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1 Introduction

Kernel estimation of densities on the real line is a well-developed area. The core of the theory is a series

of results covering smooth densities that do not exhibit extreme curvature. Let K denote a kernel, an

integrable function on R, which satisfies
∫

R
K(t)dt = 1, h > 0 be a bandwidth and f be a density on R.

Assuming that {Xi}ni=1 is an independent and identically distributed (IID) sample from f , the traditional

Rosenblatt-Parzen kernel estimator of f(x) is defined by f̂R(x) = 1
nh

∑n
i=1K

(

x−Xi

h

)

. This estimator has

three desirable characteristics: 1) there exists a great profusion of kernels that can be used to construct the

estimator (usually Epanechnikov, Gaussian or triangular densities); they are usually symmetric and do not

depend on the point (x) of estimation, or on the class of densities being estimated; 2) there is a simple link

between the degree of smoothness of the density and the order of estimator’s bias: if f ∈ Cs
b (Ω) and the

kernel is of order s, then Ef̂R(x) − f(x) = O(hs).1 The use of higher order kernels in the case of smooth

densities is also a standard feature; 3) the optimal bandwidth is of order n−1/(2s+1) for all estimation points,

unless there are areas of extreme curvature or discontinuities.

In cases where the domain of f has a boundary, the main problem is bad estimator behavior in the vicinity

of the boundary. This problem has called into being a range of estimation methods. Among the widely used

ones are the reflection, the boundary kernel, the transformation and the local linear methods (see, inter alia,

Schuster (1985), Jones (1993), Cheng (1994), Karunamuni and Alberts (2005), Malec and Schienle (2014),

Wen and Wu (2015) and their references). Other methods have proposed the use of asymmetric kernels and

kernel adjustments near the boundary (Chen (1999), Chen (2000)). Such techniques, alternatively, require

variable bandwidths, two-step estimation procedures, separation of densities into subclasses that vanish or

not at the boundary, densities that have derivatives of a certain sign at the boundary, etc. The difficulties

of estimation near the boundary precluded researchers from identifying a core class of estimators for which

analogs of the standard results mentioned above would be true. In particular, we have not seen in the

literature results that would guarantee a better bias rate for densities of higher smoothness.

1Let s ∈ N and Ω ⊆ R. The class of functions f : Ω → R which are s-times differentiable with
∣

∣f (s)(x)
∣

∣ ≤ C for some

0 < C < ∞ is denoted by Cs
b
(Ω). We say that the kernel K is of order s ≥ 2 if

∫

tjK(t)dt = 0 for j = 1, · · · , s − 1 and
∫

tsK(t)dt 6= 0.
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In this paper we propose density estimators that permit a unified theoretical study of their properties

under bounded or unbounded domains. We show that smoothness is all one needs to have a good bias rate,

and for smooth densities the behavior at the boundary is irrelevant (derivatives at endpoints are one-sided

derivatives). For densities on the half-axis [0,∞) and on the unit interval [0, 1] we introduce new estimators

for which all standard facts given above hold. The usual symmetric kernels and constant bandwidths can be

used across the domain and for f ∈ Cs
b (Ω) the biases of our estimators are of order O(hs). The bandwidth

depends on the sample size in the same way as in case of estimation on the whole line. In the case of

estimation of piece-wise continuous densities, with known discontinuity points, our estimators supply the

required jumps at those points. As in some some boundary correction estimators (Jones and Foster (1993),

Cheng (1994)), for densities in classes where s ≥ 1 is our estimator is not necessarily nonnegative, because

the estimation essentially involves higher-order kernels. Our theoretical results do not hold for densities or

densities with derivatives with poles at endpoints.

Our estimators are based on Hestenes’ extension (Hestenes (1941)) of continuously differentiable functions

from subsets Ω ⊂ R to R. Let Df be the domain of the density f and denote by g its Hestenes extension (the

definitions for the half-axis and intervals are given below in the respective sections). The key observation is

that g can be viewed as a linear combination of densities. The sample generated from f is used to estimate

each of these densities and the linear combination of the estimators estimates g. The restriction of the

estimator of g to Df estimates f . We show that the theory of estimation on a domain with boundaries for

smooth densities in effect becomes a chapter in estimation on the whole line. The essential link between the

proposed estimators f̂(x) of f(x) and the properties of g is of type

Ef̂(x)− f(x) =

∫

R

K(t) (g(x− ht)− g(x)) dt, x ∈ Df .

This representation has eluded previous work, and can be used for evaluating the asymptotic behavior of

bias. Our estimation procedure does not require knowledge of g. There seems to be a slight loss in the speed

of convergence as compared to convergence on the line because the same data is exploited more than once

to estimate different parts of g. However, this loss does not affect the rate in Ef̂(x)− f(x) = chs + o(hs); it
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affects only the constant c, in comparison with the classical estimator for densities on the line. In section 2,

we start with estimation of a density on [0,∞). Section 3 treats densities on a bounded interval. In section

4, the approach is extended to estimation of discontinuous densities. Section 5 provides two methods to

satisfy zero boundary conditions, and section 6 provides results from a Monte Carlo simulation. Section 7

concludes the paper and gives directions for future research. All proofs are collected in an appendix.

2 Estimation of densities defined on [0,∞)

Let w1, ..., ws+1 be pairwise different positive numbers for s = 0, 1, · · · . Of special interest are the decreasing

sequence wi = 1/i, i = 1, ..., s + 1 (used by Hestenes (1941)) and the increasing sequence wi = i. Let the

numbers k1, ..., ks+1 be defined from the following system

s+1
∑

i=1

(−wi)
jki = 1, j = 0, ..., s. (2.1)

Since this system has the Van-der-Monde determinant
∣

∣

∣

∣

∣

∣

∣

∣

1 1 ... 1
−w1 −w2 ... −ws+1

... ... ...
(−w1)

s (−w2)
s ... (−ws+1)

s

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

k1, ..., ks+1 are uniquely defined. If f ∈ Cs
b on its domain Df = [0,∞), its Hestenes extension to (−∞, 0) is

given by

φs(x) =
s+1
∑

j=1

kjf(−wjx), x < 0. (2.2)

Note that if f is a density function, φs is not a density, but a linear combination of densities wjf(−wjx) with

coefficients kj/wj . Assuming that f has s right-hand derivatives f(0+), ..., f (s)(0+) at zero (s = 0 means

continuity), we see that the following sewing conditions at zero are satisfied due to (2.1):

φ(m)
s (0−) =

s+1
∑

j=1

(−wj)
mkjf

(m)(0+) = f (m)(0+), m = 0, 1, · · · , s.

Now, define gs on R by

gs(x) =

{

f(x), x ≥ 0
φs(x), x < 0

, (2.3)

with gs being s times differentiable. Moreover, if, for example, f belongs to the Sobolev space W s
p ([0,∞)),

then gs belongs to W s
p (R), where 1 ≤ p <∞ (see Burenkov (1998)).
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Suppose f ∈ Cs
b , the kernel K is m times differentiable, where m = 0, 1, · · · , s, and let {Xi}ni=1 be an IID

sample from f . We define the estimator of f (m)(x), for x ≥ 0, by

f̂ (m)
s (x) =

1

nhm+1

n
∑

i=1



K(m)

(

x−Xi

h

)

+

s+1
∑

j=1

kj
wj
K(m)

(

x+Xi/wj

h

)



 . (2.4)

When the kernel K is an even function and m = s = 0 in (2.4), f̂
(0)
0 (x) ≡ f̂S(x) is the “reflection estimator”

from Schuster (1985), i.e.,

f̂S(x) =
1

nh

n
∑

i=1

[

K

(

x−Xi

h

)

+K

(

x+Xi

h

)]

.

We note that Schuster’s estimator does not depend on s, the index on Cs
b . Thus, knowledge that s > 0 is not

used in constructing his estimator, whereas it is central in the definition of f̂
(m)
s (x). The next assumption is

used only for m ≥ 1, when integration by parts is needed.

Assumption 2.1. a) K is even, m times differentiable and max
0≤j≤m−1

|K(j)(t)||t| = o(1) as |t| → ∞; b)

max
0≤j≤m−1

|f (j)(x)| = O(x) as x→ ∞.

The estimator in equation (2.4) can be constructed using kernels in the class {Mk(x)}k∈N proposed by

Mynbaev and Martins-Filho (2010), where

Mk(x) = − 1

Ck
2k

k
∑

|l|=1

(−1)lCl+k
2k

|l| K
(x

l

)

with Cl
2k = 2k!

