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Abstract

This paper proposes a new nonparametric identification strategy for static multiple choice

models with random heterogeneity in unobservables. The strategy relies on functional prop-

erties of the sub-utilities and the distribution of the unobservables, a known payoff function

for the “outside option” and exclusion restrictions for all but one alternative. This new strategy

does not transform the multiple choice model into a set of binary models, does not need “spe-

cial regressors”, additive separability on observables or differentiability conditions. Some

ideas for this new identification strategy are borrowed from Theorem 2 in Matzkin (1993) that

intends to identify all the sub-utility functions but one and also the distribution of the shocks

in differences. However, the proof of this published theorem is incorrect and (to the best of

my knowledge) this paper is the first literature pointing this out and providing a new proof of

a different version of the theorem after modifications of its assumptions.

Keywords: Nonparametric identification, Markov decision processes, discrete choice.

JEL Classification: C14, C35, C51.

I Introduction

Discrete choice models have been broadly applied in economics, some parametric examples that involve

models of this type are in Berry, Levinsohn, and Pakes (1995), Chintagunta and Honore (1996), McFadden

(1973) and Nevo (2001). These type of models are particularly useful when there is a finite number of

mutually-exclusive alternatives and economic agents (or nature) pick each one with certain probability,

depending on the attributes of each alternative. This paper focuses on nonparametric static multiple choice

models with choice-specific and individual random heterogeneity in unobservables. The identification

strategies for this type of models allow to uniquely determine the unknown objects using observations of

the choices, features of the alternatives and characteristics of the agents. These strategies can be designed

Comments are welcome at karnv.o@gmail.com.
∗Ph.D. in Economics, Pennsylvania State University. I am grateful to Andres Aradillas-Lopez for his valuable observations.

All errors are my own.
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to learn about unknown objects under different assumptions. The solution of a particular identification

problem guarantees necessary uniqueness conditions to estimate the objects consistently. In this paper,

there are not assumptions on the parametric functional forms of both, the utility functions and the joint

distribution of the unobservables, i.e. the “shocks”.

One of the earliest works that relax parametric assumptions for the distribution of the unobservables

of this type of models is Manski (1975). An identification strategy for similar multinomial models known

as “special regressor” was proposed by Lewbel (2000). In Lewbel’s paper the utilities are assumed to

be additive separable in particular observable terms, the “special regressors”, which must be all distinct

in the sense that none of them can be a deterministic function of some other. It is also assumed that

the coefficients of these special regressors are the same and the identification of the distribution of the

shocks is achieved in the limit. This is possible because when the special regressors become infinitely

large for all alternatives except two, the multiple choice model can be reduced to a binary choice model.

Briesch, Chintagunta, and Matzkin (2010) develop extensions of the model in McFadden (1973) and non-

parametrically identify utility functions under assumptions of independence between the observable and

unobservable variables and arguments based on the “special regressors” strategy. Berry and Haile (2009)

study the identification of the joint distribution of indirect utilities under large support conditions, an ad-

ditive separability restriction on preferences1 and monotonicity restrictions.2 Chiappori and Komunjer

(2009) propose an identification strategy that departs from the “special regressor” assumption and is based

on exclusion restrictions. The strategy requires differentiability conditions such that when a group of re-

gressors are excluded from relevant conditional distribution functions, a number of restrictions on the

partial derivatives of these functions can be derived. In particular, this method requires twice continu-

ously differentiable sub-utility functions with everywhere non vanishing partial derivative with respect to

observables that satisfy the exclusion restrictions. In addition, the second order partial derivatives of the

conditional density of the unobserved choice-specific characteristics must be linearly independent.34

This paper nonparametrically identifies the sub-utility functions and the distribution of the unobserved

random heterogeneity under some conditions weaker than the assumptions in the literature. The strategy

relies on a strictly increasing distribution of the shocks in differences, continuity of the sub-utility func-

tions and availability of at least 1 exclusion restriction for all but 1 alternative. Moreover, it is assumed that

one of the choice-specific “sub-utility” or “payoff” functions, the one for the “outside option”, is known

and its range is the real line. This is a noticeable difference with respect to the identification strategies

available so far and allows to use information that could be available for the “outside option”, for instance

this function could be estimated in advance. Thus, the standard assumption that the utility for the “outside

option” is 0 under any circumstances is not compatible. Note that this new identification strategy does

not transform the multiple choice model into a set of binary choices, does not need “special regressors”,

additive separability on observables or differentiability conditions.

