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Abstract
We consider the relation between Sion’s minimax theorem for a continuous func-
tion and a Nash equilibrium in an asymmetric three-players zero-sum game with two
groups. Two players are in Group A, and they have the same payoff function and
strategy space. One player, Player C, is in Group C. Then,

1. The existence of a Nash equilibrium, which is symmetric in Group A, implies
Sion’s minimax theorem for pairs of a player in Group A and Player C with
symmetry in Group A.

2. Sion’s minimax theorem for pairs of a player in Group A and Player C with sym-
metry in Group A implies the existence of a Nash equilibrium which is symmet-
ric in Group A.

Thus, they are equivalent.
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1 Introduction

We consider the relation between Sion’s minimax theorem for a continuous function and
existence of a Nash equilibrium in an asymmetric three-players zero-sum game with two
groups!. Two players are in one group (Group A), and they have the same payoff function
and strategy space, and so their equilibrium strategies, maximin strategies and minimax
strategies are the same. One player, Player C, is in the other group (Group C). We will
show the following results.

1. The existence of a Nash equilibrium, which is symmetric in Group A, implies Sion’s
minimax theorem for pairs of a player in Group A and Player C with symmetry in
Group A.

2. Sion’s minimax theorem for pairs of a player in Group A and Player C with symmetry
in Group A implies the existence of a Nash equilibrium which is symmetric in Group
A.

Thus, they are equivalent.

An example of such a game is a relative profit maximization game in a Cournot oligopoly.
Suppose that there are three firms, A, B and C in an oligopolistic industry. Let 74, 75 and
7c be the absolute profits of the firms. Then, their relative profits are

_ 1 _ _ _ 1 _ _ _ 1 _ _
A =Tp— 5(”3 + 7ic), T = 7ig — E(ﬂ'A + 7ic), e = 7ic — E(FB + 7).

We see
7TA+7TB+7TC:ﬁA+ﬁB+ﬁC—(ﬁA+ﬁB+ﬁc):0.

Thus, the relative profit maximization game in a Cournot oligopoly is a zero-sum game?.
If the oligopoly is fully asymmetric because the demand function is not symmetric (in a
case of differentiated goods) or firms have different cost functions (in both homogeneous
and differentiated goods cases), maximin strategies and minimax strategies of firms do
not correspond to Nash equilibrium strategies. However, if the oligopoly is symmetric
for two firms in one group (Group A) in the sense that demand function is symmetric
and two firms have the same cost function, the maximin strategies for those firms with
the corresponding minimax strategy of the firm in the other group (Group C) constitute a
Nash equilibrium which is symmetric in Group A. In Appendix we present an example of
a three-firms relative profit maximizing oligopoly.

In Satoh and Tanaka (2018) we have analyzed a similar problem in a symmetric zero-sum game in which
all players are identical.

2 About relative profit maximization under imperfect competition please see Matsumura, Matsushima and
Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka
(2013a), Tanaka (2013b) and Vega-Redondo (1997)



2 The model and Sion’s minimax theorem

Consider a three-players zero-sum game with two groups. There are three players, A,
B and C. The strategic variables for Players A, B and C are, respectively, s4, Sg, Sc, and
(S4,58,Sc) € SAXSpXSc. S4, Sp and S¢ are convex and compact sets in linear topological
spaces. The payoff function of each player is u;(s4,55,5¢c), i = A,B,C. They are real
valued functions on S4 X Sg X Sc. We assume

Uy, ug and uc are continuous on Sy X Sg X S¢, quasi-concave on S; for each
Sj €5, j#1i, and quasi-convex on Sj for j #iforeachs; € S;,i=A,B,C.

Three players are partitioned into two groups. Group A and Group C. Group A includes
Player A and Player B, and Group C includes only Player C. In Group A two players are
symmetric, that is, they have the same payoff function, and S4 = Sg. Thus, their equilib-
rium strategies, maximin strategies and minimax strategies are the same.

Since the game is a zero-sum game, we have

uA(Sa,Sg,Sc) +ug(sa, sg,Sc) + uc(sa,sg,Sc) =0, (1)

for given (54, Sg, S¢)-
Sion’s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) for a continuous
function is stated as follows.

