
Munich Personal RePEc Archive

A Second Welfare Theorem in a

Non-convex Economy: The Case of

Antichain-convexity

Ceparano, Maria Carmela and Quartieri, Federico

21 June 2018

Online at https://mpra.ub.uni-muenchen.de/87531/

MPRA Paper No. 87531, posted 24 Jun 2018 16:36 UTC



A Second Welfare Theorem in a Non-convex

Economy: The Case of Antichain-convexity

Maria Carmela Ceparano
University of Naples Federico II

email: mariacarmela.ceparano@unina.it

Federico Quartieri
University of Florence

email: federico.quartieri@unifi.it

June 21, 2018

Abstract

We introduce the notion of an antichain-convex set to extend Debreu
(1954)’s version of the second welfare theorem to economies where ei-
ther the aggregate production set or preference relations are not con-
vex. We show that–possibly after some redistribution of individuals’
wealth–the Pareto optima of some economies which are marked by cer-
tain types of non-convexities can be spontaneously obtained as valuation
quasi-equilibria and equilibria: both equilibrium notions are to be under-
stood in Debreu (1954)’s sense. From a purely structural point of view,
the mathematical contribution of this work is the study of the conditions
that guarantee the convexity of the Minkowski sum of finitely many pos-
sibly non-convex sets. Such a study allows us to obtain a version of the
Minkowski\Hahn-Banach separation theorem which dispenses with the
convexity of the sets to be separated and which can be naturally applied
in standard proofs of the second welfare theorem; in addition–and equally
importantly–the study allows to get a deeper understanding of the con-
ditions on the single production sets of an economy that guarantee the
convexity of their aggregate.

JEL: C02; C60; D51; D61

Keywords: Second Theorem of Welfare Economics; Non-convex Economies;
Chain-convexity and Antichain-convexity; Separation Theorem; Convex Sum of
Non-convex Sets.

1 Introduction

The second welfare theorems enunciated in Debreu (1951, 1954) and Arrow
(1951) are–more or less explicitly–proved by means of the so-called Minkowski
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and Hahn-Banach separation theorems. The economic thesis of their welfare
theorems is that, possibly after some redistribution of individuals’ wealth, the
Pareto optima of convex economies1 can be spontaneously obtained as competi-
tive equilibria of an economy with a finite set of agents where consumers choose
optimal affordable consumption vectors and firms maximize own profits. The
convexity enables the applications of the mentioned separation theorems but
is known to be liable to objection. However, if such a condition were simply
dropped then the previous thesis would not hold anymore in general.

Motivated by the need of relaxing the convexity requisites of an economy,
in the seventies Guesnerie (1975) extended the second welfare theorem to non-
convex preferences and technologies: his extension pertained the first-order nec-
essary conditions for consumers’ expenditure minimization and firms’ profit
maximization. In convex economies the necessary conditions are also suffi-
cient to guarantee that a Pareto optimum is the solution to such optimization
problems; but the sufficiency is not generally guaranteed without convexity as-
sumptions and hence a Pareto optimum of a non-convex economy need not be
supportable as a valuation quasiequilibrium. The main results concerning the
extension of the second welfare to non-convex economies followed the pioneering
approach of Guesnerie (1975): they were devoted to finding “marginal” prices
at Pareto optima which–satisfying the first-order necessary conditions–lie in
suitably chosen normal cones. Much effort within this literature has been made
to seek the right notion of a tangent cone (and of its corresponding normal
cone). Among the articles of this strand of the literature we mention in particu-
lar Khan and Vohra (1987,1988), Bonnisseau and Cornet (1988), Khan (1999),
Mordukhovich (2000), Bonnisseau (2002), Florenzano et al. (2006), Jofré and
Rivera (2006), Habte and Mordukhovich (2011).

It is important to observe that Debreu (1954)’s second welfare theorem does
not posit the convexity of production sets but only that of their aggregate.
As the finite sum of convex sets is convex, that second welfare theorem holds
for convex economies: this is undisputed. On the other hand one can easily
construct specific examples of economies with a convex aggregate production
sets where at least one firm has a non-convex production set. Therefore Debreu
(1954)’s economies are not convex stricto sensu and hence the second welfare
theorem stated therein holds even for some non-convex economies. However,
one is left in the dark when trying to figure out which (general) conditions on
firms’ production sets can guarantee the convexity of their aggregate in non-
convex economies. To the best of our knowledge, the subsequent literature has
not illuminated this issue which, from a mathematical viewpoint, boils down
to understanding which properties–other than convexity–guarantee that the
sum of a finite family of sets is convex.

The previous observation on Debreu (1954)’s assumptions is made more
accurate when noting that the condition which, in fact, plays a role in the
proof of Debreu (1954)’s second welfare theorem is the convexity of the Pareto

1An economy is convex if all preference relations and all production sets are convex.
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improving set Z of scarce resources.2 The set Z is the sum of the aggregate
production set and a certain Pareto improving set of aggregate consumption
vectors: thus Z is the Minkowski sum of two Minkowski sums. Its convexity
condition is well-known to be met in convex economies. But what can we say
as for non-convex economies? Once again one runs into the key issue of seeking
conditions ensuring the convexity of the sum of finitely many (possibly non-
convex) sets.

In this paper we tackle the issue of extending the second welfare theorem
to non-convex economies by applying a reformulation of the Minkowski\Hahn-
Banach theorem that dispenses with convexity assumptions on sets separated
by a linear continuous functional. In the same spirit of Debreu (1954), we pro-
vide sufficient conditions for the supportability of Pareto optima as valuation
quasiequilibria and as valuation equilibria. But unlike Debreu (1954), we do not
assume the convexity of both the aggregate production set and the preference
relations of an economy. Various alternative versions of the second welfare the-
orem will be presented: one of them–more precisely our Theorem 6–properly
generalizes Theorem 2 of Debreu (1954) on the supportability of Pareto optima
as valuation quasiequilibria in the case of an economy with locally nonsatiated
preferences. Some versions–like for instance our Theorem 7–are not stricto
sensu comparable to Theorem 2 of Debreu (1954) but nevertheless explicitly
display conditions on (possibly non-convex) production sets which ensure the
convexity of their aggregate.

Our reformulation of the Minkowski\Hahn-Banach theorem–more precisely
our Theorem 4–relies on a notion of generalized convexity introduced in Ce-
parano and Quartieri (2017) which is here extended to arbitrary cones and to a
possibly infinite-dimensional setting. Such a notion is here called C-antichain-
convexity and impose the usual notion of convexity requisites only on the linear
span of any two vectors whose differences do not belong to some fixed cone
C. To obtain the desired reformulation, we preliminarily address the problem
of establishing which conditions can guarantee the convexity of the Minkowski
sum of finitely many sets when some summands are not convex. One of the
results of this work–more precisely our Theorem 1–displays these conditions
proving that the sum of finitely many sets is convex when each summand is C-
antichain-convex and at least one of them is C-upward (which is a sort general
free-disposability condition).3 From the pure point of view of the mathematical
structure that underlies the economic results of this work, this result is perhaps
our key-contribution.

The paper is tacitly organized into two parts. The first part is merely math-
ematical and consists of Sect. 2—4 and Appendix A. Sect. 2 presents the mathe-
matical definitions of a C-antichain-convex and of a C-upward sets and illustrate
some of their general properties. Sect. 3 shows that the sum of finitely many
C-antichain-convex sets is convex provided one of the summands is C-upward.

2The mentioned set Z is defined at the beginning of page 591 in Debreu (1954). On this
observation see also Sect. 8 of Debreu (1951).

3As we shall remark, every convex set is {0}-antichain-convex and {0}-upward (and so that
result implies the well-known fact that the finite sum of convex sets is convex).
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Sect. 4 uses this last result to obtain a separation theorem which applies also
to non-convex sets. Appendix A contains some mathematical facts. The second
part–where the results of the first are applied–is of economic nature and con-
sists of Sect. 5—8 and Appendices B—C. Sect. 5 recalls some classical economic
notions and definitions. Sect. 6 provides several second theorems of welfare for
possibly non-convex economies. Sect. 5 contains a discussion of the hypotheses
posited in the second welfare theorems . Sect. 8 shows some concluding corol-
laries and some examples of non-convex economies where the economic results
of the paper apply. Appendix B contains some economic facts and Appendix
C examines the representability of C-antichain-convex preferences by means of
C-antichain-quasiconcave (utility) functions.

2 Fundamental mathematical notions

Hereafter a real vector space–i.e., a vector space over the reals–is sometimes
abbreviated by RVS and a topological real vector space–i.e., a topological
vector space over the reals–by TRVS.4 A subset C of a RVS is a cone iff

(λ, x) ∈ R++ × C ⇒ λx ∈ C.

Under our definition a cone can be empty; however, a cone need not be convex
or contain the zero vector. Given a finite nonempty subset S = {s1, . . . , sk} of
a RVS, we respectively denote by co(S) and coni(S) the convex hull of S and
the convex conical hull of S defined by

co(S) = {λ1s1 + . . .+ λksk : (λ1, . . . , λk) ∈ R
k
+ and λ1 + . . .+ λk = 1}

and
coni(S) = {λ1s1 + . . .+ λksk : (λ1, . . . , λk) ∈ R

k
+}.

Note that 0 ∈ coni(S). When V is a RVS and S is a subset of V , we denote by
S the complement of S to V .

Notation 1 Given two points x and y of a RVS and a real λ, the expression

x 〈λ〉 y

will henceforth denote the affine combination λx+ (1− λ)y.

The notion of “chain-convexity” firstly introduced in Ceparano and Quartieri
(2017) is now generalized to arbitrary real vector spaces and cones.5

Definition 1 Let V be a RVS and S be a subset of V . Let C be a cone in V .

4These definitions can be found, e.g., in Kelley and Namioka (1963, pp. 1-2 and 34). We
recall that the topology of a TRVS is translation invariant.

5The definition of a “chain-convex set” provided in the mentioned paper coincides with
that of a C-chain-convex set–in the sense of Definition 1–when V = Rn and C = Rn

+
.
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• S is said to be C-chain-convex iff

(x, y, λ) ∈ S × S × [0, 1] and y − x ∈ C ⇒ x 〈λ〉 y ∈ S. (1)

• S is said to be C-antichain-convex iff

(x, y, λ) ∈ S × S × [0, 1] and y − x /∈ C ∪ −C ⇒ x 〈λ〉 y ∈ S. (2)

Definition 2 Let V be a RVS and C be a cone in V . A subset S of V is
decomposably C-antichain-convex iff S can be expressed as the Minkowski
sum of finitely many C-antichain-convex subsets of V .

Example 1 Let C be a cone in R2 such that R2+ ⊆ C.

a. The discrete set N2+ is not R
2
+-antichain-convex.

b. The discrete sets {0} × N+ and {0} × N+ are C-antichain-convex.

c. The discrete set N2+ is decomposably C-antichain-convex (as N2+ is the
sum of the C-antichain-convex sets N+ × {0} and {0} × N+).

In fact C-antichain-convexity can be recovered from C-chain-convexity and
vice versa; in a sense, however, the two notions are complementary of one an-
other with respect to convexity. Propositions 1 and 2–proved in Appendix
A.2–clarify the point with a precise statement. Proposition 3–whose elemen-
tary proof is omitted–highlights some implications of Definition 1 which are
worth to be remarked. Proposition 4–proved in Appendix A.2–clarifies that
C-antichain-convex decomposability generalizes C-antichain-convexity.

Proposition 1 Let V be a RVS, S be a subset of V and C be a cone in V .

1. S is C-antichain-convex if and only if S is C ∪ −C-chain-convex.

2. S is C-chain-convex if and only if S is C ∪ −C-antichain-convex.

Proposition 2 Let V be a RVS, S be a subset of V and C be a cone in V .
Then S is convex if and only if S is C-chain-convex and C-antichain-convex.

