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Abstract 

This paper presents an error correction model for forecasting electricity consumption in the 

Philippines based on income, price, and temperature. The empirical evidence shows that there is a 

long-run positive and inelastic relationship between electricity consumption and income. We find 

that income, price, and temperature have significant short-run effects. Short-run demand is positive 

and inelastic with respect to income, negative and inelastic with respect to price, and positive and 

elastic with respect to temperature. Despite the small sample size, the model passes the standard 

diagnostic and parameter stability tests and performs well in within-sample and out-of-sample 

forecasting. It can be used not only for forecasting but also for analyzing, through simulations, the 

impacts on electricity consumption of changes in income, price, and temperature. 

The simulations confirm that, in the long run, electricity consumption is mainly driven by 

economic growth. Increasing GDP growth rate from 6% per year to 7% could increase electricity 

consumption at the end of 15 years by 10%. Although the effect of electricity price on electricity 

consumption is small (because of low price elasticity in absolute terms) and the effect of 

temperature change is also small (because annual average temperature change is small), their 

combined effects could add up and our simulation indicates that under very conservative 

assumptions, electricity consumption at the end of 15 years could rise further by 2%. Thus, it is 

important to include these variables in the simulations in order to account for their combined 

effects. 
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AN ERROR CORRECTION MODEL FOR FORECASTING PHILIPPINE AGGREGATE ELECTRICITY 

CONSUMPTION 

 

 

1. Introduction 

 

Electricity is linked to practically all aspects of national development (industrial 

production, agricultural production, education, health, etc.) that forecasting the country’s 

future electricity demand has become crucial to energy planning and management. 

Government planners rely on sound and reliable electricity demand projections in their 

development planning and forecasts that are way out of line can have serious economic 

consequences. The objective of this study is to develop a forecasting model for aggregate 

electricity demand in the Philippines. Specifically, we develop an error correction model 

(ECM) where electricity demand is related to economic and climatic variables. We believe 

this is the first time an error correction model is used for forecasting electricity 

consumption in the Philippines. It is also the first time that a Philippine model for electricity 

consumption includes temperature as an explanatory variable. 

 

 

2. Demand for Electricity 

 

Electricity consumption in the Philippines grew by 4.4% per year between 1981 and 

2014 and reached 77,261 GWh, a fourfold increase. Table 2.1 presents the trends in 

electricity consumption from 1981 by type of use. It shows that in 1981 the residential and 

commercial sectors had almost equal shares while the industrial sector had more than the 

share of the commercial and residential sectors combined. Although the industrial sector 

historically had the highest consumption levels, it had the lowest growth rate because of its 

marked decline in electricity consumption, relative to the other sectors, brought about by  

the  economic  crisis  in  1984 -1985  (Figure 2.1). These trends in electricity consumption 

are shown in Figure 2.1. The graph clearly shows the dampening effects on electricity 

consumption of the power shortage crisis in the early 1990s. The government’s response to 

the crisis was to enact the Electric Power Crisis Act of 1993 (approved April 2, 1993) which 

authorized the President to negotiate IPP (Independent Power Producer) contracts on a fast 

track basis. 
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Table 2.1. Electricity Consumption by Type of Use: Philippines, 1981 and 2014 

  
 1981 2014 Annual Growth 

Rate (%) 

GWh % Share GWh % Share 1981-2014 

Total Consumption 18,583 100 77,261 100 4.41 

Type of Use      

Industrial 7,597 40.88 21,429 27.74 3.19 

Residential 3,424 18.42 20,969 27.14 5.65 

Commercial 3,157 16.99 18,761 24.28 5.55 

Power Loss 2,150 11.57 7,270 9.41 3.76 

Utilities Own Use 1,157 6.23 6,646 8.60 5.44 

Others 1,098 5.91 2,186 2.83 2.11 
 Source: Philippine Statistical Yearbook, 2014 

 

 

Figure 2.1. Electricity consumption (GWh) by type of use, Philippines: 1981-2014 
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The IPP contracts increased generation capacity resulting in a 14.6% jump in power 

generation from 1993 to 1994 (PSY [1995]). This, in turn, resulted in electricity 

consumption increases: industrial by 14%; commercial by 24%; and residential by 14% 

(Philippine Power Statistics [2015]). The residential sector consumption showed a 

sustained growth with annual rates ranging from 11.3% to 14.5% during the years 1993 to 

1998 (Figure 2.1). With the National Electrification Administration’s focus on rehabilitation 

of lines, line expansion, and energization of isolated islands, access to electricity in the rural 

population increased by 26.4 percentage points from 1990 to 2010 (Table 2.2). Residential 

consumption continued to grow and by 2014, the industrial and residential sectors had 

almost equal shares at 27.74% and 27.14%, respectively. 