(2k−l)!l! for l = 0, · · · , 2k. In this context, K is called the seed of Mk. These kernels are used

together with an order 2k finite difference

∆2k
h gs(x) =

k
∑

|l|=0

(−1)l+kCl+k
2k gs(x− lh)

when Besov type norms are employed to measure smoothness (see Mynbaev and Martins-Filho (2010) and

Mynbaev et al. (2016)). We let f̂
(m)
s,k (x) denote the estimator defined in (2.4) with K replaced by Mk, i.e.,

f̂
(m)
s,k (x) =

1

nhm+1

n
∑

i=1



M
(m)
k

(

x−Xi

h

)

+

s+1
∑

j=1

kj
wj
M

(m)
k

(

x+Xi/wj

h

)



 , for x ≥ 0. (2.5)

Note that when K is even, then M1(x) = K(x) and f̂
(m)
s,1 (x) = f̂

(m)
s (x).
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Theorem 2.1. Suppose f ∈ Cs
b on Df = [0,∞) and the kernel K is m times differentiable on R with

m = 0, 1, · · · , s. In case m ≥ 1 suppose that Assumption 2.1 holds. Then,

1) The bias of f̂
(m)
s (x) has the representation

Ef̂ (m)
s (x)− f (m)(x) =

∫

R

K(t)
[

g(m)
s (x− ht)− g(m)

s (x)
]

dt, x ∈ Df . (2.6)

2) If in equation (2.4) a kernel Mk with seed K is used, then

Ef̂
(m)
s,k (x)− f (m)(x) =

(−1)k+1

Ck
2k

∫

R

K(t)∆2k
htg

(m)
s (x)dt, x ∈ Df . (2.7)

The integral representations for biases obtained in Theorem 2.1 depend on the extension gs, not the

density f . Consequently, existing results for smooth functions (not densities) on R allow us to easily obtain

bias estimates. If classical smoothness characteristics in terms of derivatives and Taylor expansions are used,

then part 1) of Theorem 2.1 is relevant. This approach can be used for derivatives of orders m ≤ s − 1

when the bias order is O(hs−m) and guaranteed to tend to zero as h→ 0. If, on the other hand, smoothness

is characterized in terms of finite differences and Besov spaces, then the second representation should be

applied. It is appropriate for m = s − 1 or m = s when the derivative of order s may have a residual

fractional smoothness of order 0 < r < 1.

For 1 ≤ p, q ≤ ∞ and Ω an open subset of R put ∆2k
h,Ωf(x) = ∆2k

h f(x) if [x − kh, x + kh] ⊂ Ω and

∆2k
h,Ωf(x) = 0 otherwise and let

‖f‖brp,q(Ω) =











∫

R







(

∫

Ω

∣

∣

∣∆2k
h,Ωf(x)

∣

∣

∣

p

dx
)1/p

|h|r







q

dh

|h|











1/q

where k is any integer satisfying 2k > r, and in case p = ∞ and/or q = ∞ the integral(s) is (are) replaced

by sup . Further, ‖f‖Br
p,q(Ω) = ‖f‖brp,q(Ω) + ‖f‖Lp(Ω). The Hestenes extension is known to be bounded from

Br
p,q(Ω) to B

r
p,q(R).

Assumption 2.2. For 0 ≤ m ≤ s,
∥

∥f (m)
∥

∥

Br
∞,q(0,∞)

<∞ with some r > 0 and 1 ≤ q ≤ ∞ and

(∫

|K(t)|q
′

|t|(r+1/q)q′
dt

)q′

<∞

where 1/q + 1/q′ = 1.
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Note that when q = 1, q′ becomes infinity and the norm becomes sup norm.

Theorem 2.2. 1) Let Assumption 2.1 hold when m ≥ 1 and assume that
∫

R
K(t)tjdt = 0, for j = 1, ..., s−

m− 1,
∫

R
|K(t)ts−m| dt <∞ and

∣

∣f (s)(x)
∣

∣ < C for all x ≥ 0, then

Ef̂ (m)
s (x)− f (m)(x) = O(hs−m) for all x ∈ Df . (2.8)

2) Let f and K satisfy Assumption 2.2, then

Ef̂
(m)
s,k (x)− f (m)(x) = O(hr) for all x ∈ Df . (2.9)

Remark 1. In the density estimation literature, it is usually assumed that f ∈ C2. In this case, under

the conditions in Theorem 2.2, when m = 0 we have Ef̂2(x) − f(x) = h2

2 f
(2)(x)

∫

R
t2K(t)dt + o(h2) for all

x ∈ Df . This expression, similar to what is obtained for the classical Rosenblatt-Parzen estimator when

Df = R, contrasts with what is obtained for Schuster’s reflection estimator. In particular, for boundary

points, viz., x = ch for 0 ≤ c <∞, we have (see Marron and Ruppert (1994))

Ef̂S(x)− f(x) =

∫

K(t)(g0(x− ht)− g0(x))dt =

∫ x/h

−∞
K(t)f(x− ht)dt+

∫ ∞

x/h

K(t)f(−(x− ht))dt

=
h2

2
f (2)(x)

∫

R

t2K(t)dt− 2hf (1)(x) (cµ0,−c + µ1,−c) + 2h2f (2)(x)(c2µ0,−c + cµ1,−c) + o(h2)

where µℓ,−c =
∫ −c

−∞ uℓK(u)du for ℓ = 0, 1, 2. The additional bias terms result from the fact that Schuster’s

estimator does not use the additional smoothness (beyond continuity) of f in its construction.

Remark 2. Theorems 2.1 and 2.2, require the existence of densities and their derivatives up to order s at

x = 0. As such, in the case of densities that either diverge to infinity, or have derivatives that diverge to

infinity near the boundary, the bias order we have derived do not hold. In particular, when f(x) → ∞ as

x → 0 (a pole at x = 0) the bias diverges to infinity at x = 0. If f(0) is finite, but f (1)(x) → ∞ as x → 0,

the bias decays at a speed that is slower than hs.

The following theorem provides the order of the variance of our proposed estimator. In this case, it will

be necessary to consider the boundary x = 0 and interior points (x > 0) separately. Let k0 = w0 = −1. The

quantities

Γ =

∫

R

F 2(t)dt and Γl =

∫ ∞

0





s+1
∑

j=0

kj
wj
F

(

t

wj

)





2

dt,
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will appear in variance expressions inside the domain and at the left boundary, respectively.

Theorem 2.3. Suppose the conditions in Theorem 2.2 hold, sup
x≥0

f(x) < ∞, sup
x

∣

∣K(m)(x)
∣

∣ < ∞ and

∫

R

∣

∣K(m)(t)
∣

∣ dt < ∞. In particular, when m ≥ 1 let Assumption 2.1 hold. Denote F (t) = M
(m)
k (t). Then,

I) for fixed x > 0

V
(

f̂
(m)
s,k (x)

)

=
1

nh2m+1
{f(x)Γ + o(1)} , (2.10)

II) at the left boundary

V
(

f̂
(m)
s,k (0)

)

=
1

nh2m+1
{f(0)Γl + o(1)} . (2.11)

The estimator f̂
(m)
s (x) has a similar property with F (t) = K(m)(t).

The proof is omitted because it is similar to, and simpler than, that of Theorem 3.2, which is given in

full.

Remark 3. It is a direct consequence of Theorem 2.3 that, if
∫

|K(m)(u)|2+δdu < C for m ≤ s for some

δ > 0, by Liapounov’s Central Limit Theorem we have for x > 0

√
nh2m+1

(

f̂ (m)
s (x)− E

(

f̂ (m)
s (x)

))

d→ N (0, f(x)Γ) , (2.12)

and for x = 0,

√
nh2m+1

(

f̂ (m)
s (0)− E

(

f̂ (m)
s (0)

))

d→ N (0, f(0)Γl) . (2.13)

Remark 4. For m = 0 and f ∈ C2, equation (2.13) together with the expression for Ef̂2(x) in Remark 1

gives

√
nh

(

f̂2(0)−
(

f(0) +
h2

2
f (2)(0+)

∫

R

t2K(t)dt+ o(h2)

))

d→ N (0, f(0)Γl) ,

which can be used to construct confidence intervals and conduct hypothesis testing as in McCrary (2008).

3 Estimation on a bounded interval

Let f be defined on Df = [0, 1] and let the vectors w, k be as before. We would like to extend f to the left

of zero using (2.2). To obtain a common domain for the components of φ, we put a = mini(1/wi) and let

φ1,s(x) =

s+1
∑

j=1

kjf(−wjx), −a < x < 0.
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The sewing conditions at 0 are satisfied as before. Put

φ2,s(x) =
s+1
∑

j=1

kjf(1− wj(x− 1)), 1 < x < 1 + a,

and define the extension by

gs(x) =







φ1,s(x), −a < x < 0
f(x), 0 ≤ x ≤ 1
φ2,s(x), 1 < x < 1 + a

(3.1)

The sewing condition holds at x = 1:

φ
(j)
2,s(1+) =

s+1
∑

m=1

(−wm)jkmf
(j)(1−) = f (j)(1−), j = 0, ..., s.

Suppose f is s times differentiable, m is an integer, 0 ≤ m ≤ s, the kernel K is m times differentiable, and

let X1, ..., Xn be an IID sample from f . The estimator of f (m)(x), x ∈ [0, 1], is defined by

f̂ (m)
s (x) =

1

nhm+1







n
∑

i=1

K(m)

(

x−Xi

h

)

+
s+1
∑

j=1

kj
wj





∑

Xi<awj

K(m)

(

x+Xi/wj

h

)

+
∑

Xi>1−awj

K(m)

(

x− 1 + (Xi − 1)/wj

h

)











. (3.2)

If m = s = 0, then f̂
(0)
0 (x) = f̂S(x) the estimator suggested by Schuster (1985) in his equation (2.5).2

Theorem 3.1. Let f ∈ Cs on Df = [0, 1] and let K be an m times differentiable kernel with finite support,

0 ≤ m ≤ s. Let h > 0 be small (specifically, it should satisfy the condition suppK ⊂ (−a/h, a/h)). Then,

the following statements hold:

1) For a classical kernel K equation (2.6) holds for the estimator given in (3.2).

2) If in (3.2) K is replaced by Mk, then (2.7) holds for the estimator given in (3.2).