Proposition 3 Let V be a RVS and S be a subset of V . Suppose C• and C◦

are cones in V such that ∅ ⊆ C• ⊆ C◦ ⊆ V .

1. S is ∅-chain-convex.

2. S is convex if and only if S is V -chain-convex.

3. If S is C◦-chain-convex then S is C•-chain-convex.

4. S is V -antichain-convex.

5. S is convex if and only if S is ∅-antichain-convex.
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6. If S is C•-antichain-convex then S is C◦-antichain-convex.

Remark 1 Proposition 3 continues to hold true if one replaces “∅” with “{0}”
in its parts 1 and 5 and “V ” with “V \{0}” in its parts 2 and 4.

Proposition 4 Let V be a RVS, S be a subset of V and C be a cone in V . If
S is C-antichain-convex then S is decomposably C-antichain-convex.

In a same vein we redefine the notions of upward and downward sets.

Definition 3 Let V be a RVS and S be a subset of V . Let C be a cone in V .

• S is said to be C-upward iff

(x, y) ∈ S × V and y − x ∈ C ⇒ y ∈ S. (3)

• S is said to be C-downward iff

(x, y) ∈ S × V and x− y ∈ C ⇒ y ∈ S. (4)

Proposition 5–proved in Appendix A.3–clarifies that the two notions just
introduced are special cases of C-chain-convexity. Proposition 6–whose ele-
mentary proof is omitted–highlights some implications of Definition 3 which
are worth to be explicitly remarked.

Proposition 5 Let V be a RVS, S be a subset of V and C be a cone in V .

1. If S is C-upward then S is C-chain-convex.

2. If S is C-downward then S is C-chain-convex.

Proposition 6 Let V be a RVS, S be a subset of V and C be a cone in V .
Suppose C• and C◦ are cones in V such that ∅ ⊆ C• ⊆ C◦ ⊆ V .

1. S is ∅-upward.

2. If S is C◦-upward then S is C•-upward.

3. S is ∅-downward.

4. If S is C◦-downward then S is C•-downward.

Remark 2 Proposition 6 continues to hold true if one replaces “∅” with “{0}”in
its parts 1 and 3.

Proposition 7–proved in Appendix A.3–shows an important property of
C-upward and C-downward sets.

Proposition 7 Let V be a RVS and C a cone in V . Let X,Y be subsets of V .

1. If X is C-upward then X + Y is C-upward.

2. If X is C-downward then X + Y is C-downward.
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3 On the convex sum of sets

The sum of two C-antichain-convex sets need not be C-antichain-convex.6 How-
ever, if one of the addends is either C-upward or C-downward then their sum
is C-antichain-convex: in fact even convex.

Theorem 1 Let V be a RVS and C be a cone in V . Let X,Y be C-antichain-
convex subsets of V .

1. If X is C-upward then X + Y is convex and C-upward.

2. If X is C-downward then X + Y is convex and C-downward.

Proof. 1. Suppose X is C-upward. Propositions 2 and 5 ensure that X is
convex. By part 1 of Lemma 1, part 2 of Lemma 3 and part 1 of Lemma 4–all
contained in Appendix A–we can assume without loss of generality that 0 ∈ C.
Part 1 of Proposition 7 ensures that X + Y is C-upward. Pick an arbitrary

(v•, v◦, λ) ∈ (X + Y )× (X + Y )× [0, 1].

Then there exists (x•, x◦, y•, y◦) ∈ X ×X × Y × Y such that

v• = x• + y• and v◦ = x◦ + y◦.

As X is convex, x• 〈λ〉x◦ ∈ X. Therefore

x• 〈λ〉x◦ + y• ∈ X + Y (5)

and
x• 〈λ〉x◦ + y◦ ∈ X + Y . (6)

The proof continues distinguishing three exhaustive cases.

Case 1. Suppose y◦ − y• /∈ C ∪ −C. Then y• 〈λ〉 y◦ ∈ Y by the C-antichain-
convexity of Y and hence

v• 〈λ〉 v◦ = (x• 〈λ〉x◦) + (y• 〈λ〉 y◦) ∈ X + Y .

Case 2. Suppose y◦−y• ∈ C. Then (1−λ)(y◦−y•) ∈ C as the cone C contains
0. Since (1− λ)(y◦ − y•) ∈ C and X + Y is C-upward, from (5) and part
3 of Lemma 5–in Appendix A–we infer that

v• 〈λ〉 v◦ = (x• 〈λ〉x◦ + y•) + (1− λ)(y◦ − y•) ∈ X + Y .

6Even the sum of a C-antichain-convex set and a convex set need not be C-antichain-convex
(and a fortiori convex): for instance, putting C = R

2
+
, one readily verifies that the subsets

{(0, 0), (0, 1)} and [0, 1]×{0} of R2 are both C-antichain-convex and the latter is even convex
but their (decomposably C-antichain-convex) sum [0, 1]× {0, 1} is not C-antichain-convex.
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Case 3. Suppose y◦ − y• ∈ −C. Then y• − y◦ ∈ C and λ(y• − y◦) ∈ C as the
cone C contains 0. Since λ(y• − y◦) ∈ C and X + Y is C-upward, from
(6) and part 3 of Lemma 5–in Appendix A–we infer that

v• 〈λ〉 v◦ = (x• 〈λ〉x◦ + y◦) + λ(y• − y◦) ∈ X + Y .

In each of the three cases v• 〈λ〉 v◦ ∈ X +Y and so part 1 of Theorem 1 is true.
2. Suppose X is C-downward. Then part 6 of Lemma 3 and part 4 of

Lemma 4–both contained in Appendix A–respectively guarantee that the sets
−X and −Y are C-antichain-convex and that −X is C-upward. Then part 1
of Theorem 1 implies the convexity of (−X) + (−Y ). Therefore also X + Y is
convex. Part 2 of Proposition 7 ensures that X + Y is C-downward.

The previous result can be conveniently generalized as follows.

Corollary 1 Let V be a RVS and C be a cone in V . Assume that the subsets
X1, . . . , Xm of V are C-antichain-convex.

1. If X1 is C-upward then X1 + . . .+Xm is convex and C-upward.

2. If X1 is C-downward then X1 + . . .+Xm is convex and C-downward.

Proof. When m = 1, Corollary 1 follows from Propositions 2 and 5. A convex
subset of V is C-antichain-convex by Proposition 2: noted this fact one readily
proves by induction the case m ≥ 2 using Theorem 1.

4 On the separation of sets

4.1 Known results

Let V denote a RVS and V ′ denote the algebraic dual (i.e., the set of all real-
valued linear functions on V ). We say that a linear functional h ∈ V ′ separates
two subsetsX and Y of V iff inf h[X] ≥ suph[Y ] and h is non-zero (i.e., h(v) 6= 0
for some v ∈ V ). So the linear functional h separates X and Y if and only if
h separates −Y and −X and the linear functional h separates X and Y if
and only if −h separates Y and X. We have adopted the previous definition
of separation–where the order of the sets matters–for expositional simplicity.
Clarified this, we recall a known geometric form of the Hahn-Banach theorem.7

Theorem 2 (Separation Theorem I) Let V be a TRVS. Assume that X and
Y are nonempty convex subsets of V . Suppose X and Y are disjoint.

1. If V is finite-dimensional then X and Y can be separated by a continuous
linear functional on V .

2. If either X or Y has nonempty interior then X and Y can be separated
by a continuous linear functional on V .

7For a proof of Theorem 2 see, e.g., Theorem 14.2 in Kelley and Namioka (1963) and
Theorem 7.30 in Aliprantis and Border (2006). About part 1–i.e., the Minkowski separation
theorem–recall that every linear functional on a finite-dimensional TRVS is continuous.
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Observation Let V be a RVS and h ∈ V ′ and let X and Y be subsets of V :
(i) the sets X and Y are disjoint if and only if so are X − Y and {0}; (ii) the
sets X and Y are separated by h if and only if so are X − Y and {0}.

In the light of the previous Observation, Theorem 2 can be restated thus.

Theorem 3 (Separation Theorem II) Let V be a TRVS. Assume that X
and Y are nonempty subsets of V such that X − Y is convex. Suppose X and
Y are disjoint.

1. If V is finite-dimensional then X and Y can be separated by a continuous
linear functional on V .

2. If X − Y has nonempty interior then X and Y can be separated by a
continuous linear functional on V .

4.2 A reformulation

Theorems 2 and 3 are essentially the restatement of one another. This does not
mean that they are perfectly equivalent: Theorem 3 can directly apply when
Theorem 2 cannot. Such a direct application, however, is possible only when
X − Y is known to be convex. To the best of our knowledge, there do not exist
general results that guarantee the convexity of the Minkowski sum of two sets
when either of them is not convex. So Theorem 1–and its Corollary 1–can be
used to obtain reformulations of Theorem 3 which explicitly dispense with the
convexity of either X or Y . One of the possible reformulations is as follows.

Theorem 4 (Separation Theorem III) Let V be a TRVS and C be a cone
in V . Assume that X1,. . . ,Xm,Y1,. . . ,Yn are C-antichain-convex subsets of V
and that at least one of such m+n sets is either C-upward or C-downward. Put

X = X1 + . . .+Xm and Y = Y1 + . . .+ Yn.

Suppose X and Y are disjoint.

1. If V is finite-dimensional then X and Y can be separated by a continuous
linear functional on V .

2. If X − Y has nonempty interior then X and Y can be separated by a
continuous linear functional on V .

Proof. By assumption, one of the m+n sets X1, . . . , Xm, Y1, . . . , Yn is either
C-upward or C-downward. Thus by parts 3 and 4 of Lemma 4–in Appendix
A–one of the m+ n sets X1, . . . , Xm, −Y1, . . . , −Yn is then either C-upward
or C-downward. Each of the m+n sets X1, . . . , Xm, Y1, . . . , Yn is C-antichain-
convex and by part 6 of Lemma 3–in Appendix A–the set −Yl is C-antichain-
convex for all l = 1, . . . , n. Then Corollary 1 guarantees that the Minkowski
sum X−Y of the m+n sets X1, . . . , Xm, −Y1, . . . , −Yn is convex. Noted this,
Theorem 3 applies and ensures the validity of Theorem 4.
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Remark 3 It should be clear from part 5 of Proposition 3, parts 1 and 3 of
Proposition 6 and Remarks 1 and 2 that Theorem 4 has the same hypotheses
and theses of Theorem 2 if m = n = 1 and C ⊆ {0} and if, in its part 2,
it is additionally supposed that either X or Y has nonempty interior (this last
condition is stronger than the nonemptiness of the interior of X − Y ). Thus
Theorem 4 subsumes Theorem 2.

4.3 Positivity of the separating functional

Theorem 5 Let V be a RVS and C be a cone in V . Assume that X and Y
are nonempty subsets of V separated by a linear functional h : V → R. If X is
C-upward then h is nonnegative on C.

Proof. Suppose X is C-upward. The assumption that X and Y are separated
by h entails the existence of a real r such that

h(x) ≥ r ≥ h(y) for all (x, y) ∈ X × Y . (7)

Now, by way of contradiction, suppose there exists c̄ ∈ C such that h(c̄) < 0.
Pick some x̄ ∈ X and put t̄ = (r − h(x̄))/h(c̄). As X is C-upward, part 1 of
Lemma 5–in Appendix A–ensures that x̄+C ⊆ X. Then the assumption that
C is a cone containing c̄ entails that

x̄+ tc̄ ∈ X for all t ∈ R++. (8)

But h is linear and negative at c̄ and therefore h(x̄+ tc̄) = h(x̄) + th(c̄) < r for
all positive t > t̄: a contradiction with (7) and (8).

Corollary 2 Let V be a TRVS and C be a cone in V . Assume that X and Y
are nonempty subsets of V separated by a linear functional h : V → R. Besides
assume that either X is C-upward or Y is C-downward. Then h is nonnegative
on C and positive on the interior of C.