 



4 

Table 2.2. Access to Electricity (% of population) 

Year Rural Urban All 

1990 46.4 84.0 65.4 

2000 51.9 91.0 71.3 

2010 72.8 94.4 83.3 

Source: Index mundi, sourced from World Bank Sustainable Energy for All, Global Electrification data base. 

The evolution of electricity consumption in the Philippines is closely related to that 

of real gross domestic product (see Figure 2.2). In fact, the correlation coefficient between 

these two variables is 0.98. This strong positive relationship is graphically shown in Figure 

2.3. But in terms of growth rates, electricity consumption outpaced real GDP by a factor of 

1.3. (The average annual growth rate of real GDP for the period 1981-2014 was 3.42%.) 

Figure 2.2. Total electricity consumption (GWh) and real gross domestic product (billion 

pesos at 2000 constant prices), Philippines: 1981-2014 
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Figure 2.3. Total electricity consumption vs real gross domestic product 
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3. Model Framework 

 

 From the point of view of economic theory, demand for electricity is a function of 

income and price of electricity. In recent years, an increasing number of researchers have 

included weather variables among the factors affecting electricity consumption (Lam et al. 

[2008]; Zachariadis [2010]; Goel and Goel [2014]). Obviously, climate change such as 

increasing temperature will increase electricity demand related to cooling requirements. 

 We begin with a basic relationship between electricity consumption (𝑦𝑦) and real 

gross domestic product (𝑥𝑥) and electricity price (𝑝𝑝) given as an autoregressive distributed 

lag (ARDL) model, 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡−1 + 𝛽𝛽3𝑝𝑝𝑡𝑡 + 𝛽𝛽4𝑝𝑝𝑡𝑡−1 + 𝛽𝛽5𝑦𝑦𝑡𝑡−1 +  𝜀𝜀𝑡𝑡                            (3.1)   

 

where 𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡, and 𝑝𝑝𝑡𝑡 are in natural logarithms and, for stability, |𝛽𝛽5| < 1. (We follow the 

convention that lower case italics denote variables in natural logarithms.) In long-run 

equilibrium, 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1,  𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1, and 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1. Hence, from (3.1), 

 
(1 − 𝛽𝛽5)𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + (𝛽𝛽1 + 𝛽𝛽2)𝑥𝑥𝑡𝑡 + (𝛽𝛽3 + 𝛽𝛽4)𝑝𝑝𝑡𝑡 + 𝜀𝜀𝑡𝑡                                   (3.2) 

 

Thus, the long-run equation is 

 𝑦𝑦𝑡𝑡 =
𝛽𝛽0

1 − 𝛽𝛽5 +
𝛽𝛽1 + 𝛽𝛽2
1 − 𝛽𝛽5 𝑥𝑥𝑡𝑡 +

𝛽𝛽3 + 𝛽𝛽4
1 − 𝛽𝛽5 𝑝𝑝𝑡𝑡 + 𝑢𝑢𝑡𝑡                                                 (3.3) 

 

where 𝑢𝑢𝑡𝑡 =
𝜀𝜀𝑡𝑡1−𝛽𝛽5. The short-run dynamics is introduced by subtracting 𝑦𝑦𝑡𝑡−1 from both sides 

of (3.1) and adding and subtracting 𝛽𝛽1𝑥𝑥𝑡𝑡−1 and 𝛽𝛽3𝑝𝑝𝑡𝑡−1 on the right-hand side, resulting in 

the following equation: 

 ∆𝑦𝑦𝑡𝑡 = 𝛽𝛽1∆𝑥𝑥𝑡𝑡 + 𝛽𝛽3∆𝑝𝑝𝑡𝑡 + (𝛽𝛽5 − 1) �𝑦𝑦𝑡𝑡−1 − 𝛽𝛽0
1 − 𝛽𝛽5 − 𝛽𝛽1 + 𝛽𝛽2

1 − 𝛽𝛽5 𝑥𝑥𝑡𝑡−1 − 𝛽𝛽3 + 𝛽𝛽4
1 − 𝛽𝛽5 𝑝𝑝𝑡𝑡−1�+ 𝜀𝜀𝑡𝑡    (3.4) 

 

 

In equation (3.4), the expression in square brackets is the error term 𝑢𝑢𝑡𝑡−1 of the long-run 

equation (3.3) and is called the error-correction term. Equation (3.4) is the Error 

Correction Model (ECM) formulation of equation (3.1). Thus, ECM links the short-run 

dynamics and the long-run equilibrium. The coefficient, (𝛽𝛽5 − 1), of the error correction 

term measures the speed of adjustment to long-run equilibrium after a deviation. Note that 

the speed of adjustment is negative.  
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4. ECM Empirical Specification and Data for an Annual Model 

 

 Specifying an electricity demand function is complicated by the existence of block 

pricing in some distribution utilities in which prices differ in each block. From economic 

theory, the appropriate price variable is marginal price. But Taylor [1975] argued that to 

use only the marginal price in this case neglects the income effect of the intramarginal 

prices and introduces biases in the parameter estimates. However, Berndt [1984] estimated 

these biases and found them to be negligible. 