Remark 5. Instead of requiring K to have compact support one can define the extension so that it is

sufficiently smooth and has compact support. Take a smooth function h such that h(x) = 1 on (−a/2, 1+a/2)

and h(x) = 0 for x outside (−a, 1+a). Instead of (3.1) consider the extension g∗s (x) = h(x)gs(x) and change

(3.2) accordingly. Then the statement of Theorem 3.1 will be true for g∗s without the assumption that K

has compact support. When m = 0 and integration by parts is not necessary, the function h does not have

2Note that there is a typographical mistake in Schuster’s expression. Using his notation, the last kernel in his equation (2.5)
should be evaluated at (x− 2d+Xi)/a.
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to be smooth. gs can be extended by zero outside (−a, 1 + a) or, equivalently, one can take h(x) = 1 on

(−a, 1 + a) and h(x) = 0 for x outside (−a, 1 + a).

Theorem 3.2. Under conditions of Theorem 3.1 the following is true.

1) For a classical kernel K

I) for x ∈ (0, 1) we have V
(

f̂
(m)
s (x)

)

= 1
nh2m+1 {f(x)Γ + o(1)},

II) at the left boundary V
(

f̂
(m)
s (0)

)

= 1
nh2m+1 {f(0)Γl + o(1)},

III) at the right boundary V
(

f̂
(m)
s (1)

)

= 1
nh2m+1 {f(1)Γr + o(1)}, where Γr =

∫ 0

−∞

[

∑s+1
j=0

kj

wj
F
(

t
wj

)]2

dt.

2) If Mk is used in place of K, then the same asymptotic expressions are true with F (x) =M
(m)
k (x).

4 Estimation of smooth pieces of densities

Ideas developed in the previous sections can be applied to estimation of densities with discontinuities or with

discontinuous derivatives. Here we provide two results. Cline and Hart (1991) used Schuster’s symmetrization

device to improve bias around a discontinuity point.

The first result in this section applies, for example, to the Laplace distribution which is continuous

everywhere but has a discontinuous derivative at zero. The usual kernel density estimator on the whole line

will inevitably have a large bias at zero. The suggestion is to estimate its smooth restrictions f+ and f− on

the right half-axis [0,∞) and left half-axis (−∞, 0]. Also, the first result in this section, together with the

asymptotic distributional convergence in Remark 4, allows for the construction of a test for discontinuity as

in McCrary (2008).

As a second example, consider a piece-wise constant density on the interval [0, 1]. The restriction of the

density on each interval where it is constant is smooth and can be estimated using our approach. Obviously,

the jumps of the estimators will estimate the jumps of the density.

f+ and f− do not need to have the same degree of smoothness. Suppose that the right part f+ is s times

differentiable and 0 ≤ m ≤ s. The estimator of f
(m)
+ (x), x ≥ 0, is defined by

f̂
(m)
+,s (x) =

1

nhm+1

∑

Xi≥0



K(m)

(

x−Xi

h

)

+

s+1
∑

j=1

kj
wj
K(m)

(

x+Xi/wj

h

)



 .
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Theorem 4.1. In Theorem 2.1 and in definition (2.3) let f = f+ and Df = [0,∞). If the conditions of

Theorem 2.1 are satisfied for f and K, then 1) (2.6) and (2.7) are true and 2) for the variance of f̂
(m)
+,s (x)

one has (2.10) for x > 0 and (2.11) for x = 0.

Remark 6. As in Remark 3, a direct consequence of Theorem 4.1 is that, if
∫

|K(m)(u)|2+δdu < C for

m ≤ s for some δ > 0, by Liapounov’s Central Limit Theorem we have for x > 0

√
nh2m+1

(

f̂
(m)
+,s (x)− E

(

f̂
(m)
+,s (x)

))

d→ N (0, f+(x)Γ) , (4.1)

and for x = 0,

√
nh2m+1

(

f̂
(m)
+,s (0)− E

(

f̂
(m)
+,s (0)

))

d→ N (0, f+(0)Γl) . (4.2)

Equivalent results hold for f̂
(m)
−,s (x).

Remark 7. As a consequence of Remark 6, we have that for m = 0 and f+ ∈ C2
b , equation (4.2) together

with the expression for Ef̂+,2(x) obtained from using Remark 1, gives

√
nh

(

f̂+,2(0)−
(

f+(0) +
h2

2
f
(2)
+ (0+)

∫

R

t2K(t)dt+ o(h2)

))

d→ N (0, f+(0)Γl) ,

and an equivalent expression holds for f̂−,2(0). Consequently, if we define δ = lim
x↓0

f(x)− lim
x↑0

f(x) = f+(0)−

f−(0) and δ̂H,s = f̂+,2(0)− f̂−,2(0), following the arguments in McCrary (2008) we have, for x = 0,

√
nh(δ̂H,s − δ −Bδ)

d→ N (0, (f+(0) + f−(0)) Γl) , (4.3)

where Bδ = h2

2 f
(2)
+ (0+)

∫

R
t2K(t)dt− h2

2 f
(2)
− (0−)

∫

R
t2K(t)dt+ o(h2).

Now suppose that the domain Df of a density f contains a finite segment [c, d] such that the restriction

fr of f onto [c, d] is smooth. Denote

φ1(x) =

s+1
∑

j=1

kjfr(c− wj(x− c)), c− a1 < x < c,

the extension of fr to the left of c and

φ2(x) =
s+1
∑

j=1

kjfr(d− wj(x− d)), d < x < d+ a1,

10



the extension of fr to the right of d. Here we choose a1 = a(d − c), to make sure that c − wj(x − c) and

d− wj(x− d) belong to [c, d]. The extended restriction then is defined by

gr(x) =







φ1(x), c− a1 < x < c,
fr(x), c ≤ x ≤ d,
φ2(x), d < x < d+ a1.

(4.4)

Definition (3.2) guides us to define

f̂ (m)
s (x) =

1

nhm+1







∑

c≤Xi≤d

K(m)

(

x−Xi

h

)

+

s+1
∑

j=1

kj
wj





∑

c<Xi<c+a1wj

K(m)

(

x− c+ (Xi − c)/wj

h

)

+
∑

d−a1wj<Xi<d

K(m)

(

x− d+ (Xi − d)/wj

h

)











, x ∈ (c, d).

Theorem 4.2. Let fr be s times differentiable, 0 ≤ m ≤ s, and let K have compact support. For h

sufficiently small (such that suppK ⊆ (−a1/h, a1/h)) we have

Ef̂ (m)
s (x)− f (m)

r (x) =

∫

R

K(u)
[

g(m)
r (x− hu)− g(m)

r (x)
]

du, c < x < d. (4.5)

Further, for x ∈ [c, d] we have V
(

f̂
(m)
s (x)

)

= 1
nh2m+1 {f(x)Γ + o(1)} , at the left boundary V

(

f̂
(m)
s (c)

)

=

1
nh2m+1 {f(c)Γl + o(1)} , and at the right boundary V

(

f̂
(m)
s (d)

)

= 1
nh2m+1 {f(d)Γr + o(1)} where F (t) =

K(m)(t) or F (t) =M
(m)
k (t) depending on which kernel is used in the definition of f̂

(m)
s (x).

5 Estimators satisfying zero boundary conditions

For simplicity we consider only densities on Df = [0,∞). For estimator (2.4) we provide two modifications

designed to satisfy zero boundary conditions for the estimator itself and/or its derivatives. In both cases

the bias rate is retained and the variance at zero becomes zero. The main difference between the estimators

is in the number of derivatives that are guaranteed to vanish. Everywhere it is assumed that f is s times

differentiable, 0 ≤ m ≤ s and the purpose is to estimate f (m)(x).

In the first result we start with any estimator of the derivative with property (2.8). We assume that some

consecutive derivatives of f , starting with f (m)(0+), are zero, and we want an estimator of f (m) which has

11



at least as many derivatives vanishing at zero. Let l be an integer between m and s and let ψ be a function

on Df with properties

ψ(0+) = ... = ψ(l−m)(0+) = 0, ψ(l−m+1)(0+) 6= 0, (5.1)

ψ(x) = 1 for x ≥ 1, 0 ≤ ψ(x) ≤ 1 everywhere. If

f (m)(0+) = ... = f (s)(0+) = 0, (5.2)

put α = 1. Otherwise, let k be such that f (m)(0+) = ... = f (k−1)(0+) = 0, f (k)(0+) 6= 0 and m < k ≤ s, and

put α = s−m
k−m . For any estimator f̂ (m)(x) of f (m)(x) define another estimator f̃ (m)(x) = ψ(xh−α)f̂ (m)(x).

Theorem 5.1. Let the estimator f̂ (m)(x) of f (m)(x) satisfy (2.8). Then f̃ (m)(x) satisfies

f̃ (m)(0+) =
d

dx
f̃ (m)(0+) = ... =

dl−m

dxl−m
f̃ (m)(0+) = 0, (5.3)

Ef̃ (m)(x)− f (m)(x) = O(hs−m) for all x ∈ Df . (5.4)

and

V
(

f̃ (m)(x)
)

=







V
(

f̂ (m)(x)
)

, x ≥ hα

V
(

f̂ (m)(x)
)

ψ(l−m+1)(0+)(xh−α)2(l−m+1), x < hα.
(5.5)

In the second result we modify estimator (2.4) so as to satisfy zero boundary conditions. Let ψ be a

function with properties: ψ is m times differentiable on Df , ψ(x) = 1 for x ∈ (0, 2], ψ(x) = 0 for x ≥ 3,

0 ≤ ψ(x) ≤ 1 everywhere. Define for x ≥ 0

f̂ (m)(x) =
1

nhm+1

n
∑

i=1

ψ(Xi/x)



K(m)

(

x−Xi

h

)

+
s+1
∑

j=1

kj
wj
K(m)

(

x+Xi/wj

h

)



 .

