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Abstract

Several agents choose positions on the real line (e.g., their levels of conspicuous consumption).
Each agent’s utility depends on her choice and her “status,” which, in turn, is determined by the
number of agents with greater choices (the fewer, the better). If the rules for the determination of the
status are such that the set of the players is partitioned into just two tiers (“top” and “bottom”), then
a strong Nash equilibrium exists, which Pareto dominates every other Nash equilibrium. Moreover,
the Cournot tatonnement process started anywhere in the set of strategy profiles inevitably reaches
a Nash equilibrium in a finite number of steps. If there are three tiers (“top,” “middle,” and
“bottom”), then the existence of a Nash equilibrium is ensured under an additional assumption;
however, there may be no Pareto efficient equilibrium. With more than three possible status levels,
there seems to be no reasonably general sufficient conditions for Nash equilibrium existence.
MSC2010 Classification Number: 91A10; JEL Classification Number: C 72.
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1 Introduction

This paper investigates a class of strategic games with discontinuous utilities. From a purely technical
viewpoint, those games are interesting because no general conditions for equilibrium existence, see,
e.g., Reny (1999, 2016), McLennan et al. (2011), Prokopovych (2013), or Kukushkin (2018), are
applicable to them, even though they display features such as aggregation, monotonicity, and even
strict quasiconcavity.

From the viewpoint of economic theory, those games model how concerns for relative social status
influence people’s decisions. This topic has been present in the literature since, at least, Veblen
(1899), and has attracted ever growing attention in recent decades (Frank, 1985a; Akerlof, 1997; Clark
and Oswald, 1998; Becker et al., 2005; Arrow and Dasgupta, 2009). Bilancini and Boncinelli (2008)
introduced an important distinction between ordinal and cardinal approaches: in the first case, the
status of a player is determined by the comparisons with other players’ choices; in the second case, by
the differences between them.

The starting point for this paper is the model of Haagsma and von Mouche (2010), henceforth, an
“HvM status game,” which belongs to the ordinal strand of the literature. In contrast to, say, Frank
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(1985b) or Becker et al. (2005), an HvM status game has a finite number of players; each player’s
utility depends on her choice and her “status,” which is just the order rank of her choice among all
choices (simply put, the number of players with the same or lesser choices). The utility function strictly
increases in status and is strictly quasiconcave in own choice. The discrete nature of status in such
games generates unpleasant discontinuities of the utility functions. Nonetheless, the best responses
exist and, typically, exhibit the “keeping up with the Joneses” effect in the literal sense: a player may
choose above her intrinsically most preferred alternative in order to become equal with somebody else
and obtain a higher status thereby. (This should be contrasted, e.g., with the Status Model of Akerlof
(1997, p.1008), where the optimal choice of an agent does not depend on what the others are doing.)
Examples show that Nash equilibria may be or not be Pareto efficient.

The weakest point of Haagsma and von Mouche (2010) is the absence of any general result on the
existence of Nash equilibrium. The only exception is the two-person case, where it is geometrically
obvious that the graphs of the best responses must intersect.

As often happens in mathematics, to make an advance, one has to modify the original posing of
the problem. Kukushkin and von Mouche (2018) considered “binary status games,” where the number
of the players may be arbitrary, but there are only two status levels: a player belongs to the top
tier if her choice is the maximal of all, and belongs to the bottom tier otherwise. Every such game
possesses a Nash equilibrium; moreover, every best response improvement path, regardless of where
it was started and in what order the players act, inevitably reaches a Nash equilibrium after a finite
number of improvements.

Here, a step further in the same direction is made. In an “m-consolidated HvM status game,”
there may be fewer potential status levels (m) than players, so players with different, but close, order
ranks may have the same status. For instance, the games of Kukushkin and von Mouche (2018) are
2-consolidated HvM status games. As another example of such a game, the top tier may consist of the
players whose choices are greater than or equal to the median choice, while everybody else is relegated
to the bottom tier.

