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Abstract

This paper examines the extent to which flood-risk revisions, on their own, can

affect the size of the community and real estate values over time. I compile a new

measure of insured and uninsured losses for 4,147 communities and identify relatively

small flood events that occur in places with different flood history. I show that flood

history determines the extent to which events are anticipated and covered by insur-

ance. Only locations with flood surprises experience declines in population. These

occur in attractive communities with high pre-flood growth where real estate prices do

not compensate for higher flood risk. Flood surprises in communities where housing

prices decrease and compensate for higher risk have stable population.
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1 Introduction

Flooding is a frequent concern across the US since damage to buildings and equipment is

hard to reverse. The US Government maintains a subsidized flood insurance program which

conveys local risk through designated flood zones. Changes in climate, local development,

and outdated prevention can shift risk beyond these zones. As a result, households will

learn about risk through experience and update their expectations. Consistent with this,

Gallagher (2014) shows that insurance take-up jumps significantly after floods. This implies

that historically flood-prone places tend to be insured. In places with low flood history,

destructive events will both increase insurance take-up, as flood risk increases, and reduce

the size of the community. Less destructive events, on the other hand, will increase insurance

take-up but will not change the size of the community; only house values may decline as

documented by Bin and Polasky (2004) and Hallstrom and Smith (2005).

This paper examines the extent to which flood-risk revisions, on their own, can affect

the size of the community and real estate values over time. The effect of a higher risk can

be minimized through insurance. Yet, this raises the cost of living in the community, either

directly by new zoning requirements or by rational choice. Additionally, there are other

costs such as foregone wages and temporary relocation expenses which are not insurable.

Higher risk can, therefore, make a location less attractive compared to other places with

similar characteristics but unchanged flood risk. Durability of houses already in place, as

in Gleaser and Gyourko (2005), ensures that when risk increases, following smaller floods,

population will be stable – house prices will compensate for the insurance cost. However,

in the case of growing communities with new construction, newcomers, who choose among

a set of destinations, may steer away and build somewhere else. Increases in the flood

probability can, therefore, affect the size of the community, especially if it has been an

attractive destination prior to the risk revision.

I evaluate the responses of population and housing after risk revisions related to unusual

but small flooding. Expectations are the main driver since damages are not sufficient to
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affect the house supply or local productivity. I compile a new comprehensive dataset of

insured and uninsured damage for 4,147 communities in 38 states between 2003 and 2013

that allows for consistent comparison. The total number of buildings completely destroyed

in the past 25 years allows me to separate communities with low and high flood history.

Those below the state median are considered low history/high surprise. Restricting flood

surprises to communities with zero prior housing destruction does not change the evidence.

The main results compare the experience of these two community types after floods. Since

productivity or amenity factors can generate very different growth patterns across locations

and can interact with risk revisions, I further divide locations based on their pre-flood growth.

Finally, I examine the regional heterogeneity of the national results, the risk spillover to

neighbors, and the role of local social capital.

The evidence suggests that flood history is related to local perceived flood risk. Locations

with high flood history have a higher footprint in a flood zone, more insurance purchases,

and a higher insurance coverage. They have almost 25% higher insurance payouts after a

flood, even when controlling for total losses. This likely reflects not only the higher number of

people required by the flood zoning to purchase insurance but also the higher perceived risk

in the proximity. It also suggests that flooding occurs mostly within the established flood

zone. Population and house values in these communities are not affected after flooding.

Places with low flood history depend less on insurance – they have less people in a flood

zone, less active policies, and lower total coverage. This suggests that when floods do occur

they are not widely expected and constitute surprises. Smaller payouts after events indicate

that floods occur outside the flood zone or that insurance take-up within the zone is small.

In a simple specification, population in the year following the event declines by 0.3% relative

to a fixed effect and a linear trend. This effect is persistent and also includes a break in the

pre-flood trend, which has a significant long-term impact on population when compounded.

In a specification with additional controls these effects increase substantially: 1.2% drop

on impact and 0.6% drop in pre-flood trend. The population effects are mostly driven by
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attractive communities with positive pre-flood growth. They see a persistent 1.4% dip in

population with a 0.7% decrease in the pre-flood trend. Population is not affected in the

non-growing places. Instead, they see close to a 4% drop in real estate values, with the

biggest effect among higher tier housing, which is likely closer to water. This is consistent

with evidence from Gleaser and Gyourko (2005) where adjustments in house values can limit

population changes. There is no such a compensating decline in the attractive communities

and as a result adjustments occur through population. This is possibly driven by previous

strong demand for new housing and expectations that flood impact is transitory. Regional

evidence strongly suggests that the population decline in attractive communities after a flood

surprise is a general phenomenon across the nation.

All together, the results suggest the following interpretation. Flood surprises drive up-

ward revisions of the underlying probability of a future flood which in turn raises the cost

of living. In locations where demand for housing is low existing structures are sold at a dis-

count that covers the additional cost. This appears to be sufficient to maintain the existing

population trajectory. In location where demand for housing is high structures are not sold

at a discount, possibly due to expectations that the pre-growth will be maintained, which

drives new movers to other destinations.

Climate change will likely cause some significant flood events but, more importantly, it

will also change expected risk across a much wider set of communities. The evidence here

helps understand how risk affects where people live and how much they pay for housing.

Historical flood experience results in the institution of local preventive measures such as

zoning, which requires mandatory insurance coverage. Consequently, additional flooding is

in line with expectations and only generates insurance payouts. Flood surprises, on the

other hand, deviate from expectations and raise flood risk. In the cases when damage is

limited, higher risk does not just force higher insurance purchases, as shown previously

in the literature, it also reduces the total number of people that choose to live there. The

attractiveness of the community determines the ultimate impact of surprises: strong demand
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for new housing means that population is mostly affected; weaker demand implies that

house prices are mostly affected. The evidence in the paper also emphasizes that a general

economic analysis of the impact of natural disasters has to account for changes in perceived

risk, particularly where damages are small.

This paper can be placed within several different literatures. First, it is related to the

broad literature on location choice and the spatial labor market equilibrium (Moretti (2011),

Gleaser and Gyourko (2005), Gleaser and Gottlieb (2009), Diamond (2014)). This paper is

close in spirit to Topel (1986) who also emphasizes the importance of expectations in the

location choice. This literature generally investigates the effect of Bartik-style productivity

shocks across local markets on migration, real estate prices, and wages. The shock I study

affects expectations about the future cost of living but has a minimal effect on local pro-

ductivity since most of the damage is relatively small. Second, the paper is related to the

literature on natural disasters. This literature mostly focuses on the effect of hurricanes at

different geographical levels and measures damage in a variety of ways. The current study

also includes hurricanes since they produce significant flood damage. Strobl (2011) uses wind

speed as a proxy for damage and finds that hurricanes lower county GDP by 0.5% and do not

change total population but affect its composition. Deryugina (2017) uses hurricane paths

and simulation estimates of damage to examine the disaster and non-disaster transfers to

affected communities as well as the effect on demographic and economic variables. She finds

that population is not affected. Both papers utilize county-level data based on estimates

of damage based on hurricane locations. I use community-level losses that are consistently

imputed by federal agencies and do not rely on associations between wind speed/hurricane

path and damage. Importantly, I show how important historical flood experience or flood

preparedness is for how communities are impacted. The papers in this literature emphasize

the effect of total damages, while I focus on locations where there are more uninsured losses.

The response of the real estate market has been studied extensively within this literature.

Bin and Polasky (2004) focus on one county and one hurricane and find price declines within
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the flood plane. Hallstrom and Smith (2005) focus on a different county and show that a

“near miss” hurricane still lowers prices in the flood plane. Murphy and Strobl (2010) find

that coastal cities see increases in house values after hurricanes. My paper provides evidence

based on a considerably larger sample and focuses on overall prices in the community. Third,

this paper is related to the literature on expectation formation and learning after rare events.

It is close to Gallagher (2014) which examines the change in insurance take up after flood

events. The paper concludes that flood events lead to revisions of perceived risk which lead

to higher insurance purchase that is not very persistent. The evidence is complementary to

my findings since it suggests that living in flooded communities becomes more expensive.

The rest of the paper is structured as follows. Section 2 discusses the institutional details

of the flood insurance program and describes how the flood data was compiled. Section 3

presents the main results. Section 4 examines the regional heterogeneity of the main results.

Section 5 includes extensions and robustness and Section 6 concludes the paper.

2 Flooding Dataset and Institutional Details

Flood insurance in the US is administered by the federal government through the National

Flood Insurance Program (NFIP). The program makes insurance available at communities –

cities, towns, townships, counties – that maintain a flood zone map and enforce local building

code. The map delineates Special Flood Hazard Areas (SFHA) with varying degrees of flood

risk. Two general SFHAs are the 100-year and 500-year flood zones where flood is expected

to occur with certainty every 100/500 years respectively. The risk within the 500-year SFHA

is not uniform – areas close to the 100-year zone will have a higher risk of flooding if the

geography is similar. Insurance purchase is mandatory for structures within the 100-year

zone but not required elsewhere. This is important because risk expectations rather than

local regulation will determine the insurance purchase outside of the 100-year zone.

The flooding dataset is based on information from NFIP on insured damage and from
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FEMA/Small Business Administration (SBA) on uninsured damage. The sample includes

38 US states which feature disaster declarations related to flooding. The level of aggregation

is at the community level which includes 4,147 distinct location with median size of 34

thousand people. The insured damage is matched to actual disaster declarations which,

in turn, are associated to uninsured damages. In only 75% of community/year cases total

losses are based on insured and uninsured damage. All together, total damage in the data

has four components: insured individual/business from NFIP; uninsured individual from

FEMA and SBA; uninsured business from SBA; uninsured public from FEMA. In this paper

I focus primarily on total damage. The components are only used to control for events where

most of the damage comes from one of the source. Additional information about the data

is provided in Appendix A2. Finally, I have limited information on total insurance policies

and total coverage for a subset of years in the sample.

Population information comes from the annual US Census estimates for cities and towns.

The geographical detail of this data maps directly into the community level of the flood

damage data. Locations with less than fifteen thousand people are combined with the

county balance areas to make sure that results are not driven by very small settlements.