Lemma 1. Let X and Y be non-void convex and compact subsets of two linear topological
spaces, and let f : X XY — R be a function that is continuous and quasi-concave in the
first variable and continuous and quasi-convex in the second variable. Then

maxmin f(x,y) = minmax f(x,y).
xeX erf( y) yeY xeX f( y)

We follow the description of this theorem in Kindler (2005).
Let sg be given. Then, u4(sy4, Sg, Sc) is a function of s4 and sc. We can apply Lemma 1
to such a situation, and get the following equation.

max min uy(Sy,Sg,Sc) = min max uy(sy, Sg, Sc)- (2)
SAESA sCeSc sceSC SAESA

Note that we do not require

max min uc(sy,Sg, Sc) = min max uc(sa, Sg, Sc),
ScESc SAE€SA SAESA ScESC

max min us(Sy,Sg,Sc) = min max u,(s4, Sg, Sc) given sc.
SAESA SBESB SBESB SAESA

We assume that arg maxg, g, ming s ua(84, S, Sc) and arg ming 5. max, cs, Ua(S4, g, S¢c)
are unique, that is, single-valued. By the maximum theorem they are continuous in sg.



Also, throughout this paper we assume that the maximin strategy and the minimax strat-
egy of players in any situation are unique, and the best responses of players in any situation
are unique. Similarly, we obtain

max min ug(sy, Sg,Sc) = min max ug(sa, Sg, Sc), (3)
SBESE SCcESC ScESc SBESE

given s4°.
Let sg = 5. Consider the following function.

§ — arg max min u4(sy, s, Sc).
SAESA ScESC

Since u4 is continuous, S, and S are compact and S4 = Sp, this function is also contin-
uous. Thus, there exists a fixed point. Denote it by §. § satisfies

arg max min u,4(sy,$, sc) = §.
SAESA SCESC

From (2) § satisfies

max min uy(sy,S,Sc) = min max uy(su, S, Sc)- 4)
SAESA SCESC SCESC SAESA

From symmetry for Players A and B, § also satisfies

arg max min ug(8§, sg, Sc) = S,
SBESE SCcESC

and

max min ug(8, sg, Sc) = min max ug(8$, sg, Sc)-
SBESB ScESC ScESc SBESE

3 The main results

Consider a Nash equilibrium of a three-players zero-sum game. Let s}, sz, s¢ be the values
of s4, Sg, Sc which, respectively, maximize u, given sz and s¢, maximize ug given s4 and
Sc, maximize uc given s4 and sg in S4 X Sg X S¢. Then,

UA(SH, S5, S¢) = ua(Sa,Sp,5¢) forall sy, € Sy,

ug(sy, sg,s¢) = ug(sy, sg,s¢) for all s € Sp,

and
uc(sy, g, 8¢) > uc(sh, s, s¢) for all s¢ € Sc.

3We do not require
max min uc(Sy,Sg,Sc) = min max uc(S4, Sg, Sc),
ScESc SBESE SBESE ScESc

max min ug(Sy,Sg,Sc) = min max ug(s4, Sg, Sc)-
SBESE SAESA SAESA SBESE



They mean

arg max u(Sa,Sg, S¢) =S4,
SAESA

arg max ug(sy,Sg, S¢) = Sg,
SBESE

and
arg max uc(sy, sg,Sc) = S
sCeSC

We assume that the Nash equilibrium is symmetric in Group A, that is, it is symmetric
for Player A and Player B. Then, s = s, and u(s}, sg,S¢) = ug(sy, sg, S¢). Also we have

uA(SZ’ Sg’ SC) = uB(SZ’ SE’ SC)'

Since the game is zero-sum,

ua (84, S, Sc) + up(Si, S5, Sc) = 2u(sy, S5, Sc) = 2up(sy, Sg, Sc) = —uc(si, S5, Sc)-
Thus,
arg min u,(sy, sz, Sc) = arg max uc(sy, g, Sc) = S¢»
Sce Sc S
and
arg min ug(sy, sg,Sc) = arg | max uc(sh, sg,Sc) = s¢.
Sce Sc S
They imply
min u4(sy, sz, Sc) = ua(sy, Sp,5¢) = max ua(sa, 5, 5¢);
sceSc S
and

min ug(sy, sg,Sc) = ug(sh, sg,S¢) = max ug(Sa,Sg, S¢)-
sCeSC S

First we show the following theorem.

