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Abstract 

 

Recently, volatility modeling has been a very active and extensive research area in empirical finance 

and time series econometrics for both academics and practitioners. GARCH models have been the 

most widely used in this regard. However, GARCH models have been found to have serious 

limitations empirically among which includes, but not limited to; failure to take into account 

leverage effect in financial asset returns. As such so many models have been proposed in trying to 

solve the limitations of the leverage effect in GARCH models two of which are the EGARCH and the 

TARCH models. The EGARCH model is the most highly used model. It however has its limitations 

which include, but not limited to; stability conditions in general and existence of unconditional 

moments in particular depend on the conditional density,  failure to capture leverage effect when the 

parameters are of the same signs, assuming independence of the innovations, lack of asymptotic 

theory for its estimators et cetera. This paper therefore is geared at extending/improving on the 

EGARCH model by taking into account the said empirical limitations. The main objective of this 

paper therefore is to develop a volatility model that solves the problems faced by the exponential 

GARCH model. Using the Quasi-maximum likelihood estimation technique coupled with martingale 

techniques, while relaxing the independence assumption of the innovations; the paper has shown 

that the proposed asymmetric volatility model not only provides strongly consistent estimators but 

also provides asymptotically efficient estimators.  
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1. Introduction 

 

1.1 The ARCH and GARCH models 

A uni-variate ARCH model based on Engle (1982) is given by set equations given below;  

 

 

 

 

According to Nelson (1991) the most widely used specification for  

t
2


2
t1 ,t2 , . . . . . . . . , t,x,  are the linear ARCH and GARCH models introduced by Engle 

(1982) and Bollerslev (1986) respectively; 
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where  ,j,i   are non-negative. According to Nelson (1991) and Rossi (2004), substituting 

recursively for the 
2

iti   terms imply that the GARCH model can be written as; 
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According to Nelson(1991); by setting conditional variance equal to a constant plus a weighted 

average residuals, GARCH models elegantly capture the volatility clustering in asset returns first 

noted by Mandelbrot(1963);...large changes tend to be followed by large changes of either sign and 

small changes by small changes. This is one of the most important features of GARCH models that 

have made it very attractive in the empirical literature. 
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1.2 Limitations of the GARCH models 

However there are limitations of GARCH models that have been noticed in literature, ably 

summarized by Nelson (1991); 

i. Stock returns are negatively correlated with changes in volatility e.g. either volatility leads 

to rise in response to "bad news"(excess returns lower than expected) and to fall in response 

to "good news"(excess returns higher than expected). GARCH models, however, assume that 

only the magnitude and not the positivity or negativity of unanticipated excess returns 

determines volatility  

ii. Non negativity constraints on parameters. These constraints imply that increasing  zt   in 

any period increases volatility ruling out random oscillatory behavior in the volatility 

process. 

iii. Persistence; in GARCH models, shocks may persist in one norm and die out in another, so 

the conditional moments of GARCH may explode even when the process is strictly stationary 

and ergodic. 

 

1.3 Models with improvements on GARCH limitations 

Due to the empirical limitations faced by GARCH models outlined above, so many models have since 

been proposed in the literature. Here we review a few of them. As noted above there is a long 

tradition in finance stock return volatility are negatively correlated with stock returns. The 

explanation for this phenomenon is based on leverage. A drop in the value of the stock (negative 

return) increases financial leverage, which makes the stock riskier and increases its volatility. The 

news has asymmetric effects on volatility. In the asymmetric volatility models good news and bad 

news have different predictability for future volatility. As noted, the GARCH models do not capture 

the leverage effect. It should therefore be pointed out here that most of the models that have been 

proposed in the literature try to improve on this failure of the GARCH models apart from improving 

on the non-negativity restrictions of the GARCH models. 