Real estate information comes from the Zillow service and is available at the zip-code level.

It provides estimates of house values separated into three tiers. These are calculated by

splitting the price distribution of all housing into three parts and reporting the middle point

of each. Any zip-code level information is imputed to the level of the community by using

census-block-based population weight for each zip code. The rest of the information used in

this paper comes from the 2000 US Census data at the block-group level.

The paper identifies floods according to the relative size of the damages. Cases where

more than 0.01% of the total real estate value of the community is destroyed constitute a

flood event while the rest are censored. I focus on a wide spectrum of events because relative

damage is context specific – less destructive floods can have significant impact on perceived

risk if they occur in areas with no flood history. I also replicate the main results in the paper
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using a cut-off of 0.02% (the 25th percentile) and after dropping locations with damage over

8.66% (the 95th percentile). These are listed in the online appendix.

The first panel of Figure 1 shows all communities that flooded between 2003 and 2013.

Flooding appears to be widespread across the country and not only a coastal phenomenon.

In the interior major floods result from significant rain or snowmelt which causes rivers and

creeks to spill in the surrounding areas. Some of the communities in the sample experience

repeated disasters during the sample period. I will separate these into a different category

since their event study explicitly includes an interim period. Furthermore, the fact that these

places flood so frequently suggests that they are fundamentally different from the rest of the

cases. One example of this is the really high footprint in a flood zone as shown in the summary

statistics. The second panel of Figure 1 shows single and multiple flood locations. There are

about three times more single than multiple hit places (1,519 vs 542). A significant portion

of the latter are located by the coast while the former are more uniformly distributed.

I identify flood surprises using the total number of housing structures that were com-

pletely destroyed due to flooding between 1978 and 2003. Note that I have information on

total dollar amounts paid since 1978 but this is not ideal since without proper historical

discounting this cannot be compared across locations. The number of buildings completely

lost to flooding, on the other hand, is readily comparable between communities. I further

normalize this number by the total building structures and compare to the state median

across all location that experience a flood. Communities below the median are considered

low-risk and flood event is assumed to generate a higher surprise than the rest. Using the

median ensures that there are sufficient number of places which can be placed within each

category and that the distinction between high and low surprise is region specific. In an

alternative specification, I assume that high surprise are only communities with zero lost

structures. While this reduces the number of high-surprise communities it ensures that ob-

served floods are not consistent with the historical experience. The main results do not

change substantially with this specification.
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The second panel of Figure 2 separates the high/low surprise locations. These tend to be

contiguous suggesting that flood surprises occur when a flood extends beyond a high-risk area

and into a low-risk one. High-risk areas also tend to be contiguous to multiple-flood areas

which reinforces the assumption that the former are at a generally higher risk of disaster.

The map also confirms that high/low surprise locations are relatively close and are part of

the same economic area.

Table 1 list summary statistics for location according to number of floods. Table 2 lists

summary statistics for important location categories. Note that for the case of single floods

the 95th percentile of relative damage is 1.55%. This confirms that the flood shocks have

a minimal effect of supply of housing and that any effect they have should run through

risk revisions. Locations that experience significant relative damage are those with multiple

floods in the sample. The number of no-flood and single-flood places are closely matched

(1771 vs 1519). This reflects the fact that the sample includes 38 states and that flooding

is a widespread phenomenon. These groups have similar population, income, growth, and

housing values. The no-flood group has smaller footprint in a flood zone and less active

insurance policies. When we look at single-flood places with low historical flooding (high

surprise) we see that the no-flood group becomes closer to the single flood group. The

communities with high/low flood surprise differ on important characteristics driven by their

different historical experience. The latter have higher damage, higher insured damage share,

more people in a flood zone, higher historical destruction, more insurance policies. These

differences emphasize the extent to which high-surprise locations do not anticipate flooding.

Comparing relative damage and fraction of population in a flood zone, we can see that

the high-surprise communities likely experience damage outside the flood zone while for the

low-surprise communities the observed damage is within the flood zone. Comparing high-

surprise communities by pre-flood growth reveals that the two groups are similar but for the

difference in real estate values which reflect their attractiveness.
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3 Main Results

One of the main results in the paper is that the extent to which disaster damages affect

a community is determined by its historical experience. Flooding at communities with low

flood history constitutes a surprise which increases expected future risk and raises the cost of

living in such places. To set the stage for the formal results, consider the experience of three

communities in Connecticut: Milford, Bridgeport, and New Haven. All were affected by

hurricane Irene in 2011 and Sandy in 2012. Since the events were consecutive they fall in the

single-flood group with no interim period. Milford made it into the local news for the extent

of losses and the fact that no one had the intention to move. It suffered $90 mil in damages

(0.5% of real estate value) while Bridgeport and New Haven suffered $16 mil (0.12%)/$7

mil (0.05%). The difference in damages implies that Milford should be affected significantly

more but its flood history suggests that the event was not such a surprise. Between 1978 and

2003 Milford lost 6.2% of its structures due to flooding while Bridgeport and New Haven lost

0.7%/0.5% respectively. Figure 3 shows the population growth for each of the communities.

We see that the population in Milford was not affected. At the same time the communities

with smaller overall damage but with relatively low history of floods experienced population

declines. Notice that the communities did not experience a large-scale disaster since damages

were relatively small. Nevertheless, they seem to have changed the expectations about future

flood risk and the attractiveness of the communities with low history.

Flood Surprise and Insurance Payouts

The first set of formal results examine the extent to which historical flood losses can be used

to identify flood surprises. Regulations require that structures within the 100-year flood zone

carry insurance if they have a federally-backed mortgage. Insurance purchase for any other

structures will depend to some extent on the perceived risk of a flood. High flood history

increases perceived risk and leads to insurance purchase. I examine this relation by comparing

the average insurance payouts across the high/low flood history groups in the cross-section
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of all events. In particular, I test whether a given amount of total damage (insured and

uninsured) generates more insurance payouts in locations with historical exposure to flood

events i.e. low-surprise communities. I estimate:

ln (Payouts)i = αt + βFi ×Dami + γFi ×Dami × LSurprisei + {MFl}+ ǫi (1)

where Payouts is total insurance payouts per capita after an event at community i and αt

is an year effect. Fi is an indicator for a flood at a single-flood location i, Dami is total

damage per capita (insured+uninsured), and LSurprisei is an indicator for low surprise

flooding (high flood history). {MFl} abbreviates the same set of indicators for locations

with multiple floods. Positive γ implies that higher overall damage leads to more insurance

payouts at places with high history of flooding relative to places with low history. I estimate

two variants of the model above: with and without controlling for total damage. In the

latter case γ represents how much more insurance payouts are generated during an average

flood event at a communities with history of flooding. It is possible that an average flood

event in these communities is much more destructive so I control for total damage. Finally,

I also estimate the model using active insurance policies for the set of communities where

this data is available.

Table 3 shows the estimation results. Communities with a low-surprise flood i.e. high

flood history have a significantly higher insurance payouts per capita during an average

flood event. This is consistent with the higher number of active insurance policies observed.

These locations receive almost double the insurance compensation after an event compared

to locations with low previous experience with flooding. Column 2 of Table 3 looks at

the regional heterogeneity of this result. I find that high history is associated with higher

insurance payout across the US regions. Notice that the Mid-Atlantic and South Atlantic

region have higher than national average payouts but even there low surprise communities

receive higher amounts. It is possible that low surprise events generate more insurance

payouts because they experience more damaging events. Column (3) accommodates this
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by controlling for overall damage. 1% increase in total damage leads to 0.43% increase in

insurance payouts at communities with low history of flooding and 0.66% increase in payouts

at high flood history locations. Communities with previous floods 50% more of the damage

through insurance compared to the rest. Column (4) shows that this result is consistent

across regions of the US. Interestingly, the Mid-Atlantic area covers a bigger proportion

of the overall damages with insurance but history of flooding still drives higher payouts.

Columns (5) and (6) show that affected low-surprise locations have more active insurance

policies and that the payout results are not driven by higher real estate values.

Overall, the results provide further confirmation of the group differences observed in the

summary statistics. Locations with a history of flooding anticipate future damage and take

out more insurance. The results also suggest that high damages in general do not necessarily

lead to high impact on the local economy, outside rebuilding activities, because those may

be in line with expectations and do not change the perceived risk.

Population Responses

Next I examine how the population is affected by flood events focusing on surprises and the

level of attractiveness prior to the event. I estimate the following model in several variations:

lnPopist = αi+ti+γst+β1Fit−1+β2PostFit−2+β3PostTrendit−2+δXit−1+{MFlit−1}+ǫist (2)

Log population for community i within state s in year t is explained by an individual average,

αi, individual linear trend, ti, and a state-year effect, γst. This specification is flexible enough

to allow for time-invariant difference in settlement size and community-specific difference in

the population trajectory. The former is important given the heterogeneity in community

size in the data. The latter accounts for differences in productivity, amenities, and prior

flood events which give rise to different population changes across locations. The state-year

effect captures variations in local population which can be traced to the state/national level.

The Great Recession is an important factor in the sample which has affected population and
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can be accommodated with the state-year controls.

I identify the effect of floods by first separating communities according to the number of

floods. For the case of the single-flood group, I include an indicator for the year after the

flood, Fit−1 , an indicator for the period from the second year onwards, PostFit−2, and a trend

break after the flood, PostTrendit−2. For the case of more than one floods I additionally

include an indicator for the period(s) between the floods. The results in this paper focus

on the single-hit communities since they represent the bulk of the location count and the

identification is more straightforward. The β1 represents the contemporaneous effect of the

flood i.e. within the first year; β2 captures the persistence of the initial effect; β3 allows for a

change in the trend relative to the pre-flood one. Xit−1 includes a set of additional important

indicators that have been interacted with Fit−1, PostFit−2, and PostTrendit−2. These include

indicators for: top 66th percentile of FEMA/NFIP/SBA business/SBA homeowners damage

shares; bottom 33th percentile of relative damages; top 50th percentile of share of non-

construction occupations; top 50th percentile of share of renters. The last two indicators are

based on the 2000 Census values and therefore are time-invariant. While the fixed effects

already control for these differences I can still identify whether locations with more non-

construction workers and more renters respond differently to flood events. The first controls

for availability of job opportunities outside construction and the second controls for capacity

to accommodate the displaced from floods. Both can lead to increases in local population

even if the community is hit by a flood. Additionally, flood events lead to an inflow of

emergency/construction/temporary workers. These will likely be housed in communities

with higher capacity of rentals. This is the reason why I control for the rental share. This

control will not be sufficient if these additional workers are placed in temporary housing.