Theorem 1. The existence of a Nash equilibrium, which is symmetric in Group A, implies
Sion’s minimax theorem for pairs of a player in Group A and Player C with symmetry in
Group A.

Proof. 1. Let (s}, sg, s¢) be a Nash equilibrium of a three-players zero-sum game. This
means
min max uy(sy, Sg, Sc) < max uA(Sa, 55, S¢) (5a)
sCeSc SAE€SA €Ss

= min u, (s}, sg,Sc) < max min uy(sa, S, Sc)s
ScESc SAESA SCESC

for Player A.

min max ug(sy, Sg, Sc) < max ug(si, sg,S¢) (5b)
ScESc SBESE eSp

= min ug(sy,Sg, S¢) < max min ug(sy, s, Sc)s
sceSc SBESE ScESC



for Player B.
On the other hand, since

min us(sa,85,5c) < ua(Sa,Sg5,5c),
ScESC

we have

max min u,(sa,Sg,Sc) < max uy(sq, Sg, Sc)-
SAESA ScESC SAESA

This inequality holds for any sc. Thus,

max min u,(sa,S5,5c) < min max uy(sa, Sg, Sc)-

SAESA ScESC SCESC SAESA

With (5a), we obtain

max min u,(s4,Sg,Sc) = min max uy(sy, g, Sc)-

SAESA SCESC SCESC SAESA

Similarly, for Player B we can show

max min ug(sy,sg,Sc) = min max u,(sy, sg, Sc).

SBESE ScESc ScESc SBESE

(5a), (5b), (6a) and (6b) imply

max min U, (sS4, Sg,Sc) = Max u,(Sa, g, S¢),
SAESA SCESC SAESA

min max u, (sS4, Sg,Sc) = min us(sh, S, Sc)s
ScESc SAESA ScEeSc

max min ug(sy,sg,Sc) = max ug(sy, sg, S¢)s
SBESB ScESC SBESB

min max ug(sy, Sg,Sc) = min ug(sy, sz, Sc)-
SCESC SBESE ScESC

From
min u(s4,85,5¢) < ua(Sa, g, 5¢),
SCESC
and
max min U, (sS4, Sg,Sc) = Max u(sa, g, S¢),
SAESA ScESC SAESA
we have
arg max min u,(Sa,Sg, Sc) = arg max us(sa, Sg, S¢) = Si.
SAESA ScESC SAESA
Also, from

max U(S4, g, Sc) = Ua(SK, SB,S¢),
SAESA

(6a)

(6b)



and

min max u, (sS4, Sg,Sc) = min us(sh, S, Sc)s
ScESc SA€SA Sc€ESc

we get

arg min max u,(sa,Sg,Sc) = arg | m1n us (sS4, sg.8c) = S¢.
ScESc SA€SA eSc

Similarly, we can show

arg max min ug(sy,Sg,Sc) = arg 1 max ug (s, Sg,S¢) = Sg =S4,
SBESB ScESC €Sp

and
arg min max ug(sy,sg,Sc) = arg mln ug(si, sg,Sc) = S¢.
ScESc SBESE eSc
Therefore,
arg max min u,(sy,Sg,Sc) = arg max min ug(sy, Sg, Sc)»
SAESA SCESC SBESB SCcESC
and

arg min max u,(sa,Sg,Sc) = arg min max ug(sy, g, Sc)-
SCESC SAESA ScESc SBESE
Next we show the following theorem.

Theorem 2. Sion’s minimax theorem with symmetry in Group A implies the existence of a
Nash equilibrium which is symmetric in Group A.

Proof. Let § be a value of sz such that

§ = arg max min u4(sy, S, Sc)-
SAESA sCeSc

Then, we have

max min u,(s4,8,Sc) = m1n us(8,8,sc) = min max uy(sy, 5, Sc). (7)
SAESA ScEeSc eSc ScESc SA€SA
Since
uA(5,8,5¢) < max us(sa, S, sc¢),
SAESA
and
min uy4(§,8§,sc) = min max uy(sa, S, Sc),
ScESc SCESC SAESA
we get
arg min u, (8,5, sc) = arg min max uy(sa, S, Sc). (8)
ScEeSc ScESc SAESA

Since the game is zero-sum,

uA(5,8,5¢) +ug(8,5,5¢) = 2uu (5, 8, 5¢) = —uc(S, S, s¢).