The main findings of this paper are as follows. Every 2-consolidated HvM game possesses a strong
Nash equilibrium that weakly Pareto dominates all other Nash equilibria (Theorem 1). Moreover, the
main result of Kukushkin and von Mouche (2018), about the convergence of all Cournot paths, remains
valid in this broader context even with an extension to simultaneous tâtonnement (Proposition 2).

Generally, a 3-consolidated HvM game need not possess an equilibrium. A Nash equilibrium exis-
tence result (Theorem 3) is proven under an additional assumption, which could be called “local single
crossing.” However, there may be no Pareto efficient Nash equilibrium, to say nothing of a strong
equilibrium. With more than three possible status levels, there may be no Nash equilibrium at all
even under that additional assumption. From the viewpoint of equilibrium existence results of high
generality, tres faciunt collegium in this context.

Section 2 provides formal descriptions of both HvM status games and our “consolidated” HvM
status games. Section 3 contains definitions and auxiliary, technical results concerning the Cournot
tâtonnement processes. Our main results are in Section 4 (two possible status levels) and Section 5
(three possible status levels).
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2 Status games

An HvM status game is a strategic game with a finite set of players N (we assume n := #N ≥ 2),
where strategy sets and utility functions satisfy these requirements: (i) There is a closed subset X ⊆ R

(“conceivable strategies”) and there are ai ≤ bi in R for each i ∈ N such that Xi = [ai, bi] ∩ X;
hence each Xi is compact. (ii) Each player’s utility depends on her strategy xi ∈ Xi and her status

si ∈ S := {1, . . . , n}, which, in turn, is determined by the rank mapping ρi : XN → S,

ρi(xN ) := #{j ∈ N | xj ≤ xi}. (1)

To be more precise, there is a function Ui : Xi×S → R such that ui(xN ) = Ui(xi, ρi(xN )) for all i ∈ N
and xN ∈ XN . (iii) Each function Ui(xi, s) is strictly increasing in s, and upper semicontinuous in xi;
moreover, there are x̂si ∈ Xi for all i ∈ N and s ∈ S such that Ui(xi, s) strictly increases when xi ≤ x̂si
and strictly decreases when xi ≥ x̂si .

Given an HvM status game with n players, a consolidated HvM status game is defined by a natural
number m ∈ [2, n] and m natural numbers βs such that 1 = β1 ≤ β2 ≤ · · · ≤ βm ≤ n. The set of
possible status levels is S := {1, . . . ,m}. The consolidated status of player i under strategy profile xN
is

σi(xN ) := max{s ∈ S | ρi(xN ) ≥ βs}, (2)

where ρi is defined by (1).

We use the term m-consolidated HvM status game when a particular m is essential. “Binary status
games” of Kukushkin and von Mouche (2018) are 2-consolidated HvM status games with β2 = n.
Every HvM status game is simultaneously an n-consolidated HvM status game with βs = s for all
s ∈ S; so the class of all consolidated HvM status games includes the original HvM status games. Note
also that, given m′ > m, every m-consolidated HvM status game is simultaneously an m′-consolidated
HvM status game (with a sufficient number of equalities between βs’s).

The best response correspondences Ri : X−i → 2Xi (i ∈ N) are defined in the usual way:

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i).

Since non-strict inequalities are used in (1) and (2), both ρi and σi are upper semicontinuous; the
upper semicontinuity of ui easily follows. Therefore, Ri(x−i) ̸= ∅ for every x−i ∈ X−i. A strategy
profile x0N ∈ XN is a (pure strategy) Nash equilibrium if x0i ∈ Ri(x

0
−i) for all i ∈ N .

Given xN ∈ XN and I ⊆ N (I ̸= ∅), yI ∈ XI [:=
∏

i∈I Xi] is called a strong coalitional improvement

at xN if ui(yI , x−I) > ui(xN ) for all i ∈ I; yI ∈ XI is a weak coalitional improvement at xN if
ui(yI , x−I) ≥ ui(xN ) for all i ∈ I while ui(yI , x−I) > ui(xN ) for at least one i ∈ I. A strategy profile
x0N ∈ XN is a strong equilibrium if there is no strong coalitional improvement at x0N ; x0N ∈ XN is a
very strong equilibrium if there is no weak coalitional improvement at x0N .

