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Abstract 

This paper incorporates the Bhaduri-Marglin accumulation function in Goodwin‟s 
growth cycle model. It seems that, a priori, nothing unambiguous can be said about 

the dynamic behaviour of that extended system, since it depends crucially on two 

separate factors: (i) the form of the accumulation function; and (ii) the degree of 

capital heterogeneity. 
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1. Introduction 

Many scholars have stressed that Goodwin‟s (1967) growth cycle model neglects 

altogether any effective demand issues, and this has been generally recognized as a 

fundamental weakness of the model (see, however, the subsequent contributions by 

Goodwin, 1986, and Goodwin and Punzo, 1987, ch. 4, which also allow for 

heterogeneous capital commodities).
1
 More recently, Marglin and Bhaduri (1988) 

have shown, by means of a static post-Keynesian model, that income redistribution 

(between profits and wages) has ambiguous effects on the equilibrium rates of 

capacity utilization, profits and accumulation (see also Bhaduri and Marglin, 1990, 

and Kurz, 1990). Within that model, (i) there is an independent Kaleckian investment 

(or accumulation) function (for a recent, critical investigation, both theoretical and 

empirical, of the Kaleckian accumulation function(s), see Skott, 2012); (ii) 

commodity market is in equilibrium (see also Bhaduri, 2007); and (iii) the share of 

profits (or, equivalently, the real wage rate) is treated as exogenous variable. 

However, as it has also been remarked, the context of Bhaduri and Marglin “remains 

                                                             
* This paper draws heavily on Mariolis (2006a, pp. 202-214). Earlier versions were presented at 

Workshops of the „Study Group on Sraffian Economics‟ at the Panteion University, in May 2008 and 
September 2011: I am indebted to Eleftheria Rodousaki, George Soklis and, in particular, Nikolaos 

Rodousakis for very helpful discussions, comments and suggestions. Furthermore, I am grateful to 

Lefteris Tsoulfidis for suggestions and encouragement. The usual disclaimer applies. 
1 As it has been argued, the absence of „structural stability‟ in Goodwin‟s model (for a survey of this 
issue, see, e.g. Sportelli, 1995, pp. 36-40) is not sufficient to reject it a priori (see Vercelli, 1984, and 

Veneziani and Mohun, 2006). 
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the short run of Keynes and Kalecki. It may be objected at the outset that an 

exogenous short-run determination of the real wage is somewhat implausible. The 

approach is, nevertheless, worth pursuing particularly if it is understood as clearing 

the ground for more comprehensive dynamic analysis in which some aspect of the 

short-run outcome (say the rate of unemployment) feeds back into the wage rate 

(perhaps via a real Phillips curve).” (Mainwaring, 1991, p. 632). 

 The only purpose of this paper is to incorporate the Bhaduri-Marglin 

accumulation function in Goodwin‟s model (or, „conversely‟, to close the Bhaduri-

Marglin model by means of Goodwin‟s endogenous determination of distribution) and 

to explore the dynamics of that extended system.
2
  

 The remainder of the paper is structured as follows. Section 2 constructs and 

explores the model, and tries to trace the implications of capital heterogeneity for the 

system‟s dynamic behaviour. Section 3 concludes.   

 

2. The Model 

Consider a closed capitalist economy, with constant returns to scale and excess 

capacity of capital, producing only one commodity which can be used for 

consumption and investment purposes. Homogeneous labour is the only primary 

input, capital stock does not depreciate, and competitive conditions are taken to be 

close to free competition.
3
 There are only two classes, workers, employed in 

proportion to the level of production (i.e. there is no supplementary or „overhead‟ 

labour) and capitalists, and two kinds of income, wages and profits. Wages are paid at 

the end of the production period and there are no savings out of this income, whilst a 

given and constant fraction of profits, s  ( 0 1s  ), is saved.
4
 The degree of capacity 

utilization, u  ( 0 1u  ), is given by the relation between actual output and potential 

output, where the latter is taken to be proportional to the capital stock in existence. 