In this definition, we take 0/0 = 0 and for x > 0, x/0 = ∞.

Theorem 5.2. All derivatives of f̂ (m)(x) that exist vanish at zero and

Ef̂ (m)(x)− f (m)(x) =

∫

R

K(t)
[

g(m)
x (x− ht)− g(m)

x (x)
]

dt, x ∈ Df , (5.6)

where gx is the Hestenes extension of fx(t) = f(t)ψ (t/x) . Besides, for x > 0 V
(

f̂ (m)(x)
)

satisfies (2.10)

(for x = 0 variance is zero).
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6 Simulations

We conducted a series of simulations to provide some evidence of the finite sample performances of our

estimators and to contrast them with that of some of the most commonly used estimators for densities with

supports that are subsets of R. We focus on two broad cases: first, we consider densities that are defined

on [0,∞); second we consider the case of a density with a discontinuity at x = 0. In the second case, we are

particularly interested in the size of the jump at the point of discontinuity.

In the first case we consider random variables with the following densities:

1. Normal density left-truncated at x = 0: fTN (x) = 2√
2π

exp(− 1
2x

2),

2. Gamma density: fG(x) =
1

βαΓ(α)x
α−1exp(− 1

βx) with α = 2, β = 1,

3. Chi-squared density: fχ(x) =
1

2v/2Γ(v/2)
xv/2−1exp(− 1

2x) with v = 5,

4. Exponential density: fE(x) = λexp(−λx) with λ = 1.

For each density we generated samples of size n = 250, 500 and calculated the following estimators: f̂R, f̂S

and f̂s,k for k = 1, 2, 3, wi = i, i−1 and s = 1, 2.3 In each case we used a Gaussian kernel, or a Gaussian

seed kernel, as necessary. We also calculated the Gamma kernel estimator of Chen (2000), which we denote

by f̂C , and the generalized jackknife estimator proposed by Jones (1993), which we denote by f̂J .
4 For

each estimator we selected an optimal bandwidth by minimizing their integrated squared error, i.e., for an

arbitrary estimator denoted by f̂(x;h) and an arbitrary density denoted by f , we choose

h0 = argmin
h

∫ ∞

0

(f̂(u;h)− f(u))2du.

We then calculate the value of each estimator over a fixed grid on the interval (0, 4) with step 10−1. For

each sample, and each estimator, an average root squared error across the grid is calculated (RASE). The

average of these RASE across all 1000 generated samples are reported on Table 1. Figure 1 gives a set of

estimates for one of the generated samples of size n = 250 associated with the Exponential density.

3Results for f̂s,k when wi = i−1 are not shown, as the performance of these estimators is generally dominated by the case
where wi = i. The full set of results, including experiments where n = 1000, is available from the authors upon request.

4Specifically, we consider the estimator constructed using the kernel KL defined on his equation (3.4).
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As expected, the average RASE, for each estimator, and across all densities, decreases as n increases

from 250 to 500. Except for data generated from the fχ density, all estimators that are based on Hestenes’

extension and constructed using the Mk kernels (including the case where k = 1 and M1 = K) have smaller

average RASE when wi = i. Also, for estimators f̂s,2 and f̂s,3, choosing s = 1 reduces average RASE

(compared to s = 2) for all densities, except fG and fE when n = 500.

Except for the case of the truncated normal density - fTN - all Hestenes’ based estimators outperform

the estimator f̂S proposed by Schuster (1985). The good performance of f̂S in the case of fTN is expected

since, in this case, f
(1)
TN (0) = 0. It is also the case that f

(1)
χ (0) = 0, but for this density all Hestenes’ based

estimators have smaller average RASE than f̂S . Also, except for the case of the gamma density - fG - all

Hestenes’ based estimators outperforms the estimator f̂C proposed by Chen (2000). A similar conclusion

can also be reached regarding the relative performance of Hestenes’ based estimators and the estimator f̂J

proposed by Jones (1993). Lastly, as expected, the traditional Rosenblatt-Parzen estimator has the poorest

performance across all densities and all estimators, except for the case of fχ, where fχ(0) = 0. The choice

of kernel, or seed-kernel, does not qualitatively impact the relative performance described above.

Although a complete theoretical treatment of the optimal choice of wi, s and k for finite n is beyond

the scope of this paper, the preliminary experimental evidence seems to support the use of wi = i and the

choice of s = 1 relative to s = 2. Also, our results here confirm the simulation results in Mynbaev and

Martins-Filho (2010) suggesting k < 3. Results for s, k ≥ 3 (not reported here) suggest rapid deterioration

of the performance of f̂s,k as measured by average RASE. In summary, the simulation results suggest that

Hestenes-based estimators can outperform the well known estimators proposed by Schuster (1985), Jones

(1993) and Chen (2000). In the few cases where this does not hold, additional information about the true

density is needed to avail oneself of other estimators, while our estimators are universally applicable.

In the second broad case, we consider two densities that have a discontinuity at x = 0. The first is given

by

f(x) =







1√
2πσ2

exp
(

− 1
2
x2

σ2

)

if x < 0

1√
2π

exp
(

− 1
2x

2
)

if x ≥ 0,
(6.1)

where σ2 controls the size of the jump. If σ2 = 1 the density is continuous everywhere, and for 0 < σ2 < 1
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the jump at x = 0 is given by Jf (0) = f(0−)− f(0+) = 1√
2π

(

1
σ − 1

)

> 0. The second is given by,

f(x) =







1
2
√
2πΦ(−µ1)

exp
(

− 1
2 (x− µ1)

2
)

if x < 0

1
2
√
2π(1−Φ(−1))

exp
(

− 1
2 (x− 1)2

)

if x ≥ 0,
(6.2)

where Φ(x) is the distribution function associated with a standard Gaussian density and µ1 controls the size

of the jump. If µ1 = −1 the density is continuous everywhere, and for µ1 > −1 the jump at x = 0 is given

by

Jf (0) = f(0−)− f(0+) =
1

2
√
2π

(

1

Φ(−µ1)
exp

(

−1

2
µ2
1

)

− 1

1− Φ(−1)
exp (−1/2)

)

> 0. (6.3)

The top two panels of Figure 2 provide graphs of the first density for σ2 = 0.5 and σ2 = 0.25. The bottom

two panels provide graphs of the second density for µ1 = 0 and µ1 = 1.5.

With knowledge of the point of discontinuity (x = 0) we assess the performance of two estimators

for the size of the jump at x = 0. The first is based on a local linear density estimator proposed by

Cheng (1994). As in McCrary (2008), for each sample {Xi}ni=1 we first compute a histogram with bin

size b = 2σ̂n−1/2 where σ̂ =
√

n−1
∑n

i=1(Xi − X̄)2 and X̄ = n−1
∑n

i=1Xi. Using 2J bins with centers

Gj ∈ {· · · ,− 3
2b,− 1

2b,
1
2b,

3
2b, · · · } and J = ⌊

max
i

{Xi}−min
i

{Xi}
b ⌋+ 2, we obtain the number of observations Cj

that fall in each bin and define the standardized frequency counts Yj = 1
nbCj . f̂LL

+ (0) is the local linear

estimator obtained from regressing Yj on Gj > 0 evaluated at x = 0 for the part of f defined on [0,∞).

Similarly, f̂LL
− (0) is the local linear estimator obtained from regressing Yj on Gj < 0 for the part of f defined

on (−∞, 0].

We consider two parameters that capture the jump discontinuity at x = 0: 1) δ = f+(0)− f−(0), where

f−(0) = lim
x↑0

f(x) and f+(0) = lim
x↓0

f(x); 2) following McCrary (2008), θ = log f+(0) − log f−(0). Hence, we

define the local linear estimators δ̂LL = f̂LL
+ (0)− f̂LL

− (0) and θ̂LL = log f̂LL
+ (0)− log f̂LL

− (0).

The second estimator we consider is our Hestenes based estimator from section 4. We define

f̂+,s(0) =
1

nh

∑

Xi≥0



K

(−Xi

h

)

+
s+1
∑

j=1

kj
wj
K

(

Xi/wj

h

)



 and

f̂−,s(0) =
1

nh

∑

Xi≤0



K

(−Xi

h

)

+

s+1
∑

j=1

kj
wj
K

(

Xi/wj

h

)




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for the part of f defined on [0,∞) and (−∞, 0], respectively. As such, we propose the estimators δ̂H,s =

f̂+,s(0)− f̂−,s(0) and θ̂H,s = log f̂+,s(0)− log f̂−,s(0).

Tables 2 and 3 provide biases and variances for local linear and Hestenes based estimators for the left

and right limits of the densities given in equations (6.1) and (6.2) at x = 0, as well as the root mean squared

error (M) of δLL, δH,s, θLL and θH,s at x = 0 for n = 500, 1000 based on 2000 samples. Given our Theorems

2.1 and 2.3, and Theorem 3 in Cheng (1994) we calculate each density estimator using optimal plug-in

bandwidths that minimize the asymptotic mean integrated squared error at x = 0, i.e.,

h = n
−1/5
∗

(
∫

K2(x)dx

µ2
2

∫

f (2)(x)2dx

)1/5

, where µ2 =
∫

x2K(x)dx.

