH (1, 1) volatility model. Rather estimation of GARCH (1, 1) 
model is mostly done through the use of QML. 
 
A key difference between these two methods is that the former allows for possible 
misspecification of the likelihood function (Chung, 2012). By contrast, the conventional 
ML method assumes that the postulated likelihood function is specified correctly, so that 
specification errors are assumed away. As such, the results in the ML method are just 
special cases of the QML method (Chung, 2012). Technically, QML uses the Kullback-
Leiber Information Criterion (KLIC) (Cameron & Trivedi, 2005; Chung, 2012). In the 
spirit of KLIC, let      be the true distribution of the innovations (which is 

unobserved), and    |   be the `assumed' distribution, then KLIC can be given as in 

equation (2.18) below. 
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KLIC takes a minimum value of 0 when there is a  0   such that      |   i.e. the 

density is correctly specified. Larger values of  KLIC   indicate greater ignorance about 
the true density (Chung, 2012).Then equation (2.19) gives the QMLE, 
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Following Hewartz (2004), if the normality assumption is violated, the covariance matrix 
of the QMLE2 is:  
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The parametric approach has an advantage that the estimators converge at a high rate,  

T  (which is the highest rate an estimator can achieve). In addition, QMLE is consistent 
regardless of whether the functional forms are correct/ incorrect as long as the first two 
moments are correctly specified (Hood and Koopman, 1953). However, volatility is a 
latent variable hence explicit functional form assumptions and/or the explicit probability 
distribution assumption on the models might be too strong. This exposes the models to 
high risk of providing inconsistent and/or inefficient estimators assuming the assumed 
functional form and/or the assumed probability density laws are wrong (Chung, 2012; 
Yang & Song, 2012; Dahl & Levine, 2010; Drost & Klassenn, 1996) .Lastly, it assumes 

                                                           

2Check appendix D  below and Appendix A in Gonzalez-Rivera (1991) to see regularity conditions for QMLE 
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that the innovations are i.i.d. And again if the innovations are not i.i.d, we are bound to 
make wrong likelihood function and then inconsistent estimators (Dahl & Levine, 2010). 
 
2.3 Non parametric Approach 

Technically there are two definitions of the term non-parametric statistics. The first 
meaning incorporates methods that do not rely on data belonging to any particular 
distribution (i.e. distribution free methods).The other meaning incorporate techniques that 
do not assume that the structure of a model is fixed a priori. In such methods, variables 
are assumed to belong to parametric distributions (Chung, 2012).It should be noted here 
that in this definition, even though structural assumptions about the model are not made a 
priori, statistical assumptions about the variables are made. In either definition, it is clear 
that, generally, non-parametric models differ from parametric models in that the model 
structure is not specified a priori but is instead determined from data. In other words, the 
term non-parametric is not meant to insinuate that such models completely lack 
parameters but that the number and the nature of the parameters are flexible and not fixed 
a priori (Chung, 2012). 
 
To ease the structural assumptions in parametric models, nonparametric models make no 
structural assumptions. According to Chung (2012), under this approach, the conditional 
variance is not explicitly specified and the distribution of the innovations is kept 
unknown. Compared to parametric models, there is limited literature on nonparametric 
volatility models. Linton and Mammen (2003) and Yang and Song (2012) examined 
some recent advances in nonparametric volatility modelling. Before going any further, 
let's look at some basics of non-parametric estimation techniques. The following 
derivations and formulae are due to Tschernig (2004). 
 
Assume equations (2.20) and (2.21) hold; 

    tttt xxy  
                                                      (2.20)

 

 
nitititt yyyx  ,......,

21 ,                                              (2.21)
 

Where tx  is the )1( m  vector of all m  current lagged values; miii  ...21 ;  

,....2,1,  mmt iit , denotes a sequence of i.i.d random variables with zero mean and 

variance unity;  tx   and   tx denote the conditional mean and volatility function, 

respectively. Estimation of  tx
 
and  tx in equation (2.20) is mostly done locally, 

meaning it is estimated separately for each )1( m  vector    mxxxx ,..2,1   of interest. 

Under this approach, although   tx   is not observable it appears in a first order Taylor 

expansion of   tx   taken at x  as can be seen in equation (2.22) below. 

         xxRxx
x

x
xx tt

t

t
t ,








                                   (2.22)
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Where  xxR t , denotes the remainder term. But   equation (2.20) can now be written as 

equation (2.23) below. 

            tttx

x
tttttt xxRxxxyxxy

t

t    
 ,1

           (2.23)
 

From this, we observe that only  1   and   xxt    are observable. This means that if  

  0, xxR t  , one would estimate   tx   by OLS, where   tx   and   
t

t

x

x


   are 

parameters to be estimated. But, whenever the conditional mean is non-linear, the 
remainder term may not be zero and in such a case using standard OLS would give biased 
results for which the size of biasness depends on the sizes of all the remainder terms,  

  TtxxR t ,..2,1,,   . One possibility to reduce the biasness is to use only those 

observations  x t   that are in some sense close to  x  . That is to say, down weighing those 
observations that are not in local neighbourhood of x. If more data become available, it is 
possible to decrease the size of the local neighbourhood where the estimation variance 
and bias can reduce. The approximation error of the model can decline with sample size. 
This is the main idea behind non-parametric estimation approach. 

 
There are so many streams of non-parametric estimation techniques in the literature 
depending on the weighing scheme used. Technically, the weighing is controlled by the 
so-called kernel function   .K  . A kernel function is a continuous function symmetric 

around zero that integrates to unity and satisfies the following additional boundness 
conditions (Cameron & Trivedi, 2005). 

1)  zK   is symmetric around  0   and is continuous 

2)         dzzKdzzzKdzzK ,&,0,1  

3)   ,0zK  as  z  

4)    dzzKz2   where     is a constant 

 

To adjust the size of the neighbourhood one introduces a band-width h , such that for a 

scalar x , the kernel function becomes   
h

xx

h
tK
1  . If  1m   and    mxxxx ,.., 21   is a 

vector, one uses a product kernel in equation (2.24) below; 

  





 

 
 h

xx
K

h
xxK ti

m

i

th 2
1

1

                                     (2.24)
 

Here tix denotes the i-th component of tx .The larger the h , the larger the neighbourhood 

and the larger the estimation bias. The band-width is also called a smoothing parameter. 
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Since the observations in the local neighbourhood of  x  are the most important, this 
estimation is also called local estimation. 
 