Some ideas for this new identification strategy are borrowed from Theorem 2 in Matzkin (1993),

T2M, which intends to identify all the sub-utility functions but one and the distribution of the shocks in

1for a group of observables and unobservables.
2A broader review on identification strategies can be found in Matzkin (2013).
3This requirement rules out the normal distribution.
4Other assumptions in Chiappori and Komunjer (2009) include location assumptions on the sub-utilities and their derivatives

over certain subsets, and unobserved choice-specific characteristics with 0 expectations conditional on the available instruments.
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differences under assumptions on their functional properties, range and level attained over certain subsets.

The T2M is an interesting example of ideas for a nonparametric identification strategy, but its proof is

incorrect and (to the best of my knowledge) this paper is the first literature pointing this out and providing

a proof of a different version of the T2M after modifications to its assumptions.

The next section presents a stylized version of the multiple choice model and the Theorem 2 as stated

in Matzkin (1993). The following section revise the assumptions and prove a new theorem to achieve the

identification of both, the sub-utility functions and the distribution of the unobserved random heterogene-

ity in differences. The last section summarizes the conclusions.

II The Model

Consider a setup in which agent i has a vector si ∈ S ⊂ R
L of socioeconomic characteristics and chooses

an alternative j among the J < ∞ available alternatives.5 Each alternative j ∈ A = {1, .., J} provides

certain level of utility to the agent depending on a vector of observable attributes, zij ∈ Zj ⊂ R
Kj , which

may be different for each agent. The utility level attained by agent i is

Ui (j) = V ∗ (j, si, zij) + εij

with unobservable random utility εij and an unknown real function V ∗ (j, ·) : (S × Zj) → R common

to all agents. The subindex i is omitted now to simplify the notation given that the setup is the same for

all agents.

Assume that the distribution of the unobservable random vector (ε1, ..., εJ) is independent of the vec-

tor of observable characteristics (s, z) and letP ∗
j (·) be the cumulative distribution of ε(j) = (ε1 − εj , . . . , εJ − εj) ∈

R
J−1. Then, the agent with characteristics s chooses alternative j ∈ A if

V ∗ (j, s, zj) + εj > V ∗ (k, s, zk) + εk for k 6= j

The J-dimensional vector z = (z1, . . . , zJ) denotes attributes of the J alternatives, with z ∈ Z =
∏J

j=1 Zj . Let V ∗ (s, z) = (V ∗ (1, s, z1) , . . . , V
∗ (J, s, zJ)), such that V ∗ : (S × Z) → R

J . For each

j ∈ A, denote

V ∗(j) (s, z) = (V ∗ (j, s, zj)− V ∗ (1, s, z1) , . . . , V
∗ (j, s, zj)− V ∗ (J, s, zJ)) ∈ R

J−1,

and the probability of choosing alternative j under the independence assumption becomesP ∗
j

(

V ∗(j) (s, z)
)

.

Let Pr (j| (s, z)) be the observable probability that an agent with socioeconomic characteristics s choose

alternative j ∈ A when the attributes are z. Then, equation (1) holds.

Pr (j| (s, z)) = P ∗
j

(

V ∗(j) (s, z)
)

. (1)

Denote byP ∗ the set of distributions
{

P ∗
j (·)

∣

∣

∣
j ∈ A

}

. LetV denote a set of functionsV : (S × Z) →

R
J , such that the domain of the jth coordinate of V , i.e. V (j, ·), is S × Zj . Let P denote a set

5This section follows the notation in Matzkin (1993), but note that an additional dimension such as markets could be incor-

porated.
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whose generic element is a collection
{

P ∗
j (·)

∣

∣

∣
j ∈ A

}

of distribution functions of ε(j). Assume that

(V ∗, P ∗) ∈ (V ×P). Denote V = V ∗, if for all j ∈ A, V (j, s, zj) = V ∗ (j, s, zj) a.s. with re-

spect to the probability measure of (s, z), denoted by G. In addition, P = P ∗ whenever for all j ∈ A,

Pj (α | (s, z)) = P ∗
j (α | (s, z)) a.e. with respect to the Lebesgue measure in R

J−1 and a.s. with respect

to the probability measureG. The identification result is obtained when the pair (V ∗, P ∗) can be uniquely

recovered from the conditional choice probabilities Pr(j| (s, z)) and other observables.