Lemma 2.1. x0N ∈ XN is a very strong equilibrium if and only if this condition holds: Whenever

ui(yN ) > ui(x
0
N ) for some i ∈ N and yN ∈ XN , there is j ∈ N such that yj ̸= x0j and uj(yN ) < uj(x

0
N ).

A straightforward proof is omitted.
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3 Cournot tâtonnement

There are two varieties of Cournot tâtonnement in the literature: consecutive and simultaneous ones.
In some contexts, one of them behaves nicely; in some contexts, the other. In the models considered
in Section 4, both work nicely; moreover, steps of both kinds can be combined arbitrarily and the
convergence to a Nash equilibrium will still be ensured.

A generalized Cournot path in a strategic game is a finite or infinite sequence of strategy profiles
⟨xkN ⟩k=0,1,... such that, whenever xk+1

N is defined, each strategy xk+1
i either coincides with xki or is

the best response to the strategies of others at xkN while xki is not among the best responses. More
technically, whenever xk+1

N is defined, there is a nonempty subset I(k) ⊆ N such that xk
−I(k) = xk+1

−I(k)

and xki /∈ Ri(x
k
−i) ∋ xk+1

i for each i ∈ I(k). If I(k) is a singleton at each step, we have a consecutive
Cournot path; if I(k) = {i ∈ N | xki /∈ Ri(x

k
−i)} at each step, we have a simultaneous Cournot path. A

generalized Cournot cycle is a generalized Cournot path ⟨xkN ⟩k=0,1,...,K such that K > 0 and xKN = x0N .

As a modification of Milchtaich’s (1996) definition of the FBRP, we say that a strategic game has
the finite generalized best response improvement property (FGBRP) if it admits no infinite generalized
Cournot path. Then every generalized Cournot path, if extended whenever possible, ends at a Nash
equilibrium. The FGBRP implies the absence of generalized Cournot cycles; for finite games, the
opposite implication also holds.

Remark. The FBRP is implied by the finite improvement property (FIP) of Monderer and Shapley
(1996); the FGBRP is logically independent of the FIP. Generally, HvM status games do not have the
FIP, even finite games with n = 2.

Lemma 3.1. Let Γ be a consolidated HvM status game and x0N ∈ XN . Let Y∗(x
0
N ) := {x̂si}i∈N, s∈S ∪

{x0i }i∈N ⊆ X. Let ⟨xkN ⟩k=0,1,...,K be a finite generalized Cournot path starting at x0N . Then xKN ∈
(Y∗(x

0
N ))N .

Proof. We start with an auxiliary statement: If xN ∈ (Y∗(x
0
N ))N , i ∈ N , and yi ∈ Ri(x−i), then

yi ∈ Y∗(x
0
N ). We denote s := σi(yi, x−i). If yi = x̂si , then we are home. If yi < x̂si , then ui(x̂

s
i , x−i) >

ui(yi, x−i), contradicting the optimality of yi. Finally, if yi > x̂si , then yi can only be optimal if any
decrease of yi leads to a lower status of player i, but then yi = xj for some j ̸= i and we are home
again.

Now the statement of the lemma is proven with a straightforward recursion.

Lemma 3.2. A consolidated HvM status game has the FGBRP if and only if it admits no generalized

Cournot cycle.

Immediately follows from Lemma 3.1 since Y∗(x
0
N ) is finite for every x0N ∈ XN .

Given a consolidated HvM status game Γ, xN ∈ XN , and s ∈ S, we define

ξs(xN ) := min{xi | σi(xN ) ≥ s},

the minimal strategy choice that ensures (under strategy profile xN ) the status s or higher.

Lemma 3.3. Let ⟨xkN ⟩k=0,1,...,K be a generalized Cournot cycle in an m-consolidated HvM status game.