Owing to the introduction of a kernel function, one now has to solve a weighted least-
squares problem as shown in equation (2.25); 
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                  (2.25)

 

This delivers the local linear function estimate   hxt ,̂   at the point x  .Technically, with 

matrices; 
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
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   Ti yyy
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,,....1              yhxWxzxzhxWxzehx ,,,ˆ 1                      (2.26) 

The most popular weighting scheme is that of Watson (1964) and Nadaraya(1964) given 
in equation (2.27) below; 

        
            yhxWxzxzhxWxzehx WNWNNW ,,,ˆ 1 




                   (2.27)
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1.......1;  

A theoretical formulation of Nadaraya -Watson conditional variance estimator using 
squared residuals obtained from the conditional mean function is proposed by Fan and 
Yao (1998) and Fan and Gijbels (1995) and we sketch their formalization below. The 
explanation below is due to Chung (2012). Assume that a strictly stationary process  

 Ttxt ,....,2,1;    is generated by equation (2.28) below. 

                                               tttt xxmx  11                                                      (2.28)
 

Where  t   is i.i.d,   0| 1  ttE   ,   1| 1  ttVar  , and  1 t   is a sigma algebra 

generated by  1tx  (or some past information). Fan and Yao (1998) proposed a two stage 

method to obtain a local linear estimator for conditional variance (Chung, 2012; Dahl & 
Levine, 2010). 

1) Obtain local linear estimator    axm t
ˆˆ    which is the minimization intercept in the 

following weighted least-squares problem; 
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2) Obtain the squared residuals    21
ˆˆ  ttt xmxr  to use in equation (2.30) below. 
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Where the bandwidth 02 h   is different from  h1  (Chung, 2012; Dahl & Levine, 

2010) 

 
As we have seen in equation (2.27) above, the non-parametric mean estimator is; 
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According to Tschernig (2004); 

         xvNhxbxhxThm ,0,ˆ 2   

Where the asymptotic bias   xb   and asymptotic variance   xv   are as given respectively 

in equations (2.31) and (2.32) below 
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Thus, if we denote any positive constant  , any optimal band-width for which  

  
4

1


 mTh    holds has an optimal rate of decline of bias (Tschernig, 2004). 
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From this, the rate of convergence is   4
2
MT   which is less than the parametric rate T

1
2 for 

any  0m  (Tschernig, 2004).This implies that the rate of convergence of the local linear 

estimator depends on the number of lags, m, and becomes slow even when  1m  (the 
case of GARCH (1, 1)).In fact for GARCH(1,1), 1m  implying that the rate of 

convergence is 5
2

T which is far less than the convergence rate of the parametric case; 
2
1

T

.The fact that non-parametric approach results in low speed of convergence makes it 

undesirable in volatility estimations. In addition, we note that this approach, just like the 
parametric approach, assumes that the innovations are i.i.d not to mention the complexity 
it brings in estimation even though its results are no better than the parametric ones in 
case i.i.d holds. This means that even though this approach offers greater flexibility to the 
model, we may still get inconsistent estimates, if the innovations are non-i.i.d. 
 
2.4 Semi Parametric Approach 

This approach basically combines elements of both parametric and non-parametric 
approaches. Under this approach, the conditional variance is explicitly specified, just like 
in parametric case but the distribution of the innovations are assumed un-known just like 
in non-parametric case (Drost & Klassenn, 1996; Yang & Song, 2012; Engle &Gonzale-
Rivera, 1991). Just like the non-parametric case, there is limited literature on semi-
parametric volatility models. Tschernig (2004), Engle and Ng (1993), Hafner and 
Rombonts (2002), Haafner (2003), Yang and Song (2012), Buhlman and McNeil (2000), 
Linton and Mammen (2003), and Yang and Song (2012) are the most popular. As we can 
notice, semi parametric approach is a hybrid of parametric and non-parametric 
approaches as it combines elements of these two approaches. 
 
As such estimation of GARCH-type volatility models semi-parametrically uses a 
combination of both the parametric approach and the non-parametric approach. The first 
semi-parametric paper in GARCH context which was done by Engle and Gonzale-Rivera 
(1991) was partially successful. Using Discrete Maximization Penalized Likelihood 
Estimation (DMPLE) of Tapia & Thompson (1991), Engle and Gonzale-Rivera (1991) 
showed that the efficiency of estimates was improved only up to 50 per cent over QMLE 
but did not hit the Cramer-Rao lower bound. Under this approach, the following model 
given in equation (2.33) is considered; 
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    1,0..~2
1

dgiizttt   

Where  f   is the unknown density function of  t   conditional on the set of past 

information. Estimation of   t  and  f  , involves maximizing the following likelihood 

function; 
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According to Engle and Gonzalez-Rivera (1991), this is done in the following steps;  

Firstly, choose initial consistent estimates of . This is done by applying Ordinary Least 
Squares (OLS) on the model (Engle, 1986) or applying QML (Bollerslev& Woodridge, 

1992; Weiss, 1986). Secondly, save the residuals  t   and the conditional variance  t   

from step 1 and construct  
 2
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2

t

t




 . 

 
Then use DMPLE technique to estimate the non-parametric density. DMPLE involves 
maximizing the actual likelihood of the sample in which the arguments of the function 
are the heights   

1,....,21, mppp   of the generalized histogram at some given knots  

 1,....,21, mnnn  . For a sample  x1 ,x2,....,xn
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Where     is the penalty term (chosen by the researcher to ensure smoothness of the 
estimate of p)Lastly, perform the maximization of the log-likelihood function from stem 

three, keep  ĝ   fixed and iterate to convergence. 
 
