Michailos, Stavros and Parker, David and Webb, Colin (2017): Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation. Forthcoming in: Waste and Biomass Valorization (27 December 2017)
Preview |
PDF
MPRA_paper_87640.pdf Download (1MB) | Preview |
Abstract
Ethanol production from non-edible feedstock has received significant attention over the past two decades. The utilisation of agricultural residues within the biorefinery concept can positively contribute to the renewable production of fuels. To this end, this study proposes the utilisation of bagasse in a hybrid conversion route for ethanol production. The main steps of the process are the gasification of the raw material followed by syngas fermentation to ethanol. Aspen plus was utilised to rigorously design the biorefinery coupled with Matlab to perform process optimisation. Based on the simulations, ethanol can be produced at a rate of 283 L per dry tonne of bagasse, achieving energy efficiency of 43% and according to the environmental analysis, is associated with low CO2 emissions. The conduction of a typical discounted cash flow analysis resulted in a minimum ethanol selling price of 0.69 $ L−1. The study concludes with multiobjective optimisation setting as objective functions the conflictive concepts of total investment costs and exergy efficiency. The total cost rate of the system is minimised whereas the exergy efficiency is maximised by using a genetic algorithm. This way, various process configurations and trade-offs between the investigated criteria were analysed for the proposed biorefinery system.
Item Type: | MPRA Paper |
---|---|
Original Title: | Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation |
Language: | English |
Keywords: | Second generation ethanol · Syngas fermentation · Technoeconomic analysis · Sustainability analysis · Process simulation · Multiobjective optimisation |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services |
Item ID: | 87640 |
Depositing User: | Dr Stavros Michailos |
Date Deposited: | 04 Jul 2018 20:11 |
Last Modified: | 26 Sep 2019 09:41 |
References: | Acharya, B., Roy, P., Dutta, A.: Review of syngas fermentation processes for bioethanol. Biofuels 5(5), 551-564 (2014). doi:10.1080/17597269.2014.1002996 Albarelli, J.Q., Onorati, S., Caliandro, P., Peduzzi, E., Meireles, M.A.A., Marechal, F., Ensinas, A.V.: Multi-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production. Energy (2015). doi:https://doi.org/10.1016/j.energy.2015.06.104 Antizar-Ladislao, B., Turrion-Gomez, J.L.: Second-generation biofuels and local bioenergy systems. Biofuels, Bioproducts and Biorefining 2(5), 455-469 (2008). doi:10.1002/bbb.97 Balat, M., Balat, H.: Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86(11), 2273-2282 (2009). doi:http://doi.org/10.1016/j.apenergy.2009.03.015 Bertsch, J., Müller, V.: Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnology for Biofuels 8(1), 210 (2015). doi:10.1186/s13068-015-0393-x Bhatia, L., Johri, S., Ahmad, R.: An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2(1), 65 (2012). doi:10.1186/2191-0855-2-65 Bridgwater, A. V.:. Step counting methods for preliminary capital cost estimating. Cost Engineering 23(5), 293-302 (1981). Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F.: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy 28(1), 35-51 (2005). doi:http://doi.org/10.1016/j.biombioe.2004.04.009 D. Arora, R. Basu, F. S. Breshears, L. D. Gaines, K. S. Hays, J. R. Phillips, C. V. Wikstrom, E. C. Clausen, J. L. Gaddy. United States. Department of Energy. Office of Energy Efficiency and Renewable Energy., United States. Department of Energy. Albuquerque Operations Office., United States. Department of Energy. Office of Scientific and Technical Information.: Production of ethanol from refinery waste gases. Final report, April 1994--July 1997. United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,. http://www.osti.gov/servlets/purl/565441-UPx17r/webviewable/ (1997) de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., Junginger, M.: The feasibility of short-term production strategies for renewable jet fuels – a comprehensive techno-economic comparison. Biofuels, Bioproducts and Biorefining 9(6), 778-800 (2015). doi:10.1002/bbb.1613 De Kam, M.J., Vance Morey, R., Tiffany, D.G.: Biomass Integrated Gasification Combined Cycle