Then ξm(xkN ) does not depend on k.
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Proof. Supposing the contrary, we may, without restricting generality, assume that ξm(x0N ) <
ξm(x1N ) = maxk ξm(xkN ). Then we must have i ∈ I(0) for which x0i < ξm(x0N ) < ξm(x1N ) ≤ x1i ;
hence x̂mi > ξm(x0N ), the status of player i at x1N is m, and x1i = x̂mi . Thus, the utility of player
i attains its global maximum at x1i ≥ ξm(x1N ); since ξm(x1N ) = maxk ξm(xkN ), the status of player i
remains the highest, m, at all xkN , and hence her utility remains maximal all along. Therefore, x1i could
not be replaced with xKi = x0i at any stage. That contradiction proves the lemma.

4 Two consolidated status levels

To avoid confusion between superscripts related to status levels and to steps in Cournot paths, we
redefine S := {b, t} with b < t (bottom and top) in this section.

Theorem 1. Every 2-consolidated HvM status game Γ possesses a very strong equilibrium x0N ∈ XN

which weakly Pareto dominates every Nash equilibrium yN of Γ except when uN (yN ) = uN (x0N ).

Proof. We define x̂N ∈ XN by x̂i := x̂ti for each i ∈ N , and then define x̄ := ξt(x̂N ), N0 := {i ∈ N |
x̂ti ≥ x̄} = {i ∈ N | σi(x̂N ) = t}, N1 := {i ∈ N \N0 | Ui(x̄, t) > Ui(x̂

b
i , b)}, and N2 := N \ (N0 ∪N1).

Now we define our strategy profile x0N ∈ XN :

x0i :=











x̂ti, i ∈ N0;

x̄, i ∈ N1;

x̂bi , i ∈ N2.

Let yN ∈ XN , i ∈ N , and ui(yN ) > ui(x
0
N ). First, we note that ui(x

0
N ) = maxxN∈XN

ui(xN )
for i ∈ N0; hence i /∈ N0. Second, ui(x

0
N ) ≥ maxxi∈Xi

Ui(xi, b) for all i ∈ N (strict inequality if
i ∈ N0 ∪ N1 and an equality if i ∈ N2); therefore, σi(yN ) = t. Thirdly, Ui(xi, t) ≤ Ui(x̄, t) ≤ ui(x

0
N )

whenever i ∈ N \ N0 and xi ≥ x̄; hence ξt(yN ) < x̄. The latter inequality is only possible if there is
j ∈ N0 for which

yj < x̄ ≤ x̂tj = x0j . (3)

Thus, we must have uj(yN ) < uj(x
0
N ) and yj ̸= x0j ; hence, x0N is a very strong equilibrium by

Lemma 2.1. Finally, (3) for j ∈ N0 implies that yN is not a Nash equilibrium since player j can
improve by replacing yj with x̂tj .

In addition to Theorem 1, we prove a generalization of the main result of Kukushkin and von
Mouche (2018); but first an auxiliary statement.

Lemma 4.1. Let Γ be a 2-consolidated HvM status game, xN ∈ XN , i ∈ N , and x̄ := ξt(xN ). Then

xi ∈ Ri(x−i) if and only if one of the following conditions holds:

xi = x̂ti > x̄;

xi = x̄ ≥ x̂ti & Ui(x̂
b

i , b) ≤ Ui(x̄, t);

xi = x̂bi < x̄ & Ui(x̂
b

i , b) ≥ Ui(x̄, t).
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The proof is essentially the same as in the case of two-person HvM status games (Haagsma and
von Mouche, 2010, Section 3.1) and is omitted.

Proposition 2. Every 2-consolidated HvM status game has the FGBRP.

Proof. In light of Lemma 3.2, it is enough to show the impossibility of generalized Cournot cycles.
Supposing, to the contrary, ⟨xkN ⟩k=0,1,...,K to be a generalized Cournot cycle, we denote x̄ := ξt(x

k
N ); by

Lemma 3.3, it does not depend on k. By definition, we have x0i ̸= x1i ∈ Ri(x
0
−i) for each i ∈ I(0). Since

the necessary and sufficient conditions in Lemma 4.1 only refer to xi and x̄, we see that x1i ∈ Ri(x
k
−i)

for all k ≥ 1, and hence xki = x1i for all k with the same contradiction as in the proof of Lemma 3.3.