Definition 1. (V ∗, P ∗) is identified in (V ×P) if for all (V, P ) 6= (V ∗, P ∗) there is some set D ⊂

(S × Z) such that G(D) > 0 and for some alternative j and all (s, z) ∈ D: Pr(j| (s, z);V, P ) 6=

Pr(j| (s, z);V ∗, P ∗).

Theorem 2 in Matzkin (1993) intends to provide sufficient conditions for the identification in defini-

tion 1. However, its proof is not correct because intuitively, the combination of location assumptions and

exclusion restrictions do not allow for sufficient variability to actually identify P ∗. To see this formally,

theorem 1 presents the Theorem 2 as stated in Matzkin (1993) followed by the details of the gap in its

proof.

Theorem 1 (Theorem 2, Matzkin, 1993). Suppose that the following assumptions are satisfied:

Assumption A. For all V ∈ V, V is a continuous function.

Assumption B. There exists a vector of socioeconomic characteristics s̄ ∈ S, a subset of attributes

Z̄1 ⊂ Z1, and some z̄j ∈ Zj for j = 2, . . . , J such that

i. for all V ∈ V, V (1, s̄, Z̄1) = R.

ii. for all V , V ′ ∈ V and all z1 ∈ Z̄1, V (1, s̄, z1) = V ′ (1, s̄, z1),

iii. for all V ∈ V and all j = 2, . . . , J , V (j, s̄, z̄j) = 0.

Assumption C. There exists z∗1 ∈ Z1 and γ ∈ R such that for all s ∈ S and all V ∈ V, V (1, s, z∗1) = γ.

Assumption D. For all P ∈ P and all j ∈ A there exists a function Pj : RJ−1 → R such that for all

(s, z) ∈ (S × Z), Pj (·| (s, z)) = Pj (·).

Assumption E. For all P ∈ P and all j ∈ A, Pj is continuous.

Assumption F. For all P ∈ P and all j ∈ A, Pj is strictly increasing.

Assumption G. The support of G is S × Z.

Then, (V ∗, P ∗) is identified within (V ×P)

Section III proposes a modification to the assumptions in Theorem 1 and provides a complete proof.

But before moving forward, it is relevant to point out why the arguments in the proof of Theorem 1

developed in Matzkin (1993) are not sufficient to actually prove this theorem.

The main arguments to prove theorem 1 in Matzkin (1993) are as follows. Suppose that (V, P ) ∈

(V ×P) and for all j ∈ A,

Pj (j| (s, z) ;V, P ) = Pj (j| (s, z) ;V
∗, P ∗) a.s. (G) .
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Then by assumption D,

Pj

(

V (j) (s, z)
)

= P ∗
j

(

V ∗(j) (s, z)
)

a.s. (G) .

Since Pj , P
∗
j , V and V ∗ are continuous, it follows by Assumption G that

Pj

(

V (j) (s, z)
)

= P ∗
j

(

V ∗(j) (s, z)
)

∀ (s, z) ∈ (S × Z) .

In particular,

P1

(

V (1) (s, z)
)

= P ∗
1

(

V ∗(1) (s, z)
)

∀ (s, z) ∈ {s̄} × Z̄1 ×

J
∏

j=2

{z̄j} . (2)

By assumption B item iii, recall that for all V ∈ V and all j = 2, . . . , J , V (j, s̄, z̄j) = 0. Therefore:

V (1) (s̄, z1, z̄2, . . . , z̄J) = (V (1, s̄, z1)− V (2, s̄, z̄2) , . . . , V (1, s̄, z1)− V (J, s̄, z̄J))

= (V (1, s̄, z1) , . . . , V (1, s̄, z1))

Let α = (α1, . . . , αJ−1) ∈ R
J−1. By assumption B item ii and provided that (V ∗, P ∗) ∈ (V ×P) for

all z1 ∈ Z̄1,

V (1) (s̄, z1, z̄2, . . . , z̄J) = V ∗(1) (s̄, z1, z̄2, . . . , z̄J) = α∗.

where α∗ = (α∗
1, . . . , α

∗
1). Hence, by (2),

P1 (α
∗) = P1

(

V (1) (s̄, z1, z̄2, . . . , z̄J)
)

= P ∗
1

(

V ∗(1) (s̄, z1, z̄2, . . . , z̄J)
)

= P ∗
1 (α∗) .