Proof. If X is C-upward then h is nonnegative on C by Theorem 5. If Y is
C-downward then −Y is C-upward by part 4 of Lemma 4–in Appendix A–and
hence −Y and −X are separated by h in that so are X and Y : also in this case
Theorem 5 ensures that h is nonnegative on C. Lemma 5.66 in Aliprantis and
Border (2006) guarantees that h is positive on the interior of C.

5 Definition of an economy

An economy E is a quintuple

((V,C),M,N, {Xi, Ri, ωi}i∈M , {Yi}i∈N )

with a finite nonempty set M = {1, . . . ,m} whose elements are called con-
sumers and a finite nonempty set N = {1, . . . , n} whose elements are called
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firms. Each consumer i ∈ M is described by a nonempty consumption set
Xi, by a preference relation Ri ⊆ Xi ×Xi and by an endowment ωi ∈ Xi.
Each firm l ∈ N is described by a nonempty production set Yl. All con-
sumption and production sets are subsets of a commodity space V which
is assumed to be a topological real vector space containing a–possibly empty
and possibly not convex–cone C called the relational commodity subspace.
The cone C induces a binary relation @ on V defined by the double implication
y − x ∈ C ⇔ x @ y: if C is a convex cone such that 0 ∈ C (resp. such that
C ∩−C = {0}) then @ is a preorder relation (resp. a partial order relation). As
usual, the set of all real-valued linear functions on V is denoted by V ′. A func-
tional in V ′ is sometimes called a valuation. A valuation f in V ′ is non-zero
if f(v) does not vanish for at least one v in V .

Let E be an economy and i ∈M be a consumer. The set

{(x•i , x
◦
i ) ∈ Ri : (x

◦
i , x

•
i ) /∈ Ri}

is called the strict preference relation for consumer i and denoted by Pi.
Henceforth Ri(xi) will denote the set {v ∈ Xi : (v, xi) ∈ Ri} and Pi(xi) will
denote the set {v ∈ Xi : (v, xi) ∈ Pi}. A real-valued (utility) function ui on
Xi represents the preference relation Ri iff for all xi ∈ Xi the upper level
set {v ∈ Xi : ui(v) ≥ ui(xi)} at height ui(xi) of ui equals Ri(xi). The product
X1 × . . . ×Xm is called the joint consumption set and denoted by X . The
product Y1 × . . . × Yn is called the joint production set and denoted by Y.
The sum ω1 + . . . + ωm is called the aggregate endowment and denoted by
ω. The Minkowski sum Y1 + . . .+ Yn is called the aggregate production set
and denoted by Y . The set

A = {(x, y) ∈ X × Y : x1 + . . .+ xm = ω + y1 + . . .+ yn}

is the set of attainable allocations and the set

XA = {x ∈ X : (x, y) ∈ A for some y ∈ Y}

is the set of attainable consumption allocations. The set of attainable
consumption allocations Pareto dominating x̄ ∈ XA is

D(x̄) = {v ∈ XA : vi ∈ Ri(x̄i) for all i ∈M and vj ∈ Pj(x̄j) for some j ∈M}.

The set of consumption allocations weakly improving x ∈ X is

R(x) = R1(x1)× . . .×Rm(xm).

Definition 4 Let E be an economy. A strict preference relation Pi is:

• C-antichain-convex iff Pi(xi) is C-antichain-convex for all xi ∈ Xi;

• C-upward iff Pi(xi) is C-upward for all xi ∈ Xi;

• C-monotone iff (x•i , x
◦
i ) ∈ Xi × V and x◦i − x

•
i ∈ C\{0} ⇒ x◦i ∈ Pi(x

•
i ).
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Definition 5 Let E be an economy. A strict preference relation Pi is convex
iff Pi(xi) is convex for all xi ∈ Xi.

Definition 6 Let E be an economy. A preference relation Ri is:

• C-antichain-convex iff Ri(xi) is C-antichain-convex for all xi ∈ Xi;

• C-upward iff Ri(xi) is C-upward for all xi ∈ Xi;

• C-monotone iff (x•i , x
◦
i ) ∈ Xi × V and x◦i − x

•
i ∈ C\{0} ⇒ x◦i ∈ Ri(x

•
i ).

Definition 7 Let E be an economy. A strict preference relation Pi is:

• wide iff int(Pi(xi)) 6= ∅ for all xi ∈ Xi such that Pi(xi) 6= ∅ (the interior
int(Pi(xi)) of Pi(xi) is understood w.r.t. the topology of V );

• locally nonsatiated iff Pi(xi)∩U 6= ∅ for all neighborhoods U of xi and
for all xi ∈ Xi (neighborhoods are understood w.r.t. the topology of V );

• D-lower semicontinuous iff {t ∈ [0, 1] : x•i 〈t〉x
◦
i ∈ Pi(xi)} is open in

[0, 1] for all (xi, x
•
i , x

◦
i ) ∈ Xi ×Xi ×Xi (the real interval [0, 1] is endowed

with the relative topology from R).

Definition 8 An economy E is regular iff

i) each consumption set Xi is convex;

ii) each preference relation Ri is a preorder;

iii) each strict preference relation Pi is locally nonsatiated;

iv) at least one strict preference relation Pi is wide when both int(Y ) is empty
and V is not finite-dimensional.

Definition 9 A regular economy E is a strictly regular economy iff

i) each Xi and each Yl contain 0;

ii) each Pi is D-lower semicontinuous.

Definition 10 Let E be an economy. A pair (x̄, ȳ) ∈ X × Y is a Pareto
optimum for E iff (i) (x̄, ȳ) ∈ A and (ii) D(x̄) = ∅.

Definition 11 Let E be an economy. A triple (x̂, ŷ, f) ∈ X×Y×V ′ is a valua-
tion equilibrium (resp. valuation quasiequilibrium) for E iff (i) (x̂, ŷ) ∈ A,
(ii) f is non-zero and (iii) the implications

xi ∈ Pi(x̂i)⇒ f(xi) > f(x̂i) (9)

(resp. xi ∈ Ri(x̂i)⇒ f(xi) ≥ f(x̂i)) (10)

and
yl ∈ Yl ⇒ f(ŷl) ≥ f(yl) (11)

hold true for every (i, l) ∈M ×N .
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6 Second welfare theorems

6.1 From Pareto optima to quasiequilibria

Theorems 6 and 7 guarantee the supportability of Pareto optima as valuation
quasiequilibria: both dispense with some usual convexity conditions. If atten-
tion is restricted to an economy with locally nonsatiated preference relations
then Theorem 6 properly subsumes Theorem 2 in Debreu (1954). Examples of
economies where Theorem 6 applies will be shown in Sect. 8.

Theorem 6 Let E be a regular economy. Assume that:

1. Pi is C-antichain-convex for all i ∈M ;

2. Pi is C-upward for at least one i ∈M ;

3. Y is decomposably C-antichain-convex.

If (x̄, ȳ) ∈ X ×Y is a Pareto optimum then (x̄, ȳ, f) is a valuation quasiequilib-
rium for a continuous f ∈ V ′ that is nonnegative on C and positive on int(C).

Proof. Suppose (x̄, ȳ) ∈ X × Y is a Pareto optimum. Put

A =
∑

i∈MRi(x̄i), Â =
∑

i∈MPi(x̄i) and B = ω + Y .

The nonemptiness of Â follows from the local nonsatiation of strict preference
relations while that of B from the nonemptiness of productions sets. By the
regularity of E, when V is not finite-dimensional either Â or B has nonempty in-
terior;8 therefore Â−B has nonempty interior when V is not finite-dimensional.
By the Pareto optimality of (x̄, ȳ), the sets Â and B are disjoint. Thus9 Theorem
4 and Corollary 2 ensure the existence of a continuous linear functional

f ∈ V ′

separating Â and B which is nonnegative on C and positive on int(C). As
Â and B are separated by f ∈ V ′, there must exist α ∈ R and two intervals
I• = {r ∈ R : r ≤ α} and I◦ = {r ∈ R : r ≥ α} such that Â ⊆ f−1[I◦] and
B ⊆ f−1[I•]. Put

K = f−1[I◦].

As f is continuous, the preimage K through f of the closed (in R) interval I◦

is closed (in V ). As K is closed (in V ), Lemma 15 in Appendix B entails that
A and B are separated by f . So f(a) ≥ f(b) for all (a, b) ∈ A×B and hence

f(x1 + . . .+ xm) ≥ f(ω + y1 + . . .+ yn) for all (x, y) ∈ R(x̄)× Y. (12)

8When V is not finite-dimensional, we have that: if int(Y ) 6= ∅ then int(B) 6= ∅; if

int(Y ) = ∅ then the regularity of E ensures that int(Â) 6= ∅.
9Clearly, the set Â is convex and C-upward by Corollary 1. The set B = ω + Y can

be written as the finite sum of C-antichain-convex sets because {ω} is trivially C-antichain-
convex and Y is decomposably C-antichain-convex and hence Y can be written as the sum
Y ∗
1
, . . . , Y ∗ν of ν sets that are C-antichain-convex (needless to say that this assumption does

not require the C-antichain-convexity of the n production sets Y1, . . . , Yn).
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As (x̄, ȳ) ∈ A by the definition of a Pareto optimum, we have

f(x̄1 + . . .+ x̄m) = f(ω + ȳ1 + . . .+ ȳn). (13)

As f is linear, from (12) and (13) we obtain

f(x1 − x̄1) + . . .+ f(xm − x̄m) ≥ f(y1 − ȳ1) + . . .+ f(yn − ȳn) (14)

for all (x, y) ∈ R(x̄)× Y: therefore the two implications

i ∈M and xi ∈ Ri(x̄i)⇒ f(xi) ≥ f(x̄i)

and
l ∈ N and yl ∈ Yl ⇒ f(ȳl) ≥ f(yl)

hold true10 as the Pareto optimum (x̄, ȳ) lies in R(x̄) × Y by the reflexivity of
Ri for all i ∈M . We conclude that (x̄, ȳ, f) is a valuation quasiequilibrium.

Conditions 1 and 2 of Theorem 6 entail that at least one consumer has a
convex and C-upward strict preference relation. Condition 3 of Theorem 6 is
evidently met when all production sets are decomposably C-antichain-convex
and so one obtains the following immediate Corollary 3, whose proof is omitted.

Corollary 3 Let E be a regular economy. Assume that:

1. Pi is C-antichain-convex for all i ∈M ;

2. Pi is convex and C-upward for at least one i ∈M ;

3. Yl is decomposably C-antichain-convex for all l ∈ N .

If (x̄, ȳ) ∈ X ×Y is a Pareto optimum then (x̄, ȳ, f) is a valuation quasiequilib-
rium for a continuous f ∈ V ′ that is nonnegative on C and positive on int(C).

We show a variant of Theorem 6 which neither implies nor is implied by it.
By Corollary 1, the last two assumptions of Theorem 7 entail the convexity of
the aggregate production set Y (though not necessarily that of each production
set Yl). The convexity of preference relations will not be assumed. Examples of
economies where Theorem 7 applies will be shown in Sect. 8.

Theorem 7 Let E be a regular economy. Assume that:

1. Pi is C-antichain-convex for all i ∈M ;

2. Yl is convex and C-downward for at least one l ∈ N ;

3. Yl is decomposably C-antichain-convex for all l ∈ N .

If (x̄, ȳ) ∈ X ×Y is a Pareto optimum then (x̄, ȳ, f) is a valuation quasiequilib-
rium for a continuous f ∈ V ′ that is nonnegative on C and positive on int(C).

Proof. Exactly11 the same proof as that of Theorem 6.