Even a two-person HvM status game may possess a continuum of inefficient Nash equilibria
(Haagsma and von Mouche, 2010, Figure 4), so one cannot expect that an arbitrary generalized Cournot
path will lead to a very strong equilibrium.

Remark. In contrast to Proposition 2, Rauscher (1992) showed the possibility of chaotic simultaneous
Cournot dynamics in a two-player status game; however, the status there was modeled as cardinal.

5 Three consolidated status levels

In this section, we make a morally dubious, but helpful notational convention: In Examples 5.1, 5.2, 5.3,
and 5.4, the status levels are literally defined by (2), i.e., S = {1, 2, 3} or S = {1, 2, 3, 4} as the case may
be. In the formulation and proof of Theorem 3, however, we, similar to Section 4, assume S := {b,m, t}
with b < m < t (bottom, middle, top).

To start with, a Nash equilibrium may fail to exist when there are more than two possible status
levels, even just in a three-person HvM status game.

Example 5.1. Let us consider an HvM status game Γ where N := {1, 2, 3}, X := Xi := [0, 4] ⊂ R

(for all i ∈ N), and utility functions are:

U1(x, s) := s+ 2x+ 1;

U2(x, s) :=

{

min{4s+ 2x− 1, 4s− 3x+ 9}, s = 3 or s = 2;

min{3 + 2x, 11− 2x}, s = 1;

U3(x, s) :=

{

min{s+ x+ 9, s− 10x+ 42}, s = 3 or s = 2;

min{10 + x, 14− 3x}, s = 1.

It is easily seen that x̂s1 = 4 and x̂s2 = 2 for all s, while x̂33 = x̂23 = 3 and x̂13 = 1. An important
observation is that U2(2, 2) = 11 > 9 = U2(4, 3) > 7 = U2(2, 1) and U3(3, 2) = 14 > 11 = U3(1, 1) >
5 = U3(4, 3).

Assuming x0N to be a Nash equilibrium, we immediately see that x01 = 4. Now we consider three
alternatives, computing the best response of one player (2 or 3) to the assumed strategy of the other.

First, let x02 ≤ 3. Then x03 = 3; hence x02 = 4: a contradiction. Now let 3 < x02 < 4. Then either
x03 = x02 or x03 = 1; hence, either x02 = 4 or x02 = 2: a contradiction again. Finally, let x02 = 4. Then
x03 = 1; hence x02 = 2: a final contradiction. Thus, there is no Nash equilibrium in the game.
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The existence of a Nash equilibrium in a 3-consolidated HvM status game is ensured under an
additional assumption: x̂bi ≥ x̂mi for all i ∈ N . The assumption can be reformulated in a way resembling
the single crossing condition of Milgrom and Shannon (1994): Let xN , yN ∈ XN and i ∈ N be such
that yi > xi, σi(xN ) = m = σi(yi, x−i), y−i ≥ x−i, and ui(yi, x−i) > ui(xN ); then ui(yN ) > ui(xi, y−i).

Theorem 3. If a 3-consolidated HvM status game has the property that x̂bi ≥ x̂mi for each i ∈ N , then

the game possesses a Nash equilibrium.

Proof. We start with some auxiliary notations. Similarly to the proof of Lemma 3.1, we denote Y∗ :=
{x̂si}i∈N, s∈S ⊆ X. Arguing similarly to Lemma 4.1, we see that Ri(x−i) is finite for all i ∈ N and
x−i ∈ X−i; we define ri(x−i) := minRi(x−i) and rN : XN → XN by rN (xN ) := ⟨ri(x−i)⟩i∈N . Every
fixed point of rN is a Nash equilibrium.