The desired rate of capital accumulation is a strictly increasing function of both the 

                                                             
2 For this line of research, see, e.g. Skott (1989), Dutt (1992) and Sordi (2003), who do not use the 

Bhaduri-Marglin accumulation function, and Canry (2005), Barbosa-Filho and Taylor (2006), Flaschel 

and Luchtenberg (2012, ch. 4), and Nikiforos and Foley (2012), who use, explicitly or otherwise, the 

said function. 
3 “This allows us to interpret the underutilization of productive capacity as caused essentially by an 

insufficient effective demand” (Kurz, 1995, pp. 96-97; see also Kurz, 1994, Sections 3 and 6). 
4 Matrices (and vectors) are delineated in boldface letters. The symbols „ 0 ‟, „ 0 ‟ denote strict 
positivity and semi-positivity, respectively. Finally, a „dot‟ („hat‟) above a variable denotes time 
derivative (logarithmic derivative with respect to time). 
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degree of capacity utilization and the share of profits in total income, h  ( 0 1h  ). 

Finally, technological change,
5
 fiscal and monetary considerations are ignored. 

 On the basis of these assumptions, we can write the following system of 

relations (for a thorough investigation, see Bhaduri and Marglin, 1990, and Kurz, 

1990): 

  S
g sr  (1) 

  I ( , ),  ( ) 0,  ( / ) 0,  ,  xg F u h F F F x x u h      0  (2) 

                                      Kr hu  (3) 

 (1 )Lw h   (4) 

 I S
g g  (5) 

 K us h F   (6) 

where 
S

g  denotes the actual rate of capital accumulation, determined by the amount 

of savings, I
g  the desired rate of capital accumulation, ( )F   a continuous function, r  

the profit rate, K  the technologically fixed capacity-capital ratio or capital 

productivity, w  the real wage rate, and L  the technologically fixed labour 

productivity. Equation (2) defines an accumulation function. Equation (5) defines the 

commodity market equilibrium. Finally, relation (6) gives the short-run Keynesian 

stability condition for the 
I S

g g  equilibria (i.e. savings must increase by more than 

investment demand when u  rises). 

 Equations (3) and (4) define a linear „ w   curve‟, i.e. 1 1(1 )K Lru w      , 

the absolute value of the elasticity, 1e , of which equals the wage-profit ratio, i.e. 

   
1 1 1 1

1 log / log (1 ) (1 )L Le d d w w w h h             (7) 

Equations (1), (2), (3) and (5) define a relationship between profit share and degree of 

capacity utilization, ( )u f h , or „IS – curve‟ (non-Hicksian), i.e. 

 ( , ) KF u h s hu  

                                                             
5 As Kurz (1990, pp. 232-233) stresses, “within the framework of the present model the choice of 
technique problem cannot generally be considered to be decided in terms of the technical conditions of 

production alone: the degree of capacity utilization matters too. The latter, however, reflects a 

multiplicity of influences, such as the state of income distribution and savings and investment behavior 

[…]. In particular, there is the possibility that, assessed in terms of the degree of utilization associated 
with the existing technique, a new technique proves superior, while in terms of its own characteristic 

steady-state degree of utilization it turns out to be inferior.”. 
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the elasticity, 2e , of which is given by  

  1 1

2 ( )( )h K K ue F s u s h F hu       (8) 

Since the term 1( )K ush F   is positive (see condition (6)), h KF s u  (i.e. savings 

respond more strongly than investment with respect to changes in h ) implies that 

2 0e  , and vice versa. Finally, differentiation of ( )Kr hf h  with respect to h  gives  

          2/ (1 ) ( )Kdr dh e f h   (9) 

from which it follows that an elastic, negatively sloped IS – curve necessarily implies 

that / 0dr dh  .
6
 

 Now, following Goodwin (1967), assume that (i) the labour force, N , grows at 

the steady rate n , i.e. 

  ˆ  ( ( ))KN n s f h                                                          (10) 

and (ii) the real wage rate rises in the neighbourhood of full employment („real wage 

Phillips curve‟), i.e. 