In this case it is important to examine the persistence of the estimated flood impact since

temporary workers will lead to a reversal of the initial impact as they leave. Higher PostF

estimate is consistent with outflow of temporary workers.

The baseline results assume that the level of flood surprise does not affect the responses.
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I examine whether these differ by the level of surprise. Finally, I separate the impact by

pre-flood population growth (last five years). Most communities have turnover in local

population. Growing locations attract more new comers and experience demand for new

housing because of improved labor market or/and local amenities. Conditioning on pre-

growth can reveal how persistent demand for housing affects the overall response to a flood

surprise. It also helps us interpret the trend break by identifying whether growing or stagnant

locations see a change in trajectory. Note that pre-growth is time varying while the controls

for the local economy/renters are not. The former accounts for higher-frequency shocks while

the latter identifies lower-frequency ones such as whether the location is a bigger city. For

example, places with diversified local economies are not expected to necessarily be growing.

For that to happen they need additionally to be affected by a productivity shock. Although

both factors are important I focus on the effect of the higher-frequency shock and simply

control for the other one.

I also estimate the above model assuming that high-surprise location must have no lost

buildings between 1978 and 2003. This limits the number of high-surprise communities but

ensures that a flood event breaks with the location’s history. Evidence from this specification

can further confirm that results are driven by changes in expected flood risk.

Table 4 shows the results from the population model. Each of the three versions of the

baseline model includes estimates without/with Xit−1 controls. Population at the average

location with flood from model (1) is not impacted by the event. The average location from

model (2) with less diversified economy and lower availability of rentals among other controls

sees a 0.92% decline in population in the year following the event. This decline is persistent

and is accompanied by a decline in the pre-flood trajectory of 0.4%. The difference in results

comes from the fact that the composition of the local economy, the availability of rentals, and

the share of FEMA-recoded damages each soften the flood impact or in some cases increase

population. While these are important results on their own the paper focuses on the impact

of flood surprises and persistent demand for new housing so they are designated to the set
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of controls. Overall, model (2) shows that flooded places with lower rental share, higher

construction occupations share, and intermediate damage shares see a decrease in expected

population which is persistent and accompanied by a trend break. Even without accounting

for the level of surprise population is negatively impacted.

The effect of flood surprises is identified in model (3) and (4). In both cases they lead to

significant declines in population on impact and in the following periods. An average location

from (3) is only affected when the flood is unexpected. On impact expected population

drop by 0.3%; the effect is persistent; pre-flood trend declines by 0.15% after the event.

Compared to (1) where floods do not affect population we see that identifying surprises is

critical. This is consistent with the insurance results and suggests that revisions of flood risk

disrupt the pre-flood population dynamic. In the case with controls flood surprises generate

significantly bigger declines in population: 1.2% decline on impact, 1% in the post period,

and 0.6% decline in pre trend. Low surprise floods also affect population. Interestingly, the

regional results show that this effect is not a nation-wide phenomenon but comes from the

northeastern region. Both estimates (3) and (4) strongly suggest that expected population

declines when a flood occurrence breaks with historical experience. While the initial decline

in population is persistent it is still relatively small at 1%. The trend break represents a much

bigger impact on the population of a community following the event. A 0.6% decline in the

pre-trend amounts to a 3%/6% lower population in 5/10 years relative to where population is

expected to be without the flood. The fact that most events have relatively small magnitude

implies that the effect stems from revisions of risk expectations. Consequently, biggest

population changes will not necessarily overlap with biggest damages. Flooding seems to

lead to some population increases in places with more diversified local economies and more

rental capacity. This offsets the negative effect from the increase in riskiness. In the cases of

flood surprises the second effect is much stronger and leads to overall decrease in population.

The evidence so far shows that surprises disrupt the pre-existing population trajectory.

A decline in the linear trend implies a slow down in expansion and stabilizing of population
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in a growing location; in a stable or declining place it implies loss of population or an

acceleration of such loss. To help interpret the trend break I separate the impact effects

according to pre-flood growth: positive and negative growth in the preceding five years.

This also helps understand how a productivity/amenity shock interacts with risk revisions.

The results in (5) and (6) show that the surprise driven population decline occurs primarily

in attractive communities with higher pre-flood growth. Population drops by 0.55%/1.4%

without/with controls and remains lower in the post period. There is a decline in the pre

trend of 0.4%/0.8%. These communities effectively stop expanding after the flood surprise

and population becomes fixed at its pre-flood level. Locations with declining population

are either not affected (with controls) or see an increase (without controls). The difference

in outcomes by pre-growth after the surprise strongly suggests that the population decline

works through the demand for new housing or excess of newcomers. This is consistent with

a decrease in the attractiveness of the community following a revision of expected flood

risk. Importantly, it requires that the real estate market does not fully compensate the risk

increase with a discount that offsets the cost of insurance. Similarly, the fact that lower

growth communities are not affected suggests that the real estate there may be discounted

providing compensation for higher risk.

Results in (7) and (8) show that a stricter definition of flood surprise is associated with

stronger declines in population. They imply that some of the locations with positive historical

destruction likely anticipate future flooding. Yet, given that the estimated coefficients are

similar this is not a big concern. Finally, Table A1 in the online appendix shows that the

results are not changed when I increase the cut-off for a flood event to 0.02%, which is the

25th percentile of the baseline sample as seen in the summary statistics. The results are also

not affected when I drop locations with more than 8.66% of damage, which is the the 95th

percentile of the baseline sample for locations with multiple flood events. These results are

listed in Table A2 in the online appendix.

It is important to point out an issue that relates to the possible endogeneity of flooding
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and local economic factors such as high poverty. It is possible that poor communities invest

less in flood protection and ultimately experience bigger damages. Here it really matters how

poverty or a local economic factor is related to the population trajectory before the flood

and after the flood. If either of these cause population to be decreasing before the flood then

I incorporate this in the model by allowing the trajectory to be different before the flood.

For an impact to be significant in this case we have to see that population declines even

more than suggested by pre-flood rates driven by poverty or an economic factor. If these

factors cause population to respond differently only after the flood i.e. a poor place grows

just as rich place before the flood then it is hard for me to disentangle the effect. I can only

do it by allowing poor places to respond in a different way after the shock. I accommodate

this possibility with a set of controls described above.

Real Estate Responses

I examine how the housing market responds to surprises and more specifically whether there

is evidence of compensating effects by estimating the most restricted version of the model

as in (6) above. Results are listed in Table 5 for each of the three tiers provided by Zillow.

There is no evidence that housing values compensate for the increase in flood risk at

locations with high pre growth. This is the case for all three tiers of housing. This is

consistent with the decrease in population following the event in that potential movers into

the location see an increased cost associated with the destination – both the insurance

premium and uninsurable damage. The persistent demand for new housing before the event

or the expectation that the event is transitory seem to prevent house prices from adjusting.

Interestingly, housing in low growth communities declines after a surprise. Top and middle-

tier housing decrease by 2.3%-3.4% on impact; the dip is persistent and remains at close to

4.4% in the post period. Bottom-tier housing does not appear to decrease on impact although

there is evidence of a decline in the post period. The change in real estate prices paired with

the lack of population declines suggests that locations without demand for additional housing
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provide a discount that can compensate for the increase in expected flood risk and the

associated costs. This result is consistent with the literature that looks at how health risks

are priced into real estate values (Davis (2004)). All together the housing and population

results suggest the following interpretation. Flood surprises drive upward revisions of the

underlying probability of a future flood which in turn raises the cost of living. In locations

where demand for housing is low existing structures are sold at a discount that covers the

additional cost. This appears to be sufficient to maintain the existing population trajectory.

In location where demand for housing is high structures are not sold at a discount, possibly

due to expectations that the pre-growth will be maintained, which drives new movers to

other destinations.

Low wealth incidence

The decline in house prices is consistent with turnover in the community whereby higher-

risk tolerant households replace less-risk tolerant ones after a reduction in prices. This leaves

population unchanged but alters the type of people remaining. This is an example of sorting

based on changes in perceived risk. It relies on the assumption that households can finance

their exit from the community by trading their house for a comparable structure somewhere

else. If this is not the case sorting will not take place as people are prevented from leaving.

This is an example of a lock-in effect as in Stein (1995).

I examine the extent to which low wealth can explain the lack of population changes in

low growth areas. I do this by using the FEMA relief payments data. Guidelines from the

agency imply that lower income applicants for disaster relief will be given non-refundable

payments as opposed to loans. A lower-wealth household will be able to pay lower amount

out of pocket and therefore will likely be given a higher non-refundable payment for a given

amount of damage. I test whether flood incidence among low-wealth households is higher

in low growth communities by examining total FEMA payments per damage recorded and
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how they differ in low-growth communities. In particular I estimate:

ln(FemaPay)i = βDami + γ1Dami × LSurpi + γ2Dami × LGri + αY + {MulF l}+ ǫi (3)

where FemaPay is total relief payments per capita, Dam is total damages recorded, and αY

is a year effect. The specification estimates the fraction of damages disbursed by fema, β,

and allows this to be different for low-surprise events, γ1, and at low growth locations, γ2.

Positive γ2 indicates that FEMA disburses more per given amount of damages in low growth

locations, a result consistent with higher low-wealth incidence of flooding.

Results are shown in Table 6. The national cross-section, (1), reveals that low-growth

locations do receive more non-refundable payments per recorded damage. When I estimate

the same model allowing for regional heterogeneity we see that floods affect poorer commu-

nities in low growth areas mostly in Northeast and Mid/South Atlantic. Overall, there is

evidence that at least in some parts of the US insufficient wealth can explain the lack of

population change after flood surprises. It suggests that sorting will not necessarily occur

in these parts. It still remains to be seen how real estate values respond in those regions as

well.