 

1.3.1 THE Exponential GARCH model 

The Exponential GARCH introduced by Nelson (1991) is the most popular of the models that have 

proposed improvements on the limitations of the GARCH model outlined above. To deal with the 

non-negativity issue the model took natural log of the volatility. This technically means that 

whatever the values assumed by the parameters the implied volatility can never be negative. On top 

of that, in dealing with the asymmetric relation between stock returns, he made the  gzt  sum of  

z
t   and  |zt Ezt|   such that the E-GARCH model proposed was; 
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This, according to Rossi (2004), can be written as; 
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The model, therefore, proposed by Nelson (1991) was; 
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It should be clear from here that over  0 zt    gzt  and  zt 0    

  . 
tzg   This confirms that the E-GARCH model solves the asymmetric issue not solved by 

the traditional GARCH model. It should be pointed out here that by introducing the log the E-

GARCH model solves the persistence issue since  lnt
2
  was proved (see Nelson (1991)) to be 

strictly stationary and ergodic. In fact in EGARCH (p, q) model  2ln t   is a linear process, and its 

stationarity (covariance or strict) and ergodicity are easily checked. Given that 0  or 0 , then 

   *2ln  t a.s when 


1

2

k

k  follows from the independence and finite variance of the 

 tzg  and from Billingsley (1986, Theorem 22.6). From this we have that 
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 , where ttt z   , tz  is i.i.d., ergodic and 

strictly stationary. For all t E    0ln *2  t and      
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  tzgVar  is finite and the distribution of   *2ln  t  is independent of t, the first two moments 
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of   *2ln  t  are finite and time invariant, so   *2ln  t  is covariance stationary if 
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k then     *2ln  t , almost surely. 

In essence, therefore, an EGARCH model does a very good job of trying to solve limitations (1)-(3) 

outlined above. To be more specific, there are four interesting features to notice about the EGARCH 

model: 

i. The equation for the conditional variance is in log-linear form. Regardless of the magnitude 

of  2ln t , the implied value of 
2

t  can never be negative. Hence, it is permissible for the 

coefficients to be negative. 

ii. Instead of using the value of 1t , the EGARCH model uses the level of standardized value of 

1t  [i.e., 1t  divided by t ]. Nelson argues that this standardization allows for a more 

natural interpretation of the size and persistence of shocks. After all, the standardized value 

of 1t  is a unit-free measure 

iii. The E-GARCH model solves the asymmetric issue not solved by the traditional GARCH 

model. It should be clear from here that over  0 zt ; gzt  and  

zt 0  ;   . 
tzg This confirms that negative shocks have different impacts on 

volatility of asset returns compared to positive shocks of the same magnitude. 

iv. Persistence; it has been pointed out above that by introducing the log, the E-GARCH model 

solves the persistence issue since the conditional moments of  2ln t  are finite and do not 

explode. 

 

 

1.3.1.1 Limitations of the Nelson’s E-GARCH 

Despite the nice properties of the E-GARCH model over and above the traditional GARCH models, 

the following limitations can be directed at it 

i. In contrast with ordinary GARCH models, as ably echoed by Sucarrat and Escribano (2010), 

in exponential GARCH models stability conditions in general and existence of unconditional 

moments in particular depend on the conditional density. Interestingly, for example, the 

Nelson’s EGARCH model is not stable for t-distributed innovations, see Nelson (1991, p.365). 

As explained by Sucarrat and Escribano (2010), this is a serious shortcoming since the t-

distribution is the preferred choice by practitioners among the densities that are more fat-

tailed than the normal density. 
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ii. It does not entirely capture leverage effect. As noted above if  |zt | E|zt |   then  

gzt  and if   |zt | E|zt |   then    . 
tzg   This captures "leverage effect" 

only if  0   since that would mean that that  gzt||zt |E|zt |   will be greater than  

gzt||zt |E|zt |   which is exactly what leverage effect is. But if  0   then obviously   

 
tt zEztzg


 |   will be less than  g


zt||zt |E|zt |   which is the opposite of what leverage effect 

states. This means that the E-GARCH model does not capture leverage effect when the 

parameters are positive. This means that there is need for an all-encompassing model that is 

able to capture leverage effect regardless of the signs of the parameters. 

iii. Use of Maximum Likelihood Estimation(MLE) technique; the MLE proposed by Nelson(1991) 

exposes the estimators derived to high risk of inconsistency in the event that the model is not 

correctly specified. One may recall that the conventional ML method assumes that the 

postulated likelihood function is specified correct, so that specification errors are “assumed 

away.” It is conceivable that specifying a likelihood function, while being more general and 

more flexible than specifying a function for conditional mean, is more likely to result in 

specification errors. And if that happens, the estimators derived are more likely to be 

inconsistent. 