Note that in this case, n∗ is either the number of observations on the positive or negative sides of R, and

∫

f (2)(x)2dx is calculated using the corresponding expression for f (2)(x) and limits of integration on the

positive or negative sides of R. In the case of the Hestenes based estimators, we focus on the case where

wi = i (results for the case where wi = 1/i are available upon request).

We start by observing some general regularities for Tables 2 and 3. First, for all density estimators, the

bias and variance decrease when the sample size grows from n = 500 to n = 1000. Also, for both densities

given by equations (6.1) and (6.2) the local linear estimator has, in general, smaller bias than the Hestenes

based estimators. The latter, however, have smaller variances, with the exception of the case where the

Hestenes based estimators are calculated using s = 2 for density given by equation (6.2), where the variances

are largely equal. The root mean squared errors (M) for θ̂LL and δ̂LL are greater than or equal to that for

θ̂H,s for s = 1 for both densities and all sample sizes. When s = 2 this relationship is essentially reversed

for all sample sizes when the density is given by equation (6.2). If the density is given by equation (6.1),

then the root mean squared errors for δ̂LL and θ̂LL are generally smaller than that for δ̂H,s and θ̂H,s when

n = 1000. The size of the jump discontinuity, as regulated by the values of σ2 and µ1 has little impact on the

root mean squared error (M) of both θ̂LL and θ̂H,s. In this case, samples that resulted in negative estimated

densities at x = 0 were discarded, so that θ̂LL and θ̂H,s can be defined. For δ̂LL and δ̂H,s, where the samples

that produce negative estimated densities are not discarded, the size of the jump discontinuity, as regulated
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by µ1, increases the root mean squared error of both δ̂LL and δ̂H,s. This does not occur for the density given

by equation (6.1), where no sample in our experiments produced negative density estimates. Overall, our

simulations are largely inconclusive regarding the finite sample relative performance of the local linear (LL)

and Hestenes based estimators for the size of a jump discontinuity. The latter normally exhibiting smaller

variances while the former normally carrying smaller biases.

7 Summary and conclusions

We provided a set of easily implementable kernel estimators for densities defined on subsets of R that have

boundaries. The use of Hestenes’ extensions allows us to obtain theoretical representations for bias and

variance of our proposed estimators that preserve the orders of traditional kernel estimators for densities

defined on R. In effect, the insights gained from using Hestenes’ extensions make the study of suitably

defined kernel estimators in sets that have boundaries a special case of the theory developed for densities

defined on R. Preliminary simulations reveal very good finite sample performance relative to a number of

commonly used alternative estimators. Further work should investigate the possible existence of optimal

choices for s and w1, · · · , ws+1 under a suitably defined criterion. If possible, this would produce a best

estimator in the class we have defined.
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Figure 1: Plots of the Exponential density fE with λ = 1 and the estimators f̂R, f̂C , f̂S , f̂J and f̂s,k for
s = 1, k = 2, wi = i. The bandwidths for each estimator is obtained by minimizing the integrated squared
error. Excepting f̂R, the estimators differ mostly in the vicinity of zero.
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Figure 2:
Figure 2: Densities f(x) with a discontinuity at x = 0. Top panels are for f(x) =
{

1√
2πσ2

exp
(

− 1
2
x2

σ2

)

if x < 0
1√
2π

exp
(

− 1
2x

2
)

if x ≥ 0
, with σ2 = 0.5 on top-left panel and σ2 = 0.25 on top-right panel. Bottom

panels are for f(x) =







1
2
√
2πΦ(−µ1)

exp
(

− 1
2 (x− µ1)

2
)

if x < 0

1
2
√
2π(1−Φ(−1))

exp
(

− 1
2 (x− 1)2

)

if x ≥ 0
, with µ1 = 0 on bottom-left panel and

µ1 = 1.5 on bottom-right panel.
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Table 1. Average RASE×102

f̂R and f̂ constructed using K(x) = 1√
2π
e−

1
2
x2

, wi = i

f̂R f̂C f̂S f̂J f̂s,1 f̂s,2 f̂s,3
s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

n = 250 fTN 7.7974 3.6718 2.3328 2.7958 2.6234 2.9859 2.6436 3.2551 2.7526 3.3983
fG 2.9336 2.7331 3.7670 2.7409 3.0848 2.9242 3.0915 3.0707 3.1172 3.1062
fχ 1.3586 1.3469 1.5957 1.1949 1.2369 1.2979 1.1873 1.3300 1.1958 1.3256
fE 9.7433 3.8200 3.8134 2.9546 2.9241 3.1386 2.9346 2.9570 2.9432 2.8879

n = 500 fTN 7.3139 2.9312 1.8576 2.1673 2.0838 2.2882 2.0629 2.5569 2.1377 2.6658
fG 2.3973 2.1511 3.0778 2.1556 2.4199 2.2914 2.4140 2.3933 2.4345 2.4090
fχ 1.0756 1.0382 1.2487 0.9261 0.9501 1.0206 0.9109 1.0306 0.9212 1.0226
fE 9.1800 3.0807 3.1162 2.3264 2.2932 2.4399 2.2840 2.2589 2.2841 2.1926
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Table 2. Bias (B), Variance (V) and Root Mean Squared Error (M) for Local Linear and Hestenes Estimator

wi = i, f(x) =

{

1√
2πσ2

exp
(

− 1
2
x2

σ2

)

if x < 0
1√
2π

exp
(

− 1
2x

2
)

if x ≥ 0
, GK and GT indicate the use of Gaussian and Triangular kernels, respectively.

n = 500

s = 1 B(f̂LL
− ) B(f̂−,s) B(f̂LL

+ ) B(f̂+,s) V (f̂LL
− ) V (f̂LL

+ ) V (f̂−,s) V (f̂+,s) M(θ̂LL) M(θ̂H,s) M(δ̂LL) M(δ̂H,s)
GK σ2 = 0.25 0.0652 0.0466 0.0181 0.0306 0.0059 0.0030 0.0031 0.0017 0.1734 0.1296 0.1101 0.0782

σ2 = 0.5 0.0355 0.0455 0.0164 0.0296 0.0044 0.0033 0.0023 0.0018 0.1876 0.1401 0.0929 0.0723
TK σ2 = 0.25 0.0651 0.0506 0.0154 0.0328 0.0070 0.0035 0.0030 0.0017 0.1923 0.1334 0.1202 0.0809

σ2 = 0.5 0.0303 0.0487 0.0177 0.0344 0.0049 0.0035 0.0022 0.0017 0.1974 0.1375 0.0975 0.0716
s = 2
GK σ2 = 0.25 0.0627 0.1490 0.0209 0.0377 0.0061 0.0032 0.0055 0.0030 0.1785 0.1857 0.1117 0.1509

σ2 = 0.5 0.0381 0.0845 0.0195 0.0373 0.0045 0.0030 0.0043 0.0029 0.1860 0.1809 0.0943 0.1027
TK σ2 = 0.25 0.0637 0.1718 0.0159 0.0383 0.0068 0.0036 0.0050 0.0031 0.1932 0.1931 0.1192 0.1654

σ2 = 0.5 0.0347 0.0954 0.0162 0.0379 0.0054 0.0035 0.0041 0.0030 0.2034 0.1847 0.1013 0.1067

n = 1000

s = 1 B(f̂LL
− ) B(f̂−,s) B(f̂LL

+ ) B(f̂+,s) V (f̂LL
− ) V (f̂LL

+ ) V (f̂−,s) V (f̂+,s) M(θ̂LL) M(θ̂H,s) M(δ̂LL) M(δ̂H,s)
GK σ2 = 0.25 0.0574 0.0571 0.0146 0.0274 0.0037 0.0018 0.0020 0.0010 0.1391 0.1021 0.0900 0.0680

σ2 = 0.5 0.0298 0.0448 0.0150 0.0275 0.0028 0.0018 0.0015 0.0010 0.1432 0.1083 0.0722 0.0575
TK σ2 = 0.25 0.0554 0.0649 0.0130 0.0301 0.0043 0.0020 0.0019 0.0010 0.1457 0.1009 0.0935 0.0699

σ2 = 0.5 0.0298 0.0448 0.0150 0.0275 0.0028 0.0018 0.0015 0.0010 0.1432 0.1083 0.0722 0.0575
s = 2
GK σ2 = 0.25 0.0591 0.1379 0.0157 0.0256 0.0039 0.0018 0.0036 0.0017 0.1400 0.1613 0.0917 0.1369

σ2 = 0.5 0.0292 0.0649 0.0150 0.0246 0.0026 0.0018 0.0025 0.0018 0.1412 0.1443 0.0706 0.0797
TK σ2 = 0.25 0.0550 0.1568 0.0123 0.0242 0.0043 0.0021 0.0034 0.0019 0.1490 0.1779 0.0947 0.1536

σ2 = 0.5 0.0268 0.0734 0.0131 0.0259 0.0029 0.0020 0.0024 0.0018 0.1531 0.1481 0.0758 0.0839
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Table 3. Bias, Variance and Root Mean Squared Error for Local Linear and Hestenes Estimator

wi = i, f(x) =







1
2
√
2πΦ(−µ1)

exp
(

− 1
2 (x− µ1)