Then Matzkin (1993) p. 160 concludes that P1 = P ∗
1 , but this cannot be always true because α∗ does not

span the whole space. If it were true that P1 = P ∗
1 then the proof could continue pointing out that for all

j ∈ A, ε(j) is a linear transformation of ε(1), thus Pj would be equal to P ∗
j for all j ∈ A and therefore

P = P ∗. For the final arguments, see Matzkin (1993), p. 160.

It follows from assumption B items ii and iii that α∗ is not a typical general vector α ∈ R, so it is not

possible to identify the whole P ∗
1 and therefore P ∗ remains unknown. Section III proposes an alternative

theorem and develops its proof.

III Revision of assumptions in Theorem 1 and nonparametric identifica-

tion

Consider the following modifications of the assumptions in section II. Each alternative has its own cor-

responding attributes such that after considering them, the attributes of the other j 6= 1 alternatives are

irrelevant. Alternative j = 1 can be interpreted as an “outside option” or an alternative of reference for

which there is more available information. The attributes of alternative j = 1 are allowed to directly

affect the utility levels attained by other alternatives. Note that the introduction of exclusion restrictions

for j > 1 is indeed a generalization of the original setup and the proof of theorem 2 also holds under

the original one, with full exclusion restrictions for all j ≥ 1. The attributes can be correlated but they

are not allowed to be deterministic functions of others. Assumption H redefines the sub-utility functions

according to the updated assumptions.

5



Assumption H. For all j > 1, V (j, ·) : S × Z1 × Zj → R and for j = 1, V (1, ·) : S × Z1 → R.

There is some combination of values for the socioeconomic characteristics and the attributes of al-

ternatives j 6= 1 under which the sub-utility functions are 0 within a subset, independently of the values

attained by the attributes of the outside option. Besides, under particular socioeconomic characteristics

and for each given value of the attributes of the outside option within a subset, the range of the sub-utility

functions is the real line. Assumption I replaces assumption B to incorporate these changes.

Assumption I. There exists a vector of socioeconomic characteristics s̄ ∈ S, a subset of attributes

Z̄1 ⊂ Z1, and observable attributes z̄j ∈ Zj for all (j = 2, . . . , J) such that

i. for all V ∈ V, V
(

1, s̄, Z̄1

)

= R.

ii. for all V , V ′ ∈ V and all z1 ∈ Z̄1, V (1, s̄, z1) = V ′ (1, s̄, z1),

iii. for all V ∈ V and all j = 2, . . . , J ,V
(

j, s̄, Z̄1, z̄j
)

= 0.

iv. for all V ∈ V, all z1 ∈ Z̄1 and all j = 2, . . . , J , V (j, s̄, z1, Zj) = R

The sub-utility function for the outside option is known over different subsets and cannot be 0 ev-

erywhere by assumption I item i. Assumption J replaces assumption C which is usefult to identify the

sub-utilities in levels on the whole space.

Assumption J. For all (s, z1) /∈ {s̄} × Z̄1, and all V , V ′ ∈ V, V (1, s, z1) = V ′ (1, s, z1).

Theorem 2 states a revised version of theorem 1.

Theorem 2. Suppose that assumptions A and D to J are satisfied:

Then, (V ∗, P ∗) is identified within (V ×P)

To prove Theorem 2, first consider the following lemma that states sufficient conditions under which

the arguments of a particular multivariate function are equal.

Lemma 1. Let Pj : R
J → R, a, bj ∈ R for j = 0, . . . , J , −→a 0 = (a, . . . , a)′, −→a j = −→a 1 =

(−a, 0, . . . , 0)′ for j > 0, and

−→
b j = (bj − b0, . . . , bj − bj−1, bj − bj+1, . . . , bj − bJ)

′
,

for any 0 < j < J , with the corresponding changes for j = 0, J .

Denote (λ1, . . . , λJ) & (γ1, . . . , γJ) when for all j > 0, λj ≥ γj , and for at least a k ∈ {1, . . . , J},

λk > γk. Let m & m′ imply that Pj (m) 6= Pj(m
′) for any j. Then, Pj(

−→
b j) = Pj (

−→a j) for all

j = 0, . . . , J , implies that b0 − bj = a for all j = 1, . . . , J .