Following Klassenn et al. (1996), this procedure produces estimators that are not adaptive 
in the class of densities with mean 0 and variance 1. Semi-parametric estimators converge 
almost at the same rate as parametric case while at the same time offering flexibility to 
the model by not/partially specifying the distribution of the innovations (see Linton, 
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2005; Yang, 1998; Levine et al., 2012; Engle et al., 1993). This technically means that 
semi parametric approach is the best among the three approaches since it has good 
aspects of both the parametric and non-parametric approaches; that is, high convergence 
rate and flexibility. Nevertheless, just like in the parametric and non-parametric methods 
reviewed above; this approach still assumes that the innovations are i.i.d. 
 
It must be said that under almost all these approaches to estimating GARCH (1, 1) model 
the innovations are assumed i.i.d. As explained before, assuming independence when in 
fact the innovations are dependent for GARCH (1, 1) could lead to inconsistent 
estimators. 
 
2.5 Critique of existing literature 

In this chapter we have noted that there are three broad approaches to estimating GARCH 
(1, 1) model in literature. These are parametric, nonparametric and semi-parametric 
approaches. The following criticisms can be directed at these approaches. 
 
The existing parametric approaches in the literature, still assume independence of 
innovations and/or specific distribution (i.e. normal distribution, student t distribution 
etc). These assumptions are not only ad hoc than based on economic or statistical 
reasoning but also expose the estimators to high risk of inconsistency. These assumptions 
therefore lender the parametric approaches in the existing literature very risky hence 
undesirable. 
 
Non-parametric approaches reduce the risk of getting inconsistent estimators by not 
assuming any distribution about the innovations. However most of them assume that the 
innovations are independent hence still exposing the estimators to some risk of 
inconsistency as well. This however is not the main critique that this study directs 
towards non-parametric approaches since there have been non-parametric estimators 
recently that have been derived while relaxing the i.i.d assumption (see Dahl & Levine, 
2010). The main issue with non-parametric estimation of GARCH (1, 1) model is that the 
estimators have very low convergence rate. Non parametric approaches proposed in the 

literature so far have very low asymptotic convergence rate of about 5
2

T (the parametric 

convergence rate is
2
1

T ).This means that non-parametric estimators produce good 
asymptotic properties when the sample size is very big. However, most of the times we 

do not have the luxury of having very large sample sizes in time series analysis.This 

lender the non-parametric approaches in the existing literature undesirable. 
 
With regard to semi-parametric GARCH (1, 1) estimators in the current literature we note 
that they seem to be the best since they have both high convergence rate and offers great 
flexibility. However, the assumption of statistical independence of innovations is still 
maintained. We have noted in sections above that this assumption is more ad hoc than 
based on economic reasoning. This means that the existing semi-parametric GARCH 
(1,1) estimators are no better than the parametric and non-parametric ones since they are 
still exposed to high risk of inconsistency in the event that the statistical independence 
assumption is not holding (a more likely phenomenon in time series financial data). 
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It is apparent therefore that the existing GARCH (1, 1) estimators are very risky to use. 
The existing literature lacks a GARCH (1, 1) estimator that is flexible while having high 

convergence rate (i.e 2
1

T ). This is the research gap that this study is geared to fill. The 

study aims at filling that research gap by deriving a GARCH (1, 1) estimator using semi-
parametric approach while allowing the innovations to be serially dependent. In this way 
such an estimator will not only have nice asymptotic properties but it will also be based 
on assumptions that are not mere ad hoc but based on economic reasoning in line with 
time series financial data empirical regularities. 
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3. METHODOLOGY 
 

3.1 Introduction 

This chapter presents the methodology used to achieve the objectives. As we have seen 
from the literature review above, one way to obtain better estimators of GARCH(1,1) 
model is to employ semi parametric approach(after all it is the best approach) but then 
relax the i.i.d assumption(that is, allowing the innovations to be serially dependent). So, 
in this paper we apply semi parametric approach and relax the i.i.d assumption to derive a 
GARCH (1, 1) estimator. However, relaxing the i.i.d assumption can make establishment 
of consistency and asymptotic normality of the estimator derived very difficult. This is 
because the commonly used techniques (i.e. weak law of large numbers and Lindeberg 
central limit theorem) to showing consistency and normality use the i.i.d assumption. 
Nevertheless, it is possible to prove  consistency and asymptotic normality of an 
estimator by using martingale technique (i.e. using the almost sure convergence instead 
of convergence in probability and the martingale central limit theorem) under non i.i.d 
assumption (see Hansen &Lunde, 2001; Kouassi, 2015). As such we will establish 
consistency and asymptotic normality in this study using martingale techniques. 
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This section is outlined as follows; we first introduce the GARCH (1, 1) model. After that 
we present the likelihood function. Then we present assumptions adopted in our analysis. 
We will then present and prove lemmas that will set the ground ideal for us to prove 
consistency and asymptotic normality. 
 
3.2 The Model and Assumptions 

Before proceeding any further it is imperative that we present the model we will be 
working with and the underlying assumptions that we will make in order to achieve our 
objectives. The observed volatility from a sample may not necessarily be the true 
volatility. As such it is standard in QML estimation literature to specify the observed and 
the unobserved volatility models (Rossi, 2004; Kouassi, 2015; Posedel, 2005; Chung, 
2012). We will therefore specify the observed and the unobserved volatility models 
respectively, from which we will derive the observed and unobserved likelihood 
functions. It should be mentioned here that the model, and the lemmas are standard. They 
were not developed in this paper. They are/may be found in many theoretical 
econometrics papers(e.g. Rossi, 2004; Posedel, 2005; Chung, 2012; Kouassi, 2015).As 
such, necessary references have been made in that regard. This paper has, however, 
proved lemmas, given the key assumptions that this paper is making. In addition to that, 
in the course of the proofs, whenever some idea has been taken from 
someone/somewhere necessary referencing has accordingly been made. 

3.2.1 The Model 

3.2.1.1 Unobserved GARCH (1, 1) model 

Following Rossi (2004) and Engle & Gonzale-Rivera (1991) among others, the 

unobserved model with unknown parameters     ,,,   will be given as shown in 

equation (3.01) through equation (3.01) below. It must be mentioned here that equation 
(3.01) is technically called the mean equation while equation (3.02) is technically called 
conditional variance equation. It is equation (3.0) that is normally referred to as the 
GARCH (1, 1) model. 