2
)

if x < 0

1
2
√
2π(1−Φ(−1))

exp
(

− 1
2 (x− 1)2

)

if x ≥ 0
, GK and GT indicate the use of Gaussian and Triangular kernels, respectively.

n = 500

s = 1 B(f̂LL
− ) B(f̂−,s) B(f̂LL

+ ) B(f̂+,s) V (f̂LL
− ) V (f̂LL

+ ) V (f̂−,s) V (f̂+,s) M(θ̂LL) M(θ̂H,s) M(δ̂LL) M(δ̂H,s)
GK µ1 = 0 0.0207 0.0320 0.0100 0.0321 0.0031 0.0012 0.0017 0.0008 0.0803 0.0535 0.0688 0.0531

µ1 = 1.5 -0.0108 -0.0317 0.0089 0.0316 0.0195 0.0012 0.0106 0.0008 0.0861 0.0930 0.1468 0.1265
TK µ1 = 0 0.0100 0.0179 0.0008 0.0066 0.0065 0.0024 0.0033 0.0013 0.1929 0.0880 0.0955 0.0695

µ1 = 1.5 -0.0043 -0.0112 0.0013 0.0075 0.0461 0.0026 0.0193 0.0014 0.2331 0.0985 0.2226 0.1470
s = 2
GK µ1 = 0 0.0185 0.0349 0.0106 -0.0056 0.0032 0.0013 0.0032 0.0014 0.0833 0.1352 0.0699 0.0804

µ1 = 1.5 -0.0140 0.0103 0.0085 -0.0072 0.0190 0.0013 0.0180 0.0014 0.0919 0.1328 0.1470 0.1434
TK µ1 = 0 0.0066 0.0047 0.0031 -0.0098 0.0065 0.0025 0.0060 0.0026 0.1957 0.2742 0.0943 0.0933

µ1 = 1.5 0.0013 0.0096 0.0018 -0.0105 0.0440 0.0024 0.0355 0.0025 0.2141 0.3093 0.2160 0.1958

n = 1000

s = 1 B(f̂LL
− ) B(f̂−,s) B(f̂LL

+ ) B(f̂+,s) V (f̂LL
− ) V (f̂LL

+ ) V (f̂−,s) V (f̂+,s) M(θ̂LL) M(θ̂H,s) M(δ̂LL) M(δ̂H,s)
GK µ1 = 0 0.0154 0.0282 0.0062 0.0230 0.0018 0.0007 0.0011 0.0005 0.0456 0.0301 0.0519 0.0409

µ1 = 1.5 -0.0102 -0.0259 0.0063 0.0231 0.0110 0.0007 0.0060 0.0005 0.0491 0.0549 0.1103 0.0959
TK µ1 = 0 0.0046 0.0130 0.0024 0.0056 0.0039 0.0013 0.0020 0.0008 0.0943 0.0510 0.0724 0.0542

µ1 = 1.5 -0.0057 -0.0110 -0.0007 0.0039 0.0218 0.0013 0.0113 0.0008 0.1014 0.0538 0.1530 0.1125
s = 2
GK µ1 = 0 0.0153 0.0250 0.0068 -0.0109 0.0018 0.0007 0.0018 0.0008 0.0462 0.0892 0.0518 0.0634

µ1 = 1.5 -0.0080 0.0123 0.0061 -0.0119 0.0105 0.0007 0.0104 0.0008 0.0488 0.0747 0.1088 0.1105
TK µ1 = 0 0.0026 -0.0001 -0.0001 -0.0087 0.0036 0.0014 0.0034 0.0014 0.1049 0.1301 0.0720 0.0710

µ1 = 1.5 -0.0056 0.0033 -0.0005 -0.0092 0.0219 0.0013 0.0202 0.0013 0.1047 0.1297 0.1548 0.1488
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Appendix - Proofs

Theorem 2.1 Proof. 1) By the IID assumption

Ef̂ (m)
s (x) =

1

hm+1
E



K(m)

(

x−X1

h

)

+

s+1
∑

j=1

kj
wj
K(m)

(

x+X1/wj

h

)





=
1

hm+1





∫ ∞

0

K(m)

(

x− t

h

)

f(t)dt+

s+1
∑

j=1

kj
wj

∫ ∞

0

K(m)

(

x+ t/wj

h

)

f(t)dt



 . (7.1)

In the first integral let u = x−t
h , in the others u =

x+t/wj

h . Then

Ef̂ (m)
s (x) =

1

hm



−
∫ −∞

x/h

K(m) (u) f(x− hu)du+

s+1
∑

j=1

kj

∫ ∞

x/h

K(m)(u)f (−wj(x− hu)) du





=
1

hm





∫ x/h

−∞
K(m) (u) f(x− hu)du+

∫ ∞

x/h

K(m)(u)

s+1
∑

j=1

kjf (−wj(x− hu)) du



 .

In the first integral we have x − hu > 0 and f(x − hu) = gs(x − hu); in the second one x − hu < 0, so

∑s+1
j=1 kjf (−wj(x− hu)) = gs(x− hu). Hence,

Ef̂ (m)
s (x) =

1

hm

∫

R

K(m) (u) gs(x− hu)du. (7.2)

By Assumption 2.1
∣

∣

∣K(j)(u)g
(m−1−j)
s (x− hu)

∣

∣

∣ = o(1), as |u| → ∞ for j = 0, ...,m − 1, h > 0. Therefore,

integration by parts gives the following expression for (7.2)

Ef̂ (m)
s (x) =

m−1
∑

j=0

1

hm−j
K(m−1−j)(u)g(j)s (x− hu)

∞
|

−∞
+

∫

R

K(u)g(m)
s (x− hu)du

=

∫

R

K (u) g(m)
s (x− hu)du. (7.3)

Since
∫

R
K(t)dt = 1, this implies (2.6).

2) Plug the definition of Mk in (7.1) to get

Ef̂
(m)
s,k (x) = − 1

Ck
2k

k
∑

|l|=1

(−1)lCl+k
2k

|l|lmhm+1





∫ ∞

0

K(m)

(

x− t

lh

)

f(t)dt+

s+1
∑

j=1

kj
wj

∫ ∞

0

K(m)

(

x+ t/wj

lh

)

f(t)dt



 .

(7.4)
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For l < 0, and after putting x−t
lh = u and

x+t/wj

lh = u on the first and second integrals

∫ ∞

0

K(m)

(

x− t

lh

)

f(t)dt+

s+1
∑

j=1

kj
wj

∫ ∞

0

K(m)

(

x+ t/wj

lh

)

f(t)dt

= −lh





∫ ∞

x/(lh)

K(m) (u) f(x− lhu)du+

s+1
∑

j=1

kj

∫ x/(lh)

−∞
K(m) (u) f(−wj(x− lhu))du





= −lh
∫

R

K(m) (u) gs(x− lhu)du.

Similarly, we have for l > 0

∫ ∞

0

K(m)

(

x− t

lh

)

f(t)dt+

s+1
∑

j=1

kj
wj

∫ ∞

0

K(m)

(

x+ t/wj

lh

)

f(t)dt = lh

∫

R

K(m) (u) gs(x− lhu)du.

Therefore, (7.4) gives

Ef̂
(m)
s,k (x) = − 1

Ck
2k

k
∑

|l|=1

(−1)lCl+k
2k

(lh)m

∫

R

K(m) (u) gs(x− lhu)du

(integrating by parts as above)

= − 1

Ck
2k

k
∑

|l|=1

(−1)lCl+k
2k

∫

R

K (u) g(m)
s (x− lhu)du.

Finally,

Ef̂
(m)
k (x)− f (m)(x) = − 1

(−1)kCk
2k

k
∑

|l|=1

(−1)l+kCl+k
2k

∫

R

K (u) g(m)
s (x− lhu)du

− (−1)kCk
2k

(−1)kCk
2k

∫

R

K (u) g(m)
s (x)du = − 1

(−1)kCk
2k

∫

R

K(u)∆2k
hug

(m)
s (x)du

which is (2.7).

Theorem 2.2 Proof. For part 1), we note that since
∫

K(t)dt = 1 we have from Theorem 2.1

Ef̂ (m)
s (x)− f (m)(x) =

∫

K(t)(g(m)
s (x− ht)− g(m)

s (x))dt =

∫

K(t)

(

g(m+1)
s (x)(−ht) + 1

2!
g(m+2)
s (x)(−ht)2

+ · · ·+ 1

(s−m)!
g(s)s (x− thτ)(−ht)s−m

)

dt

for some τ ∈ (0, 1). If
∫

R
K(t)tjdt = 0, for j = 1, ..., s−m− 1 then

|Ef̂ (m)
s (x)− f (m)(x)| ≤ hs−m

(s−m)!

∫

|t|s−m|K(t)||g(s)(x− thτ)|dt ≤ Chs−m,
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where the last inequality follows from the assumptions that
∫

R
|K(t)ts−m| dt <∞,

∣

∣f (s)(x)
∣

∣ < C for all x ≥ 0

and the structure of g(s). For part 2), using (2.7) and Hölder’s inequality we have

∣

∣

∣Ef̂
(m)
s,k (x)− f (m)(x)

∣

∣

∣ = c

∣

∣

∣

∣

∣

∫

R

K(t) |ht|r+1/q ∆2k
htg

(m)
s (x)

|ht|r+1/q
dt

∣

∣

∣

∣

∣

≤ c

(∫

R

|K(t)|q′ |ht|(r+1/q)q′
dt

)1/q′






∫

R







sup
x
|∆2k

htg
(m)
s (x)|

|ht|r







q

dt

|ht|







1/q

(changing variables on the second integral)

≤ chr
(∫

|K(t)|q′ |t|(r+1/q)q′
dt

)1/q′
∥

∥

∥g(m)
s

∥

∥

∥

br
∞,q(R)

= O(hr).