This suggests the need for an estimation technique of the EGARCH model that allows 

possible misspecification of the likelihood function. 

iv. No asymptotic theory for the derived Maximum Likelihood estimates was developed. The 

developed MLE was neither proved for consistency nor proved for asymptotic normality. 

Nelson (1991) acknowledged this by stating that; 

 

"......in the remainder of this paper we assume (as is the usual practice of researchers using 

GARCH models) that the maximum likelihood estimator is consistent and asymptotically 

normal".  

This suggests that there is need for asymptotic theory of the E-GARCH estimators. 

v. The assumption that  zt   is dii .. ; It’s common knowledge currently that innovations in asset 

returns may not be statistically independent .It is also well documented (see Holly, 2010; 

Chung, 2012; Drost & Klassenn, 1996; Engle & Gonzale-Rivera, 1991) that if we assume 

statistical independence of innovations when in fact they are dependent we run high risk of 

misspecifying the likelihood function which then leads to high risk of getting inconsistent 

estimates. Empirical regularities of time series financial returns show that the innovations 

are dependent and not independent. The following characteristics are frequently observed in 
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financial data (see Holly, 2010; Chung, 2012; Drost & Klassenn, 1996; Engle & Gonzale-

Rivera, 1991). The first is volatility clustering. This is where large changes tend to be 

followed by large changes and small changes tend to be followed by small changes. Second is 

that squared returns exhibit serial correlation whereas little or no serial dependence can be 

detected in the return series itself. In addition, financial returns exhibit fading memory i.e., 

distant innovations have little effect on financial returns compared to recent innovations. 

This means that the i.i.d assumption is not correct when it comes to financial time series. 

That being said, one may wonder as to what exactly is the problem with continuing with the 

statistical independence assumption when in fact the innovations are statistically dependent. 

The statistical independence assumption is very critical when the volatility function is 

allowed to be time dependent. This is because it ensures that the parameters entering the 

conditional mean function are time-independent (Dahl & Levine, 2010). Dahl and Levine 

(2010) argued that if the conditional mean function is estimated assuming time invariant 

parameters, when they are time variant, its estimators will be inconsistent and the effect of 

this misspecification will carry over into the volatility estimation. Technically, what we are 

saying here is that the statistical independence assumption (within the i.i.d assumption) is 

not appropriate in time series financial data. If we continue making it, when in fact the 

innovations are statistically dependent, we are bound to get inconsistent estimators. 

Therefore by making the  i. i.d   assumption, the E-GARCH estimates are at a high risk of 

being inconsistent. This means that there is a need to relax the independence assumption 

(within the i.i.d assumption) in E-GARCH model. 

 

1.3.2 THE THRESHOLD GARCH (TARCH) MODEL 

Glosten et al (1994) showed how to allow the effects of good and bad news to have different effects on 

volatility Enders (2004). They considered the threshold-GARCH (TARCH) process; 

(4)                   
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One clearly notices that the intuition behind the TARCH model is that positive values of it  are 

associated with a zero value of itd  . Hence, if 0it , the effect of an it  shock on 
2

t  is  j . 

When 0it , and the effect of an it  shock on 
2

t  is  ij   . If 
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0i , negative shocks will have larger effects on volatility than positive shocks. One of the 

advantages of the TARCH model therefore is that it captures leverage effect. However, one notices 

that the following criticisms can be directed at the T-GARCH model; 

i. It still places the non-negativity constraints on the parameters, just like the GARCH 

ii. It assumes that the innovations are independent. As ably explained above, this is a serious 

problem. 

 

1.3.3 The GJR-GARCH Model 

The GJR-GARCH (p, q) model is another asymmetric GARCH model proposed by Glosten et al 

(1993). The generalized form of the GJRGARCH (p, q) model is given in the following form: 

(5)                              
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Obviously this model has almost the same properties as the TARCH model explained above. 