                                       
  ttt xfy   ,

                                                                   (3.01)
 

                                         ,...,..2,1,2
1

 tz ttt   

                           
    ttt LL   2

                                                                 (3.02) 

The conditional variance equation can be simplified as follows3; 

    ttt LL   2  

                                                           

3This simplification was completely done by the Author although it may also be found in other papers since the mathematics involved 
is not uncommon. 
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Here, L is a lag operator. Following Rossi (2004), the conditional variance equation can 
also be expressed as4; 
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4For more on this simplification, check Rossi(2004;page 15) 
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This implies that the conditional volatility equation can also be expressed as:  
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Technically, this means that our model can be presented as5: 
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We define      ,....,,,,...,, 121
2
1

 ttttt xxx   as a set of information at time  t  

 
It should be mentioned here once again that the unobserved model given in equations 
(3.01) through equation (3.01) and later simplified to equations (3.04) and (3.05), just like 
the observed GARCH (1, 1) model presented below, are already there in literature (see 
Rossi,2004;Chung,2012 & Engle and Gonzale-Rivera,1991).In the same vein the 
simplification of equation (3.02) to yield equation (3.03) has been taken from 
Rossi(2004).It is reproduced here for simplification and expository purposes. 

                                                           
5See Rossi(2004),Engel and Gonzale-Rivera(1991) and Chung(2012) 
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3.2.1.2 Observed GARCH (1, 1) model 
Again Following Rossi (2004) and Engle & Gonzale-Rivera (1991) among others, the 
observed GARCH (1, 1) model will be given as shown in equation (3.06) through 
equation (3.07) below. 

         
  ttt xfy 00,  

                                                           (3.06)
 

                                             Ttz ttt ,....,2,1,2
1

00    

          
    ttt LL 00

2
0000  

                                      (3.07)
 

Where  y t  , x t  , t0  , 0  , 0  , 0  , 0  , R0 t  ;  t0   is the error term of the model 

and is generated by GARCH (1, 1) process,  L   is the lag operator,  f   is a function,  x t   

are factors affecting the dependent variable  y t   and  0   are parameters of the mean 

equation showing how  x t   impacts on  y t  ,  t0   represents conditional variance of  t0  

,and  the subscript 0  connotes “observed”. Normally  zt   is taken to be standard 

Gaussian random variable, but as we will see under assumptions below,  zt   is no longer 
going to be assumed to be normal but rather generalised error. 

 
It should be noted here that the key difference between the un-observed and the observed  
model presented above  is that the unobserved model is spanning from period 1 to infinity 
while the observed model is finite, spanning from period 1 to period T. That implies that 
we are treating it as a stochastic process, a realisation of which is the one we are calling 
the observed model. This means that the observed model may be stationary while the 
unobserved model is stationary given the assumptions that this paper is making in 
sections below. This is standard notation6. Following Rossi (2004) and Posedel (2005), 
the conditional volatility equation for the observed model can be derived analogously as:   
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6 See Posedel (2005) 
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Technically, this means that the observed model can be presented as: 

  ttt xfy 00,  
                                            (3.10)
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We define      ,....,,,,...,, 121
2
1

 ttttt xxx   as a set of information at time  t  
 

3.2.2Assumptions of the Model 

This section outlines some of the assumptions made in this analysis. They include both 
the regularity assumptions (i.e. standard assumptions)7 that are necessary for 
identifiability, stationarity etc and some additional assumptions necessary for our 
analysis. To achieve the objectives, we make (following Kouassi, 2015; Choi, 2004; 
Chung, 2012; Posedel, 2005 and Hansen, 2006) the following assumptions: 
 

3.2.2.1 Assumption one (A1): The innovations are martingale differences 
This is one of very important assumptions in this analysis. Before we explain more on 
what this means, let us look at the technical explanation. To do this let us first look at 
some basic concepts. It must be mentioned here that these definitions are due to 
Ibragimov and Philips (2010), Williams (1991), Avran (1988), Hansen and Heyde 
(1980), Amemiya (1985), Sousi (2013) and Hansen (2006). 
 
In martingale mathematics, a filtration on a probability space is a sequence  

 ,...2,1;  tt   of sub-sigma fields of  t   such that for all  t  ,  1 tt  .Basically, in 

the theory of martingales, filtration represents our knowledge at successive betting times. 
This increases with time so that the sigma fields increase. Secondly, a stochastic process  

 ,...1,0;  txX t   is adapted to the filtration  t   if for all t,  X t   is  t   -measurable. If 

a process is  t   -measurable, it depends only on the past before  t  . If a process   tX   is 

                                                           
7 Check appendix D of this study and Appendix A in Engle and Gonzalez-Rivera (1991)to see some regularity conditions for QMLE 
to appreciate where some of these assumptions come from 
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adapted to  t  , then each  X t   depends only on what has already happened before time  

t  . Having laid the ground like that, we can now define a martingale. 

A process   ,..1,0;  txX t   is a martingale if for each  ,..2,1,0t  

1)  ,...2,1;  tt is a filtration and X is adapted to  t   . 

2) E   saXX ttt .,| 1  

 
In other words, a process is a martingale if its current value depends only on what has 
happened before the current period. One sometimes calls such processes “non-
anticipating" because, quite simply, they cannot look into the future. Secondly, since we 
cannot look into the future the expected value of a process today is the same as 
yesterday's value. It is only safe to expect that what happens tomorrow is the same as 
what happened today. 
 