 At a highly aggregated level of data (national level), electricity consumption under 

differing block pricing structures make it impossible to determine marginal price. Thus, as a 

measure of electricity price, we use the ex post average price, computed as total 

expenditure on electricity divided by total kilowatt hours consumed. Van Helden et al. 

[1987] estimated residential electricity demand functions using different price variables 

and found support for using average price in the demand function for electricity. 

In the empirical specification of the ECM, the practice is to include other exogenous 

variables and allow a richer dynamic structure by including lags of the short-run terms. 

However, since the number of lags to include is unknown, it has to be empirically 

determined and the suggested procedure is to “test down” the lagged terms and produce a 

parsimonious model without violating the usual diagnostic tests. 

In addition to real GDP and electricity price, we include temperature as an 

exogenous variable that affects electricity consumption in the short run. Thus, the variables 

used in the model are  (a) total electricity consumption (Y, in GWh), (b) real gross domestic 

product (X, in 2000 pesos), (c) real electricity price (P, in 2000 pesos/KWh), and 

temperature (Z, in degrees Celsius). Real gross domestic product data was obtained from 

the Philippine Statistical Authority, total electricity consumption was obtained from the 

Department of Energy, and temperature was obtained from the Climate Research Unit of the 

University of East Anglia (graph of temperature is shown in Figure 4.1). Meralco average 

price was used as a proxy for electricity price. Meralco is the largest distribution utility, 

accounting for 55%-60% of total electricity sales during the last decade. Figure 4.2 shows 

the movement of the current and real prices, where the latter was obtained by using the 

GDP deflator. 
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Figure 4.1. Temperature 
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 Source of basic data: Climate Research Unit, University of East Anglia 

 

Figure 4.2. Electricity Price 
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Source of basic data: Current price provided by Meralco. Real price obtained by deflating current price 

by the GDP deflator. 

 

 



8 

 

Unit Root Tests and Cointegration 

Error-correction modeling requires determining the order of integration of each 

variable and is done by testing for the presence of a unit root. If a series has a unit root and 

its first difference is stationary or I(0), the series is integrated of order 1 or I(1). Testing for 

a unit root may be accomplished by using the Augmented Dickey-Fuller (ADF) Test (Dickey 

and Fuller [1979]). The null hypothesis in an ADF test is that the series under consideration 

has a unit root. The ADF tests showed that 𝑦𝑦𝑡𝑡 , 𝑥𝑥𝑡𝑡 , and 𝑝𝑝𝑡𝑡 are I(1) while 𝑧𝑧𝑡𝑡 is I(0) (Table 4.1). 

  

 Table 4.1. Summary of ADF Tests 

 Variable Symbol Exogenous 

regressors 

𝑡𝑡-Statistic 𝑝𝑝-value* Order of 

integration 

log(electricity 

consumption) 

𝑦𝑦 Constant, 

linear trend 

-2.0503 0.5433 I(1) 

 ∆𝑦𝑦 Constant -3.9126 0.0076 I(0) 

log(real GDP) 𝑥𝑥 Constant, 

linear trend 

-1.0151 0.9210 I(1) 

 ∆𝑥𝑥 Constant -4.1571 0.0045 I(0) 

log(price) 𝑝𝑝 Constant, 

linear trend 

-2.4878 0.3300 I(1) 

 ∆𝑝𝑝 Constant -5.1859 0.0005 I(0) 

log(temperature) 𝑧𝑧 Constant -4.0999 0.0048 I(0) 

 ∆𝑧𝑧 Constant -5.7135 0.0002 I(0) 
 *MacKinnon one-sided 𝑝𝑝-value. 

 

The next step is to determine if the economic variables, which are all I(1), are 

cointegrated, i.e., there is a long-run relationship among them given by the equation 

(cointegrating equation) 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝛽𝛽2𝑝𝑝𝑡𝑡 + 𝜀𝜀𝑡𝑡                                                            (4.1) 

  

where 𝜀𝜀𝑡𝑡 is the error term. A number of cointegration tests are available including the 

residual-based Engle-Granger [1987] test, the Hansen [1992] parameter instability test, and 

the error correction test (Enders [2010]; Kremers et al. [1992]). Although the Engle-

Granger test is popular, it has some problems such as the common factor restrictions 

problem, its low power, and small sample bias (Harris [1995]). Hansen’s test is based on the 

notion that parameter instability arises when there is no cointegration. It is implemented by 

estimating the cointegrating equation by the Fully Modified Ordinary Least Squares 

(FMOLS) procedure [Phillips and Hansen [1990]). The error correction test, suggested by 

Kremers et al. [1992]), tests the null hypothesis that the coefficient of the error correction 
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term is equal to zero. If the null hypothesis is true, then there is no cointegration; otherwise, 

cointegration is indicated.3 Kremers et al. [1992] showed that this test is more powerful 

than the Augmented Dickey-Fuller test because no common factor restrictions are imposed.  