 

 

It should be mentioned here that the EGARCH is the most highly used among the asymmetric 

volatility models in the literature due to its desirable properties. However, from the limitations of 

the Exponential Model, four gaps are clear;  

 

i. There is a need to extend the traditional E-GARCH model so that it captures leverage effect 

regardless of the signs of the parameters 

ii. There is need for an estimation technique of the E-GARCH model that allows possible 

misspecification of the likelihood function; 

iii. There is need to develop an estimation mechanism of the E-GARCH model that relaxes the 

serial independence assumption;  

iv. There is a need to develop an asymptotic theory for the estimators of the E-GARCH model.  

 

This paper, therefore, aims at filling these gaps to come up with a relatively better asymmetric 

volatility model than the existing models in the literature. This will be partly done by combining the 

features of the TARCH and the EGARCH models to come up with a new model. We propose a model 

that captures leverage effect while taking into account the fact that the parameters can also be 
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positive and while relaxing the serial independence assumption. We also propose quasi-maximum 

likelihood estimation technique in estimating the proposed model. We then show that the derived 

quasi-maximum likelihood estimator is not only consistent but also efficient 

. 

1.5 Objectives of the study 

The main objective of this paper is to develop a volatility model that solves the problems faced by the 

exponential GARCH model. Specifically the following objectives shall be pursued; 

i. Showing that the QMLE of the proposed E-GARCH model is consistent 

ii. Showing that the QMLE of the proposed E-GARCH model is asymptotically efficient 
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2. The proposed exponential GARCH model 

2.1 The Model 

We therefore assume the following observed model 

(6)       
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Along with Kouassi et al (2017) and Lee and Hansen (1994), one also considers the conditional 

variance when infinite past values of observations are available;  

(7)        

 

   

     

         





























 

 0I.&,  

,,,,........,,ln

1 ,0

..~

,,

t

1

21

22

zLIzgzEzzIzg

zgxt

zVarzE

ddiz

zxyy

tttttttt

ktk

k

ttt

tt

t

tttttt







 

 

Which includes the unknown parameters as well as the true disturbances but over an infinitely long 

period; 
2

0t  and 
2

t  are called observed and unobserved conditional variance processes, respectively. 

One notices here that we have taken natural log of the volatility, just like in the EGARCH model, to 

avoid imposing non-negativity restriction on the parameters. We have also introduced the dummy 

variable, just like in TARCH model, to take care of the leverage effect. So, in essence we have built 

this model by combining ideas from the EGARCH and the TARCH models. However, unlike both the 

TARCH and the EGARCH models, we are making an assumption here that the innovations are 

identically and dependently distributed (i.d.d) and not identically and independently distributed 

(i.i.d) (i.e. ddizt ..~ ). 

 

 

2.2 Assumptions 

This section outlines some of the assumptions made in this analysis. They include both the 

regularity assumptions (i.e. standard assumptions) that are necessary for identifiability, stationarity 

etc and some additional assumptions necessary for our analysis. To achieve the objectives, we make 

(following Kouassi et al, 2017; Choi, 2004; Chung, 2012; Posedel, 2005 and Hansen, 2006) the 

following assumptions: 
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Assumption one (A1): The innovations are martingale differences 

This is one of very important assumptions in this analysis. Assuming that our innovations are 

dependent, we cannot be able to use convergence in probability since this needs the i.i.d assumption. 

However, if we assume that the innovations are martingale differences, then we will be able to show 

almost sure convergence under dependent innovations which will ultimately help us prove 

convergence in probability (Rao, 1973; Stout, 1974).
 

Assumption two (A2): Differentiability and continuity 

  abledifferenti and continousboth  are functions likelihood  theand ,,  tx xy
t

  

This assumption ensures the positivity of both conditional and unconditional variances. 

Assumption five (A5): Existence of the moments of innovations 

   




 SzEtsS t

2,., ,0 someFor 
 

This assumption is simply saying that all moments (i.e. the mean, the variance etc.) of the 

innovations do exist. 