for heat and power at ethanol plants. Energy Conversion and Management 50(7), 1682-1690 (2009). doi:http://doi.org/10.1016/j.enconman.2009.03.031 Devarapalli, M., Atiyeh, H.K.: A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Research Journal 2(3), 268-280 (2015). doi:10.18331/brj2015.2.3.5 Drzyzga, O., Revelles, O., Durante-Rodríguez, G., Díaz, E., García, J.L., Prieto, A.: New challenges for syngas fermentation: towards production of biopolymers. Journal of Chemical Technology & Biotechnology 90(10), 1735-1751 (2015). doi:10.1002/jctb.4721 Erlich, C., Fransson, T.H.: Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. Applied Energy 88(3), 899-908 (2011). doi:https://doi.org/10.1016/j.apenergy.2010.08.028. Fang, K., Li, D., Lin, M., Xiang, M., Wei, W., Sun, Y.: A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today 147(2), 133-138 (2009). doi:http://doi.org/10.1016/j.cattod.2009.01.038 Farzad, S., Mandegari, M.A., Görgens, J.F.: A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Research Journal 3(4), 483-495 (2016). doi:10.18331/brj2016.3.4.3 Fu, Q., kansha, Y., Song, C., Liu, Y., Ishizuka, M., Tsutsumi, A.: An Advanced Cryogenic Air Separation Process Based on Self-heat Recuperation for CO2 Separation. Energy Procedia 61, 1673-1676 (2014). doi:http://dx.doi.org/10.1016/j.egypro.2014.12.189 Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., Liu, Y.: Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresource Technology 144, 396-400 (2013). doi:http://doi.org/10.1016/j.biortech.2013.06.036 Gassner, M., Maréchal, F.: Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass. Biomass and Bioenergy 33(11), 1587-1604 (2009). doi:http://doi.org/10.1016/j.biombioe.2009.08.004 Geraili, A., Sharma, P., Romagnoli, J.A.: A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: Applications to biorefineries. Computers & Chemical Engineering 61, 102-117 (2014). doi:http://doi.org/10.1016/j.compchemeng.2013.10.005 Gubicza, K., Nieves, I.U., Sagues, W.J., Barta, Z., Shanmugam, K.T., Ingram, L.O.: Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process. Bioresource Technology 208, 42-48 (2016). doi:http://doi.org/10.1016/j.biortech.2016.01.093 Gupta, A., Verma, J.P.: Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews 41, 550-567 (2015). doi:http://doi.org/10.1016/j.rser.2014.08.032 Hamelinck, C.N., Hooijdonk, G.v., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 28(4), 384-410 (2005). doi:http://doi.org/10.1016/j.biombioe.2004.09.002 He, J., Zhang, W.: Techno-economic evaluation of thermo-chemical biomass-to-ethanol. Applied Energy 88(4), 1224-1232 (2011). doi:http://doi.org/10.1016/j.apenergy.2010.10.022 Humbird, D., National Renewable Energy Laboratory (U.S.), Harris Group Inc.: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol : dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory,. http://purl.fdlp.gov/GPO/gpo8034 Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 6(25), 4497-4559 (2015). doi:10.1039/C5PY00263J Jones, S., Meyer, P., Snowden-Swan, L., Padmaperum, A., Tan, E., Dutta, A., Jacobson, J., Cafferty, K., Pacific Northwest National Laboratory (U.S.)., United States. Department of Energy., United States. Department of Energy. Office of Scientific and Technical Information.: Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Fast Pyrolysis and Hydrotreating Bio-Oil Pathway. United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,. http://www.osti.gov/servlets/purl/1115839/ (2013). Liguori, R., Ventorino, V., Pepe, O., Faraco, V.: Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Applied Microbiology and Biotechnology 100, 597-611 (2016). doi:10.1007/s00253-015-7125-9 Lucia, A.: Chemical Engineering Design Principles, Practice, and Economics of Plant and Process Design By G. Towler and R. Sinnott. AIChE Journal 54(11), 3034-3035 (2008). doi:10.1002/aic.11633 Michailos, S., Parker, D., Webb, C.: A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. Biomass and Bioenergy 95, 436-448 (2016). doi:http://doi.org/10.1016/j.biombioe.2016.06.019 Michailos, S., Parker, D., Webb, C.: Comparative Analysis of Synthetic Natural Gas versus Hydrogen Production from Bagasse. Chemical Engineering & Technology 40(3), 546-554 (2017). doi:10.1002/ceat.201600424 Mohr, A., Raman, S.: Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63, 114-122 (2013). doi:http://doi.org/10.1016/j.enpol.2013.08.033 Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6), 673-686 (2005). doi:http://doi.org/10.1016/j.biortech.2004.06.025 Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14(2), 578-597 (2010). doi:http://doi.org/10.1016/j.rser.2009.10.003 Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., Mohan, R.: Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology 74(1), 81-87 (2000). doi:http://doi.org/10.1016/S0960-8524(99)00143-1 Panopoulos, K.D., Fryda, L.E., Karl, J., Poulou, S., Kakaras, E.: High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification: Part I: Modelling and feasibility study. Journal of Power Sources 159(1), 570-585 (2006). doi:https://doi.org/10.1016/j.jpowsour.2005.12.024 Park, S.R., Pandey, A.K., Tyagi, V.V., Tyagi, S.K.: Energy and exergy analysis of typical renewable energy systems. Renewable and Sustainable Energy Reviews 30, 105-123 (2014). doi:http://doi.org/10.1016/j.rser.2013.09.011 Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., Terrien, P.: Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering 74, 75-82 (2015). doi:http://doi.org/10.1016/j.applthermaleng.2014.03.074 Peters, M., Timmerhaus, K., West, R.: Plant Design and Economics for Chemical Engineers. McGraw-Hill Education, (2003) Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy 33(3), 478-491 (2009). doi:http://doi.org/10.1016/j.biombioe.2008.08.008 Richter, H., Martin, M., Angenent, L.: A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies 6(8), 3987 (2013). Roy, P., Dutta, A., Deen, B.: Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process. Bioresource Technology 192, 185-191 (2015). doi:http://doi.org/10.1016/j.biortech.2015.05.056 Rubin, E.S., Azevedo, I.M.L., Jaramillo, P., Yeh, S.: A review of learning rates for electricity supply technologies. Energy Policy 86(Supplement C), 198-218 (2015). doi:https://doi.org/10.1016/j.enpol.2015.06.011 Sadhukhan, J., Ng, K.S., Hernandez, E.M.: Economic Analysis. In: Biorefineries and Chemical Processes. pp. 43-61. John Wiley & Sons, Ltd, (2014) Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4), 337-353 (2015). doi:10.1007/s13205-014-0246-5 Sreejith, C.C., Muraleedharan, C., Arun, P.: Thermo-Chemical Analysis of Biomass Gasification by Gibbs Free Energy Minimization Model-Part: II (Optimization of Biomass Feed and Steam to Biomass Ratio). International Journal of Green Energy 10(6), 610-639 (2013). doi:10.1080/15435075.2012.709203 Srivastava, N., Rawat, R., Singh Oberoi, H., Ramteke, P.W.: A Review on Fuel Ethanol Production From Lignocellulosic Biomass. International Journal of Green Energy 12(9), 949-960 (2015). doi:10.1080/15435075.2014.890104 Sudiro, M., Bertucco, A.: Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization. Energy 34(12), 2206-2214 (2009). doi:http://doi.org/10.1016/j.energy.2008.12.009 Tassios, D.P.: Extractive and Azeotropic Distillation, vol. 115. Advances in Chemistry, vol. 115. AMERICAN CHEMICAL SOCIETY, (1974) Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E.: Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Processing Technology 92(11), 2169-2184 (2011). doi:http://doi.org/10.1016/j.fuproc.2011.06.026 UNICA – Brazilian Sugarcane Industry Association. Report. http://www.unicadata.com.br (accessed 4/02/2015). Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V.: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology 98(2), 296-301 (2007). doi:http://doi.org/10.1016/j.biortech.2006.01.007 Wagner, H., Kaltschmitt, M.: Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes. Biomass Conversion and Biorefinery 3(2), 87-102 (2013). doi:10.1007/s13399-012-0064-0 Williams, T.C., Shaddix*, C.R., Schefer, R.W.: Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor. Combustion Science and Technology 180(1), 64-88 (2007). doi:10.1080/00102200701487061 Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G.: Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews 66, 751-774 (2016). doi:http://doi.org/10.1016/j.rser.2016.08.038 Zanin, G.M., Santana, C.C., Bon, E.P., Giordano, R.C., de Moraes, F.F., Andrietta, S.R., de Carvalho Neto, C.C., Macedo, I.C., Fo, D.L., Ramos, L.P., Fontana, J.D.: Brazilian bioethanol program. Appl Biochem Biotechnol 84-86, 1147-1161 (2000). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/87640 |