Therefore, by assuming that the innovations are martingales we mean that their current 
values depend only on what happened before the current period and that the expected 
value today is the same as their yesterday's value. It should be mentioned here that we are 
technically assuming that the innovations are martingale differences not just martingales. 
In this way, the value of an innovation today is taken to be the difference between today’s 
value and yesterday’s value. In other words, A process   ,..1,0;  txX t   is a martingale 

difference if for each  ,..2,1,0t ttt LXXX *
(i.e. the value today is the same as the 

difference between today’s and yesterday’s values). It should be noted here that in this 

way;       0|||
*  tttttttt LXLXLXEXEXE .That is, by assuming that 

the innovations ( t ) are martingale differences, then; 

  0|  ttE 
 

It is appropriate   to treat innovations volatility models as martingale differences since 
they do satisfy all the properties of martingales (Chung, 2012; Linton & Mammen, 2003; 
Bollerslev, 1987; Dahl & Levine, 2010). For more information on this argument see Yao 
(1998), and Lu (1999). This assumption will help us prove consistence by using almost 
sure convergence. If we assume that our innovations are dependent, we cannot be able to 
use convergence in probability since this needs the i.i.d assumption. However, if we 
assume that the innovations are martingale differences, then we will be able to show 
almost sure convergence under dependent innovations which will ultimately help us 
prove convergence in probability (Rao, 1973; Stout, 1974). 

 
Another importance of this assumption is that it will help us show asymptotic normality 
in the face of dependent innovations. Normally, practitioners use the Linder-berg central 
limit theorem to show convergence in distribution. However, this theorem requires that 
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the innovations be i.i.d. In our study here, the i.i.d assumption has been relaxed which 
means we cannot be able to use the cerebrated Linde-berg central limit theorem. Luckily 
though, if we assume that our innovations are martingales we can be able to use the 
martingale central limit theorem8 to show normality in the face of dependent innovations 
(Buhlman & McNeil, 2000). 
 

3.2.2.2 Assumption two (A2): Differentiability and continuity 

  abledifferenti and continousboth  are functions likelihood  theand ,,  tx xf
t

  

 

3.2.2.3 Assumption three (A3): Conditional Variance positivity 

10;10;0    

This assumption ensures the positivity of both conditional and unconditional variances. 
 

3.2.2.4 Assumption four (A4): Parameter identification 
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This assumption is simply saying that all parameters in GARCH (1, 1) model are 
identified (i.e. they can be uniquely estimated). 
 

3.2.2.5 Assumption five (A5): Existence of the moments of innovations 

   



 SzEtsS t

2,., ,0 someFor 
 

This assumption is simply saying that all moments (i.e. the mean, the variance etc.) of the 
innovations do exist. 
 

3.2.2.6 Assumption six (A6): ergodicity and distribution of innovations 

tz are ergodic process that belong to a probability law that belongs to the generalized 

error distribution 

This is a relaxation of the normality assumption that is generally used in parametric 
approaches to volatility modelling. 

 

 

3.2.2.7 Assumption seven (A7): Uniform boundness of the likelihood   
  function 

  )1(, Oxf t   

                                                           
8Check Appendix C for more details on martingale central limit theorem. 
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This means that   ,txf   is bounded uniformly. This ensures that our likelihood 

function is bounded as well. The boundness of the likelihood function is important in 
establishing estimator consistency. 
 
3.3 The Quasi Maximum Likelihood Function 

For us to be able to derive the QMLE we need a likelihood function, the Quasi Maximum 
Likelihood Function (QMLF, here-in-after). However, since we have both the observed 
and unobserved models, we will also have observed and unobserved likelihood functions. 
We will firstly provide the unobserved likelihood function after which we will provide 
the observed likelihood. These likelihood functions have been derived in this paper using 
the standard steps9 of deriving likelihood functions. As such the spirit (i.e the steps) in the 
derivation process may be similar the spirit of derivations in other similar theoretical 
papers(e.g. Ross,2004; Possedel,2005; Chung,2012).Under parametric approach we 
would use the normal distribution function to derive the likelihood function. However, 
since in this paper we are assuming a generalised error distribution, we will use the 
generalised error distribution instead. 

 

Assume that     ,,;,....,,
2121

,...,, Ttyyyf ttttYYY T
Tt

tt
 is our probability model that 

postulate a plausible form of the joint distribution,  ;,....,,
2121

,...,, T
Tt

tt tttYYY yyyf of random 

variables associated with T observations,  the vector of unknown parameters to be 
estimated, the parametric space and  the parametric density functions. If we were 
maintaining the i.i.d assumption the joint density function would be presented as, 

   



T

t
tYtttYYY yfyyyf

tTTttt

1
,...,, ,;,....,,

2121
  

Where  ,iY yf
i

 represent the marginal densities. In this study we are assuming that the 

probability distribution of innovations (and henceY ) falls in a generalised error 
distribution. Given this assumption, the marginal density function is presented as (see 
Holly &Montifort, 2010; Nielsen, 1978; McCullagh, 1994): 
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This means that the joint density function could be presented as: 

   
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
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t
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9  See (Cameron & Trivedi, 2005) for the steps. 
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However, the i.i.d assumption has been relaxed in this analysis. It is therefore not 
possible to break the joint density function into the same simple form as above. 
Nevertheless, due to the intrinsic order of temporal data and the fact that the innovations 
have been assumed to be martingale differences, the joint density function can be written 
as the product of conditional densities, that is; 
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This implies that the joint density function,    1,...,, ,;;,....,,
2121

 tttttYYY yFyyyf
T

Tt
tt

 , 

will be : 

   





T

t
tttYYYtttYYY ttTtttTTttt

yyyfyyyf
1

,.....,|,...,, ;,.......,|;,....,,
12212121
  

      
 

,
5.0exp2

1
11

1

1













 









v

t

ttv
T

t

xfy
vv





 

 

It should be noted that even though this joint density seems the same as the one under 

i.i.d,they are technically different.This is because this  joint density function is a product 

of conditional densities and not just unconditional densities as it would have been under 

i.i.dassumption.But the joint density function is always the same as the likelihood 

function, denoted 

   1,...,, ,|,....,,;
2121

 tttttYYY yLyyyL
T
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  in this study. That is;
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Where  tl =  ;,....,,
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,...,, T
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tt tttYYY yyyl  denotes log likelihood function for a single 

observation. We will be using  tl and  ;,....,,
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,...,, T
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tt tttYYY yyyl
interchangeably in 

this study. 
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The observed log-likelihood,  TL0  , is derived analogously; 
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Where, just like before,  tl0 =
 
 ;,....,,

2121 0
,...,, T

Tt
tt tttYYY yyyl  denotes the likelihood 

function for a single observation. 
 