Let us go back to the case of Milford vs the two neighbors. Figure 4 shows the evolution

of population and real estate. Milford has a high history of flooding and the flood events

do not constitute surprises. We see that population and real estate values (top tier) are not

affected. New Haven and Bridgeport, on the other hand, see a decline in population but

in line with the results in this section housing closely follows the trajectory of Milford and

does not decline. This puts the two neighbors in the high-pre-growth group where demand

for new housing seems to prevent a compensating decline that offsets higher risk. The cost

increase is consistent with population decline.
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4 Regional Results

The main results are based on a national sample which combines locations across various ge-

ographies each with specific climates and regulatory settings. The econometric specification

accounts for this heterogeneity with the individual average, trend, and state-year effects but

we cannot be certain that the identified responses are a general phenomenon occurring across

the country. It is possible that population responds strongly only in one area of the US with

there being no effect elsewhere. Additionally, I have also argued that real estate variations

are closely related and help understand population effects. It is important to confirm that

this relationship is maintained within separate regions. I investigate within-country hetero-

geneity by allowing the main coefficients to vary by a grouping based on a mix between

Census divisions and regions – region 1 is split into Northeast and Mid-Atlantic; region 3 is

split into South Atlantic and South Central.

The regional results for population are listed in Table 7. The table includes coefficients

from one estimation – different columns show estimates by surprise/pre-growth group. For

example, the coefficients for the high-surprise/high-growth group from the Mid-Atlantic re-

gion is listed in the second column rows 2, 8, and 14. The results confirm that surprises affect

population at high pre-growth communities. Not all regions experience on impact, post, and

trend break effects but all of them feature some combination. This suggests that the national

results identify a general phenomenon where new movers choose a different destination after

risk increases. Notice that the population decline at high pre-growth communities with low

surprises estimated in the main results actually can be traced exclusively to the Northeast

region and is not as general. This cautions against directly interpreting the national results

without confirming that they hold at the regional level.

Regional real estate results for top-tier housing are shown in Table 8. We see no real

estate depreciation in any of the regions for high-surprise/high-growth locations. The only

exception is the Northeast region which sees a trend break. This supports the interpretation

of the population declines. The case of the South Atlantic is somewhat different. High-
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surprise/high-growth areas do not experience population decline on impact – they see a

trend break. This implies that population was not significantly affected and demand for new

housing persisted. Uninterrupted population is reflected in the increase in house prices for

this group. This suggests that expected flood risk may not have adjusted significantly after

the flood surprises. Alternatively, it is likely that the high-surprise group includes locations

where risk is already perceived to be high – consistent with the insurance estimates for South

Atlantic in Table 3.

Housing depreciates in low pre-growth communities in all regions except for the Midwest

and South Central. The price reduction paired with minimal changes in population in these

locations is consistent with turnover in the local population where some sorting based on

risk occurs. In the case of Midwest and South Central there are both minimal population

changes and no price adjustment. Living in these areas effectively becomes more expensive

but the real estate does not provide compensation. The evidence from the FEMA payments

suggests that at least for the South Central area the incidence of the disaster may be higher

on low-wealth households. This can explain why we do not observe any population effects –

these communities are locked in.

Overall, the regional results for housing and population are closely matched. They pro-

vide evidence for the interaction between revisions of perceived flood risk and existing de-

mand for new housing which ultimately determine whether more people will inhabit risky

locations.

5 Extensions and Robustness

Flood Spillovers

The results in the paper shed light on the effect that floods have on other locations that

may not themselves be affected. To accommodate this I extend the baseline model in two

important ways: add a set of indicators in Xit that allow the impact, persistence, and trend-
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break effects to differ for locations next to counties with floods; estimate a set of flood

effects for locations that do not experience a flood but are located in a county where others

have floods. The first case makes sure that the baseline results are not driven by events in

neighboring counties i.e. that being next to a multiple-flood county drives population away

not the flood at location. The second case looks at the possible change in perceived risk that

occurs in places that are close to floods. Gallagher (2014) shows that insurance purchases

pick up after floods in locations in the same media market. Here I explore whether there are

additional population and real estate values effects.

The evidence is shown in Table 9. Model (1) estimates the baseline results with the

addition of controls for floods occurring in the neighboring counties. We see that the results

are robust to this set of controls. In Model (2) shows that locations that are not affected

directly but are within an affected county experience a decline in population and a trend

break. This is consistent with an increase in perceived risk and further supports the point

that the impact of floods events works mainly thought change in expectations. Model (3)

separates the previous effect depending on whether the nearby floods were surprises. The

results are mixed suggesting that proximity to high surprises being marginally significant.

It is not obvious a-priori if low or high surprise floods will have different spillover effects.

The evidence suggests that low-surprise floods have stronger population effects. Models

(4)-(6) examine the effect on real estate values. We see negative spillovers on top- and mid-

tier housing. The spillover of a high-surprise flood has a stronger effect on prices which is

consistent with the weaker population impact.

Relative Damage vs Flood Indicator

The results in this paper use an indicator for a flood based on a cutoff for minimum relative

damage. I investigate the extent to which actual relative damage affects the main results

regarding population. I introduce variations in damage by replacing the flood indicator with

three indicators for relative damage. These indicators reflect the lower 33th/33th-66th/upper
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66th percentile respectively of the distribution of damages at the state level. Specifying the

main population model with them rather than a flood indicator allows us to examine whether

events with relatively higher damage are different from those with relatively lower one. The

results are shown in Table 10. Focusing on the models with controls we can see that all parts

of the damage distribution reduce population for the respective groups that are affected in

the main results. The effect of the upper 66th percentile is slightly lower while the lower 33th

percentile generally has higher effects. These are not statistically different from each other.

Local Social Organizations and Churches

A big literature on resilience after natural disasters emphasizes the importance of local

social capital (Aldrich 2012). Literature on deeper roots of productivity across the US

also emphasizes endowments of social capital (Fulford et al 2018). To accommodate this

I use information from the County Business Patterns dataset which lists the total number

of establishments at a zip code by 6-digit industry code. I calculate the total number of

civic and social organizations (NAICS 813410) and religious organizations (NAICS 813110)

per capita in each community and define an indicator for locations with above state-median

number. I then include it among the rest of the controls in Xit. The results for population

and real estate are listed in Table 11. The coefficient estimates for the impact of higher level

of social capital are listed at the bottom of the table. The overall results are very similar

to the baseline. Social capital weakens the decline in the pre-flood trend for population and

lowers the decline in the post period for the real estate values. These results are consistent

with the literature on social capital which suggests that communities with higher endowment

will do better after disasters.
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6 Conclusion

This is the first study that investigates the effect of flood surprises using consistent national

data of insured and uninsured damages at the level of the community. It investigates how

changes in underlying flood risk affect the local population trajectory and real estate values.

I find that changes in risk expectations are much more important that the amount of overall

damage – at least in the case of lower scale events. Locations with a history of flooding do

not experience changes in population and real estate. This indicates that flooding is widely

expected and the local population is already somewhat insulated from the risk with insur-

ance. Locations with flood surprises see a combination of declines in population and house

value depreciation. The level of pre-existing demand for new housing is critical. Attractive

communities that are surprised by a flood experience population declines and no housing

depreciation, a combination consistent with new comers steering away. Less attractive loca-

tions see predominately house price declines and stable population. Using these results to

interpret how climate change will affect communities within the US we will see three general

local outcome. First, risky locations will not see any changes. Second, attractive locations

where risk increases will experience population declines leading to stabilizing of population at

the pre-flood level. Third, locations where risk increase and where demand for new housing

is low will not see changes in population but will experience depreciation of housing.
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Tables and Figures

Table 1: Summary Statistics by Number of Floods

Floods Freq. Percent Cum.

0 1,771 42.71 42.71
1 1,519 36.63 79.33
2 542 13.07 92.4
3 238 5.74 98.14
4 77 1.86 100

Total 4,147 100

Number of Floods

State 0 1 2 3+

Alabama 41 50 5
Arkansas 20 40 17
California 316 45 1
Colorado 38 23
Connecticut 36 33 7 5
Delaware 4 2
Florida 7 99 34 47
Georgia 99 43 12 3
Illinois 74 74 54 27
Indiana 38 88 6 4
Iowa 6 44 29
Kentucky 22 48 31 6
Louisiana 6 6 20 40
Maryland 29 5
Massachusetts 46 67 21 2
Minnesota 90 23 6 2
Mississippi 8 30 26 23
Missouri 38 48 30
Nevada 13 2
New Hampshire 2 24
New Jersey 12 83 14 77
New York 66 74 19 34
North Carolina 82 51 8 2
North Dakota 4 11
Ohio 89 73 34 6
Oklahoma 25 38 15
Oregon 45 10 2
Pennsylvania 39 82 49 31
Rhode Island 2 12 14
South Carolina 51 15
South Dakota 7 7 1
Tennessee 38 75
Texas 170 65 56
Vermont 3 13 2
Virginia 67 28 6 4
Washington 64 26
West Virginia 20 23 5 2
Wisconsin 58 46 7

Total 1771 1519 542 315

Relative Damage

Fl p25 p50 p75 p90 p95

1 0.02% 0.05% 0.14% 0.46% 0.87%
2 0.02% 0.06% 0.19% 0.69% 1.55%
3 0.02% 0.07% 0.25% 0.86% 1.72%
4 0.02% 0.09% 0.34% 1.27% 8.66%

Total Damage

Fl p25 p50 p75 p90 p95

1 0.64 1.67 5.02 16.14 42.39
2 0.64 1.80 5.70 20.75 47.18
3 0.79 2.45 9.14 33.90 76.74
4 0.83 3.42 13.50 69.68 213.80

Average Pop (1,000)

Fl p25 p50 p75 p90 p95

0 21 34 62 111 167
1 21 31 57 110 179
2 22 32 55 104 207
3 21 35 60 139 214
4 23 36 77 138 184

Population Growth

Fl p25 p50 p75 p90 p95

0 -0.04% 0.55% 1.36% 2.50% 3.44%
1 -0.15% 0.39% 1.14% 2.22% 3.18%
2 -0.24% 0.28% 0.97% 1.97% 2.90%
3 -0.27% 0.21% 0.75% 1.71% 2.51%
4 -0.20% 0.31% 0.96% 2.20% 3.12%