Similarly to the proof of Theorem 1, we define x̂N ∈ XN by x̂i := x̂ti for each i ∈ N , and then define
x̄ := ξt(x̂N ), N0 := {i ∈ N | x̂ti ≥ x̄} = {i ∈ N | σi(x̂N ) = t}, N1 := {i ∈ N \N0 | Ui(x̄, t) > Ui(x̂

m
i ,m)},

N2 := N \ (N0 ∪N1), and

X̂ := {xN ∈ (Y∗)
N | ∀i ∈ N0 [xi = x̂ti] & ∀i ∈ N1 [xi = x̄] & ∀i ∈ N2 [xi ≤ x̄]}.

Claim 3.1. Let xN ∈ X̂ and yN = rN (xN ); then yi = xi for each i ∈ N0 ∪N1, while yi ≤ x̄ for each

i ∈ N2. In other words, yN ∈ X̂.

Proof of Claim 3.1. The utility of each player from N0 attains its global maximum at x̂ti. For each
i ∈ N \ N0, we have x̂ti < x̄ and hence yi = x̄ is strictly preferable to any yi > x̄; for i ∈ N1, it is
actually the best option.

Now we define a strategy profile y0N ∈ X̂:

y0i :=











x̂ti, i ∈ N0;

x̄, i ∈ N1;

x̂mi , i ∈ N2.

For each k = 1, 2, . . . , we recursively define yk+1
N := rN (ykN ); by Claim 3.1, we have ykN ∈ X̂ for all k.

If yk+1
N = ykN at some stage, then ykN is a Nash equilibrium and we are home. In particular, y0N is a

Nash equilibrium if N2 = ∅.

Thus, let N2 ̸= ∅. We define ȳk := ξm(y
k
N ). The main point of the rest of the proof is that ȳk

increases in k. Since Y∗ is finite, the sequence must stabilize at some stage, and then the equality
yk+1
N = ykN will be achieved.

To have a base for induction, let us compare y0N and y1N . If y0i ≥ x̄, then i ∈ N0 ∪ N1 and hence
y1i = y0i . If ȳ0 ≤ y0i < x̄, then y1i = y0i again since player i has the middle status m, makes the best
choice for this status, and is not interested in obtaining the top status because i ∈ N2. Thus, if y

0
i ≥ ȳ0

for all i ∈ N , then y1N = y0N and we are home. Actually, in this case, y0N is a very strong equilibrium
for the same reason as in the proof of Theorem 1. If y0i < ȳ0, then three choices may be optimal for
player i: y1i = ŷbN , y1i = ȳ0, or y1i = x̄; note that y1i ≥ y0i in each case, which immediately implies
ȳ1 ≥ ȳ0. Moreover, if ȳ1 = ȳ0, then y2N = y1N since y1i = ŷbi whenever y1i < ȳ0 = ȳ1 and the choice of
y2i = ȳ0 or y2i = x̄ has already been ruled out.

Now, we proceed with the induction step.
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Claim 3.2. Let k ≥ 1 and ȳh+1 > ȳh for each h < k. Then these statements hold for each i ∈ N :

yki > x̄ ⇒ yki = x̂ti; (4a)

[yki = x̄ & i ∈ N2] ⇒ [x̂mi < ȳk−1 & Ui(x̄, t) > max{Ui(ȳ
k−1,m), Ui(x̂

b

i , b)}]; (4b)

ȳk−1 < yki < x̄ ⇒ yki = x̂mi ; (4c)

yki = ȳk−1 ⇒ [x̂mi ≤ ȳk−1 & Ui(x̄, t) ≤ Ui(ȳ
k−1,m) > Ui(x̂

b

i , b)]; (4d)

yki < ȳk−1 ⇒ [yki = x̂bi & Ui(x̂
b

i , b) ≥ max{Ui(x̄, t), Ui(ȳ
k−1,m)}]; (4e)

ȳk+1 ≥ ȳk. (5)

Proof of Claim 3.2. Assuming all conditions (4) to hold for k, we have to show that they still hold for
k + 1. As a first step, we check these statements:

yki ≥ ȳk ⇒ yk+1
i = yki ; (6a)

ȳk−1 ≤ yki < ȳk ⇒ yk+1
i ∈ {x̂bi , ȳ

k, x̄}; (6b)

yki < ȳk−1 ⇒ yk+1
i = yki . (6c)