Therefore,

arg min u, (8, 3§, sc) = arg max uc(8, §, s¢).
ScESc SceSc

Let
Sc = arg min uy(§, 8, s¢) = arg max uc(3, 8, S¢). 9)
ScESC ScE€Sc

Then, from (7) and (8)

min max uy(s4,S,Sc) = max us(Sa,5,8c) = min uy(§,5,5c) = us(5,5,5¢). (10)
ScESc sA€SA SAESA sceSc

Similarly, we can show

max uB(§, SB,§C) = uB(§, S, §C) (11)
SBESE

(9), (10) and (11) mean that (s4,s5,Sc) = (8,8, 3¢) is a Nash equilibrium which is sym-
metric in Group A. O

4 Concluding Remark

In this paper we have examined the relation between Sion’s minimax theorem for a con-
tinuous function and a Nash equilibrium in an asymmetric three-players zero-sum game
with two groups. We want to extend this result to more general multi-players zero-sum
game.

Appendix: Example of relative profit maximizing three-firms
oligopoly

Consider a three-players game. Suppose that the payoff functions of players are
1
T = (a—x4—Xp _xC)xA_CAxA_z[(a_xB —Xp—Xc)xp—CpXp+(a—Xc—Xp—Xxp)Xc—CccXcl,

1
g = (a—Xg—Xs—Xc)Xp—CpXp ) [(a=xa—Xp—Xc)Xa—CaXpa+(a—Xc—Xg—Xa)Xc—CcXc],

and
1
e = (a_xC_xB_xA)xC_chC_E[(a_xA_xB —Xc)Xa—CaXa+(a—Xp—X4—Xc)Xp—CpXp].

This is a model of relative profit maximization in a three firms Cournot oligopoly with con-
stant marginal costs and zero fixed cost producing a homogeneous good. x;’s,i = A, B, C,
are the outputs of the firms. The conditions for maximization of 7;, i = A, B, C, are

on 1
4 =a—2xA_(xB+xC)_cA+_(xB+xC)=0,
6xA 2



or 1
B —a-2xg—(xga+xc)—Ccg+=(X4+Xxc)=0
axB 2

and
9mc

6xc
The Nash equilibrium strategies are

1
=a—2xc— (xg +xA)—cc+§(xB +x4)=0

3a—5c4 +cg+c 3a—5cp +cy +c 3a—5c-+cg+c
A9 B C,XB= 39 A c’xC: C9 B A (12)

Next consider maximin and minimax strategies about Player A and Player C. The con-

Xp =

omy
dition for minimization of 774 with respect to x¢ is a_ = 0. Denote x¢ which satisfies this

condition by xc(x4, Xg), and substitute it into 7 4. Then the condition for maximization
of 4 with respect to x4 given xc(x 4, Xg) and xp is

671’A a7TA aXC

aXA axc axA =0.

It is denoted by arg max,, min, . 774. The condition for maximization of 774 with respect

to x 4 is zﬂ = 0. Denote x4 which satisfies this condition by x4 (xg, Xc), and substitute it
XA
into 4. Then, the condition for minimization of 77, with respect to xc given x4(xg, X¢)
is
or A onr A 0x A
axc aXA axc

It is denoted by arg min,,, max,, 74. In our example we obtain

=0.

. 3a —4cy +cc . 6a —9xg — 2cy4 —4cc
argmaxminry = ————, argminmaxmy = .
XA Xc 9 Xc XA 9

Similarly, we get the following results.

. 3a —4cg +c¢ . 6a —9x4 — 2cg — 4cc
argmaxmin 7g = ——————, argminmaxng = .
XB Xc 9 Xc XB 9

Ifcy # cp,argmax,, min, 7, # argmax,, min,  7g, and they are not equal to the Nash
equilibrium strategies for Players A and B. However, if cg = ¢4, we have

arg max m1n T4 = arg maxmin 7,

XA XB Xc
and those strategies and the Nash equilibrium strategies for Players A and B are equal.
Further, when cg = c4 and

3a—4c4 + ¢
9
we get

. . 3a — 5¢ce + 2CA
argmin maxmw, = argminmaxzg = .
Xc XA Xc XB 9

This is equal to the Nash equilibrium strategy for Player C when cg = c4.
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