3.4 Lemmas 

In order to achieve our objectives, we will provide and prove lemmas that will enable us 
achieve the objectives. In this section we will mainly provide these lemmas and prove 
them.It must be emphasized here that most of these lemmas are standard10 lemmas that 
practitioners in econometrics use to establish consistency and normality. As such most if 
not all these lemmas can be found in many theoretical econometrics papers in the 
literature (e.g. (Buhlman & McNeil, 2000);(Engle & Gonzale-Rivera, 
October,1991);(Holly & Montifort, 2010);(Rossi, 2004);(Posedel, 2005)).The spirit of 
proving these lemmas is almost the same in these paper with the only difference being 
that different papers use different probability laws and assumptions. In this paper, a 
generalised error distribution has been used. As such the paper has entirely proved these 
lemmas using the generalised error probability law in the same spirit. That is to say, the 
only difference here is that we will be proving these lemmas under the assumptions of 
non-i.i.d and the generalised error distribution of the innovations. To achieve our 
objectives, we prove the following standard lemmas (see Kouassi, 2015; Choi, 2004; 
Chung, 2012; Hansen & Lunde, 2001; Holly & Montifort, 2010; Engle R, 1982; 
Bollerslev T, 1986; Rossi, 2004; Buhlman & McNeil, 2000). 
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Remark: The following lemma technically implies that the observed likelihood function 
which is not stationary is asymptotically approximated by the unobserved likelihood 
function such that we can ignore the differences that may exist between the observed and 
the unobserved likelihood functions. This lemma, just like all the other lemmas below 
have been proved in most parametric papers (for example; Choi, 2004; Chung, 2012; 
Holly & Montifort, 2010) using normal distribution assumption. In this paper, we are 
proving it in the context of generalised error probability law. As mentioned in Kouassi 
(2015), this lemma may not necessarily be directly involved in proving neither 
consistency nor asymptotic normality, but it justifies the use of unobserved likelihood 
function over observed likelihood function in the other lemmas. 

Proof: Technically for us to prove this lemma we just have to show that  
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Using the notation used in this study, the above expression can also be written as; 
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The unobserved single observation likelihood function is given as; 
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Likewise, observed single observation likelihood function is given as; 
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 are finite, we 

can apply markov inequality. According to markov inequality (see Hansen B. C, 2006): 

let  z   be a random variable with "finite" pth moment. Then, 
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This means that;
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Alternatively, we can use the other definitions of conditional variances outlined above, to 
prove the same lemma. According to equations (3.03); 
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can apply markov inequality. According to markov inequality (see Hansen B. C, 2006): 
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This means that;
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Where SEM~ is the semi-parametric GARCH (1, 1) estimator. That is, the estimator is a 

vector of estimators   SEMSEMSEMSEMSEM  ~~~~~
 that maximise the unobserved 

likelihood function. 

 

 3.4.2 Lemma two 

  ergodic. and stationarystrictly  are sderivative their and , Processes The  tt l

 

Remark: Before we present the proof let's review the concepts of strict stationarity and 

ergodicity. A process Yt , is covariance stationary if   tYE   and     kYY ktt ,cov   are 

time-invariant (see Hansen B. C, 2006). A process   Yt   is strictly stationary if the joint 

distribution of   ttt YYY ,...,,   is independent of time. A stationary time series is said to be 

ergodic if    sak .,0  ,as  k  .This loosely means that, ergodicity imply that 

statistical properties of a series can be deduced from a single, sufficiently long, random 
sample of a process. As shown in Hansen B. C (2006), if   Yt   is strictly stationary and 

ergodic then    YtfXt    is also strictly ergodic and stationary and if  XtE   then as  

T ,   XtEX t

T

t
T 

1

1  ,a.s. The necessity of this lemma is therefore that it will help 

us apply the strict law of large numbers on expressions that are functions of  t ,for 
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example the likelihood function. If we can be able to apply the strong law of large 
numbers then we can be able to show almost sure convergence11 which ultimately implies 
convergence in probability (Chung, 2012; Rao, 1973). Therefore, this lemma is very 
important. 

 

Proof: To prove this lemma we just have to show that  t   and its derivatives are 

functions of  z   or   .From assumption six  z   is strictly stationary and ergodic. Since    
is a function of  z  , it therefore means that ε is also strictly stationary and ergodic. 
Technically any function of    or  z   will also be strictly stationary and ergodic. That is 

why all we need to show is that     and its derivatives are functions of    or  z   to prove 
that they are strictly stationary and ergodic. 
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11Check Appendix B for more information on basics of statistical convergence. 
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Without loss of generality, it can be seen that even the second derivatives will be 

functions of  t   process. Therefore, process  2
t   and its derivatives are measurable 

functions of an ergodic process ( t  ), and so they are also ergodic. Similarly for   ,tl  
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This implies that the log-likelihood function is a function of anergodic process.This 

means that the likelihood function itself is ergodic. 
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Just like the log-likelihood function, its first derivative here is also  a function of an 

ergodic process. This means that it itself is ergodic as well. 
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Without loss of generality, this also implies that the second derivative of the likelihood 
function is also ergodic by virtue of being a function of an ergodic process.
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This implies that    and its derivatives are functions of    and/or  z   proving that they 
are strictly stationary and ergodic. The above lemma implies that, 

    ,;,....,,;,....,,
21212121

,...,,,...,,

1

1 
TTtttTTttt tttYYYtttYYY

T

t
T yyylEyyyl 



 

      ;,....,,,&;,....,,
21212121

,...,,
2

,...,, T
Tt

ttT
Tt

tt tttYYYtttYYY yyylEyyylE  

So we will treat these as our next lemmas. 

 3.4.3 Lemma three 
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Remark: This is to say that our criterion to maximize the likelihood function converges in 
probability to a non-stochastic function    ;,....,,
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condition for the convergence of QMLE. 
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Since almost sure convergence imply convergence in probability ( Rao, 1973), then 
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For formality sake, let's show indeed that      ttttYYY fyyylE
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can apply the strong law of large numbers (SLL). That is;. 
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It must be mentioned here that without A1, A6, and lemma 2 above, we could not be able 
to show this lemma. We have derived convergence in probability of the likelihood 
function to its expected value through almost sure convergence which mainly depends on 
the assumptions of strict stationarity, ergodicity and martingales. This lemma will be 
heavily used in theorem 1 below when we will be showing consistency of the estimator. 
 