10Each Ri is reflexive: so to obtain the former (resp. latter) of the implications, reconsider
(14) first fixing i ∈ M (resp. l ∈ N) and xi ∈ Ri(x̄i) (resp. yl ∈ Yl) and then putting y = ȳ

and xj = x̄j for all j ∈M\{i} (resp. putting x = x̄ and yj = ȳj for all j ∈ N\{l}).
11Clearly, now B is convex and C-downward by Corollary 1 and the set Â is the finite sum

of C-antichain-convex sets.
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6.2 From quasiequilibria to equilibria

We show sufficient conditions for a quasiequilibrium to be an equilibrium.

Proposition 8 Suppose E is an economy. Let f ∈ V ′ and i ∈M be a consumer
with a convex consumption set Xi containing a consumption vector xi. Put φi =
inf f [Xi]. Suppose Pi is D-lower semicontinuous and consider the implications

xi ∈ Ri(xi)⇒ f(xi) ≥ f(xi) (15)

and
xi ∈ Pi(xi)⇒ f(xi) > f(xi). (16)

1. If f(xi) > φi then the validity of (15) implies the validity of (16).

2. If f(xi) = φi and Pi(xi) ⊆ {xi ∈ Xi : f(xi) > φi} then (16) is true.

Proof. 1. Assume that f(xi) > φi and that (15) is true. Then

f(xi) > f(xi) (17)

for some xi ∈ Xi. The contrapositive of (15) entails that

xi ∈ Xi and f(xi) > f(xi)⇒ xi /∈ Ri(xi)

and a fortiori that

xi ∈ Xi and f(xi) > f(xi)⇒ xi /∈ Pi(xi). (18)

Suppose for a moment that xi is an element of Xi such that f(xi) ≥ f(xi): the
convexity of Xi, the linearity of f and inequality (17) imply that

xi 〈t〉xi ∈ Xi and f(xi) > f(xi 〈t〉xi) for all t ∈ [0, 1[. (19)

From (18) and (19) we infer that {t ∈ [0, 1] : xi 〈t〉xi ∈ Pi(xi)} ⊆ {1}. Thus

xi ∈ Xi and f(xi) ≥ f(xi)⇒ {t ∈ [0, 1] : xi 〈t〉xi ∈ Pi(xi)} ⊆ {1}

and so, by virtue of the D-lower semicontinuity of Pi, we infer that

xi ∈ Xi and f(xi) ≥ f(xi)⇒ xi /∈ Pi(xi). (20)

The contrapositive of (20) entails that (16) is true.
2. The immediate proof is omitted.

Corollary 4 Suppose E is a strictly regular economy with a valuation quasi-
equilibrium (x̄, ȳ, f).

1. (x̄, ȳ, f) is a valuation equilibrium if f is positive at x̄i for all i ∈M .

2. (x̄, ȳ, f) is a valuation equilibrium if f is positive on Xi\{0} for all i ∈M .
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Proof. 1. A consequence of Proposition 8 and of the fact that f is vanishing
at 0 ∈ Xi for all i ∈M .

2. Suppose f is positive on Xi\{0} for all i ∈M . Then fi(0) = 0 = inf f [Xi]
for all i ∈M . Part 2 of Proposition 8 ensures that (16) is true whenever i ∈M
and x̄i = 0 by the irreflexivity of Pi. When i ∈ M and x̄i 6= 0, the implication
in (15) holds true because (x̄, ȳ, f) is a quasiequilibrium: therefore (16) is true
by virtue of part 1 of Proposition 8 (and by the positivity of f on Xi\{0}).

Proposition 9 provides sufficient conditions only on the primitives of an econ-
omy E for a valuation quasiequilibrium to be a valuation equilibrium.

Proposition 9 Let E be a strictly regular economy. Suppose (x̄, ȳ, f) is a val-
uation quasiequilibrium such that f ∈ V ′ is nonnegative on C.

1. (x̄, ȳ, f) is a valuation equilibrium if Xi\{0} ⊆ int(C) for all i ∈M .

2. (x̄, ȳ, f) is a valuation equilibrium if Xi ⊆ C for all i ∈ M and P (xi) ⊆
int(Xi) for all xi ∈ Xi\ int(Xi) and for all i ∈M .

3. (x̄, ȳ, f) is a valuation equilibrium if Xi = C for all i ∈ M , Pi is C-
monotone for all i ∈M , and ω ∈ int(C).

Proof. 1. Lemma 5.66 in Aliprantis and Border (2006) ensures that f is
positive on int(C). So part 1 of Proposition 9 is a direct consequence of part 2
of Corollary 4.

2. Suppose that Xi ⊆ C for all i ∈ M and that P (xi) ⊆ int(Xi) for all
xi ∈ Xi\ int(Xi) and for all i ∈ M . Lemma 5.66 in Aliprantis and Border
(2006) ensures that f is positive on int(C) ⊇ int(Xi) for all i ∈ M . As f is
vanishing at 0 ∈ Xi and nonnegative on C ⊇ Xi for all i ∈ M , we have that
inf f [Xi] = 0. By assumption, (15) is true for all i ∈M . If i ∈M and f(xi) > 0
then (16) is true by part 1 of Proposition 8 as (15) is true for all i ∈ M . If
instead i ∈M and f(xi) = 0 then xi /∈ int(Xi) and using part 2 of Proposition
8 we can infer that (16) is true. In conclusion, (16) is true for all i ∈ M and
hence (x̄, ȳ, f) is a valuation equilibrium.

3. Suppose Xi = C for all i ∈ M , Pi is C-monotone for all i ∈ M , and
ω ∈ int(C). Lemma 5.66 in Aliprantis and Border (2006) ensures that f is
positive on int(C). So

f(ω) > 0. (21)

By the strict regularity of E each firm can be inactive and hence

f(yl) ≥ 0 for all l ∈ N (22)

since in quasiequilibrium firms maximize own profits (namely, the implication
in (11) must hold for all l ∈ N). As (x̄, ȳ) ∈ A, we have

x1 + . . .+ xm = ω + y1 + . . .+ yn
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and hence the inequalities in (21) and (22) imply

f(x1) + . . .+ f(xm) = f(ω) + f(y1) + . . .+ f(yn) > 0

by the linearity of f . Thus there exists i∗ ∈ M such that f(xi∗) > 0; as E is
strictly regular, 0 ∈ Xi∗ and so inf f [Xi∗ ] ≤ 0. Then

f(xi∗) > inf f [Xi∗ ]. (23)

As Pi∗ is C-monotone and xi∗ ∈ Xi∗ , we have xi∗ + c ∈ Xi∗ for all c ∈ C and

xi∗ + c ∈ Pi(xi∗) for all c ∈ C\{0}. (24)

As (x̄, ȳ, f) is a valuation quasiequilibrium, the implication in (15) holds true
for i = i∗ and so from (23) and part 1 of Proposition 8 we infer that (16) holds
true for i = i∗. This last fact, together with (24), entails that

f(xi∗ + c) > f(xi∗) for all c ∈ C\{0}. (25)

As f is linear, (25) implies f(c) > 0 for all c ∈ C\{0}. Thus f is positive on
Xi\{0} = C\{0} for all i ∈ M and part 2 of Corollary 4 ensures that (x̄, ȳ, f)
is a valuation equilibrium.

7 Discussion of some assumptions

7.1 On antichain-convex preferences

Convexity of preferences is at times understood as an expression of the inclina-
tion of a consumer to diversification\variety: just to provide two references, see
Mas-Colell et al. (1995, p. 44) and Villar (2000, p. 20). This interpretation,
however, might oversimplify the actual implications of convexity. Consider, for
instance, the case of a preordered preference relation R defined on R2+ and–for
simplicity–suppose that R can be represented by a utility function u. If R is
convex then the equality u(x•) = u(x◦) implies u(x•/2+x◦/2) ≥ u(x•) = u(x◦)
for all consumption vectors x• and x◦ in R2+. When x

• and x◦ cannot be com-
pared under the usual product order relation for R2+–e.g., when x

• = (4, 0)
and x◦ = (0, 4)–the consumption vector x•/2 + x◦/2 might be legitimately
interpreted as a diversifying consumption vector. However, there is some doubt
that x•/2 + x◦/2 can be legitimately considered a diversifying vector when x•

and x◦ can be compared. For instance, one might consider the consumption
vectors x• = (10, 10) and x◦ = (30, 30) and wonder whether (20, 20) can be
properly considered a diversifying consumption vector. The interpretation of
the convexity of a preference relation as the consumer’s inclination to diversi-
fication appears as an oversimplification: the condition of convexity is in fact
more demanding. The introduction of the notion of a C-antichain-convex pref-
erence allows to express the inclination of a consumer to diversification in a
more precise and circumstantial form. For instance, if in the previous example
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R is assumed to be R2+-antichain-convex then the inclination of a consumer to
diversification is effectively restricted to mixtures of consumption vectors that
cannot be compared under the usual product order of R2+.

So far we have considered a preordered preference relation, the interpretation
of the C-antichain-convexity of the associated strict preference is analogous.
Proposition 10–proved in Appendix B.1–shows that in the case of totally
preordered relation the condition of C-antichain-convexity is even equivalent to
that of the associated strict preference relation.

Proposition 10 Let E be an economy and i ∈ M be a consumer with a C-
antichain-convex consumption set Xi. Suppose Ri is totally preordered. Then
Pi is C-antichain-convex if and only if Ri is C-antichain-convex.

7.2 On upward preferences and downward production sets

Like C-antichain-convex preference relations represent a circumstantial formula-
tion of the notion of convexity, also the definitions of C-monotone and C-upward
preference relations enunciated above allow circumstantial formulations of var-
ious notions of monotonicity. Propositions 11 and 12–proved in Appendix
B.1–show how these definitions precisely relate one to each other.

Proposition 11 Let E be an economy and i ∈ M be a consumer. If the pref-
erence relation Ri is preordered then

Pi is C-monotone⇒ Ri is C-monotone⇔ Ri is C-upward⇒ Pi is C-upward.

Proposition 12 Let E be an economy and i ∈ M be a consumer. If the pref-
erence relation Ri is totally preordered then

Pi is C-monotone⇒ Ri is C-monotone⇔ Ri is C-upward⇔ Pi is C-upward.

When C is degenerate–i.e., when C ⊆ {0}–the condition that a production
set Yl is C-downward does not impose any actual requisite on the production
set. When C is not degenerate, the condition that a production set Yl is C-
downward cannot be understood as a circumstantial formulation of the usual
notion of free-disposability, at least in general.12 Proposition 13–proved in
Appendix B.1–shows a decomposition that allows us to have a clear economic
interpretation of such a condition.

Proposition 13 Let E be an economy and l ∈ N be a firm: (i) C? = −C ∪{0}
is a cone; (ii) the production set Yl is C-downward if and only if Yl = Yl + C

?.

Economically, Proposition 13 says that the assumption that Yl is C-downward
is equivalent to the assumption that the production Yl is invariant under the
addition of the constant returns to scale technology C? = −C ∪ {0}.

12To see why, consider a two dimensional Euclidean space and suppose C is a cone properly
including the nonnegative orthant.
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7.3 On antichain-convex production sets

When inaction is possible, a known implication of convexity are non-increasing
returns to scale. While the possibility of inaction can seem reasonable in several
contexts, non-increasing returns to scale need not in many cases: just to pro-
vide two references, see Kreps (1990, pp. 235-236) and Villar (2000, Sect. 3.4).
The C-antichain-convexity of a production set does not generally imply non-
increasing returns to scale even when inaction is possible. Being a circumstan-
tial form of convexity, C-antichain-convexity requires the production feasibility
only of some mixtures of two feasible activities (in fact C-antichain-convexity is
compatible even with discrete production sets and hence with indivisibilities).

7.4 On decomposably antichain-convex production sets

A decomposition {Y 1l , . . . , Y
k
l } of a production set Yl is a finite collection

of subsets of V such that

Yl = Y
1
l + . . .+ Y

k
l .