In the last line we used the bound
∥

∥

∥g
(m)
s

∥

∥

∥

Br
p,q(R)

≤ c
∥

∥f (m)
∥

∥

Br
p,q(0,∞)

.

Theorem 3.1 Proof. 1) Let IA denote the indicator of a setA. Then, for an arbitrary function g,
∑

Xi<awj
g(Xi) =

∑n
i=1 I{Xi<awj}g(Xi). Using indicators in (3.2) and the fact that {Xi}ni=1 is IID, we have

Ef̂ (m)
s (x) =

1

hm+1







∫ 1

0

K(m)

(

x− t

h

)

f(t)dt+
s+1
∑

j=1

kj
wj

[∫ awj

0

K(m)

(

x+ t/wj

h

)

f(t)dt

+

∫ 1

1−awj

K(m)

(

x− 1 + (t− 1)/wj

h

)

f(t)dt

]}

. (7.5)

Changing variables using x−t
h = u,

x+t/wj

h = u,
x−1+(t−1)/wj

h = u, we have

Ef̂ (m)
s (x) =

1

hm







−
∫ (x−1)/h

x/h

K(m) (u) f(x− hu)du+

s+1
∑

j=1

kj

[

∫ (x+a)/h

x/h

K(m) (u) f(−wj(x− hu))du

+

∫ (x−1)/h

(x−1−a)/h

K(m) (u) f(1− wj(x− hu− 1))du

]}

.

Applying (3.1), we have

Ef̂ (m)
s (x) =

1

hm







∫ x/h

(x−1)/h

K(m) (u) f(x− hu)du+

∫ (x+a)/h

x/h

K(m) (u)
s+1
∑

j=1

kjf(−wj(x− hu))du

+

∫ (x−1)/h

(x−1−a)/h

K(m) (u)

s+1
∑

j=1

kjf(1− wj(x− hu− 1))du







=
1

hm

∫ (x+a)/h

(x−1−a)/h

K(m) (u) gs(x− hu)du. (7.6)

Regardless of x ∈ [0, 1], the interval ((x− 1− a)/h, (x+ a)/h) contains (−a/h, a/h) which contains suppK
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for all small h. Therefore,

Ef̂ (m)
s (x) =

1

hm

∫

R

K(m) (u) gs(x− hu)du.

For this to hold formally, gs should be extended outside (−a, 1 + a) smoothly; the manner of extension

does not affect the above integral. Finally, integration by parts and the condition
∫

R
K(t)dt = 1 prove the

statement.

2) Since K is assumed to have finite support, we do not need Assumption 2.1. Calculations done in the

proof of Theorem 2.2 after equation (7.4) include change of variables and integration by parts and can be

easily repeated here.

Theorem 3.2 Proof. Define

ui =
1

hm+1







K(m)

(

x−Xi

h

)

+

s+1
∑

j=1

kj
wj

[

I{Xi<awj}K
(m)

(

x+Xi/wj

h

)

+ I{Xi>1−awj}K
(m)

(

x− 1 + (Xi − 1)/wj

h

)]}

.

Then V
(

f̂
(m)
s (x)

)

= 1
n [Eu

2
1 − (Eu1)

2]. It will be shown that Eu21 is of order h−(2m+1) in all cases. Since

Eu1 = O(1) by Theorem 3.1, it is enough to find the exact order of Eu21. Letting F = K(m), denote

g = F

(

x−X1

h

)

, gli = I{X1<awi}F

(

x+X1/wi

h

)

,

gri = I{X1>1−awi}F

(

x− 1 + (X1 − 1)/wi

h

)

.

g is used at internal points of the domain, gli and g
r
i are used for correction at the left and right boundaries,

respectively. Their contributions to variances reflect this. From

u1 =
1

hm+1



g +

s+1
∑

j=1

kj
wj

(

glj + grj
)





we see that Eu21 contains a) Eg2, b) Eggli, c) Eg
l
ig

l
j , d) Egg

r
j , e) Eg

l
ig

r
j , f) Eg

r
i g

r
j .

I) Let x ∈ (0, 1).

a) Replacing x−t
h = u, we have

1

h
Eg2 =

1

h

∫ 1

0

F 2

(

x− t

h

)

f(t)dt =

∫ x/h

(x−1)/h

F 2(u)f(x− hu)du. (7.7)
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Since x/h→ ∞, (x− 1)/h→ −∞ and f is bounded and continuous, in the equation

1

h
Eg2 = −

∫ ∞

x/h

F 2(u)f(x− hu)du−
∫ (x−1)/h

−∞
F 2(u)f(x− hu)du+

∫

R

F 2(u)f(x− hu)du

the first two integrals on the right tend to zero and the last integral tends to f(x)Γ by the dominated

convergence theorem. Thus,

1

h
Eg2 = f(x)Γ + o(1). (7.8)

Similar arguments below will be omitted.

b) Here we use boundedness of f, F and integrability of F :

∣

∣

∣

∣

1

h
Eggli

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h

∫ awi

0

F

(

x− t

h

)

F

(

x+ t/wi

h

)

f(t)dt

∣

∣

∣

∣

(7.9)

(replacing
x+ t/wi

h
= u and using dots in place of inconsequential arguments)

= wi

∣

∣

∣

∣

∣

∫ (x+a)/h

x/h

F (· · · )F (u) f(· · · )du
∣

∣

∣

∣

∣

≤ wi sup |fF |
∫ (x+a)/h

x/h

|F (u) |du→ 0.

c) Denoting λ = min{wi, wj} we have

1

h
Eglig

l
j =

1

h

∫ aλ

0

F

(

x+ t/wi

h

)

F

(

x+ t/wj

h

)

f(t)dt

(replacing
x+ t/wi

h
= u)

= wi

∫ (x+aλ/wi)/h

x/h

F (· · · )F (u) f(· · · )du→ 0. (7.10)

d) Replacing x−1+(t−1)/wi

h = u we get

1

h
Eggri =

1

h

∫ 1

1−awi

F

(

x− t

h

)

F

(

x− 1 + (t− 1)/wi

h

)

f(t)dt

= wi

∫ (x−1)/h

(x−1−a)/h

F (· · · )F (u) f(· · · )du→ 0. (7.11)

e) Replacing x+t/wi

h = u

1

h
Eglig

r
j =

1

h

∫ awi

1−awj

F

(

x+ t/wi

h

)

F

(

x− 1 + (t− 1)/wj

h

)

f(t)dt

= wi

∫ (x+a)/h

[x+(1−awj)/wi]/h

F (u)F (· · · ) f(· · · )du→ 0. (7.12)

Here we take into account that awj ≤ 1 for all j.
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f) Letting λ = min{wi, wj} we have

1

h
Egri g

r
j =

1

h

∫ 1

1−aλ

F

(

x− 1 + (t− 1)/wi

h

)

F

(

x− 1 + (t− 1)/wj

h

)

f(t)dt

(replacing
x− 1 + (t− 1)/wi

h
= u)

= wi

∫ (x−1)/h

(x−1−aλ/wi)/h

F (u)F (· · · ) f(· · · )du→ 0. (7.13)

The conclusion from (7.8)-(7.13) is that Eu21 = 1
h2m+1 {f(x)Γ + o(1)} which proves statement I).

II) Let x = 0.

a) From (7.7)

1

h
Eg2 =

∫ 0

−1/h

F 2(u)f(−hu)du→ f(0)

∫ 0

−∞
F 2(u)du = f(0)

∫ ∞

0

F 2

(

u

w0

)

du. (7.14)

b) By (7.9)

1

h
Eggli =

1

h

∫ awi

0

F

(

− t

h

)

F

(

t

hwi

)

f(t)dt (replacing
t

h
= u)

=

∫ awi/h

0

F (−u)F
(

u

wi

)

f(hu)du→ f(0)

∫ ∞

0

F (−u)F
(

u

wi

)

du

= f(0)

∫ ∞

0

F

(

u

w0

)

F

(

u

wi

)

du. (7.15)

c) By (7.10)

1

h
Eglig

l
j =

1

h

∫ aλ

0

F

(

t/wi

h

)

F

(

t/wj

h

)

f(t)dt (replacing
t

h
= u)

=

∫ aλ/h

0

F

(

u

wi

)

F

(

u

wj

)

f(hu)du→ f(0)

∫ ∞

0

F

(

u

wi

)

F

(

u

wi

)

du. (7.16)

d) By (7.11)

1

h
Eggrj = wj

∫ −1/h

(−1−a)/h

F (· · · )F (u) f(· · · )du→ 0. (7.17)

e) From (7.12)

1

h
Eglig

r
j =

1

h

∫ awi

1−awj

F

(

t/wi

h

)

F

(−1 + (t− 1)/wj

h

)

f(t)dt

(here we replace
−1 + (t− 1)/wj

h
= u)

= wj

∫ [−1+(awi−1)/wj ]/h

(−1−a)/h

F (· · · )F (u) f(· · · )du→ 0. (7.18)
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Here we remember that awi ≤ 1.

f) From (7.13)

1

h
Egri g

r
j = wi

∫ −1/h

(−1−aλ/wi)/h

F (u)F (· · · ) f(· · · )du→ 0. (7.19)

From (7.14)-(7.19) we conclude that

Eu21 =
1

h2m+1

{

f(0)

∫ ∞

0

F 2

(

u

w0

)

du+ 2f(0)

s+1
∑

i=1

ki
wi

∫ ∞

0

F

(

u

w0

)

F

(

u

wi

)

du

+f(0)

s+1
∑

i,j=1

ki
wi

kj
wj

∫ ∞

0

F

(

u

wi

)

F

(

u

wj

)

du+ o(1)







=
1

h2m+1







f(0)

∫ ∞

0

[

s+1
∑

i=0

ki
wi
F

(

u

wi

)

]2

du+ o(1)







.