Proof. (Lemma 1)

Suppose by contradiction that b0 − bj 6= a for some j and without loss of generality (wlog) let j = 2.

If maxj(b0−bj) ≤ a and b0−b2 < a then P0(
−→
b 0) 6= P0 (

−→a 0) by assumption. If maxj(b0−bj) > a and

wlog b0−b1 = maxj(b0−bj), then P1(
−→
b 1) 6= P1(

−→a 1) because b1−bj ≤ 0 for j > 2 and b1−b0 < −a.

Therefore, it cannot be true that b0 − b2 6= a when Pj(
−→
b j) = Pj (

−→a j) for all j = 0, . . . , J .

To gain some intuition about the proof of Theorem 2, note that the sub-utility of the outside option is

known over s̄ ∈ S and a subset of attributes Z̄1 ⊂ Z1. Then, when the attributes of alternatives j > 1
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reach levels z̄j ∈ Zj for all (j = 2, . . . , J), assumption I item iii eliminates the uncertainty on V ∗. This

combination helps to identify P ∗ on the corresponding subespace. Assumption I item iv becomes useful

to identify sub-utilities outside of
∏J

j=2 {z̄j} because given an arbitrary unknown V ∗ (k, s̄, z1, zk) there

is some {zj}j 6=1,k that place a proposed V on the subespace where P ∗ was identified. By lemma 1 we

can argue that the arguments of the functions must be equal, and by assumption I item ii those arguments

become known. Repeating the procedure it is possible to identify V ∗ on a larger subespace, i.e. {s̄} ×

Z̄1 ×
∏J

j=2 Zj . This subespace is sufficient to span the domain of P , so P ∗ can be identified. The sub-

utilities in differences are identified by invertibility of P ∗ and finally assumption J is useful to identify

the sub-utilities in levels on the whole space.

Proof. (Theorem 2)

Suppose that (V, P ) ∈ (V ×P) and for all j ∈ A,

Pj (j| (s, z) ;V, P ) = Pj (j| (s, z) ;V
∗, P ∗) a.s. (G) .

Then by assumption D,

Pj

(

V (j) (s, z)
)

= P ∗
j

(

V ∗(j) (s, z)
)

a.s. (G) .

Since Pj and P ∗
j are continuous and V and V ∗ are continuous, it follows by assumption G that

Pj

(

V (j) (s, z)
)

= P ∗
j

(

V ∗(j) (s, z)
)

∀ (s, z) ∈ (S × Z) .

In particular,

P1

(

V (1) (s, z)
)

= P ∗
1

(

V ∗(1) (s, z)
)

∀ (s, z) ∈ {s̄} × Z̄1 ×
J
∏

j=2

{z̄j} . (3)

Recall that by assumption I item iii we know that for all V ∈ V and all j = 2, . . . , J , V
(

j, s̄, Z̄1, z̄j
)

= 0.

Therefore, for any z1 ∈ Z̄1,

V (1) (s̄, z1, z̄2, . . . , z̄J) = (V (1, s̄, z1)− V (2, s̄, z1, z̄2) , . . . , V (1, s̄, z1)− V (J, s̄, z1, z̄J))

= (V (1, s̄, z1) , . . . , V (1, s̄, z1))

Moreover, by assumption I items i to iii, V
(

1, s̄, Z̄1

)

= V ∗
(

1, s̄, Z̄1

)

= R and for j > 1,

V (j)
(

s̄, Z̄1, z̄2, . . . , z̄J
)

=
(

−V
(

1, s̄, Z̄1

)

, 0, . . . , 0
)

Consider first case 1, in which for all j ∈ A and all (z1, z̄−1) ∈ Z̄1 × {z̄j}
J
j=2

Pj (j| (s̄, z1, z̄−1) ;V
∗, P ∗) = Pj

(

V (j) (s̄, z1, z̄−1)
)

= Pj

(

V ∗(j) (s̄, z1, z̄−1)
)

implies that Pj = P ∗
j , so P ∗ is identified on the space spanned by the sub-utility functions on {s̄}× Z̄1×

∏J
j=2 {z̄j}.
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Consider now case 2, for all j ∈ A, z1 ∈ Z̄1 and some z−1 /∈ {z̄j}
J
j=2,

Pj (j| (s̄, z1, z−1) ;V
∗, P ∗) = Pj

(

V (j) (s̄, z1, z−1)
)

.