  
1ˆ , 1w E       (11) 

where 1
E LN

  denotes the employment rate, L  the volume of employment, and  , 

  are positive constants.  

 Equations (4), (7) and (11) imply that 

  
1( )(1 ) ( )h E h e E h         (12) 

Since 1

L KL uK  , where K  denotes the capital stock in existence, and S ˆg K , it 

follows that Sˆ ˆL u g   or, recalling equations (1), (3) and (8), 

  
2
ˆˆ ( )KL e h s hf h   (13) 

or, recalling equation (12), 

  
2 1

ˆ ( ) ( )KL e e E s hf h      (14) 

Substituting equations (10) and (14) in ˆ ˆ ˆE L N   yields 

  2 1[ ( ) ( ) ]KE e e E s hf h n E       (15) 

                                                             

6 It is easily checked that a linear accumulation function, 
I

0 1 2g a a u a h   , where 0a  ( 0 ) 

represents the level of Keynesian “animal spirits”, necessarily implies that 2 0e   (this is not 

necessarily true for an open economy; see Blecker, 1989, p. 400; Mariolis, 2006b, pp. 55-56) and may 

imply a non-monotonic relationship between r  and h  (since / 0dr dh  at  
1

1 2 1 2 1 2 0 2[ ( )]( )K Kh a a a a a a a s a s     ).  
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Consequently, the model reduces to the non-linear system of equations (12) and (15), 

which has two equilibria with 0h E   , namely 

  * 1h  , * 0E   (16) 

and 

   ** ** 1( ( ))Kh s f h n  , ** 1
E    (16a) 

To the latter there corresponds a unique value for S
g  ( n ) and may correspond, 

when **

2 0e  , more than one economically significant value for h  (and, therefore, for 

u  and w ). 

 The Jacobian matrix, [ ]ijJJ , of equations (12) and (15) is (take into account 

equation (9)) 

   
11 / ( )J h h E       (17a) 

 
12 / (1 )J h E h       (17b) 

          2

21 2 1 2 2/ {[( / ) ]( ) (1 ) ( )}KJ E h de dh e e h E s e f h E               (17c) 

 22 2 1/ (2 ) ( )KJ E E e e E s hf h n          (17d) 

Since 
1( ) / (1 ) 0EE h
     does not necessarily hold true (see equation (17c)), this 

system does not correspond to Kolmogorov‟s „predator (1 h ) – prey ( E ) model‟ 

(see, e.g. May, 1972, p. 901. If 
1( ) / (1 ) 0EE h
    , the “two species are in 

symbiosis”; see Hirsch and Smale, 1974, p. 273). At the trivial fixed point, 
* *( , )h E , 

*

1 0e   and 
*J  is diagonal, with *

11 0J   and *

22 0J  ; therefore, it is a saddle point, 

precisely like in Goodwin‟s model. Next consider the non-trivial fixed point(s), 

** **( , )h E . Then **

11 0J  , **

12 0J  , and there are the following cases: 

(i). When **

2 0e  , it follows that **Tr 0J  and **Det 0J : stable. 

(ii). When **

2 0e  , it follows that **Tr 0J  and **Det 0J : the system behaves 

locally like Goodwin‟s one. 

(iii). When **

21 0e    , it follows that **Tr 0J  and **Det 0J : unstable. 

(iv). When 
**

2 1e    , it follows that **Tr 0J  and **Det 0J : unstable.  

(v). When 
**

2 1e   , it follows that **Tr 0J  and **Det 0J : saddle point.
7
 

                                                             
7 Cases (i), (iii) and (v) correspond to alternative sets of steady-state equilibria or growth regimes, i.e. 

“Keynesian, overaccumulation and underconsumption regimes”, respectively (according to Kurz‟s, 
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 Thus, it can be concluded that, depending on the local elasticity of the IS – 

curve, which depends, in its turn, on the form of the accumulation function, the 

system can generate complex dynamic behaviours. 