3.4.4 Lemma four 
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Remark: What this lemma is saying is that the absolute score function together with its 
derivatives is bounded. This is a sufficient condition for convergence of QMLE (Hood & 
Koopman, 1953). 
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By assumption seven and assumption two it implies that; 
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Again by assumption seven;  
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,...,, T
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tt tttYYY yyyl
E  

Without loss of generality we can do the same for all the other parameters and indeed for 
the second derivatives. 
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Lemma 3 and lemma 4 are necessary and sufficient conditions for the convergence of 
QMLE respectively. 

 

 3.4.5 Lemma five 
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Remark: What this lemma is saying is that, we can analyse the asymptotic behaviour of 
the likelihood function by simply analysing the behaviour of the right hand side of lemma 
5 above. 
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Proof: According to the mean value theorem, Let  kf R:   be defined on an open convex 
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is differentiable in the interval   SEM ~
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This proves that; 
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This technically implies that the asymptotic normality of  SEM~   is determined by the 

RHS of lemma 5; 
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3.4.6 Lemma six 
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Remark: This Lemma is saying that   
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2   obeys the weak uniform law of large 

numbers 
Proof: Before we prove this; let us review some concepts in asymptotic theory that will 
be necessary in this section. Now, we say that   ;tt ZTq   obeys strong uniform law of large 

numbers, SULLN if; 
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On the other hand,   ;tt ZTq   is said to obey WULLN if the convergence condition above 

holds in probability. That is;      0
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But according to lemma two,        t
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Let's now look at (ii), Lipchitz continuity. A function  f   from  nS R   is Lipchitz 

continuous at  Sx   if there is a constant  C   such that (see Posedel, 2005); 

    saxyCxfyf .,
 

For any  Sy   sufficiently near,  C   is a random variable bounded almost surely and  .   

is the Euclidean norm 



51 

 

    



   Cll t

T

t

t

T

t

2

0

2

0

 that show  want to weHere  

For any  f  , real valued function, defined and differentiable on the interval RI .If  f   is 

bounded on  I  , then f is a Lipchitz function on  I  .So, any differentiable function is 
Lipchitz. One of our assumptions is that the likelihood function is differentiable. This 
means therefore that   TL   is Lipchitz. 
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3.4.7 Lemma seven 
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Proof: From lemma 6 above, 
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Multiplying through by T ; 
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This technically implies that the asymptotic distribution of   0

~  SEMT   is determined 

by the asymptotic distribution of the normalized score;  0
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4. THEORETICAL RESULTS AND DISCUSSION 
 

4.1 Introduction 

In this section we present the main results of our analysis. Given the assumptions and the 
lemmas above, we show in this chapter we derive the semi-parametric GARCH (1, 1) 
estimator and then prove that it is not only consistent but also asymptotically normal. We 
present these results in the following result and theorems. 
 
Before proceeding any further, it is worth mentioning here that most techniques used in 
the following proofs are standard when proving consistency and asymptotic normality of 
a vector of parameters given that the innovations are being allowed to be serially 
dependent12.One may use/may have used the same techniques with a different probability 
law (say the normal distribution, the student t distribution, the gamma distribution among 
others) and/or with a different volatility models(e.g. the ARCH(2) model, the Exponential 
GARCH(1,2) etc) altogether (see Posedel, 2005; Holly & Montifort, 2010). This paper 
has entirely proved the following theorems using the generalised error distribution in the 
realm of GARCH (1, 1) volatility model given that the innovations are being allowed 

                                                           
12 Check Posedel( 2005) for more information. 
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to be serially independent. Where specific ideas have been taken from 
someone/somewhere, relevant referencing has accordingly been made. 
 
4.2 The semi-parametric GARCH (1, 1) estimator 

This paper is trying to derive the semi parametric GARCH (1, 1) estimator using quasi-
maximum likelihood estimation technique. From equation (2.19) in section 2.2 of chapter 
two, it was noted that in the spirit of Kullback-Leiber Information Criterion (KLIC) the 

quasi-maximum likelihood estimator, QMLE̂ , is given as shown in equation (4.01) 

below(everything as defined in section 2.2 above); 
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       (4.01) 

It can be noted here that equation (4.01) implies that the quasi-maximum likelihood 

estimator is the one that minimises the KLIC. But, minimising the KLIC is the same as 

maximising the unobserved function. 

 

Therefore, using lemma 1, the semi parametric GARCH (1, 1) estimator, SEM~ is the one 

that maximises the unobserved likelihood function as given in equation (4.02). That is,
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So the semi-parametric GARCH (1, 1) under serially dependent innovations is given as; 
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4.3 Theorem One 
Given the above assumptions and lemmas, 

 1~
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~
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Remark: This theorem is saying that, given all the assumptions outlined above and all the 
lemmas proved above, the estimator is consistent. In other words, the estimator converges 
almost surely to the true population parameter as we increase the sample size indefinitely. 
 
Proof: Before we prove this, let's look at some basic mathematical concepts necessary in 
this section. An adherent point (also known as closure point or point of closure or contact 

point) of subset  A   of a topological space  X  , is a point  x   in  X   such that every open 

set containing  x   contains at least one point of  A (Hansen, 2004).Any compact set has 
an adherent point (Stout, 1974; Hansen, 2006) Now consider the finite series of our 

estimator   SEM~   defined on    . Since     is compact by assumption, there exists an 

adherent point. Let this adherent point be    T0  . There exists a sub-sequence of 

estimators    SEM
~
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0    where   SEM   is an increasing 

injective function. From lemma 1 above, we can see that; 
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4.4 Theorem Two 

Given the above assumptions and lemmas, 
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Remark: This theorem is saying that, given all the assumptions outlined above and all the 
lemmas proved above, the estimator is asymptotically normal. In other words, the 
estimator converges in distribution to the normal distribution as we increase the sample 
size indefinitely. 
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4.5 Chapter summary 

In this chapter, we have shown that the semi-parametric GARCH (1, 1) estimator is 
consistent. This means that as the sample size increases indefinitely the estimator 
converges to the true population parameter. It should be noticed here that the estimator 
has been found to converge almost surely to the true population parameter. What this 
means is that, as we increase the sample size indefinitely the estimator hits the true 
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population parameter i.e. approaches the true population parameter with 100 percent 
probability. This is a very powerful result for it means that with a large sample at hand 
one is assured that the estimator they get is the same as the true population parameter. 
 