Assumption six (A6): ergodicity and distribution of innovations 

tz are ergodic process that belong to a probability law that belongs to the quadratic exponential 

family 

Assumption seven (A7): Uniform boundness of the likelihood function 

  )1(, Oxy t   

This means that   0,txy   is bounded uniformly. This ensures that our likelihood function is 

bounded as well. The boundness of the likelihood function is important in establishing estimator 

consistency. 
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3. Estimation Techniques 

 

3.1 The Quasi Maximum Likelihood Function 

For us to be able to derive the QMLE we need a likelihood function, the Quasi Maximum Likelihood 

Function (QMLF, here-in-after). However, since we have both the observed and unobserved models, 

we will also have observed and unobserved likelihood functions. We will firstly provide the 

unobserved likelihood function after which we will provide the observed likelihood. 
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The observed log-likelihood  TL0  is derived analogously as; 
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3.2 Lemmas 

In order to achieve our objectives, we will provide and prove lemmas that will enable us achieve the 

objectives. In this section we will mainly provide these lemmas and prove them.. To achieve our 

objectives, we prove the following standard lemmas (see Kouassi, 2015; Choi, 2004; Chung, 2012; 

Hansen & Lunde, 2001; Holly & Montifort, 2010; Engle R, 1982; Bollerslev T, 1986; Rossi, 2004; 

Buhlman & McNeil, 2000).  

 

3.2.1 Lemma one 
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The following lemma technically implies that the observed likelihood function which is not 

stationary is asymptotically approximated by the unobserved likelihood function such that we can 
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ignore the differences that may exist between the observed and the unobserved likelihood functions.  

Proof: Check Appendix A1 

3.2.2 Lemma two 

  ergodic. and stationarystrictly  are sderivative their and , Processes The  tt l  

The necessity of this lemma is therefore that it will help us apply the strict law of large numbers on 

expressions that are functions of  t ,for example the likelihood functions. If we can be able to apply 

the strong law of large numbers then we can be able to show almost sure convergence2 which 

ultimately implies convergence in probability (Chung, 2012; Rao, 1973). Therefore, this lemma is 

very important. 

Proof: Check Appendix  

 

A23.2.3 Lemma three 
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This is to say that our criterion to maximize the likelihood function converges in probability to a non-

stochastic function    ;,....,,
2121

,...,, T
Tt

tt tttYYY yyylE  .This is a necessary condition for the convergence 

of QMLE. 

Proof: Check Appendix A3 

             

3.2.4 Lemma four 
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What this lemma is saying is that the absolute score function together with its derivatives is 

bounded. This is a sufficient condition for convergence of QMLE (Hood & Koopman, 1953). 

Proof: Check Appendix A4 

3.2.5 Lemma five 
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2Check Appendix B for more information on basics of statistical convergence. 
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What this lemma is saying is that, we can analyse the asymptotic behavior of the likelihood function 

by simply analyzing the behavior of the right hand side of lemma 5 above. 

Proof: Check Appendix A5 

3.2.6 Lemma six 
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This Lemma is saying that   
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2
  obeys the weak uniform law of large numbers 

Proof: Check Appendix A6 

3.2.7 Lemma seven 
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Proof: Check Appendix A7
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4. Theoretical Results and Discussion 

4.1 Introduction 

In this section we present the main results of our analysis. Given the assumptions and the lemmas 

above, we show in this section how the proposed E-GARCH model achieves the stated objectives. 

 

4.2 The Leverage effect issue 

Given the model;  
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One clearly notices that; for the range           tttttt zgzEzzzgz ,0 , 

for the range       tttt zgzzg,0 . This means that, assuming that the 

parameters are of the same signs; negative shock has a higher impact on volatility than a positive 

shock of the same magnitude which exactly what leverage effect says. This shows that the proposed 

extension of the E-GARCH model captures leverage effect irrespective of the sign of the parameters. 

 

4.3 The estimator 

Having shown that the proposed model is indeed capturing leverage effect, the question then is what 

estimation technique can one use to estimate it?. We propose use of quasi-maximum likelihood 

estimation technique (QMLE, hereafter) as opposed to Maximum Likelihood Estimation technique 

(MLE hereafter) that Nelson (1991) proposed. The QML method is essentially the same as the ML 

method usually seen in statistics and econometrics textbooks. A key difference between these two 

methods is that the former allows for possible misspecification of the likelihood function. It is 

conceivable that specifying a likelihood function, while being more general and more flexible than 

specifying a function for conditional mean, is more likely to result in specification errors. How to 

draw statistical inferences under potential model misspecification is thus a major concern of the 

QML method. By contrast, the conventional ML method assumes that the postulated likelihood 

function is specified correct, so that specification errors are “assumed away.” As such, the results in 

the ML method are just special cases of the QML method. One notices that by using QMLE we are 

reducing the risk of getting inconsistent estimators in the event of wrong likelihood function. It uses 

the Kullback-Leiber Information Criterion. From equation (2.19), it was noted that in the spirit of 
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Kullback-Leiber Information Criterion (KLIC) the quasi-maximum likelihood estimator, QMLÊ , is 

given as shown below; 
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It can be noted here that equation (4.01) implies that the quasi-maximum likelihood estimator is the 

one that minimizes the KLIC. But, minimizing the KLIC is the same as maximizing the unobserved 

function. 

