Giglio, Ricardo and Matsushita, Raul and Figueiredo, Annibal and Gleria, Iram and Da Silva, Sergio (2008): Algorithmic complexity theory and the relative efficiency of financial markets.
Preview |
PDF
MPRA_paper_8704.pdf Download (616kB) | Preview |
Abstract
Financial economists usually assess market efficiency in absolute terms. This is to be viewed as a shortcoming. One way of dealing with the relative efficiency of markets is to resort to the efficiency interpretation provided by algorithmic complexity theory. We employ such an approach in order to rank 36 stock exchanges, 37 individual company stocks, and 19 US dollar exchange rates in terms of their relative efficiency.
Item Type: | MPRA Paper |
---|---|
Original Title: | Algorithmic complexity theory and the relative efficiency of financial markets |
Language: | English |
Keywords: | financial efficiency;algorithmic complexity |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading |
Item ID: | 8704 |
Depositing User: | Sergio Da Silva |
Date Deposited: | 11 May 2008 05:17 |
Last Modified: | 27 Sep 2019 03:22 |
References: | [1] Bachelier M L 1900 Theorie de la Speculation (Paris: Gauthier-Villars) [2] Kendall M G 1953 The analysis of economic time series, part I: prices Journal of the Royal Statistical Society A 96 11–25 [3] Roberts H V 1959 Stock market patterns and financial analysis: methodological suggestions Journal of Finance 14 1–10 [4] Alexander S S 1961 Price movements in speculative markets: trends or random walks Industrial Management Review 2 7–26 [5] Cootner P A (ed.) 1964 The Random Character of Stock Market Prices (Cambridge, MA: MIT Press) [6] Fama E F 1965 The behavior of stock market prices Journal of Business 38 34–105 [7] Samuelson P A 1965 Proof that properly anticipated prices fluctuate randomly Industrial Management Review 6 41–50 [8] Hayek F A 1945 The use of knowledge in society American Economic Review 35 519–30 [9] Grossman S J 1976 On the efficiency of competitive stock markets where traders have diverse information Journal of Finance 31 573–85 [10] Fama E F 1970 Efficient capital markets: a review of the theory and empirical work Journal of Finance 25 383–417 [11] Campbell J Y, Lo A W and MacKinlay A C 1997 The Econometrics of Financial Markets (Princeton: Princeton University Press) [12] Mantegna R N and Stanley E 2000 An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge: Cambridge University Press) [13] Beechey M, Gruen D and Vickery J 2000 The efficient market hypothesis: a survey Reserve Bank of Australia Research Discussion Paper 2000–01 [14] Shmilovici A, Alon-Brimer Y and Hauser S 2003 Using a stochastic complexity measure to check the efficient market hypothesis Computational Economics 22 273–84 [15] Chen S H and Tan C W 1999 Estimating the complexity function of financial time series: an estimation based on predictive stochastic complexity Journal of Management and Economics 3 3 [16] Gabjin O, Kim S and Eom C 2007 Market efficiency in foreign exchange markets Physica A 382 209–12 [17] Pincus S 1991 Approximate entropy as a measure of system complexity Proceedings of the National Academy of Sciences of the United States of America 88 2297–301 [18] Richman J S and Moorman J R 2000 Physiological time-series analysis using approximate entropy and sample entropy American Journal of Physiology: Heart and Circulatory Physiology 278 2039–49 [19] Ferrario M, Signorini M and Magenes G 2005 Complexity analysis of the fetal heart rate for the identification of pathology in fetuses Computers in Cardiology 32 989–92 [20] Lempel A and Ziv J 1976 On the complexity of finite sequences IEEE Transactions on Information Theory 22 75–81 [21] Kaspar F and Schuster H G 1987 Easily calculable measure for the complexity of spatiotemporal patterns Physical Review A 36 842–48 [22] Li B, Li Y B, He H B 2005 LZ complexity distance of DNA sequences and its application in phylogenetic tree reconstruction Genomics, Proteomics & Bioinformatics 3 206–12 [23] Shmulevich I and Povel D J 2000 Measures of temporal pattern complexity Journal of New Music Research 29 61–9 [24] Matsushita R, Figueiredo A, Gleria I and Da Silva S 2007 The Chinese chaos game Physica A 378 427–42 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/8704 |