Following Debreu (1951, pp. 277—278), we can suppose that the aggregate
production set is the sum of the activity possibility sets–each activity pos-
sibility set formally defined as a subset of V–of the production units of the
economy: a production unit does not necessarily coincide with a firm. The as-
sumption that Yl is decomposably C-antichain-convex can be interpreted as the
assumption that firm l is made up of k production units–e.g., its plants–with
C-antichain-convex activity possibility sets whose sum Y 1l + . . .+ Y

k
l equals Yl.

The interpretation of the C-antichain-convexity of an activity possibility set is
analogous to that of a C-antichain-convex production set.

7.5 On lower semicontinuous preferences

The notion of a lower semicontinuous preference–paralleling that of a lower
semicontinuous (utility) function–requires the openness of strictly preferred
sets. The literature, however, has employed also some nonequivalent variants.

Definition 12 Let E be an economy and i ∈M be a consumer. Put

I(x•i , x
◦
i ) = {t ∈ R : x

•
i 〈t〉x

◦
i ∈ Xi}

for all (x•i , x
◦
i ) ∈ Xi × Xi and endow I(x

•
i , x

◦
i ) and Xi with, respectively, the

relative topology from R and V . The strict preference relation Pi is:

• D-lower* semicontinuous iff {t ∈ I(x•i , x
◦
i ) : x

•
i 〈t〉x

◦
i ∈ Pi(xi)} is open

in I(x•i , x
◦
i ) for all (xi, x

•
i , x

◦
i ) ∈ Xi ×Xi ×Xi.

• lower semicontinuous iff Pi(xi) is open in Xi for all xi ∈ Xi.

Proposition 14–proved in Appendix B.1–relates the various definitions of
semicontinuity introduced sofar.
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Proposition 14 Let E be an economy and i ∈M be a consumer.

1. If Pi is lower semicontinuous then Pi is D-lower
* semicontinuous.

2. If Pi is D-lower
* semicontinuous then Pi is D-lower semicontinuous.

Condition III in Debreu (1954) implies D-lower* semicontinuity (and so even
D-lower semicontinuity by virtue of Proposition 14): this can be readily checked
recalling that in Debreu (1954) preference relations are total preorders.

8 Numerical examples

We show seven economies satisfying the assumptions of either Theorem 7 or
Corollary 3 (and hence of Theorem 6) whose set of valuation quasiequilibria
coincides with that of valuation equilibria by virtue of Proposition 9.

Remark 4 We affirm now, once for all, that in Examples 2—8 every Pi is C-
antichain-convex for any cone C such that R+ ⊆ C ⊆ R by virtue of Proposition
16 and either Examples 9 or 11: see Appendix C. Also, in Examples 2—8 a
direction is indicated along which utility functions are strictly increasing: the
local nonsatiation of Pi is immediately verified considering such a direction.

Before introducing the seven economies, it is worth to remark that for each
of them the existence of a Pareto optimum–which, however, is not the object
of our inquiry–obtains from known results of the literature.13

8.1 “Specialized” economies with non-convexities

Examples of “specialized” economies are shown where each commodity can be
produced by exactly one firm and where each firm can produce exactly one
commodity. The examples are of interest because–despite the convexity of the
aggregate production set–one of the (two) commodities of the economy can be
produced only by means of a non-convex technology.

Example 2 Let E be an economy with two consumers and two firms. Let the
commodity space V coincide with R2, let each consumption set Xi equal R

2
+ and

let each preference relation Ri be represented by a continuous utility function ui
strictly increasing at all v ∈ R2+ along (1, 1).

14 In particular, suppose that

C = coni(T •) with T • = {(−1, 1), (1, 0)},

that u1(v) = u2(v) = v1v2 and that Y1 = −C and

Y2 = A+ R
2
− with A = {(−a, a) : a = 0, 1, 2, 3, 4}.

13 In all our examples the boundedness of the attainable set A is a consequence of Theorem
12.3 in Villar (2000). Noted this, one readily verifies the nonemptiness and the compactness
of the attainable set; the existence of a Pareto optimum is then guaranteed by representability
of preference relations by means of continuous utility functions.
14 I.e., for all v ∈ R2

+
the map R+ → R defined by λ 7→ ui(v + λ(1, 1)) is strictly increasing.

20



Fig. 1 The sets C, Y1 and Y2 of Examples 2 and 3.

It is not difficult to verify that A is coni(T •)-antichain-convex and it is imme-
diate that R2− is convex (and hence a fortiori coni(T •)-antichain-convex): we
can conclude that Y2 is decomposably coni(T

•)-antichain-convex. Clearly, Y1 is
coni(T •)-downward and convex (and hence a fortiori decomposably coni(T •)-
antichain-convex). Noted this, one can readily verify that all conditions of
Theorem 7 are satisfied. Also, one can readily verify that also the conditions of
part 2 of Proposition 9 are satisfied.

Fig. 2 Upper level sets of u1 and u2 in Examples 3 and 8.

Example 3 Exactly the same economy illustrated in Example 2, but now let
preference relations be representable by

u1(v) = u2(v) = min

{
v21

v2 + 1
,
v22

v1 + 1

}
.

The continuous utility functions u1 and u2 keep on being strictly increasing
at all v ∈ R2+ along (1, 1) but they are not quasiconcave anymore: see Remark 6.
Even though preferences now are non-convex, the economy continues to satisfy
all conditions of Theorem 7. One can readily verify that also the conditions of
part 2 of Proposition 9 continue to be satisfied.

Example 4 Exactly the same economy illustrated in Example 3, but now put
Y2 = A (where A is the discrete set defined in Example 2).
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8.2 “Unspecialized” economies with non-convexities

Here we show two examples of “unspecialized” economies where any commodity
can be produced by any firm.

Fig. 3 The sets C, Y1 and Y2 of Examples 5 and 6.

Example 5 Let E be an economy with two consumers and two firms. Let the
commodity space V coincide with R2, let each consumption set Xi equal R

2
+ and

let each preference relation Ri be represented by a continuous utility function ui
strictly increasing in the second argument. In particular, suppose that

C = coni(T ◦) with T ◦ = {(−1, 1), (3,−1)},

that u1(v) = u2(v) = v1 + v2 and that Y1 = −C and

Y2 = A+ co(B) + R
2
− with A = {(0, 0), (2,−2)} and B = {(−2, 2), (−1, 0)}.

It is not difficult to verify that A is coni(T ◦)-antichain-convex and it is im-
mediate that co(B) and R2− are convex (and hence a fortiori coni(T

◦)-antichain-
convex): we can conclude that Y2 is decomposably coni(T

◦)-antichain-convex.
Clearly, Y1 is coni(T

◦)-downward and convex (and hence a fortiori decompos-
ably coni(T ◦)-antichain-convex). Noted this, one can readily verify that all
conditions of Theorem 7 are satisfied. Also, one can readily verify that also the
conditions of part 1 of Proposition 9 are satisfied in Example 5.

Fig. 4 Upper level sets of u1 and u2 in Example 6.
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Example 6 Exactly the same economy illustrated in Example 5, but now let
preference relations be representable by

u1(v) =
v1v2
v1 + 1

− 5v1 + v2 and u2(v) = −2v
2
1 + v1 + v1v2 + v2.

The continuous utility functions u1 and u2 keep on being strictly increasing
in the second argument but they are not quasiconcave anymore: see Remark 5.
Even though preferences now are non-convex, the economy continues to satisfy
all conditions of Theorem 7. One can readily verify that also the conditions of
part 1 of Proposition 9 continue to be satisfied.

8.3 Economies with non-convex aggregate production sets

In all previous examples the aggregate production set was convex. Here we show
two examples of economies where aggregate production set is non-convex.

Fig. 5 The production set Y1 of Examples 7 and 8 (where Y1 = Y2 = Y ).

Example 7 Let E be an economy with four consumers and two firms. Let the
commodity space V coincide with R2, let each consumption set Xi equal R

2
+ and

let each preference relation Ri be represented by a continuous utility function ui
strictly increasing at all v ∈ R2+ along (1, 1). In particular, suppose that

C = R2+,

that u1(v) = u2(v) = u3(v) = u4(v) = v1 + v2 and that

Y = Y1 = Y2 = A+ coni(B)

with

A = {v ∈ R2− : 2v1 + 2 = v2} ∪ {(0, 0)} and B = {(−1, 1), (−1,−1)}.

Besides assume ω1 = ω2 = (3, 0) and ω3 = ω4 = (0, 3).
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It is not difficult to verify that A is R2+-antichain-convex and it is immedi-
ate that coni(B) is convex (and hence a fortiori R2+-antichain-convex): we can
conclude that Y1 is decomposably R

2
+-antichain-convex (and that so are also

Y2 and Y as Y = Y1 = Y2 in this example). It is readily seen that all strict
preference relations are R2+-monotone (and hence they are all R

2
+-upward by

virtue of Proposition 11). Noted this, one can readily verify that all conditions
of Corollary 3–and hence those of Theorem 6–are satisfied. One can readily
verify that also the conditions of part 3 of Proposition 9 are satisfied.

Example 8 Exactly the same economy illustrated in Example 7 but now remove
the assumption that ω1 = ω2 = (3, 0) and ω3 = ω4 = (0, 3) and suppose that

u1(v) = u2(v) = min

{
v21

v2 + 1
,
v22

v1 + 1

}

and that u3(v) = v1v2 and u4(v) = min{v1, v2}. (See again Fig. 2 for a graphical
representation of u1 and u2).

The continuous utility functions u1,u2, u3 and u4 keep on being strictly
increasing at all v ∈ R2+ along (1, 1) but they are not quasiconcave anymore:
see Remark 6. Even though some preferences now are non-convex, the economy
continues to satisfy all conditions of Theorem 6 (note that P3 and P4 continue
to be R2+-upward). One can readily verify that now the conditions of part 2 of
Proposition 9 are satisfied.

Appendix

A Some mathematical facts

This Appendix contains some mathematical facts. Parts 1 and 5 of Lemma 3
are presented only for expositional completeness.

A.1 On cones

Lemma 1 Let V be a RVS and C be a subset of V .

1. C is a cone in V if and only if C ∪ {0} is a cone in V .

2. C is a cone in V if and only if −C is a cone in V .

3. C is a cone in V if and only if C is a cone in V .

4. If C is a cone in V then C ∪ −C is a cone in V .

5. If C is a cone in V then C ∪ −C is a cone in V .
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Proof. If part. Suppose C ∪{0} is a cone. If 0 ∈ C then C = C ∪{0}. If 0 /∈ C
then (x, α) ∈ C × R++ implies 0 6= αx ∈ C. In both cases C is a cone.

Only if part. Suppose C is a cone. Then (x, α) ∈ (C ∪ {0}) × R++ implies
αx ∈ C ∪ {0} (when αx ∈ C because C is a cone and when x = 0 because
αx = 0). So C ∪ {0} is a cone.

2. It suffices to prove the if part since C = −(−C). Such a proof is as follows.
Suppose −C is a cone. Then (x, α) ∈ C × R++ implies (−x, α) ∈ −C × R++
and hence −αx belongs to the cone −C: this implies αx ∈ C. So C is a cone.

3. It suffices to prove the if part since C = (C). Such a proof is as follows.
Suppose C is a cone. Then (x, α) ∈ C ×R++ implies x /∈ C and hence αx does
not belong15 to the cone C: this implies αx ∈ C. So C is a cone.
4. Suppose C is a cone. The set −C is a cone by part 2 of Lemma 1. Let α

be an arbitrary positive real. If x ∈ C ∪ −C then x belongs to either the cone
C or the cone −C and hence αx ∈ C ∪ −C. Thus C ∪ −C is a cone.

5. A consequence of parts 3—4 of Lemma 1.

A.2 On C-chain-convex sets

Lemma 2 Let V be a RVS, C be a cone in V and S be a subset of V .