(6c) follows from (4e): since ȳk > ȳk−1 > yki = x̂bi ≥ x̂mi , we have Ui(ȳ
k−1,m) > Ui(ȳ

k,m) and hence
Ui(x̂

b
i , b) > max{Ui(x̄, t), Ui(ȳ

k,m)}. (6b) is straightforward; (6a) for i ∈ N0 ∪N1 immediately follows
from Claim 3.1. We only have to check (6a) for i ∈ N2. If ȳk−1 < ȳk ≤ yki < x̄, then invoking (4c) is
enough. When yki = x̄, a more sophisticated argument is needed.

Let us develop it. First, ȳk−1 = yk−1
j = x̂mj for some j ∈ N2. When computing ykj = rj(y

k−1
−j ), we

have to compare Uj(x̄, t) and Uj(x̂
m
j ,m); since j ∈ N2, the latter wins. Therefore, ȳ

k−1 = ykj = x̂mj < ȳk.

By the definition of ȳk, we have #{ν ∈ N | ykν ≤ ȳk−1} < βm; for every y < ȳk−1, we have #{ν ∈ N |
ykν ≤ y} < βm − 1. Therefore, yi ≥ ȳk−1 whenever σi(yi, y

k
−i) = m, and hence Ui(yi,m) ≤ Ui(ȳ

k−1,m).

Now yk+1
i = rj(y

k
−i) = x̄ = yki by (4b).

Now (5) is straightforward: by (6), yk+1
i ≥ ȳk whenever yki ≥ ȳk. It is as easily checked that (6)

imply all conditions (4) for k + 1.

Claim 3.3. If ȳk+1 = ȳk, then yk+2
N = yk+1

N .

Immediately follows from (6) since (6b) becomes inapplicable.

Thus, we showed that the sequence of strategy profiles y0N , y1N , . . . , ykN must stabilize at some stage,
and such a stable point must be an equilibrium. The proof of Theorem 3 is finished.

The equilibrium built in the proof of Theorem 3 need not be strong; actually there may be no
Pareto efficient Nash equilibrium, to say nothing of a strong equilibrium, in the three-tier case. There
may also be no Nash equilibrium Pareto dominating all other equilibria.
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Example 5.2. Let us consider an HvM status game Γ where N := {1, 2, 3}, X := Xi := [0, 3] ⊂ R

(for all i ∈ N), and utility functions are:

U1(x, s) := min{3s+ x+ 1, 3s− 2x+ 4};

U2(x, s) := min{3s+ x+ 1, 3s− 5x+ 13};

U3(x, s) := s+ x+ 2;

It is easily seen that x̂si = i for all i ∈ N and s ∈ S. An important observation is that U1(1, 2) = 8 >
7 = U1(3, 3) > 6 = U2(2, 2) > 5 = U2(1, 1) and U2(1, 2) = 8 > 7 = U2(3, 3) > 6 = U2(2, 1). Whenever
x0N is a Nash equilibrium, we must have x03 = 3. Fixing this choice by player 3, we easily find the best
responses of players 1 and 2 to the strategies of each other: R1(x2 = 1) = {1}, R1(x2 = 2) = R1(x2 =
3) = {3}; R2(x1 = 1) = R2(x1 = 2) = {2}, R2(x1 = 3) = {3}. Thus, x01 = x02 = x03 = 3 is the unique
Nash equilibrium of the game; the utility vector is ⟨7, 7, 8⟩. Defining y1 := y2 := 1 and y3 := 3, we see
that the utility vector at yN is ⟨8, 8, 8⟩; in other words, (y1, y2) is a strong coalitional improvement at
x0N , so x0N is not a strong equilibrium, and not even a Pareto efficient Nash equilibrium.

Example 5.3. Let us consider a 3-consolidated HvM status game Γ where N := {1, 2, 3, 4}, X :=
Xi := [0, 4] ⊂ R (for all i ∈ N), β1 = 1, β2 = 2, β3 = 4, and utility functions are:

U1(x, s) := min{3s+ x+ 2, 3s− 2x+ 5};

U2(x, s) := min{2s+ x+ 4, 2s− 3x+ 12};

U3(x, s) := U4(x, s) := min{2s+ x+ 3, 2s− x+ 9}.