 Finally, consider an identical system that produces, however, many „basic 

commodities‟ (in the sense of Sraffa, 1960, pp. 7-8) by linear processes of single 

production, and assume that: (i) the production period is uniform across sectors; (ii) 

the degree of capacity utilization is uniform both within and across sectors; (iii) the 

desired rate of accumulation is a strictly increasing function of both the degree of 

capacity utilization and the aggregate profit share; (iv) workers and capitalists have 

identical rigid consumption patterns; and (v) the consumption vector is adopted as the 

numeraire.
8
 Now, as is well-known, (i) the negatively sloped w   curve is not 

necessarily linear; and (ii) the aggregate productivities of labour and capital are not 

given independently of, and prior to, prices, income distribution and growth (unless 

the labour input vector or the consumption vector is the Perron-Frobenius eigenvector 

of the capital coefficients matrix), and, in fact, can change in a complicated way as 

distribution changes (see Sraffa, 1960, chs 3-6, and, for example, Marglin, 1984, pp. 

233-244).
9
 Consequently, equations (8) and (9) should be replaced by  

  1 1

2 3[ (1 )( )]( )h K K ue F e s u s h F hu         

and 

  3 2/ (1 ) ( )Kdr dh e e f h     

where 3e  denotes the elasticity of K  with respect to h , and consists of a price effect 

and a quantity effect (for a detailed examination, see Mariolis, 2007, pp. 366-368). It 

is noted, moreover, that h  continuous to be a strictly increasing function of   (see 

                                                                                                                                                                              

1990, pp. 222-226, terminology). Some numerical examples are given in the Appendix: It is shown (see 
Example 3) that a „U-shaped‟ IS – curve (see also Marglin and Bhaduri, 1988, pp. 22-23, and Bhaduri 

and Marglin, 1990, pp. 392-393) may generate a Hopf bifurcation of periodic solutions (for an 

introduction to the Hopf bifurcation theorem, see, e.g. Medio, 1992, pp. 59-69). 
8 It need hardly be emphasized that assumptions (ii) and (iii) are rather crude. However, more realistic 

assumptions lead to great complications. Assumptions (iv) and (v) imply that the money wage rate 

equals the real wage rate.  
9 Consider the eigenvalues of the capital coefficients matrix: As it has recently been argued, when the 

ratios of the moduli of the first non-dominant eigenvalues to the dominant one fall „quite rapidly‟, and 

the rest constellate in much lower values forming a „long tail‟, the w   curve is almost  linear 

irrespective of the numeraire chosen, and the price –   (and quantity – s ) curves tend to be 

monotonic (see Schefold, 2008, Mariolis and Tsoulfidis, 2011, and Iliadi et al., 2012). Consequently, 

(i) the deviations between the directions of the labour input and consumption vectors and the relevant 

Perron-Frobenius eigenvectors; and (ii) the speed of fall of the eigenvalue ratios could be considered as 

measures of the degree of capital heterogeneity. 
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Franke, 1999, pp. 46-49 where 1u  holds by assumption) and, therefore, 1

Kh    

implies that 31 0e  . Furthermore, equation (13) should be replaced by 

  
3 4 2

ˆˆ ( ) ( )KL e e e h s hf h     (18) 

where 4e  denotes the elasticity of L  with respect to h  (and 4 3e e  equals the 

elasticity of capital-intensity with respect to h ). Thus, equations (10), (11) and (18) 

imply that the model reduces to the following non-linear system: 

  1

1 3(1 ) ( )h e e E h     

  1

3 4 2 1 3[( ) (1 ) ( ) ( ) ]KE e e e e e E s hf h n E          

which includes the system of equations (12) and (15) as a special case (i.e. 

1

1 3 4(1 ) 0e h h e e
     ). It then follows that, in a heterogeneous-capital world, the 

system is very complex, even if the accumulation function is supposed to be linear. 

Moreover, after Rodousakis‟s (2012) contribution, it seems that the study of its 

dynamic behaviour cannot be simplified significantly by using Goodwin‟s (1976, 

1977, 1984) method of diagonalization of the production system into „eigensectors‟. 