1. S is C-chain-convex if and only if

(x, y) ∈ S × S and y − x ∈ C ∪ −C ⇒ {x 〈λ〉 y : λ ∈ [0, 1]} ⊆ S. (26)

2. S is C-antichain-convex if and only if

(x, y) ∈ S × S and y − x /∈ C ∪ −C ⇒ {x 〈λ〉 y : λ ∈ [0, 1]} ⊆ S. (27)

Proof. 1. The if part is evidently true as (26) implies (1). The proof of the only
if part is as follows. Assume that S is C-chain-convex. Suppose (x, y) ∈ S × S
and y − x ∈ C ∪ −C. Then either y − x ∈ C or y − x ∈ −C. If y − x ∈ C then
{x 〈λ〉 y : λ ∈ [0, 1]} ⊆ S by the C-chain-convexity of S. If y − x ∈ −C then
x − y ∈ C and hence {x 〈λ〉 y : λ ∈ [0, 1]} = {y 〈λ〉x : λ ∈ [0, 1]} ⊆ S by the
C-chain-convexity of S. In both cases implication (26) is true.

2. Implication (2) is readily seen to be equivalent to the implication

(x, y, λ) ∈ S × S × [0, 1] and y − x /∈ C ∪ −C ⇒ x 〈λ〉 y ∈ S

and hence also to implication (27).

Lemma 3 Let V be a RVS, C be a cone in V and S be a subset of V .

1. S is C-chain-convex if and only if S is C ∪ {0}-chain-convex.

2. S is C-antichain-convex if and only if S is C ∪ {0}-antichain-convex.

15 If αx ∈ C then x = α−1(αx) ∈ C as C is a cone: but this is impossible as x ∈ C.
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3. S is C-chain-convex if and only if S is C ∪ −C-chain-convex.

4. S is C-antichain-convex if and only if S is C ∪ −C-antichain-convex.

5. S is C-chain-convex if and only if −S is C-chain-convex.

6. S is C-antichain-convex if and only if −S is C-antichain-convex.

Proof. 1. A consequence of part 1 of Lemma 1 and of the (obvious) implication

(x, y, λ) ∈ S × S × [0, 1] and y − x = 0⇒ x 〈λ〉 y ∈ S. (28)

2. A consequence of part 1 of Lemma 1 and of implication (28).
3. A consequence of part 4 of Lemma 1 and of part 1 of Lemma 2.
4. Note that C ∪−C equals (C ∪−C)∪−(C ∪−C) and is a cone by part 4

of Lemma 1. Noted this, part 4 of Lemma 3 readily follows from Definition 1.
5. The if part is an immediate consequence of the only if part and of the

equality −(−S) = S. We prove just the only if part, as follows. Assume that
S is C-chain-convex. By way of contradiction, suppose −S is not C-chain-
convex; then part 1 of Lemma 2 implies the existence of a triple (x, y, λ) in
−S × −S × [0, 1] such that y − x ∈ C ∪ −C and x 〈λ〉 y /∈ −S. So, putting
x̂ = −x and ŷ = −y, we equivalently have that (x̂, ŷ, λ) ∈ S × S × [0, 1],
ŷ− x̂ ∈ C ∪−C and x̂ 〈λ〉 ŷ /∈ S: a contradiction with the assumption that S is
C-chain-convex and with part 1 of Lemma 2.
6. Essentially the same proof of part 5: just replace “C-chain-convex” with

“C-antichain-convex”, “part 1” with “part 2”, “y− x ∈ C ∪−C” with “y− x /∈
C ∪ −C” and “ŷ − x̂ ∈ C ∪ −C” with “ŷ − x̂ /∈ C ∪ −C”.

Proof of Proposition 1. 1. Part 5 of Lemma 1 ensures that C ∪ −C is a
cone. By part 3 of Lemma 3, S is C-chain-convex if and only if

(x, y, λ) ∈ S × S × [0, 1] and y − x ∈ C ∪ −C ⇒ x 〈λ〉 y ∈ S.

Equivalently, S is C-chain-convex if and only if

(x, y, λ) ∈ S × S × [0, 1] and y − x /∈ C ∪ −C ⇒ x 〈λ〉 y ∈ S.

But16

C ∪ −C = (C ∪ −C) ∪ −(C ∪ −C). (29)

Thus S is C-chain-convex if and only if

(x, y, λ) ∈ S × S × [0, 1] and y − x /∈ (C ∪ −C) ∪ −(C ∪ −C)⇒ x 〈λ〉 y ∈ S

and therefore–by virtue of Definition 1–it readily follows that S is C-chain-
convex if and only if S is C ∪ −C-antichain-convex.
2. Part 5 of Lemma 1 ensures that C ∪ −C is a cone. Put

C∗ = C ∪ −C and C∗∗ = C∗ ∪ −C∗.

16As C ∪ −C = C ∩ −C = C ∩ −C = −(C ∩ −C) = −(C ∩ −C) = −(C ∪ −C).
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The C∗-chain-convexity of S is equivalent to the C∗∗-antichain-convexity of S
by part 1 of Proposition 1 and hence also to the C ∪ −C-antichain-convexity
of S because C∗∗ = C ∪ −C by (29). The C ∪ −C-antichain-convexity of S is
equivalent to the C-antichain-convexity of S by part 4 of Lemma 3.

Proof of Proposition 2. A consequence of parts 1—2 of Lemma 2.

Proof of Proposition 4. Suppose S is C-antichain-convex. Note that {0}
is C-antichain-convex and {0} + S = S. Conclude that S is decomposably
C-antichain-convex.

A.3 On C-upward sets

Lemma 4 Let V be a RVS, C be a cone in V and S be a subset of V .

1. S is C-upward if and only if S is C ∪ {0}-upward.

2. S is C-downward if and only if S is C ∪ {0}-downward.

3. S is C-upward if and only if −S is C-downward.

4. S is C-downward if and only if −S is C-upward.

Proof. 1. Part 1 of Lemma 1 ensures that C ∪ {0} is a cone. The if part is
immediate. The proof of the only if part is as follows. Suppose S is C-upward.
Then (x, y) ∈ S×V and y−x ∈ C imply y ∈ S. As (x, y) ∈ S×V and y−x = 0
imply y ∈ S, we infer that S is C ∪ {0}-upward.
2. Analogous to the proof of part 1 of Lemma 4.
3. We prove the if part : the proof of the only if part is analogous and omitted.

Assume that −S is C-downward. Suppose (x, y) ∈ S × V and y − x ∈ C. Then
(−x,−y) ∈ −S × V and −x − (−y) ∈ C and the assumption that −S is C-
downward implies −y ∈ −S and hence y ∈ S. Therefore S is C-upward.
4. A consequence of part 3 of Lemma 4 and of the equality −(−S) = S.

Lemma 5 Let V be a RVS, C be a cone in V and S be a subset of V .

1. S is C-upward if and only if S + C ⊆ S.

2. S is C-downward if and only if S − C ⊆ S.

3. Suppose 0 ∈ C. Then S is C-upward if and only if S + C = S.

4. Suppose 0 ∈ C. Then S is C-downward if and only if S − C = S.

Proof. 1. If part. Suppose S + C ⊆ S. If (x, y) ∈ S × V and y − x ∈ C then
y ∈ x+ C ⊆ S + C ⊆ S. We conclude that S is C-upward.
Only if part. Suppose S is C-upward. If y ∈ S +C then there exists (x, c) ∈

S × C such that y = x+ c and hence that y − x = c ∈ C: the assumption that
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S is C-upward implies y ∈ S. Thus y ∈ S + C implies y ∈ S and we conclude
that S + C ⊆ S.

2. By part 4 of Lemma 4, S is C-downward if and only if −S is C-upward.
By part 1 of Lemma 5, −S is C-upward if and only if −S + C ⊆ −S. As the
inclusion −S + C ⊆ −S is true if and only if so is the inclusion S − C ⊆ S, we
conclude that S is C-downward if and only if S − C ⊆ S.
3. Note that S + C ⊇ S as 0 ∈ C. Noted this, part 3 of Lemma 5 is an

immediate consequence of part 1 of Lemma 5.
4. Note that 0 ∈ −C and that S − C ⊇ S as 0 ∈ −C. Noted this, part 4 of

Lemma 5 is an immediate consequence of part 2 of Lemma 5.

Proof of Proposition 5. 1. Suppose S is C-upward. Let (x, y, λ) ∈ S × S ×
[0, 1] and y − x ∈ C. When λ = 1 we have that x 〈λ〉 y = y ∈ S by assumption.
Henceforth suppose λ 6= 1. Then (1 − λ)(y − x) ∈ C because C is a cone. As
S is a C-upward set containing x, we infer that x+ (1− λ)(y − x) ∈ S. Noting
that x 〈λ〉 y = x+ (1− λ)(y − x), we conclude that x 〈λ〉 y ∈ S and hence that
S is C-chain-convex.

2. Analogous to the proof of part 1 of Proposition 5.

Proof of Proposition 7. 1. Suppose X is C-upward. Then X + C ⊆ X by
part 1 of Lemma 5. So (X+Y )+C = (X+C)+Y ⊆ X+Y by basic properties
of Minkowski addition and part 1 of Lemma 5 ensures that X+Y is C-upward.

2. Suppose X is C-downward. Then −X is C-upward by part 4 of Lemma
4. As also −Y is a subset of V , part 1 of Proposition 7 ensures that −X − Y is
C-upward. So X + Y is C-downward by part 4 of Lemma 4.

B Some economic facts

B.1 On preferences and production sets

Lemma 6 Let E be an economy and i ∈M be a consumer. Assume that Ri is
transitive and x•i ∈ Xi.

1. If x◦i ∈ Ri(x
•
i ) then Pi(x

◦
i ) ⊆ Pi(x

•
i ).

2. If x◦i ∈ Ri(x
•
i ) and x

•
i ∈ Ri(x

◦
i ) then Pi(x

◦
i ) = Pi(x

•
i ).

3. If x◦i ∈ Ri(x
•
i ) and xi ∈ Ri(x

◦
i ) and in addition either xi ∈ Pi(x

◦
i ) or

x◦i ∈ Pi(x
•
i ) then xi ∈ Pi(x

•
i ).

Proof. 1. Suppose x◦i ∈ Ri(x
•
i ). If Pi(x

◦
i ) = ∅ then Pi(x

◦
i ) ⊆ Pi(x

•
i ). Suppose

Pi(x
◦
i ) 6= ∅ and pick an arbitrary v ∈ Pi(x

◦
i ). Then v ∈ Ri(x

◦
i ) and

x◦i /∈ Ri(v). (30)

As v ∈ Ri(x
◦
i ) and x

◦
i ∈ Ri(x

•
i ), the transitivity of Ri implies v ∈ Ri(x

•
i ). If

x•i ∈ Ri(v) then the transitivity of Ri and x
◦
i ∈ Ri(x

•
i ) implies x

◦
i ∈ Ri(v) in
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contradiction with (30): thus x•i /∈ Ri(v). As v ∈ Ri(x
•
i ) and x

•
i /∈ Ri(v), we

infer that v ∈ Pi(x
•
i ) and hence Pi(x

◦
i ) ⊆ Pi(x

•
i ) as v is arbitrary in Pi(x

◦
i ).

2. A consequence of part 1 of Lemma 6.
3. Assume that xi ∈ Ri(x

◦
i ) and x

◦
i ∈ Ri(x

•
i ) and that either xi ∈ Pi(x

◦
i ) or

x◦i ∈ Pi(x
•
i ). Then at least one of the following two exhaustive cases is true.

Case x◦i ∈ Pi(x
•
i ). As xi ∈ Ri(x

◦
i ) and x

◦
i ∈ Ri(x

•
i ), the transitivity of Ri

implies xi ∈ Ri(x
•
i ). As Ri is transitive and xi ∈ Ri(x

◦
i ) by assumption, if

x•i ∈ Ri(xi) then x
•
i ∈ Ri(x

◦
i ) in contradiction with x

◦
i ∈ Pi(x

•
i ). So x

•
i /∈ Ri(xi)

and hence xi ∈ Pi(x
•
i ) as xi ∈ Ri(x

•
i ).