It is easily seen that, for each s ∈ S, x̂si = i for i < 4 while x̂s4 = 3.

The proof of Theorem 3 constructs the equilibrium x0N where x0i = 3 for all i ∈ N ; the utility
vector is ⟨8, 9, 12, 12⟩. Meanwhile, for every w ∈ [3, 4], there is a Nash equilibrium yN (w) with y3(w) =
y4(w) = w:

y1(w) =

{

2, w ≥ 3.5;

w, w ≤ 3.5;
y2(w) =

{

2, w ≥ 31
3 ;

w, w ≤ 31
3

(when w = 3.5 or w = 31
3 , both variants are possible). The utility vector at yN (w) is ⟨14 − 2w, 18 −

3w, 15−w, 15−w⟩ if w ≤ 3+1/3, ⟨14−2w, 8, 15−w, 15−w⟩ if 3+1/3 ≤ w ≤ 3.5, and ⟨10, 7, 15−w, 15−w⟩
if w ≥ 3.5. We see that x0N and yN (w) for w ≥ 3.5 are Pareto incomparable.

Remark. A conjecture that the assumptions of Theorem 3 imply the FGBRP of the game does not
seem implausible, but there is no proof in sight. It is not difficult to show that the sequence ⟨ykN ⟩k in
the proof is a generalized Cournot path, i.e., if yki ̸= ri(y

k
−i), then yki /∈ Ri(y

k
−i); however, this would not

be enough even for the weak version of the property because the specific choice of the initial strategy
profile y0N was important.

When there are more than three possible status levels, e.g., in a four-person HvM status game, a
Nash equilibrium may fail to exist even if the most favorite choice of each player does not depend on
her status.
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Example 5.4. Let us consider an HvM status game Γ where N := {1, 2, 3, 4}, X := Xi := [0, 4] ⊂ R

(for all i ∈ N), and utility functions are:

U1(x, s) :=

{

min{7 + s+ x, 9 + s− x, 18 + s− 4x}, s ∈ {3, 4};

min{5 + s+ x, 8 + s− 2x}, s ∈ {1, 2};

U2(x, s) :=























min{10 + x, 16− 2x}, s = 4;

min{8 + x, 16− 3x}, s = 3;

min{7 + x, 15− 3x}, s = 2;

min{5 + x, 13− 3x}, s = 1;

U3(x, s) :=























min{9 + x, 18− 2x}, s = 4;

min{8 + x, 17− 2x}, s = 3;

min{6 + x, 15− 2x}, s = 2;

min{5 + x, 14− 2x}, s = 1;

U4(x, s) := 2s+ 2x.

It is easily seen that x̂si = i for all s.

Is is important to note that: U1(3, 3) = 9 > 7 = U1(1, 1) > U1(2, 2) = 6 = U1(4, 4) > U1(3, 2) = 4;
U2(2, 2) = 9 > 8 = U2(4, 4) > 7 = U2(2, 1) = U2(3, 3); U3(3, 3) = 11 > 10 = U3(4, 4) > 9 = U3(3, 2).

The analysis is somewhat similar to that of Example 5.1. Assuming x0N to be a Nash equilibrium,
we immediately see that x04 = 4. Now we consider three alternatives, computing the best responses of
some players to the assumed strategies of others.

First, let x01 ≤ 3 ≥ x02. Then x03 = 3; hence x01 = 3; hence x02 = 4. Thus, we have a contradiction.
Now let x01 > 3. Then either x03 = max{x01, x

0
2} > 3 or x03 = 4. In either case, x02 = 4; hence x01 = 1: a

contradiction again. Finally, let x02 > 3. Again, either x03 = max{x01, x
0
2} > 3 or x03 = 4. In either case,

x01 = 1; hence x02 = 2: a final contradiction. Thus, there is no Nash equilibrium in the game.
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