Table 2: Summary Statistics by Surprise and Pre-Flood Growth

Single Flood Single Flood

No Surprise High Surprise Low Surprise Two+

Flood All High Low Low Growth High Growth Low Growth High Growth Floods

Count 1771 1519 934 585 229 705 171 414 857
Relative Damage 0 0.05% 0.04% 0.07% 0.05% 0.04% 0.08% 0.06% 0.06%
Total $ Damage (100k) 0 16.67 13.43 24.51 12.91 13.55 18.49 27.36 21.04
Share of Insured Damages 0 14.42% 7.45% 24.83% 3.50% 9.39% 24.57% 25.21% 27.82%
Share of Uninsured FEMA 0 17.44% 20.65% 13.66% 23.67% 19.50% 11.83% 14.29% 13.80%
Share of Uninsured Home SBA 0 2.78% 2.74% 2.87% 4.08% 2.38% 2.04% 3.19% 1.69%
Share of Uninsured Business SBA 0 22.42% 24.77% 19.75% 23.91% 25.48% 16.16% 20.49% 19.42%
Total Structures Lost (1978/2000) 0 0.27% 0.12% 0.83% 0.13% 0.12% 0.93% 0.81% 0.89%
Population (10k) 33.66 31.35 30.38 33.67 25.53 32.84 26.25 38.97 32.73
Median Income (10k) 39.89 38.78 38.23 39.22 33.49 40.56 35.16 41.14 37.54
Population Growth 0.55% 0.39% 0.41% 0.35% -0.31% 0.70% -0.30% 0.65% 0.26%
Fraction of Population in 100 year zone 0.00% 0.08% 0.03% 0.77% 0.00% 0.07% 0.04% 1.51% 1.93%
Insurance Policies 67 120 72 261 54 80 234 271 256
Total $ Coverage (1M) 10.65 15.92 10.48 32.51 7.37 11.76 25.99 35.76 32.54
Top Tier House Value 2.19 1.90 1.88 1.92 1.17 2.12 1.28 2.22 1.80
Middle Tier House Value 1.45 1.25 1.24 1.26 0.73 1.39 0.82 1.44 1.19
Bottom Tier House Value 1.00 0.84 0.83 0.85 0.46 0.93 0.50 1.01 0.77

Table lists median values for the listed variables.
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Table 3: Flood Surprises and Insurance

(1) (2) (3) (4) (5) (6)
VARIABLES ln (Payouts)i ln (Payouts)i ln (Payouts)i ln (Payouts)i ln (Policies)i ln (Policies)i

F 0.450*
(0.230)

F × LSurprise 0.963***
(0.119)

F × Northeast 0.0442
(0.588)

F × Mid-Atlantic 0.706***
(0.228)

F × Midwest -0.0915
(0.216)

F × South Atlantic 1.048**
(0.472)

F × South Central 0.209
(0.358)

F × West -0.438
(0.307)

F × Northeast × LSurp 1.338***
(0.145)

F × Mid-Atlantic × LSurp 0.929***
(0.150)

F × Mid West × LSurp 1.265***
(0.257)

F × South Atlantic × LowSurp 0.624*
(0.339)

F × South Central × LSurp 0.796***
(0.221)

F × West × LSurp 1.668***
(0.185)

F × Dam 0.428*** 0.841***
(0.0886) (0.0978)

F × Dam × LSurprise 0.234*** 0.266***
(0.0276) (0.0370)

F × Dam × Northeast 0.476*** 0.537***
(0.148) (0.0844)

F × Dam × Mid-Atlantic 0.640*** 0.979***
(0.0508) (0.0919)

F × Dam × Midwest 0.396*** 0.420**
(0.0554) (0.170)

F × Dam × South Atlantic 0.355*** 1.045***
(0.115) (0.0730)

F × Dam × South Central 0.448*** 0.447***
(0.0840) (0.0899)

F × Dam × West 0.366*** 0.916***
(0.0597) (0.0845)

F × Dam × Northeast × LSurp 0.266*** 0.310***
(0.0593) (0.0420)

F × Dam × Mid-Atlantic × LSurp 0.153*** 0.176***
(0.00957) (0.0465)

F × Dam × Mid West × LSurp 0.298*** 0.467***
(0.0227) (0.0571)

F × Dam × South Atlantic × LowSurp 0.241*** 0.290***
(0.0428) (0.0439)

F × Dam × South Central × LSurp 0.171*** 0.321**
(0.0594) (0.115)

F × Dam × West × LSurp 0.317*** 0.247**
(0.0438) (0.0915)

Observations 3,443 3,443 3,443 3,443 1,474 1,474
R-squared 0.613 0.620 0.778 0.793 0.867 0.891
Xit Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. ln (Payouts)i is log insurance payouts per capita at location i. ln (Policies)i is log of active
insurance policies. F is an indicator for flooding at a single-flood location. Dam is total damage per capita. LSurp is an indicator for
a high history of flooding i.e. low-surprise event. The estimation results do not report the coefficients for multiple-flood communities.
Sample covers the period between 2000 and 2016. SE clustered by state.
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Table 4: Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6) (7) (8)

HSurp: Below State Median Lost Structures HSurp: No Lost Structures

VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.000840 -0.00918***
(0.00113) (0.00203)

PostF -0.00396*** -0.00934***
(0.00144) (0.00278)

PostTrend -4.08e-05 -0.00404***
(0.000484) (0.000855)

F × HSurp -0.00310** -0.0120*** -0.0173**
(0.00121) (0.00241) (0.00691)

F × LSurp 0.00292 -0.00487** -0.00889***
(0.00193) (0.00234) (0.00203)

PostF × HSurp -0.00462*** -0.0103*** -0.0162*
(0.00174) (0.00312) (0.00941)

PostF × LSurp -0.00259 -0.00758** -0.00916***
(0.00217) (0.00309) (0.00282)

PostTrend × HSurp -0.00148** -0.00582*** -0.00911***
(0.000582) (0.000911) (0.00322)

PostTrend × LSurp 0.00213*** -0.00140 -0.00383***
(0.000615) (0.000931) (0.000848)

F × HSurp × LGr 0.00664*** -0.00305 -0.00703
(0.00115) (0.00243) (0.00454)

F × HSurp × HGr -0.00552*** -0.0141*** -0.0197**
(0.00142) (0.00243) (0.00879)

F × LSurp × LGr 0.0118** 0.00347 0.000248
(0.00537) (0.00505) (0.00257)

F × LSurp × HGr 0.000115 -0.00752*** -0.0113***
(0.00132) (0.00210) (0.00212)

PostF × HSurp× LGr 0.000943 -0.00530 -0.0107*
(0.00190) (0.00333) (0.00625)

PostF × HSurp× HGr -0.00534*** -0.0113*** -0.0155
(0.00206) (0.00315) (0.0122)

PostF × LSurp× LGr 0.00253 -0.00267 -0.00390
(0.00478) (0.00474) (0.00310)

PostF × LSurp× HGr -0.00329 -0.00841*** -0.00999***
(0.00213) (0.00318) (0.00289)

PostTrend × HSurp× LGr 0.00695*** 0.00222** 0.000915
(0.000597) (0.000894) (0.00213)

PostTrend × HSurp× HGr -0.00410*** -0.00788*** -0.0130***
(0.000655) (0.000917) (0.00422)

PostTrend × LSurp× LGr 0.00891*** 0.00498*** 0.00360***
(0.000874) (0.00104) (0.000842)

PostTrend × LSurp× HGr -0.000591 -0.00381*** -0.00609***
(0.000693) (0.000967) (0.000835)

Observations 70,403 70,403 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.005 0.023 0.009 0.028 0.039 0.052 0.025 0.05
Xit Controls No Yes No Yes No Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period following the first year of
impact. PostTrend is a linear trend starting the in the period following the impact. LSurp/HSurp is an indicator for a low/high surprise event.
LGr/HGr is an indicator for positive/negative population growth 5 years prior to the event. Estimation (7) and (8) use a different definition for
surprise – zero buildings destroyed between 1978 and 2003. Sample: 2000/2016. SE clustered by community. Additional controls: indicators
for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for multiple-flood communities.
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Table 5: Flood Surprises and Real Estate Values

(1) (2) (3)

VARIABLES TopTier MiddleTier BottomTier

F × HSurp × LGr -0.0338*** -0.0230* -0.0204
(0.0122) (0.0134) (0.0162)

F × HSurp × HGr -0.00211 0.00941 0.0175
(0.00900) (0.00916) (0.0117)

F × LSurp × LGr -0.0147 0.00534 0.00815
(0.0138) (0.0129) (0.0167)

F × LSurp × HGr 0.00410 0.0132 0.0170
(0.00944) (0.00943) (0.0120)

PostF × HSurp× LGr -0.0425*** -0.0439** -0.0553***
(0.0153) (0.0174) (0.0204)

PostF × HSurp× HGr -0.00408 0.00425 0.00116
(0.0115) (0.0115) (0.0142)

PostF × LSurp× LGr -0.0117 0.00724 -0.0166
(0.0176) (0.0173) (0.0200)

PostF × LSurp× HGr -0.000138 -0.00135 -0.00581
(0.0123) (0.0123) (0.0149)

PostTrend × HSurp× LGr -0.000319 0.00314 0.00870*
(0.00365) (0.00403) (0.00471)

PostTrend × HSurp× HGr -0.00526* -0.00270 0.000444
(0.00278) (0.00296) (0.00331)

PostTrend × LSurp× LGr -0.00615 -0.00567 0.00167
(0.00402) (0.00416) (0.00450)

PostTrend × LSurp× HGr -0.00588** -0.00341 0.000448
(0.00290) (0.00297) (0.00362)

Observations 61,454 60,825 54,459
Within R-squared 0.02 0.023 0.021
Xit Controls Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. Top/Middle/BottomTier refers
to the log of the respective house price Zillow index. F is an indicator for
flood event. PostF is an indicator for the period following the first year
of impact. PostTrend is a linear trend starting the in the period following
the impact. LSurp/HSurp is an indicator for a low/high surprise event.
LGr/HGr is an indicator for positive/negative population growth 5 years
prior to the event. Sample: 2000/2016. SE clustered by community. Addi-
tional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above me-
dian renter fraction; below 33th perc. tot. damage.
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Table 6: Low-wealth Incidence in Low-Growth Communities

