Myasnikov, Alexander (2018): Оценка пространственных моделей с переменными коэффициентами пространственной чувствительности методом максимального правдоподобия и обобщенным методом наименьших квадратов.
Preview |
PDF
MPRA_paper_86696.pdf Download (431kB) | Preview |
Abstract
The traditional spatial lag model assumes that all regions in the sample exhibit the same degree of sensitivity to spatial external effects. This may not always be the case, however, especially with highly heterogeneous regions like those in Russia. Therefore, a model has been suggested that views spatial coefficients as being endogenously defined by regions’ intrinsic characteristics. We generalize this model, describe approaches to its estimation based on maximum likelihood and generalized least squares, and perform a Monte Carlo simulation of these two estimation methods in small samples. We find that the maximum likelihood estimator is preferable due to the lower biases and variances of the estimates it yields, although the generalized least squares estimator can also be useful in small samples for robustness checks and as a first approximation tool. In larger samples, results of the generalized least squares estimator are very close to those of the maximum likelihood estimator, so the former may be preferred because of its simplicity and less strict computational power requirements.
Item Type: | MPRA Paper |
---|---|
Original Title: | Оценка пространственных моделей с переменными коэффициентами пространственной чувствительности методом максимального правдоподобия и обобщенным методом наименьших квадратов |
English Title: | Maximum likelihood and generalized least squares estimation of spatial lag models with endogenous spatial coefficients: a Monte Carlo simulation |
Language: | Russian |
Keywords: | spatial lag model; endogenous spatial coefficients; Monte Carlo simulation; small sample estimation |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O18 - Urban, Rural, Regional, and Transportation Analysis ; Housing ; Infrastructure R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R15 - Econometric and Input-Output Models ; Other Models |
Item ID: | 86696 |
Depositing User: | Dr Alexander Myasnikov |
Date Deposited: | 14 May 2018 04:49 |
Last Modified: | 27 Sep 2019 16:20 |
References: | Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic Publishers. Anselin L (2001) Spatial econometrics. In: Baltagi BH (ed.) A Companion to Theoretical Econometrics. Wiley, New York, pp 310–330. http://doi.org/10.1002/9780470996249. Bekti RD, Rahayu A, Sutikno (2013) Maximum Likelihood Estimation for Spatial Durbin Model. J of Mathematics and Statistics 9(3):169–174. http://doi.org/10.3844/jmssp.2013.169.174. Bell KP, Bockstael NE (2000) Applying the Generalized-Moments Estimation Approach To Spatial Problems Involving Microlevel Data. The Rev of Economics and Statistics 82(1):72–82. http://doi.org/10.1162/003465300558641. Corrado L, Fingleton B (2012) Where is the economics in spatial econometrics? J of Regional Science 52(2):210–239. http://doi.org/10.1111/j.1467-9787.2011.00726.x. Demidova OA, Ivanov DS (2016) Models of economic growth with heterogeneous spatial effects (in Russian regions). Economic J of HSE 20(1):52–75. (In Russian) Kelejian HH, Prucha IR (1998) A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. Journal of Real Estate Finance and Economics 17(1):99–121. Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Rev 40(2):509–533. Walde J, Larch M, Tappeiner G (2008) Performance contest between MLE and GMM for huge spatial autoregressive models. J of Statistical Computation and Simul 78(2):151–166. http://doi.org/10.1080/10629360600954109. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/86696 |