 

3. Concluding Remarks 

It has been shown that the incorporation of the Bhaduri-Marglin accumulation 

function in Goodwin‟s growth cycle model leads to rather complicated interactions 

between distribution, capacity utilization, accumulation and labour employment. 

More specifically, the degree of complexity depends crucially on two separate factors: 

(i) the form of the accumulation function; and (ii) the degree of capital heterogeneity. 

Thus, it seems that, a priori, nothing unambiguous can be said about the dynamics of 

the system. 

 Future work could allow for commodity market disequilibrium, concretize the 

analytical framework (primarily by including the presence of depreciation, „overhead‟ 

labour, technological change, monetary factors, and disaggregated accumulation 

functions) and, finally, test empirically that more realistic model(s). 

 

Appendix: Numerical Examples 

Example 1 
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Consider a linear accumulation function, I

0 1 2g a a u a h   , and assume that 

0 0.01a  , 1 0.03a  , 2 0.05a   and 1Ks  . It is obtained that (see equations (8) and 

(9)) 

 1(0.01 0.05 )( 0.03)u h h
    

 1

2 0.23 [(0.17 ) 0.006]e h h h
     

2{ 0,  0}u e   for 0.03h  , 1u   at 0.042h  , and 2 1e    at 0.113h  . Now, 

assume that 0.004  , 0.003   and 0.03n  . Thus, it is obtained that (see 

equations (16a)) ** 1

1,2 0.2 5550h
   and ** 0.75E  . At  **

1 0.348h   we get 

**

2 0.459e   , **Tr 0.003J , **Det 0.001J  and that the discriminant, 

** ** 2 **(Tr ) 4(Det )  J J , is negative: the fixed point is an unstable focus. At 

**

2 0.052h   we get **

2 2.157e   : the fixed point is a saddle point. 

 

Example 2 

Consider a „power‟ accumulation function, 1 2I

0

a a
g a u h , and assume that 0 1a  , 

1 0.8a  , 2 1.3a  , 1Ks  , 0.004  , 0.003   and 0.03n  . It is obtained that 

2e
u h , 1

2 2 1( 1)(1 ) 1.5e a a
    , ** 0.4 0.246h n  , ** 0.75E  , **Tr 0.014 J , 

**Det 0.001J  and **Δ 0 : the fixed point is a stable focus. Finally, by letting n  

vary parametrically, we get  

 
** 0.4 0.8 0.4 1.4( ) 0.003(1 ) [0.00675(1 ) 10 ]n n n n n

      

from which it follows that 
**( ) 0n  , i.e. the fixed point is a stable node, for 

0.005n   (approximately). 

 

Example 3 

Consider the accumulation function 
I 1/ 6 ( )g u h , where 2 3

0 1( )h a a h h h     , 

/ 0d dh   for 1

1 3a
 , and 0 0a  , and assume that 0 0.005a  , 1 0.35a   and 

2Ks  . It is obtained that   

 
1 2 6/5[0.5(0.005 0.35 )]u h h h
     

 
2 1 2 1

2 [1.2 ( 0.005 1 2 )](0.005 0.35 )e h h h h h h
          
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1u   at 0.00302h  , 0.12561u   at 1h  , 2 0e   at 0.50963h h   and 2 1e    at 

0.00291h   or 0.27045  or 0.37370  (see also Figure A1). Now, assume that 

0.004  , 0.003   and 0.0313517n n  . Thus, it is obtained that **
h h  , 

** 0.75E  , **

2 0e  , i.e. the system behaves locally like Goodwin‟s one, and 

0 0(Re ( )) / 0d a da   at 0 0.005a  , where 0Re ( )a  denotes the real part of the 

eigenvalues of **

0( )aJ , since, as it is easily checked, 2 0/ 0e a   . We can therefore 

conclude that the system undergoes a Hopf bifurcation at 0 0.005a  . 

 

0.2 0.4 0.6 0.8 1.0

1

1

2

3

 

 
Figure A1. The elasticity of the IS – curve as a function of the profit share (for 0.00302h ). 
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