(1) (2)

VARIABLES ln(FemaPay) ln(FemaPay)

F × Dam 0.859***
(0.0141)

F × Dam × LSurp -0.00489
(0.00808)

F × Dam × LGr 0.0307**
(0.0143)

F × Dam × Northeast 0.923***
(0.0285)

F × Dam × Mid-Atlantic 0.816***
(0.0188)

F × Dam × Midwest 0.911***
(0.0154)

F × Dam × South Atlantic 0.816***
(0.0162)

F × Dam × South Central 0.881***
(0.0102)

F × Dam × West 0.821***
(0.0247)

F × Dam × LSurp × Northeast -0.0435
(0.0392)

F × Dam × LSurp × Mid-Atlantic 0.0140
(0.0244)

F × Dam × LSurp × Midwest -0.0116
(0.0143)

F × Dam × LSurp × South Atlantic 0.00162
(0.0143)

F × Dam × LSurp × South Central -0.0158
(0.0130)

F × Dam × LSurp × West -0.0159
(0.0243)

F × Dam × LGr × Northeast 0.0318**
(0.0124)

F × Dam × LGr × Mid-Atlantic 0.0253***
(0.00757)

F × Dam × LGr × Midwest 0.00139
(0.0190)

F × Dam × LGr × South Atlantic -0.00168
(0.0267)

F × Dam × LGr × South Central 0.0359*
(0.0191)

F × Dam × LGr × West -0.109**
(0.0521)

Observations 3,105 3,145
R-squared 0.973 0.971
Xit Controls Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. FemaPay refers to total FEMA
relief per capita, Dam refers to total FEMA damage recorded, LSurp is
an indicator for low-surprise event, and LGr is an indicator for low pre-
growth location. Sample: 2000/2016. SE clustered by state. Additional
controls: indicators for top 66th perc. of fema/insured/business/sba dam-
age; above median non-construction-based local economy; above median
renter fraction; below 33th perc. tot. damage.
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Table 7: Regional Population Responses

lnPopstist

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

F × Northeast -0.00754** -0.0101*** -0.00669* -0.00998***
(0.00303) (0.00286) (0.00396) (0.00273)

F × Mid-Atlantic -0.00504 -0.0163*** 0.00213 -0.00901*
(0.00540) (0.00488) (0.00376) (0.00463)

F × Midwest 0.00438 -0.0137*** -0.000326 -0.00311
(0.00355) (0.00381) (0.00577) (0.00295)

F × South Atlantic 0.000893 -0.00667 0.00518 -0.00812
(0.00687) (0.00576) (0.00532) (0.00507)

F × South Central -0.00315 -0.0141** 0.0184 -0.00271
(0.00668) (0.00630) (0.0164) (0.00611)

F × West -5.64e-05 -0.0189*** -0.00613 -0.00849
(0.0104) (0.00660) (0.0123) (0.00832)

PostF × Northeast -0.0142*** -0.0175*** -0.0122* -0.0139***
(0.00527) (0.00435) (0.00676) (0.00455)

PostF × Mid-Atlantic -0.00925 -0.0113 -0.00333 -0.0113
(0.00998) (0.00786) (0.00711) (0.00765)

PostF × Midwest 0.000359 -0.0134*** -0.00254 0.000863
(0.00434) (0.00450) (0.00531) (0.00403)

PostF × South Atlantic -0.00438 -0.00197 -0.00829 -0.0164**
(0.00908) (0.00794) (0.00793) (0.00800)

PostF × South Central -0.00242 -0.00915 0.0113 0.00184
(0.00815) (0.00802) (0.0143) (0.00999)

PostF × West 0.00316 -0.0267*** -0.0112 -0.0132
(0.0130) (0.00820) (0.0163) (0.0105)

PostTrend × Northeast 0.00171 -0.000892 0.00366 -0.00297**
(0.00154) (0.00147) (0.00230) (0.00149)

PostTrend × Mid-Atlantic 0.00374 -0.00868*** 0.00531** -0.00171
(0.00290) (0.00268) (0.00252) (0.00256)

PostTrend × Midwest 0.00396*** -0.00714*** 0.00443*** -0.00498***
(0.00117) (0.00157) (0.00129) (0.00133)

PostTrend × South Atlantic 0.000617 -0.0112*** 0.00492* -0.00305
(0.00293) (0.00249) (0.00276) (0.00250)

PostTrend × South Central 0.00477*** -0.00460*** 0.00850*** -0.000660
(0.00183) (0.00176) (0.00277) (0.00263)

PostTrend × West 0.00638* -0.0106*** 0.00903** -0.00701**
(0.00362) (0.00306) (0.00446) (0.00281)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 4 for details. Sample:
2000/2016. SE clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.
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Table 8: Regional Real Estate Responses for Top Tier Housing

TopTier House Index

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

F × Northeast -0.0404** -0.0296* -0.0280 -0.0381**
(0.0191) (0.0153) (0.0256) (0.0151)

F × Mid-Atlantic 0.00921 0.0203 0.0108 -0.00540
(0.0293) (0.0260) (0.0332) (0.0253)

F × Midwest -0.0196 0.00228 0.00589 0.0163
(0.0222) (0.0157) (0.0181) (0.0148)

F × South Atlantic -0.0917*** 0.0378** -0.0200 0.0232
(0.0251) (0.0164) (0.0308) (0.0175)

F × South Central -0.00133 0.00963 0.0132 0.0459**
(0.0228) (0.0193) (0.0245) (0.0218)

F × West -0.159*** -0.00704 -0.120*** -0.0419
(0.0300) (0.0274) (0.0299) (0.0282)

PostF × Northeast -0.0572** -0.0373* -0.0356 -0.0519**
(0.0268) (0.0221) (0.0355) (0.0220)

PostF × Mid-Atlantic -0.0959*** -0.0261 -0.0492 -0.0597*
(0.0370) (0.0333) (0.0414) (0.0323)

PostF × Midwest 0.000684 0.0177 0.0161 0.0361**
(0.0256) (0.0167) (0.0234) (0.0163)

PostF × South Atlantic -0.0428 0.0459* -0.000888 0.0241
(0.0395) (0.0253) (0.0372) (0.0295)

PostF × South Central 0.0134 0.0173 0.0339 0.0424
(0.0296) (0.0240) (0.0359) (0.0266)

PostF × West -0.219*** -0.0265 -0.0863* -0.0806**
(0.0424) (0.0330) (0.0501) (0.0387)

PostTrend × Northeast -0.0154** -0.0126** -0.00827 -0.00917
(0.00642) (0.00568) (0.00969) (0.00604)

PostTrend × Mid-Atlantic 0.0287*** 0.00497 0.0218** 0.0128
(0.00967) (0.00966) (0.00913) (0.00814)

PostTrend × Midwest -0.00199 -0.00443 -0.00780 -0.00386
(0.00522) (0.00420) (0.00493) (0.00430)

PostTrend × South Atlantic -0.0280*** -0.00343 -0.0201* -0.0182**
(0.0101) (0.00815) (0.0117) (0.00780)

PostTrend × South Central 0.00462 -0.00172 -0.00222 0.00628
(0.00758) (0.00576) (0.00760) (0.00599)

PostTrend × West -0.00554 -0.00358 0.00233 -0.0103
(0.0107) (0.00710) (0.0266) (0.00821)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 5. Sample: 2000/2016.
SE clustered by community. Additional controls: indicators for top 66th perc. of
fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.
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Table 9: Flood Spillovers

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist TopHVI MidHVI BotHVI

F × HSurp × LGr -0.00283 -0.00326 -0.00321 -0.0348*** -0.0239* -0.0231
(0.00293) (0.00295) (0.00295) (0.0129) (0.0142) (0.0176)

F × HSurp × HGr -0.0140*** -0.0143*** -0.0143*** -0.00381 0.00761 0.0136
(0.00288) (0.00288) (0.00288) (0.00964) (0.0100) (0.0131)

F × LSurp × LGr 0.00409 0.00371 0.00371 -0.0156 0.00443 0.00556
(0.00476) (0.00477) (0.00477) (0.0144) (0.0138) (0.0181)

F × LSurp × HGr -0.00685*** -0.00733*** -0.00734*** 0.00403 0.0121 0.0143
(0.00238) (0.00239) (0.00239) (0.00989) (0.0100) (0.0127)

PostF × HSurp× LGr -0.00668* -0.00716* -0.00708* -0.0346** -0.0327* -0.0455**
(0.00387) (0.00390) (0.00390) (0.0159) (0.0181) (0.0220)

PostF × HSurp× HGr -0.0134*** -0.0137*** -0.0137*** -0.000572 0.0106 0.00442
(0.00368) (0.00368) (0.00368) (0.0122) (0.0124) (0.0156)

PostF × LSurp× LGr -0.00357 -0.00404 -0.00397 -0.00518 0.0184 -0.00556
(0.00466) (0.00467) (0.00467) (0.0180) (0.0181) (0.0212)

PostF × LSurp× HGr -0.00887*** -0.00943*** -0.00938*** 0.00617 0.00749 0.00155
(0.00344) (0.00345) (0.00345) (0.0131) (0.0131) (0.0159)

PostTrend × HSurp× LGr 0.00212** 0.00224** 0.00229** -0.00338 -0.000543 0.00600
(0.00103) (0.00104) (0.00104) (0.00388) (0.00421) (0.00504)

PostTrend × HSurp× HGr -0.00784*** -0.00764*** -0.00760*** -0.00696** -0.00511 -0.000937
(0.000961) (0.000970) (0.000969) (0.00298) (0.00312) (0.00354)

PostTrend × LSurp× LGr 0.00491*** 0.00509*** 0.00513*** -0.00894** -0.00928** -0.00127
(0.00111) (0.00113) (0.00113) (0.00431) (0.00437) (0.00481)