Case xi ∈ Pi(x
◦
i ) and x

•
i ∈ Ri(x

◦
i ). Part 2 of Lemma 6 ensures the validity of

the equality Pi(x
◦
i ) = Pi(x

•
i ). Therefore xi ∈ Pi(x

•
i ).

Proof of Proposition 10. If part. Suppose Ri is C-antichain-convex and
xi ∈ Xi. Assume that

(x•i , x
◦
i , λ) ∈ Pi(xi)× Pi(xi)× [0, 1] and x

•
i − x

◦
i /∈ C ∪ −C.

The totality of Ri entails that either x
◦
i ∈ Ri(x

•
i ) or x

•
i ∈ Ri(x

◦
i ): without

loss of generality suppose x◦i ∈ Ri(x
•
i ). The reflexivity of Ri entails that x

•
i ∈

Ri(x
•
i ). As x◦i ∈ Ri(x

•
i ) and x

•
i ∈ Ri(x

•
i ), the C-antichain-convexity of Ri

implies x•i 〈λ〉x
◦
i ∈ Ri(x

•
i ). Then part 3 of Lemma 6 implies x

•
i 〈λ〉x

◦
i ∈ Pi(xi)

as x•i ∈ P (xi) by assumption. We conclude that Pi(xi) is C-antichain-convex.
Only if part. Suppose Pi is C-antichain-convex and xi ∈ Xi. Assume that

(x•i , x
◦
i , λ) ∈ Ri(xi)×Ri(xi)× [0, 1] and x

•
i − x

◦
i /∈ C ∪ −C.

By way of contradiction, suppose x•i 〈λ〉x
◦
i /∈ Ri(xi): the totality of Ri implies

xi ∈ Pi(x
•
i 〈λ〉x

◦
i ). As x

•
i ∈ Ri(xi) and xi ∈ Pi(x

•
i 〈λ〉x

◦
i ), part 3 of Lemma 6

ensures that x•i ∈ Pi(x
•
i 〈λ〉x

◦
i ); as x

◦
i ∈ Ri(xi) and xi ∈ Pi(x

•
i 〈λ〉x

◦
i ), part 3

of Lemma 6 ensures that x◦i ∈ Pi(x
•
i 〈λ〉x

◦
i ). So x

•
i ∈ Pi(x

•
i 〈λ〉x

◦
i ) and x

◦
i ∈

Pi(x
•
i 〈λ〉x

◦
i ) and hence x

•
i 〈λ〉x

◦
i ∈ Pi(x

•
i 〈λ〉x

◦
i ) by the C-antichain-convexity

of Pi: a contradiction with the irreflexivity of Pi.

Lemma 7 Let E be an economy and i ∈M be a consumer. If Pi is C-monotone
then Ri is C-monotone.

Proof. Suppose Pi is C-monotone. Then the implication

(x•i , x
◦
i ) ∈ Xi × V and x◦i − x

•
i ∈ C\{0} ⇒ x◦i ∈ Pi(x

•
i )

is true. As Pi(x
•
i ) ⊆ Ri(x

•
i ), we conclude that Ri is C-monotone.

Lemma 8 Let E be an economy and i ∈ M be a consumer. Suppose Ri is
transitive. If Ri is C-monotone then Pi is C-upward.
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Proof. Suppose Ri is C-monotone. Assume that xi ∈ Xi, that

x•i ∈ Pi(xi) (31)

and that x◦i is an element of V such that x◦i − x
•
i ∈ C: we are done if we show

x◦i ∈ Pi(xi). (32)

If x◦i = x•i then x
◦
i ∈ Pi(xi) by (31). Henceforth suppose x◦i 6= x•i . Then

x◦i − x
•
i ∈ C\{0} and the C-monotonicity of Ri entails that

x◦i ∈ Ri(x
•
i ). (33)

Then (33) and (31) imply (32) by virtue of part 3 of Lemma 6.

Lemma 9 Let E be an economy and i ∈ M be a consumer. Suppose Ri is
reflexive. If Ri is C-upward then Ri is C-monotone.

Proof. Suppose Ri is C-upward. Assume that (x
•
i , x

◦
i ) ∈ Xi × V and that

x◦i − x
•
i ∈ C\{0}: we are done if we show

x◦i ∈ Ri(x
•
i ).

By assumption, Ri(x
•
i ) is C-upward. As Ri is reflexive, x

•
i ∈ Ri(x

•
i ). Then

x◦i ∈ Ri(x
•
i ) as Ri(x

•
i ) is a C-upward set containing x

•
i and x

◦
i −x

•
i ∈ C\{0}.

Lemma 10 Let E be an economy and i ∈ M be a consumer. Suppose Ri is
transitive. If Ri is C-monotone then Ri is C-upward.

Proof. Suppose Ri is C-monotone. Assume that xi ∈ Xi, that

x•i ∈ Ri(xi) (34)

and that x◦i is an element of V such that x◦i − x
•
i ∈ C: we are done if we show

x◦i ∈ Ri(xi).

If x◦i = x•i then x
◦
i ∈ Ri(xi) by (34). Henceforth suppose x

◦
i 6= x•i . Then

x◦i −x
•
i ∈ C\{0} and x

◦
i ∈ Ri(x

•
i ) by the C-monotonicity of Ri. As x

◦
i ∈ Ri(x

•
i ),

the transitivity of Ri and (34) imply x
◦
i ∈ Ri(xi).

Lemma 11 Let E be an economy and i ∈ M be a consumer. Suppose Ri is
total. If Pi is C-upward then Ri is C-monotone.

Proof. Suppose Pi is C-upward. Assume that (x
•
i , x

◦
i ) ∈ Xi × V and that

x◦i − x
•
i ∈ C\{0}: we are done if we show

x◦i ∈ Ri(x
•
i ). (35)
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If x◦i /∈ Ri(x
•
i ) then x

•
i ∈ Pi(x

◦
i ) by the totality of Ri: but this yields a contradic-

tion with the irreflexivity of Pi as (x
•
i , x

◦
i ) ∈ Xi×V , x

•
i ∈ Pi(x

◦
i ), x

◦
i−x

•
i ∈ C\{0}

and the assumption that Pi is C-upward imply x
◦
i ∈ Pi(x

◦
i ). So (35) is true.

Proof of Proposition 11. Suppose Ri is preordered. The C-monotonicity
of Pi implies that of Ri by Lemma 7 and so the first one-way implication is
true. The validity of the double implication is guaranteed by Lemmas 9 and 10.
Furthermore, such a double implication and Lemma 8 guarantees the validity
of the remaining one-way implication.

Proof of Proposition 12. An immediate consequence of Lemma 11 and
Proposition 11.

Proof of Proposition 13. Part 2 of Lemma 1 ensures that −C is a cone. So
C? = −C ∪ {0} is a cone by part 1 of Lemma 1 and hence −C? is cone again
by part 2 Lemma 1. As −C? = C ∪ {0}, part 2 of Lemma 4 ensures that S is
C-downward if and only if S is −C?-downward; part 4 of Lemma 5 ensures that
S is −C?-downward if and only if S = S − (−C?). As S − (−C?) = S +C?, we
conclude that S is C-downward if and only if S = S + C?.

Proof of Proposition 14. The proof of part 2 is a direct consequence of the
inclusion {t ∈ [0, 1] : x•i 〈t〉x

◦
i ∈ Xi} ⊆ I(x

•
i , x

◦
i ) and of basic facts about relative

topologies. The proof of part 1 is as follows. Suppose Pi is lower semicontinuous.
Fix and arbitrary i and an arbitrary triple (xi, x

•
i , x

◦
i ) ∈ Xi ×Xi ×Xi. As V is

a topological real vector space, the function g : R→ V defined by

g(λ) = x•i + λ(x
◦
i − x

•
i )

is continuous. The preimage through a continuous function of an open set is
open and hence

g−1[Pi(xi)] = {t ∈ R : x
•
i 〈t〉x

◦
i ∈ Pi(xi)}

is open in R; so, as I(x•i , x
◦
i ) ⊆ R, basic facts about relative topologies guarantee

that {t ∈ I(x•i , x
◦
i ) : x

•
i 〈t〉x

◦
i ∈ Pi(xi)} is open in I(x

•
i , x

◦
i ).

B.2 On half-space inclusion of aggregate preferred sets

Lemma 12 Let E be an economy and i ∈ M be a consumer. Assume that
Pi is locally nonsatiated and that K is a closed subset of V . If xi ∈ Xi and
Pi(xi) ⊆ K then xi ∈ K.

Proof. Suppose xi ∈ Xi and Pi(xi) ⊆ K. As Pi is locally nonsatiated, the
intersection Pi(xi)∩U is nonempty for every neighborhood U of xi. Pick x

U
i in

Pi(xi)∩U for every neighborhood U of xi. As Pi(xi) ⊆ K and xUi ∈ Pi(xi)∩U
for every neighborhood U of xi, we have that x

U
i ∈ K∩U for every neighborhood

U of xi. We conclude that xi is a limit point for K. So xi ∈ K as every closed
set contains its limit points.
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Lemma 13 Let E be an economy and i ∈M be a consumer. Assume that Pi is
locally nonsatiated and transitive and that K is a closed subset of V . If xi ∈ Xi
and Pi(xi) ⊆ K then Ri(xi) ⊆ K.

Proof. Suppose xi ∈ Xi and Pi(xi) ⊆ K. As Pi(xi) ⊆ Ri(xi), the local
nonsatiation of Pi ensures that Ri(xi) 6= ∅. Pick x

•
i ∈ Ri(xi). As Pi(xi) ⊆ K,

x•i ∈ Pi(xi)⇒ x•i ∈ K. (36)

Suppose for a moment that x•i /∈ Pi(xi). As x
•
i /∈ Pi(xi) and x

•
i ∈ Ri(xi), we

have xi ∈ Ri(x
•
i ). So x

•
i ∈ Ri(xi) and xi ∈ Ri(x

•
i ) and part 2 of Lemma 6

implies Pi(x
•
i ) = Pi(xi). Therefore Pi(x

•
i ) ⊆ K and from Lemma 12 we infer

that x•i ∈ K. In conclusion,

x•i /∈ Pi(xi)⇒ x•i ∈ K. (37)

From (36) and (37) we conclude that the arbitrary element x•i of Ri(xi) is also
an element of K. So Ri(xi) ⊆ K.

Lemma 14 Let E be an economy and i ∈ M be a consumer. Assume that
Ri transitive, that Pi is locally nonsatiated and that K is a closed subset of
V . Suppose Q ⊆ V is an arbitrary subset of the commodity space and xi is an
element of Xi. If Pi(xi) +Q ⊆ K then Ri(xi) +Q ⊆ K.

Proof. Suppose Pi(xi) +Q ⊆ K. If Q = ∅ then ∅ = Ri(xi) +Q ⊆ K and there
is nothing to prove. Assume that Q 6= ∅ and pick an arbitrary q ∈ Q. Then
Pi(xi) + q ⊆ K and hence

Pi(xi) ⊆ −q +K. (38)

As K is closed in V , then so is −q + K. As −q + K is closed, inclusion (38)
implies Ri(xi) ⊆ −q +K by Lemma 13. Consequently Ri(xi) + q ⊆ K. Being
q arbitrary in Q, we conclude that Ri(xi) +Q ⊆ K also when Q 6= ∅.

Lemma 15 Let E be an economy. Assume that R1,. . . ,Rm are transitive, that
P1,. . . ,Pm are locally nonsatiated and that K is a closed subset of V and that
x ∈ X . Then

P1(x1) + . . .+ Pm(xm) ⊆ K ⇒ R1(x1) + . . .+Rm(xm) ⊆ K.