In case 2, w.l.o.g., first proceed identifying V ∗ (2, s̄, z1, z2) as follows. Given assumption I item iv, pick

for all j 6= 1, 2 some ẑj ∈ Zj , z̃1 ∈ Z̄1 and z̄−1 ∈ {z̄j}
J
j=2 such that for all j ∈ A

Pj (j| (s̄, z̃1, z̄−1) ;V
∗, P ∗) = P ∗

j

(

V (j) (s̄, z1, z2, ẑ3, . . . , ẑJ)
)

.

Case 1 guarantee that Pj (j| (s̄, z̃1, z̄−1) ;V
∗, P ∗) = P ∗

j

(

V ∗(j) (s̄, z̃1, z̄−1)
)

for all j ∈ A, so

P ∗
j

(

V ∗(j) (s̄, z̃1, z̄−1)
)

= P ∗
j

(

V (j) (s̄, z1, z2, ẑ3, . . . , ẑJ)
)

. (4)

By lemma 1, equation (4) implies V ∗(j) (s̄, z̃1, z̄−1) = V (j) (s̄, z1, z2, ẑ3, . . . , ẑJ) for all j ∈ A, so

V (2, s̄, z1, z2) = V ∗ (1, s̄, z1)−V ∗ (1, s̄, z̃1). Note that V ∗(1, ·) is identified under assumption I item ii,

so V ∗ (2, s̄, z1, z2) is also identified for any arbitrary z1 ∈ Z̄1 and z2 6= z̄2. Using the same argument, all

levels V ∗(j, ·) are identified for arbitrary z1 ∈ Z̄1 and z−1 /∈ {z̄j}
J
j=2.

Combining case 1 and 2, V ∗(j)(·) is identified for all j on {s̄} × Z̄1 ×
∏J

j=2 Zj , and provided as-

sumption I items i and iv, P ∗ is identified. Since P ∗ is invertible (by assumption F and lemma 1) and

identified, then the mapping V ∗(j)(·) is identified for all j and (s, z) ∈ (S × Z). Finally, by assumption J

the levels, V ∗(j, ·) are also identified for all j and (s, z) ∈ (S × Z).

Under full exclusion restrictions, i.e. when the attributes of alternative j = 1 do not affect the utility

levels of other alternatives j > 1, the analogue of theorem 2 holds and assumption J can be replaced

by assumption C. Moreover, under full exclusion restrictions, if alternative j = 1 does not depend on

s, V ∗(1, ·) can be identified on Z1 after identifying P ∗ and {V ∗
j (·)}

J
j=2. Therefore, in this later case

assumptions C and J are not needed.

IV Conclusions

This paper proves a new identification strategy for nonparametric static multiple choice models with

choice-specific and individual random heterogeneity in unobservables. The literature has proposed some

nonparametric identification strategies for static multiple choice models (see for instance Berry and Haile

2009, Briesch, Chintagunta, and Matzkin 2010, Chiappori and Komunjer 2009, Lewbel 2000 and Matzkin

2013) but the available methods rely on “special regressors” arguments, identification at infinity, para-

metric assumptions for the utility functions and/or differentiability conditions of the unknown objects.

The identification strategy proved in this paper allows for nonparametric functional forms of both, the

utility functions and the joint distribution of the unobservables in differences. The strategy mainly relies

on functional properties of the sub-utility functions, properties of the distribution of the unobservables

and the availability of at least 1 exclusion restriction for all but 1 alternative. Besides, it is assumed that

the choice-specific “payoff” function for the “outside option” is known. Thus, the standard assumption

that the utility for the “outside option” is always 0 is ruled out.
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Some ideas for this new identification strategy are borrowed from Theorem 2 in Matzkin (1993), which

intends to identify all the sub-utility functions but one and the distribution of the shocks in differences.

The proof of Theorem 2 in Matzkin (1993), is incorrect and (to the best of my knowledge) this paper

is the first literature pointing this out and providing a proof of an alternative version of the T2M after

modifications to its assumptions.
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