PostTrend × LSurp× HGr -0.00386*** -0.00367*** -0.00362*** -0.00795** -0.00629** -0.00191
(0.00102) (0.00103) (0.00103) (0.00314) (0.00316) (0.00373)

FNeighbor -0.00975**
(0.00427)

PostFNeighbor -0.00469
(0.00545)

PostTrendNeighbor -0.00375**
(0.00168)

FNeighbor × HSurp -0.00862* -0.0301** -0.0354*** -0.0195
(0.00480) (0.0143) (0.0135) (0.0165)

FNeighbor × LSurp -0.00936** -0.0250** -0.0282*** -0.0176
(0.00420) (0.0103) (0.0105) (0.0122)

PostFNeighbor × HSurp -0.00670 -0.0234 -0.0552*** -0.0525***
(0.00602) (0.0182) (0.0158) (0.0182)

PostFNeighbor × LSurp -0.00115 -0.0370*** -0.0614*** -0.0657***
(0.00570) (0.0142) (0.0144) (0.0165)

PostTrendNeighbor × HSurp -0.00593*** -0.00461 0.00138 0.00425
(0.00180) (0.00451) (0.00398) (0.00460)

PostTrendNeighbor × LSurp -0.00201 -0.00477 -0.00328 0.000537
(0.00183) (0.00369) (0.00357) (0.00407)

Observations 69,927 69,927 69,927 61,378 60,844 54,497
Within R-squared 0.064 0.081 0.083 0.032 0.036 0.034
Neighbor County Flood Controls Yes Yes Yes Yes Yes Yes
Xit Controls Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period
following the first year of impact. PostTrend is a linear trend starting the in the period following the impact.
LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative population
growth 5 years prior to the event. FNeighbor is an indicator for a community with no flooding located in county
with a single flood only. PostFNeighbor and PostTrendNeighbor are respectively the post- and post-trend for such
a location. Sample: 2000/2016. SE clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-based local economy; above median renter
fraction; below 33th perc. tot. damage. The estimation results do not report the coefficients for multiple-flood
communities.
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Table 10: Population Responses with Spline Damage Specification

(1) (2) (3) (4)
VARIABLES lnPopist lnPopist lnPopist lnPopist

F × Dam1 -0.000581 -0.00872***
(0.00181) (0.00241)

PostF × Dam1 -0.00343 -0.00833**
(0.00221) (0.00342)

PostTrend × Dam1 0.000144 -0.00371***
(0.000606) (0.000927)

F × Dam2 -0.00191 -0.00995***
(0.00162) (0.00220)

PostF × Dam2 -0.00455* -0.00958***
(0.00238) (0.00296)

PostTrend × Dam2 -0.00104 -0.00473***
(0.000800) (0.000931)

F × Dam3 0.000262 -0.00760***
(0.00134) (0.00229)

PostF × Dam3 -0.00383* -0.00861**
(0.00200) (0.00343)

PostTrend × Dam3 0.000915 -0.00277***
(0.000675) (0.00102)

F × HSurp × Dam1 -0.00441** -0.0130***
(0.00173) (0.00327)

F × LSurp × Dam1 0.00823* 0.00108
(0.00433) (0.00360)

PostF × HSurp × Dam1 -0.00679*** -0.0143***
(0.00249) (0.00482)

PostF × LSurp × Dam1 0.00460 0.00313
(0.00424) (0.00420)

PostTrend × HSurp × Dam1 -0.00118 -0.00498***
(0.000730) (0.00126)

PostTrend × LSurp × Dam1 0.00292*** -0.000330
(0.000887) (0.00116)

F × HSurp × Dam2 -0.00276 -0.0120***
(0.00195) (0.00300)

F × LSurp × Dam2 -0.000601 -0.00753**
(0.00274) (0.00309)

PostF × HSurp × Dam2 -0.00214 -0.0107***
(0.00312) (0.00406)

PostF × LSurp × Dam2 -0.00856** -0.00972**
(0.00350) (0.00399)

PostTrend × HSurp × Dam2 -0.00280*** -0.00678***
(0.00105) (0.00124)

PostTrend × LSurp × Dam2 0.00156 -0.00155
(0.00108) (0.00125)

F × HSurp × Dam3 -0.000564 -0.00982***
(0.00173) (0.00319)

F × LSurp × Dam3 0.00112 -0.00446*
(0.00180) (0.00261)

PostF × HSurp × Dam3 -0.00357 -0.0122**
(0.00258) (0.00479)

PostF × LSurp × Dam3 -0.00420 -0.00315
(0.00278) (0.00399)

PostTrend × HSurp × Dam3 -0.000159 -0.00412***
(0.000863) (0.00139)

PostTrend × LSurp × Dam3 0.00188** -0.00134
(0.000879) (0.00128)

Observations 70,403 70,403 70,403 70,403
Within R-squared 0.007 0.02 0.019 0.041
Xit Controls No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.Dam1/Dam2/Dam3 are indicators for the lower 33th

percentile/33th-66th percentile/upper 66th of damage within the state. F is an indicator for
flood event. PostF is an indicator for the period following the first year of impact. Post-
Trend is a linear trend starting the in the period following the impact. LSurp/HSurp is
an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Sample: 2000/2016. SE clustered by com-
munity. Additional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for
multiple-flood communities.

(5) (6)
VARIABLES lnPopist lnPopist

F × HSurp × LGr ×Dam1 0.00739*** 0.00615***
(0.00151) (0.00215)

F × HSurp × HGr ×Dam1 -0.00683*** -0.0166***
(0.00203) (0.00390)

F × LSurp × LGr ×Dam1 0.0202 0.00558
(0.0129) (0.00827)

F × LSurp × HGr ×Dam1 0.00349* -0.00192
(0.00199) (0.00253)

PostF × HSurp× LGr ×Dam1 -0.00139 0.000660
(0.00268) (0.00441)

PostF × HSurp× HGr ×Dam1 -0.00679** -0.0168***
(0.00291) (0.00586)

PostF × LSurp× LGr ×Dam1 0.0111 0.00513
(0.0109) (0.00755)

PostF × LSurp× HGr ×Dam1 0.00243 0.00149
(0.00316) (0.00431)

PostTrend × HSurp× LGr ×Dam1 0.00800*** 0.00562***
(0.000880) (0.00115)

PostTrend × HSurp× HGr ×Dam1 -0.00368*** -0.00716***
(0.000809) (0.00149)

PostTrend × LSurp× LGr ×Dam1 0.00909*** 0.00400***
(0.00167) (0.00149)

PostTrend × LSurp× HGr ×Dam1 0.000210 -0.00203
(0.000919) (0.00139)

F × HSurp × LGr ×Dam2 0.00732*** 0.00627**
(0.00180) (0.00279)

F × HSurp × HGr ×Dam2 -0.00545** -0.0159***
(0.00234) (0.00362)

F × LSurp × LGr ×Dam2 0.0126 -0.000747
(0.00971) (0.0100)

F × LSurp × HGr ×Dam2 -0.00372* -0.00930***
(0.00196) (0.00278)

PostF × HSurp× LGr ×Dam2 0.00361 0.00499
(0.00352) (0.00567)

PostF × HSurp× HGr ×Dam2 -0.00372 -0.0149***
(0.00371) (0.00473)

PostF × LSurp× LGr ×Dam2 0.00129 -0.00434
(0.00796) (0.00834)

PostF × LSurp× HGr ×Dam2 -0.00985** -0.0107**
(0.00382) (0.00458)

PostTrend × HSurp× LGr ×Dam2 0.00739*** 0.00514***
(0.000825) (0.00121)

PostTrend × HSurp× HGr ×Dam2 -0.00572*** -0.00926***
(0.00124) (0.00143)

PostTrend × LSurp× LGr ×Dam2 0.0103*** 0.00628***
(0.00141) (0.00162)

PostTrend × LSurp× HGr ×Dam2 -0.00115 -0.00364**
(0.00127) (0.00147)

F × HSurp × LGr ×Dam3 0.00429* 0.00324
(0.00236) (0.00324)

F × HSurp × HGr ×Dam3 -0.00279 -0.0130***
(0.00206) (0.00393)

F × LSurp × LGr ×Dam3 0.00315* -0.00757
(0.00187) (0.00627)

F × LSurp × HGr ×Dam3 0.000665 -0.00429
(0.00241) (0.00331)

PostF × HSurp× LGr ×Dam3 0.000924 0.00185
(0.00288) (0.00481)

PostF × HSurp× HGr ×Dam3 -0.00578* -0.0167***
(0.00335) (0.00620)

PostF × LSurp× LGr ×Dam3 -0.00569* -0.0103
(0.00331) (0.00657)

PostF × LSurp× HGr ×Dam3 -0.00241 -0.000780
(0.00358) (0.00522)

PostTrend × HSurp× LGr ×Dam3 0.00470*** 0.00259**
(0.000762) (0.00122)

PostTrend × HSurp× HGr ×Dam3 -0.00245** -0.00580***
(0.00111) (0.00180)

PostTrend × LSurp× LGr ×Dam3 0.00758*** 0.00357**
(0.00107) (0.00158)

PostTrend × LSurp× HGr ×Dam3 -0.000908 -0.00362**
(0.00102) (0.00164)

Observations 70,403 70,403
R-squared 0.061 0.081
Xit Controls No Yes
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Table 11: Population and Real Estate Responses Controlling for Local Churches and Social
Organizations

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist TopTier MiddleTier BottomTier

F -0.0101***
(0.00230)

PostF -0.00948***
(0.00318)

PostTrend -0.00545***
(0.000970)

F × HSurp -0.0128***
(0.00244)

F × LSurp -0.00577**
(0.00287)

PostF × HSurp -0.0103***
(0.00336)

PostF × LSurp -0.00772**
(0.00362)

PostTrend × HSurp -0.00723***
(0.00101)

PostTrend × LSurp -0.00281***
(0.00104)

F × HSurp × LGr -0.00325 -0.0369*** -0.0261* -0.0275*
(0.00244) (0.0125) (0.0135) (0.0160)

F × HSurp × HGr -0.0141*** -0.00445 0.00703 0.0122
(0.00246) (0.00917) (0.00930) (0.0118)

F × LSurp × LGr 0.00341 -0.0183 0.00181 0.000337
(0.00603) (0.0143) (0.0133) (0.0169)