We have also proved in this study that the semi-parametric GARCH (1, 1) estimator is 
asymptotically normal. This means that as one increases the sample size indefinitely the 
estimator converges, in distribution, to the normal distribution. This implies that with 
large sample size, the usual statistical inferences can be done on the estimator. It should 
also be mentioned here that the estimator has been found to have convergence rate that is 

the same as the parametric convergence rate, T .This is a very powerful result for it 
means the derived semi-parametric GARCH (1, 1) estimator converges at a highest speed 
possible. We have been able to derive an estimator that has a very high convergence 
speed using a flexible approach under serially dependent innovations
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5. CONCLUSIONS AND THEORETICAL IMPLICATIONS 
 

5.1 Summary 

The main objective in this paper was to derive a semi-parametric GARCH (1, 1) 
estimator, under realistic assumptions that are in line with financial data empirical 
regularities. Specifically, the study aimed at proving that the derived semi-parametric 
GARCH (1, 1) estimator is not only consistent but also asymptotically normally 
distributed. To avoid running a risk of getting inconsistent estimators the study assumed 
that the innovations are serially dependent and have a probability distribution that 
belongs to the generalised error distribution. However, the assumption that the 
innovations are serially dependent brought three technical problems. 
 
Firstly, we could not split the joint probability distribution into a product of marginal 
distributions as is normally done. The paper got around this problem, however, by 
splitting the joint distribution into a product of conditional probability densities. This was 
possible since the innovations were assumed to be martingale differences. Having done 
this, we applied the quasi-maximum likelihood estimation technique to derive the 
estimator.  

Secondly, we could not use the cerebrated weak law of large numbers to prove 
consistency of the derived estimator. This is because the weak law of large numbers 
works on assumption that the innovations are independent, an assumption that this study 
relaxed. Luckily though, we were able to prove consistency by using the strong law of 
large numbers since it does not require the i.i.d assumption. Since strong convergence 
implies weak convergence, we were then able to show that the derived estimator 
converges in probability to the true parameter. It should be emphasized again here that 
the estimator has been found to converge almost surely to the true population parameter. 
What this means is that, as we explained above, as we increase the sample size 
indefinitely the estimator hits the true population parameter i.e. approaches the true 
population parameter with 100 percent probability. This is a very powerful result for it 
means that with a large sample at hand one is assured that the estimator they get is the 
same as the true population parameter. 
 
Thirdly, we could not apply the cerebrated Linde-berg central limit theorem to prove that 
the derived semi-parametric GARCH (1, 1) estimator is asymptotically normally 
distributed. This was because the Linde-berg central limit theorem works on the 
assumption that the innovations are independent, an assumption that this study relaxed. 
However, we managed to show that the derived estimator is asymptotically normal by 
using the martingale central limit theorem which does not require the innovations to be 
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independent. Use of the martingale central limit theorem was possible since the 
innovations in this study were assumed to be martingale differences. 
 
In a nutshell, the study has derived the semi-parametric GARCH (1, 1) estimator under 
serially dependent innovations using the quasi-maximum likelihood estimation technique. 
The derived estimator has then been shown to have nice asymptotic properties i.e. 
consistency and asymptotic normality. 
 
5.2 Implications 

It can be noticed here that the estimator we have derived here is better than the parametric 
estimator of GARCH (1, 1). This is because, despite both having the same (the highest) 

convergence rate of T , the semi parametric GARCH (1, 1) estimator here has been 
derived based on realistic assumptions (i.e. non normal and serially dependent 
innovations) of the behaviour of time series financial data. Similarly it can be seen that 
the estimator derived in this study is better than the non-parametric GARCH (1, 1) 
estimators that have so far been proposed in literature. This is because the semi 

parametric estimator here has a higher convergence rate, T , compared to the 

convergence rate of non-parametric GARCH (1,1) estimators proposed in literature, 5

1

T
.In the same vein, the semi parametric estimator derived in this study is also better than 
the semi parametric GARCH (1,1) estimators already proposed in the literature. This is 
simply because, the estimator in this study has been derived under realistic assumptions 
of time series financial data than the existing semi parametric GARCH (1, 1) estimators 
that have been proposed so far, as we stated in the problem statement above. The study 
therefore offers an estimator that is not only realistic (i.e. based on assumptions that are 
in line with empirical financial data regularities) but also an estimator that has nice 
asymptotic properties (i.e. consistency(almost sure convergence) and asymptotic 

normality with the higher possible convergence rate, T ).The GARCH(1,1) estimator 
derived in this study therefore seems to be the theoretically best estimator in the class of 
existing estimators in the literature. 
 
5.3 Suggestions for further studies 

Just like any study, there is possibility of extending this study. Specifically, further 
studies could focus on testing the efficiency of the semi-parametric GARCH (1, 1) 
estimator that has been proposed in this study. This could be done by checking whether 
the variance of the semi-parametric GARCH (1, 1) estimator proposed in this study 
achieves its Cramer-Rao lower bound. Further research can also focus on empirical 
performance of the proposed estimator. This could be done by using Monte Carlo 
simulations and/or applying the estimator to real financial data and then comparing its 
performance to the parametric and non-parametric counterparts on the basis of mean 
square errors (MSE).Lastly; further research can focus on finding the implications of 
relaxing the assumptions made in this study. The results of this study are good as claimed 
in this study as long as the assumptions made in this study (e.g. the ergodicity 
assumption, the martingale difference innovations assumptions among others) hold. But a 
question still remains as to what happens if one/more of these assumptions are not 
holding. For instance, one would try to examine what would happen if the innovations 
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happen to have a probability law that is not in the generalized error distribution family or 
indeed what happens if the innovations are not ergodic. 
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