Therefore, using lemma 1, the semi parametric GARCH (1, 1) estimator, 
SEM

~
is the one that 

maximizes the unobserved likelihood function as given in equation (4.02). That is,
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So the semi-parametric E-GARCH under serially dependent quadratic exponential innovations is 

given as; 
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4.3 Theorem one 

Given the above assumptions and lemmas, 

 1
~

.,
~

00 pSEMSEM osa    

This theorem is saying that, given all the assumptions outlined above and all the lemmas proved 

above, the estimator is consistent. In other words, the estimator converges almost surely to the true 

population parameter as we increase the sample size indefinitely. 

 

Proof: Check Appendix B1  

 

4.4 Theorem two 

 

       00

2  TT LTVarLE   
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This equality is called information matrix equality .It is a very useful result in the quasi-maximum 

likelihood theory. This equality shows that when the specification is correct up to certain extent, the 

information matrix    0TLTVar  is the same as the negative of the expected Hessian matrix −

   0

2 TLE   when evaluated at 0  , i.e,    0

2 TLE  +     00 TLTVar . In other words, 

this shows that the QMLE achieves the Cramer-Rao lower bound asymptotically (i.e. the QMLE is 

asymptotically efficient) 

 

Proof: Check Appendix B2 

 

Conclusion 

This paper has proposed an asymmetric volatility model that is improving on the 

limitations of some of the widely used asymmetric volatility models in the 

literature. The paper also proposes an estimation technique one can use in 

estimating the proposed model. Having done that the paper has went ahead to show 

that if one uses the QMLE technique on the proposed model, the derived estimators 

are not only strongly consistent but also asymptotically efficient.  
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APPENDIX A: PROOF OF THE LEMMAS 

Appendix A1: Proof of Lemma 1: Technically for us to prove this lemma we just have to show that  
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Using the notation used in this study, the above expression can also be written as; 
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The unobserved single observation likelihood function is given as; 
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Likewise, observed single observation likelihood function is given as; 
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Appendix A2: Proof of Lemma 2: To prove this lemma we just have to show that  t   and its 

derivatives are functions of  z   or   .From assumption six  z   is strictly stationary and ergodic. Since  

  is a function of  z  , it therefore means that ε is also strictly stationary and ergodic. Technically 

any function of    or  z   will also be strictly stationary and ergodic. That is why all we need to show 

is that  
2

t  and its derivatives are functions of    or  z   to prove that they are strictly stationary and 

ergodic. 
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This shows that  
2

t  , by being a function of  zt  , a strictly stationary and ergodic variable, is ergodic 

and strictly stationary. For the derivatives of  
2

t   with respect to the respective parameters; 
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Without loss of generality, it can be seen that even the second derivatives will be functions of  t   

process. Therefore, process   2

t   and its derivatives are measurable functions of an ergodic process 

( t  ), and so they are also ergodic. Similarly for   ,tl  
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This implies that the log-likelihood function is a function of an ergodic process. This means that the 

likelihood function itself is ergodic. 

   
 

 


























,

,

t

t

tt xy

xy

ll
 

 
     







































 









 t

i

tktk

k

ti

it

yyzgxy
xy

3

1

2

0

exp,,
,




 

 
















,txy
 

        
















 















 bzgzg ktk

k

ktk

k

t 
11

2 expexpexp



26 
 

 tzf
 

Just like the log-likelihood function, its first derivative here is also a function of an ergodic process. 

This means that it itself is ergodic as well. 
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Without loss of generality, this also implies that the second derivative of the likelihood function is 

also ergodic by virtue of being a function of an ergodic process.
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This implies that  t
2   and its derivatives are functions of    and/or  z   proving that they are 

strictly stationary and ergodic. The above lemma implies that, 
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So we will treat these as our next lemmas.   