Proof. If m = 1 then the validity of Lemma 15 is ensured by Lemma 13.
Henceforth assume that m > 1 and that

P1(x1) + . . .+ Pm(xm) ⊆ K. (39)

Case m = 2. Inclusion (39) and Lemma 14 imply that R1(x1) + P2(x2) ⊆ K
(to check the implication identify P2(x2) with Q). The previous inclusion and
Lemma 14 imply that R1(x1) + R2(x2) ⊆ K (to check the implication identify
R1(x1) with Q).
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Case m > 2. Put

Q1 = P2(x2) + . . .+ Pm(xm) and Qm = R1(x1) + . . .+Rm−1(xm−1)

and for every integer k ∈ {2, . . . ,m− 1} put

Qk =
k−1∑

i=1

Ri(xi) +
m∑

i=k+1

Pi(xi).

Inclusion (39) and Lemma 14 imply Q1 + R1(x1) ⊆ K. The previous inclusion
and Lemma 14 imply Q2 + R2(x2) ⊆ K and reiterating this type of reasoning
we get Qm +Rm(xm) ⊆ K. As

Qm +Rm(xm) = R1(x1) + . . .+Rm(xm),

we have R1(x1) + . . .+Rm(xm) ⊆ K.

C On antichain-quasiconcavity

Constructing C-antichain-convex and decomposably C-antichain-convex sets is
quite simple. Constructing examples of strict preference relations which are C-
antichain-convex might at first appear not so elementary when we require them
to be also non-convex. The end of this Sect. 5 is dedicated to the illustration of
two simple methods of constructing non-trivial non-convex C-antichain-convex
preference. To this end, we introduce some definitions which generalize to ar-
bitrary real vector spaces and cones analogous notions of generalized convexity
already introduced in Ceparano and Quartieri (2017).

Definition 13 Let V be a RVS, C be a cone in V , S be a C-chain-convex subset
of V and f : S → R. The function f is C-chain-quasiconcave iff its upper
level sets are C-chain-convex. The function f is C-chain-concave iff

(x, y, λ) ∈ S × S × [0, 1] and y − x ∈ C ⇒ f(x 〈λ〉 y) ≥ f(x) 〈λ〉 f(y).

Definition 14 Let V be a RVS, C be a cone in V , S be a C-antichain-convex
subset of V and f : S → R. The function f is C-antichain-quasiconcave iff
its upper level sets are C-antichain-convex. The function f is C-antichain-
concave iff

(x, y, λ) ∈ S × S × [0, 1], y − x /∈ C ∪ −C ⇒ f(x 〈λ〉 y) ≥ f(x) 〈λ〉 f(y).

Proposition 15–whose elementary proof is omitted–highlights some impli-
cations which are worth to be explicitly remarked.

Proposition 15 Let V be a RVS, C be a cone in V , S be a C-antichain-
convex (resp. C-chain-convex) subset of V and f : S → R. The function f
is C-antichain-quasiconcave (resp. C-chain-quasiconcave) if f is C-antichain-
concave (resp. C-chain-concave). Suppose C is even convex: the function f
is C-antichain-quasiconcave (resp. C-chain-quasiconcave) if f is quasiconcave;
the function f is C-antichain-concave (resp. C-chain-concave) if f is concave.
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Proposition 16 contains a simple but useful observation.

Proposition 16 Let E be an economy and i be a consumer. Let C• and C◦ be
cones in V such that C• ⊆ C◦. Suppose Ri can be represented by means of a
utility function ui. If ui is C

•-antichain-quasiconcave then Pi is C
◦-antichain-

convex.

Proof. Suppose ui is C
•-antichain-quasiconcave. By virtue of part 6 of Proposi-

tion 3 it suffices to show that Pi is C
•-antichain-convex. As Ri is representable

by means of utility function17 , the C•-antichain-convexity of Pi is equivalent
to that of Ri by virtue of Proposition 10. The fact that Ri is C

•-antichain-
convex follows immediately from the fact that Ri is representable by means of
a C•-antichain-quasiconcave utility function.

Providing examples of C-antichain-(quasi)concave functions which are not
quasiconcave might not be simple because a mathematical analysis of the for-
mer has not been developed yet. Without trying to systematically start such an
analysis, we show some simple-to-check conditions guaranteeing the C-antichain-
concavity–and hence the C-antichain-quasiconcavity–of a real-valued function
defined on a subset of a two-dimensional Euclidean space when R2+ ⊆ C.

Proposition 17 Let Z ⊆ R2 be nonempty and open and let f : Z → R be twice
continuously differentiable with Hessian matrix at z ∈ Z denoted by

H(z) =

[
H1,1 H1,2
H2,1 H2,2

]
.

Assume that S is a convex subset of Z and that for all s ∈ S the matrix H(s) has
nonpositive diagonal entries H1,1 and H2,2 and nonnegative off-diagonal entries
H2,1 and H1,2. Let C be a cone in R2 such that R2+ ⊆ C ⊆ R

2. Then:

1. f is R2+-antichain-concave on S;

2. f is C-antichain-concave on S;

3. f is C-antichain-quasiconcave on S;

4. f need not be quasiconcave.

Proof. 1. Put Y = {(z1,−z2) : z ∈ Z} and X = {(s1,−s2) : s ∈ S}. Then Y is
open and X is a convex subset of Y . Let f◦ : Y → R be defined by

f◦(y) = f(y1,−y2).

Note that f◦ is twice continuously differentiable on Y and that we are done if
we show that f◦ is R2+-chain-concave on X. The assumptions on the Hessian

17Recall that the representability of a preference relation Ri by means of a utility function
implies that Ri is totally preordered.
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matrix of f imply that the Hessian matrix of f◦ has nonpositive entries at all
points in X. Corollary 1 in Ceparano and Quartieri (2017) ensures that f◦ is
R
2
+-chain-concave on X.
2. A consequence of Definition 14 and part 1 of Proposition 17.
3. A consequence of Proposition 15 and part 2 of Proposition 17.
4. See Example 9 and Remark 5.

Example 9 Suppose C is a cone in R2 such that R2+ ⊆ C ⊆ R
2. Let (α, δ) ∈ R2+

and (β, γ) ∈ R2. The functions f• : R2+ → R and f◦ : R2+ → R defined by

f•(v) = α
v1v2
v1 + 1

+βv1+γv2+δ
v1v2
v2 + 1

and f◦(v) = −αv21+βv1+v1v2+γv2−δv
2
2

are C-antichain-quasiconcave by virtue of part 3 of Proposition 17 above.18

Remark 5 The functions f• and f◦ in Example 9 are not quasiconcave for
some of their specifications: for instance the specifications

f•(v) =
v1v2
v1 + 1

− 5v1 + v2 and f
◦(v) = −2v21 + v1 + v1v2 + v2

are not quasiconcave (the first has an upper level set at height 1 which is not
convex and the second has an upper level set at height −50 which is not convex).

Proposition 18 Let C be a cone in R2 such that

R
2
+ ⊆ C ⊆ R

2

and f1 and f2 be real-valued functions on R
2
+. Assume that f1 is increasing in

one of the two arguments and decreasing in the other. Also, assume that f2 is
increasing in one of the two arguments and decreasing in the other. Then

1. f1 and f2 are R
2
+-antichain-quasiconcave;

2. min{f1, f2} is R
2
+-antichain-quasiconcave;

3. f1, f2 and min{f1, f2} are C-antichain-quasiconcave;

4. f1, f2 and min{f1, f2} need not be quasiconcave.

Proof. 1. We show that f1 is R
2
+-antichain-quasiconcave: the proof for f2 is the

same. Without loss of generality suppose f1 is increasing in the first argument
and decreasing in the second: the proof for the other case is analogous. Pick an
arbitrary quadruple (x, y, r, λ) ∈ R2+×R

2
+×R× [0, 1] such that x−y /∈ R

2
+∪R

2
−

and suppose x and y are in the upper level set of f1 at height r. Then

r ≤ f1(x) and r ≤ f1(y).

18Both f• and f◦ extends to Z = ]−1,+∞[×]−1,+∞[ as twice continuously differentiable
functions: putting S = R2

+
apply the Hessian condition in Proposition 17 to such extensions.
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As x− y /∈ R2+ ∪ R
2
− we have two exhaustive cases: either x1 ≤ y1 and x2 ≥ y2

or x1 ≥ y1 and x2 ≤ y2. If x1 ≤ y1 and x2 ≥ y2 then

r ≤ f1(x) ≤ f(x1 〈λ〉 y1, x2) ≤ f(x1 〈λ〉 y1, x2 〈λ〉 y2) = f(x 〈λ〉 y)

(the second inequality holds because f1 is increasing in the first argument and
the third inequality holds because f1 is decreasing in the second argument); if
x1 ≥ y1 and x2 ≤ y2 then

r ≤ f1(y) ≤ f(y1, x2 〈λ〉 y2) ≤ f(x1 〈λ〉 y1, x2 〈λ〉 y2) = f(x 〈λ〉 y)

(the second inequality holds because f1 is decreasing in the second argument
and the third inequality holds because f1 is increasing in the first argument).
Therefore f(x 〈λ〉 y) is in the upper level set of f1 at height r. We conclude that
f1 is R

2
+-antichain-quasiconcave.

2. Pick an arbitrary quadruple (x, y, r, λ) ∈ R2+ × R
2
+ × R× [0, 1] such that

x− y /∈ R2+ ∪R
2
− and suppose r ≤ min{f1(x), f2(x)} and r ≤ min{f1(y), f2(y)}.

Then x and y are in the upper level sets at height r of both f1 and f2 and hence
their R2+-antichain-quasiconcavity entails that

r ≤ f1(x 〈λ〉 y) and r ≤ f2(x 〈λ〉 y).

Thus min{f1(x 〈λ〉 y), f2(x 〈λ〉 y)} ≥ r and we can conclude that min{f1, f2} is
R
2
+-antichain-quasiconcave.
3. A consequence of part 6 of Proposition 3, of Definition 14 and of parts 1

and 2 of Proposition 18.
4. See Examples 10 and 11 and Remark 6.

Example 10 The real-valued functions f defined on R2+ by f(v) = 1 + v
2
1 − v2

is R2+-antichain-quasiconcave (by virtue of Part 1 of Proposition 18) but f is
not quasiconcave (as f(0, 0) = f(1, 1) = 1 and f(1/2, 1/2) < 1).

Example 11 Suppose C is a cone in R2 such that R2+ ⊆ C ⊆ R
2. Let

(α, β, γ, δ) ∈ R4+ and let f1 : R
2
+ → R+ and f2 : R

2
+ → R+ be defined by

f1(v) =
vα1

(v2 + 1)β
and f2(v) =

vγ2
(v1 + 1)δ

.

Let f : R2+ → R+ be the function defined by f = min{f1, f2}: so

f(v) = min

{
vα1

(v2 + 1)β
,

vγ2
(v1 + 1)δ

}
.

Note that f1 is increasing in the first argument and decreasing in the other and
that f2 is decreasing in the first argument and increasing in the other: then f
is C-antichain-quasiconcave by virtue of Part 3 of Proposition 18.
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Remark 6 The function f = min{f1, f2} in Example 11 is not quasiconcave
for some of its specifications: for instance the specification of

f(v) = min{f1, f2} with f1(v) =
v21

v2 + 1
and f2(v) =

v22
v1 + 1

is not quasiconcave (such a function is positive on R2++ and any of its upper
level sets at positive height is not convex). Putting

F1 = {v ∈ R
2
+ : v2 ≥ v1} and F2 = {v ∈ R

2
+ : v1 ≥ v2}

and noting that the previous specification can be equivalently defined by

f(v) =

{
f1(v) if v ∈ F1
f2(v) if v ∈ F2

we can infer that f is strictly increasing along (1, 1) in that so are f1 and f2
on, respectively, the sets F1 and F2.
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