F × LSurp × HGr -0.00758*** 0.00145 0.0107 0.0114
(0.00234) (0.00961) (0.00966) (0.0120)

PostF × HSurp× LGr -0.00501 -0.0545*** -0.0569*** -0.0694***
(0.00356) (0.0158) (0.0177) (0.0207)

PostF × HSurp× HGr -0.0108*** -0.0127 -0.00556 -0.00958
(0.00336) (0.0118) (0.0117) (0.0144)

PostF × LSurp× LGr -0.00213 -0.0249 -0.00689 -0.0321
(0.00561) (0.0183) (0.0177) (0.0205)

PostF × LSurp× HGr -0.00808** -0.00908 -0.0110 -0.0167
(0.00348) (0.0125) (0.0125) (0.0154)

PostTrend × HSurp× LGr 0.00124 0.00144 0.00518 0.00855*
(0.00104) (0.00379) (0.00422) (0.00500)

PostTrend × HSurp× HGr -0.00858*** -0.00398 -0.00118 0.000514
(0.00100) (0.00281) (0.00299) (0.00339)

PostTrend × LSurp× LGr 0.00400*** -0.00438 -0.00366 0.00149
(0.00120) (0.00414) (0.00427) (0.00464)

PostTrend × LSurp× HGr -0.00448*** -0.00474 -0.00207 0.000298
(0.00105) (0.00292) (0.00299) (0.00369)

F × Social 0.00222 0.00208 0.000223 0.00560 0.00552 0.0137*
(0.00194) (0.00194) (0.00210) (0.00581) (0.00606) (0.00729)

PostF × Social 0.00109 0.000896 -0.000535 0.0204*** 0.0228*** 0.0271***
(0.00256) (0.00255) (0.00258) (0.00753) (0.00790) (0.00959)

PostTrend × Social 0.00284*** 0.00284*** 0.00150** -0.00265 -0.00318 0.000614
(0.000711) (0.000705) (0.000680) (0.00184) (0.00201) (0.00230)

Observations 70,403 70,403 70,403 61,530 60,920 54,554
Within R-squared 0.025 0.03 0.052 0.023 0.026 0.025
Xit Controls Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period
following the first year of impact. PostTrend is a linear trend starting the in the period following the impact.
LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Social is an indicator for above median number of social or-
ganizations and churches per capita. Sample: 2000/2016. SE clustered by community. Additional controls:
indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local
economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do not report
the coefficients for multiple-flood communities.
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Figure 1: Locations with Single and Multiple Floods between 2003–2013

Figure 2: Locations with Flood Surprises between 2003–2013



Figure 3: Population Growth of Milford vs New Haven and Bridgeport

Figure 4: Population and Real Estate Values at Milford vs New Haven and Bridgeport
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Appendix 1: Additional Tables (for online publication

only)

Table A1: Censor at 2bps – Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.00147 -0.00709***
(0.000914) (0.00187)

PostF -0.00385*** -0.00798***
(0.00131) (0.00277)

PostTrend 0.000180 -0.00290***
(0.000489) (0.000875)

F × HSurp -0.00272** -0.00872***
(0.00112) (0.00211)

F × LSurp 0.000434 -0.00486**
(0.00127) (0.00192)

PostF × HSurp -0.00294* -0.00781***
(0.00171) (0.00301)

PostF × LSurp -0.00510*** -0.00832***
(0.00191) (0.00305)

PostTrend × HSurp -0.00144** -0.00448***
(0.000586) (0.000915)

PostTrend × LSurp 0.00242*** -0.000689
(0.000655) (0.000979)

F × HSurp × LGr 0.00669*** 4.92e-05
(0.00123) (0.00212)

F × HSurp × HGr -0.00526*** -0.0111***
(0.00132) (0.00217)

F × LSurp × LGr 0.00720*** 0.00154
(0.00267) (0.00283)

F × LSurp × HGr -0.00143 -0.00674***
(0.00128) (0.00195)

PostF × HSurp× LGr 0.00205 -0.00306
(0.00183) (0.00323)

PostF × HSurp× HGr -0.00350* -0.00894***
(0.00209) (0.00306)

PostF × LSurp× LGr -0.000959 -0.00447
(0.00278) (0.00342)

PostF × LSurp× HGr -0.00506** -0.00869***
(0.00240) (0.00335)

PostTrend × HSurp× LGr 0.00688*** 0.00350***
(0.000557) (0.000935)

PostTrend × HSurp× HGr -0.00442*** -0.00681***
(0.000681) (0.000905)

PostTrend × LSurp× LGr 0.00876*** 0.00552***
(0.000771) (0.000988)

PostTrend × LSurp× HGr -0.000423 -0.00312***
(0.000774) (0.00104)

Observations 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.007 0.024 0.012 0.029 0.04 0.051
Xit Controls No Yes No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.This table replicates the main results in the paper using a higher cut-off
for a flood event. Relative Damage below 2bps is censored. F is an indicator for flood event. PostF is an indicator
for the period following the first year of impact. PostTrend is a linear trend starting the in the period following the
impact. LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Estimation (7) and (8) use a different definition for surprise – zero
buildings destroyed between 1978 and 2003. Sample: 2000/2016. SE clustered by community. Additional controls:
indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local
economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do not report the
coefficients for multiple-flood communities.
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Table A2: Drop over 8.66% Relative Damage – Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.000997 -0.00933***
(0.00112) (0.00202)

PostF -0.00388*** -0.00926***
(0.00144) (0.00277)

PostTrend -8.65e-05 -0.00414***
(0.000483) (0.000853)

F × HSurp -0.00325*** -0.0121***
(0.00120) (0.00241)

F × LSurp 0.00273 -0.00501**
(0.00193) (0.00231)

PostF × HSurp -0.00456*** -0.0103***
(0.00174) (0.00311)

PostF × LSurp -0.00250 -0.00739**
(0.00217) (0.00308)

PostTrend × HSurp -0.00144** -0.00580***
(0.000582) (0.000907)

PostTrend × LSurp 0.00196*** -0.00167*
(0.000617) (0.000934)

F × HSurp × LGr 0.00649*** -0.00319
(0.00115) (0.00245)

F × HSurp × HGr -0.00567*** -0.0143***
(0.00142) (0.00243)

F × LSurp × LGr 0.0117** 0.00327
(0.00543) (0.00505)

F × LSurp × HGr -6.37e-05 -0.00767***
(0.00131) (0.00209)

PostF × HSurp× LGr 0.000959 -0.00539
(0.00190) (0.00332)

PostF × HSurp× HGr -0.00526** -0.0113***
(0.00206) (0.00314)

PostF × LSurp× LGr 0.00253 -0.00279
(0.00484) (0.00474)

PostF × LSurp× HGr -0.00312 -0.00818***
(0.00211) (0.00317)

PostTrend × HSurp× LGr 0.00697*** 0.00223**
(0.000594) (0.000889)

PostTrend × HSurp× HGr -0.00405*** -0.00785***
(0.000655) (0.000914)

PostTrend × LSurp× LGr 0.00893*** 0.00488***
(0.000883) (0.00105)

PostTrend × LSurp× HGr -0.000818 -0.00413***
(0.000694) (0.000969)

Observations 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.003 0.024 0.007 0.029 0.042 0.056
Xit Controls No Yes No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.This table replicates the main results in the paper by dropping communities
with more than 8.66% relative damage. For additional details see Table A1
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Appendix 2: Data Construction (for online publication

only)

NFIP maintains an official record of the number of policies sold, total coverage, and total
payouts at the level of a given community since the program effectively partners with the local
authority enforcing the flood map and building code. The geographical level is consistent
with the US Census definition of general-purpose government units such as cities, towns,
townships, as well as the remaining county areas (county balance). I focus on 38 states with
FEMA disaster declarations related to flooding. Table 1 lists the states considered. Median
population across the 4,147 communities in 38 states in the sample is 34 thousand people.
Insurance information includes homeowners and business structures.

NFIP does not list payouts associated with particular flood events. Instead, it shows
up-to-date payouts starting from 1978. I use historical observations of the official record
taken approximately twice a year between 2003 and 2014 to calculate the amount of new
payouts claimed at each community. These represent insured damages associated with flood
events during each year. I carefully link the observed payouts to the set of FEMA disaster
declarations for each state. The matching was not automated but involved reading the
description of FEMA declarations for each state/year and associating flood events in the
covered counties to observed insurance payouts at communities in those counties. This link
allows me to identify both the amount of insured and uninsured damages for each FEMA
event. In approximately 25% of community/year cases total losses are based only on insured
damage. This is consistent with the fact that not all communities in counties with disaster
declarations will have significant uninsured losses.

The uninsured damages are sourced from FEMA’s individual/public assistance data and
from Small Business Administration’s (SBA) individual/business lending data. A disaster
declaration makes federal funding available to affected individuals without insurance. They
can receive either a direct non-refundable payment or a highly subsidized loan depending
on their ability to take on additional credit. FEMA administers the direct payments and
SBA extends the loans. Both maintain a registry that identifies the amount of assistance
provided and the related total damage at the zip-code level for each disaster declaration.
Altogether, total damage in the data has four components: insured individual/business from
NFIP; uninsured individual from FEMA and SBA; uninsured business from SBA; uninsured
public from FEMA. In this paper I focus primarily on total damage. The components are
only used to control for events where most of the damage comes from one of the source.

Relative damage is calculated using an estimate for the total value of the real estate
during the year of a flood. The value is calculated using information from the 2000 Census
at the block level. I add the total housing values listed in the Census across all of the value
categories for a total real estate value in 2000. I then use the annual state house values from
the FHFA to project the 2000 values forward for each year.

Zip-code data is associated to community-level data using block-level population weights.
In particular each Census block lists the total population, the zip-code, and the community.
This allows me to assign zip-code values to communities by appropriately weighting using
population.

Data on flood insurance policies is only available for the years of 2002-2006 and 2010.
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This is due to a change in the way data was reported across the years.
Fraction of population in a flood zone has been calculated by overlaying community flood

zones with census blocks from the 2000 Census. I have used area as weights to assign the
2000 population from each block in or outside of the flood zone.
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