Appendix A4: Proof of Lemma 3: From lemma two above,      ttttYYY zfyyylE
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applying the strong law of large numbers. By the strong law of large numbers, 
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Since almost sure convergence imply convergence in probability ( Rao, 1973), then 
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since  t   is stationary. This technically means that we can apply the strong law of large numbers 

(SLL). That is;. 
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It must be mentioned here that without A1, A6, and lemma 2 above, we could not be able to show 

this lemma. We have derived convergence in probability of the likelihood function to its expected 
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value through almost sure convergence which mainly depends on the assumptions of strict 

stationarity, ergodicity and martingales. This lemma will be heavily used in theorem 1 below when 

we will be showing consistency of the estimator. 

 

Appendix A4: Proof of Lemma 4: 
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By assumption seven and assumption two it implies that; 

 
      )1(,exp,,

, 1

2

0

Oxyzgxy
xy

t

i

ktk

k

ti

tk





































 


   
 


















 ;,....,,
)1(&)1(

, 2121
,...,,

2 T
Tt

tt tttYYY

t

t
yyyl

EOEO
xy

 

Without loss of generality we can do the same for all the other parameters and indeed for the second 

derivatives. 
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Lemma 3 and lemma 4 are necessary and sufficient conditions for the convergence of QMLE 

respectively.   

 

Appendix A5: Proof of Lemma 5: According to the mean value theorem, Let  
kf R:   be defined 

on an open convex set  
kR   such that f is continuously differentiable on    . Then there exists  
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This proves that; 
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This technically implies that the asymptotic normality of  
SEM

~
  is determined by the RHS of lemma 

5; 
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Appendix A6: Proof of Lemma 6: Before we prove this; let us review some concepts in asymptotic 

theory that will be necessary in this section. Now, we say that   ;tt ZTq   obeys strong uniform law of 

large numbers, SULLN if; 
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Let's now look at (ii), Lipchitz continuity. A function  f   from  
nS R   is Lipchitz continuous at  

Sx   if there is a constant  C   such that (see Posedel, 2005); 
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For any  Sy   sufficiently near,  C   is a random variable bounded almost surely and  .   is the 

Euclidean norm 
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For any  f  , real valued function, defined and differentiable on the interval RI .If  f   is bounded 

on  I  , then f is a Lipchitz function on  I  .So, any differentiable function is Lipchitz. One of our 

assumptions is that the likelihood function is differentiable. This means therefore that   TL   is 

Lipchitz. 
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Indeed   
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  obeys the weak uniform law of large numbers, WULLN. 

 

Appendix A7: Proof of Lemma 7: From lemma 6 above, 
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Using lemma 5; 
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Multiplying through by T ; 
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This technically implies that the asymptotic distribution of   0
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 SEMT   is determined by the 

asymptotic distribution of the normalized score;  0
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APPENDIX B 

PROOF OF THE THEOREMS    

 Appendix B1: Proof of Theorem 1: Before we prove this, let's look at some basic mathematical 

concepts necessary in this section. An adherent point (also known as closure point or point of closure 

or contact point) of subset  A   of a topological space  X  , is a point  x   in  X   such that every open set 

containing  x   contains at least one point of  A (Hansen, 2004).Any compact set has an adherent 

point (Stout, 1974; Hansen, 2006) Now consider the finite series of our estimator   SEM
~

  defined on  

  . Since     is compact by assumption, there exists an adherent point. Let this adherent point be  

  T0  . There exists a sub-sequence of estimators    SEM
~

  such that        saTSEM .,
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where   SEM   is an increasing injective function. From lemma 1 above, we can see that; 
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But we just showed that,        ,.,;;, 00 saylEylE Ttt    and now we have shown that
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But almost sure convergence implies convergence in probability (see Rao, 1973; Stout, 1974). This 

technically implies that; 
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Appendix B2: Proof of Theorem 2:  One recalls from Lemmas six and seven that it is clear that ; 
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This, assuming there is no dynamic misspecification, implies that; 
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This shows that the derived estimator reaches its Cramer-Rao lower bound.      

 

 