III) Let x = 1.

a) From (7.7)

1

h
Eg2 =

∫ 1/h

0

F 2(u)f(1− hu)du→ f(1)

∫ ∞

0

F 2 (u) du = f(1)

∫ 0

−∞
F 2

(

u

w0

)

du. (7.20)

b) From the second line of (7.9)

1

h
Eggli = wi

∫ (1+a)/h

1/h

F (· · · )F (u) f(· · · )du→ 0. (7.21)

c) From the last line of (7.10)

1

h
Eglig

l
j = wi

∫ (1+aλ/wi)/h

1/h

F (· · · )F (u) f(· · · )du→ 0. (7.22)

d) From (7.11)

1

h
Eggri =

1

h

∫ 1

1−awi

F

(

1− t

h

)

F

(

(t− 1)/wi

h

)

f(t)dt (replacing
t− 1

h
= u)

=

∫ 0

−awi/h

F (−u)F
(

u

wi

)

f(1 + hu)du

→ f(1)

∫ 0

−∞
F (−u)F

(

u

wi

)

du = f(1)

∫ 0

−∞
F

(

u

w0

)

F

(

u

wi

)

du. (7.23)
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e) From (7.12)

1

h
Eglig

r
j =

1

h

∫ awi

1−awj

F

(

1 + t/wi

h

)

F

(

(t− 1)/wj

h

)

f(t)dt

(replace
1 + t/wi

h
= u)

= wi

∫ (1+a)/h

[1+(1−awj)/wi]/h

F (u)F (· · · ) f(· · · )du→ 0. (7.24)

f) From (7.13)

1

h
Egri g

r
j =

1

h

∫ 1

1−aλ

F

(

t− 1

hwi

)

F

(

t− 1

hwj

)

f(t)dt (replacing
t− 1

h
= u)

=

∫ 0

−aλ/h

F

(

u

wi

)

F

(

u

wj

)

f(1 + hu)du→ f(1)

∫ 0

−∞
F

(

u

wi

)

F

(

u

wj

)

du. (7.25)

Collecting nonzero limits from (7.20), (7.23), (7.25)

Eu21 =
1

h2m+1

{

f(1)

∫ 0

−∞
F 2

(

u

w0

)

du+ 2f(1)

s+1
∑

i=1

ki
wi

∫ 0

−∞
F

(

u

w0

)

F

(

u

wi

)

du

+f(1)

s+1
∑

i,j=1

ki
wi

kj
wj

∫ 0

−∞
F

(

u

wi

)

F

(

u

wi

)

du+ o(1)







=
1

h2m+1







f(1)

∫ 0

−∞

[

s+1
∑

i=0

ki
wi
F

(

u

wi

)

]2

du+ o(1)







.

Theorem 4.1 Proof. 1) Instead of (7.1) we have

Ef̂
(m)
+,s (x) =

1

hm+1
E







I{X1≥0}



K(m)

(

x−X1

h

)

+

s+1
∑

j=1

kj
wj
K(m)

(

x+X1/wj

h

)











=
1

hm+1





∫ ∞

0

K(m)

(

x− t

h

)

f+(t)dt+

s+1
∑

j=1

kj
wj

∫ ∞

0

K(m)

(

x+ t/wj

h

)

f+(t)dt



 .

Repeating calculations that led from (7.1) to (7.3) we get

Ef̂
(m)
+,s (x) =

∫

R

K (s) g
(m)
+,s (x− hs)ds

(those calculations did not use the fact that f was a density).

2) The proof is similar to that of Theorem 3.2.
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Theorem 4.2 Proof. By the i.i.d. assumption

Ef̂ (m)
s (x) =

1

hm+1

{

∫ d

c

K(m)

(

x− t

h

)

fr(t)dt

+

s+1
∑

j=1

kj
wj

[∫ c+a1wj

c

K(m)

(

wj(x− c) + (t− c)

wjh

)

fr(t)dt

+

∫ d

d−a1wj

K(m)

(

wj(x− d) + (t− d)

wjh

)

fr(t)dt

]}

.

The obvious changes of variables are:

x− t

h
= u,

wj(x− c) + (t− c)

wjh
= u,

wj(x− d) + (t− d)

wjh
= u.

The mean value becomes

Ef̂ (m)
s (x) =

1

hm

{

−
∫ (x−d)/h

(x−c)/h

K(m) (u) fr(x− hu)du

+

s+1
∑

j=1

kj

[

∫ (x−c+a1)/h

(x−c)/h

K(m) (u) fr(c− wj(x− c) + wjhu)du

+

∫ (x−d)/h

(x−d−a1)/h

K(m) (u) fr(d− wj(x− d) + wjhu)du

]}

.

Applying (4.4) we see that this is the same as

Ef̂ (m)
s (x) =

1

hm

{

∫ (x−c)/h

(x−d)/h

K(m) (u) fr(x− hu)du

+

∫ (x−c+a1)/h

(x−c)/h

K(m) (u)
s+1
∑

j=1

kjfr(c− wj(x− hu− c))du

+

∫ (x−d)/h

(x−d−a1)/h

K(m) (u)

s+1
∑

j=1

kjfr(d− wj(x− hu− d))du







=
1

hm

∫ (x−c+a1)/h

(x−d−a1)/h

K(m) (u) gr(x− hu)du.

Regardless of x ∈ [c, d], the interval ((x − d − aL/h, (x − c + a)/h) contains (−a/h, a/h) which contains

suppK for all small h. Therefore, also integrating by parts,

Ef̂ (m)
s (x) =

1

hm

∫

R

K(m) (u) gr(x− hu)du =

∫

R

K (u) g(m)
r (x− hu)du.

The derivation of the expression for variance largely repeats that from Theorem 3.2.
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Theorem 5.1 Proof. (5.1) implies

(

d

dx

)j

f̃ (m)(x) |x=0+ =

j
∑

i=0

Ci
j

[

(

d

dx

)i

ψ(xh−α)

][

(

d

dx

)j−i

f̂ (m)(x)

]

|x=0+ = 0,

for j = 0, ..., l −m, so (5.3) is satisfied.

To prove (5.4), consider two cases.

Case xh−α ≥ 1. (5.4) follows trivially from (2.8) because f̃ (m)(x) = f̂ (m)(x).

Case xh−α ≤ 1. Obviously, in the equation

Ef̃ (m)(x)− f (m)(x) = ψ(xh−α)
[

Ef̂ (m)(x)− f (m)(x)
]

+
[

ψ(xh−α)− 1
]

f (m)(x)

the first term on the right is O(hs−m), and it remains to prove that [ψ(xh−α)− 1] f (m)(x) = O(hs−m).

Suppose (5.2) is true, so that α = 1. Then

f (m)(x) = f (m)(0+) + ...+ f (s)(0+)
xs−m

(s−m)!
+ o(xs−m)

= o
(

(hα)s−m
)

= o(hs−m). (7.26)

Suppose (5.2) is wrong. Then α = s−m
k−m and

f (m)(x) = f (m)(0+) + ...+ f (k)(0+)
xk−m

(k −m)!
+ o(xk−m)

= O
(

xk−m
)

= O(hs−m). (7.27)

(7.26) and (7.27) prove what we need.

To prove (5.5), consider two cases.

Case xh−α ≥ 1. The first part of (5.5) is obvious because f̃ (m)(x) = f̂ (m)(x).

Case xh−α ≤ 1. From (7.6) it follows that

ψ(xh−α) = ψ(0+) + ...+ ψ(l−m+1)(0+)
(xh−α)

(l−m+1)

(l −m+ 1)!
= ψ(l−m+1)(0+)

(

xh−α
)(l−m+1)

which proves the second part of (5.5).

Proof. For almost all samples miniXi > 0 and for 0 < x ≤ 1
3 miniXi one has ψ(Xi/x) = 0, i = 1, ..., n.

Hence f̂ (m)(x) vanishes, together with all its derivatives, in the neighborhood of zero for almost all samples.
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Following (7.1) we see that the mean is

Ef̂ (m)(x) =
1

hm+1

∫ ∞

0



K(m)

(

x− t

h

)

+

s+1
∑

j=1

kj
wj
K(m)

(

x+ t/wj

h

)



ψ

(

t

x

)

f(t)dt.

Here the function fx(t) = f(t)ψ (t/x) has support suppfx ⊆ [0, 3x]. Implementing changes applied after

(7.2), including integration by parts, we obtain an analog of (7.3) with gx instead of g. gx is obtained by

replacing f in (2.2)-(2.3) by fx. The rest is familiar.

The statement about variance is obtained by repeating the corresponding part of the proof of Theorem

3.2.
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