 Equation (4.1) was estimated using the COINTREG command in EViews 9 and the 

result is presented in Table 4.2. The Hansen cointegration test is shown in Table 4.3. With a 𝑝𝑝-value of 0.125, the null hypothesis of cointegration cannot be rejected. 

 

Table 4.2. Estimation output for equation (4.1) 

      Dependent variable: 𝑦𝑦 

  Coefficient Std. Error 𝑡𝑡-Statistic 𝑝𝑝-value 𝑥𝑥 0.959 0.119 8.028 0.0000 𝑝𝑝 0.258 0.295 0.874 0.3930 

constant 2.389 0.7001 3.409 0.0029 𝑅𝑅2 = 0.94     

 

Table 4.3. Cointegration Test – Hansen Parameter Instability 

Equation Cointegrating 

Equation 

Deterministics 

Null Hypothesis Lc Statistic 𝑝𝑝-value 

Equation (4.1) Constant Series are cointegrated 0.341 0.125 

 

Although the variables are cointegrated, electricity price 𝑝𝑝 has a positive sign. As 

this does not conform to economic theory, the price variable was dropped from equation 

(4.1) resulting in the potential long-run relationship between electricity consumption and 

real gross domestic product: 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡                                                                 (4.2) 

 

This new cointegrating equation was estimated by COINTREG; the regression output is 

shown in Table 4.4 and the Hansen cointegration test result presented in Table 4.5. With a 𝑝𝑝-value greater than 0.2, we cannot reject the null hypothesis that the variables 𝑦𝑦 and 𝑥𝑥 are 

cointegrated. This result is confirmed in the next section where it is shown that these two 

variables have an error correction representation, a necessary and sufficient condition for 

cointegration by virtue of the Granger representation theorem.  

 

                                                           
3 This follows from the Granger representation theorem which states that a set of I(1) variables are cointegrated if and 

only if they have an error correction representation (Enders [2010]). 
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Table 4.4. Estimation output for equation (4.2) 

      Dependent variable: 𝑦𝑦 

  Coefficient Std. Error 𝑡𝑡-Statistic 𝑝𝑝-value 𝑥𝑥 1.014 0.174 5.842 0.0000 

constant 2.343 1.452 1.614 0.1223 𝑅𝑅2 = 0.94     

 

Table 4.5. Cointegration Test – Hansen Parameter Instability 

Equation Cointegrating 

Equation 

Deterministics 

Null Hypothesis Lc Statistic 𝑝𝑝-value 

Equation (4.2) Constant Series are cointegrated 0.173 > 0.2 

 

 

5. Estimation of the ECM and Statistical Tests  

 

 With the long-run relationship in equation (4.2), we specify an Error Correction 

Model that captures the short-run dynamics involving not only the short-run effects of real 

GDP but also of electricity price and temperature. After experimenting with different lag 

structures, we came up with the following single-equation ECM: 

 

ECM1:            ∆𝑦𝑦𝑡𝑡 = 𝛼𝛼1∆𝑥𝑥𝑡𝑡 + 𝛼𝛼2∆𝑝𝑝𝑡𝑡−1 + 𝛼𝛼3∆𝑧𝑧𝑡𝑡 + 𝜆𝜆(𝑦𝑦𝑡𝑡−1 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑡𝑡−1) + 𝑣𝑣𝑡𝑡                     (5.1) 

 

We note that the single-equation ECM can be used only when the cointegrating vector is 

unique and the variables on the right-hand side are weakly exogenous (Harris [1995]). The 

uniqueness of the cointegrating vector follows from the fact that the cointegrating equation 

has only two variables. Weak exogeneity is established by showing that ∆𝑥𝑥𝑡𝑡, ∆𝑝𝑝𝑡𝑡−1 and ∆𝑧𝑧𝑡𝑡 
do not depend on the long-run disequilibrium represented by 𝑢𝑢�𝑡𝑡−1 in equation (4.2) (Harris 

[1995], Enders [2010]): 𝑢𝑢�𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑥𝑥𝑡𝑡−1 

 

Obviously, temperature does not depend on the disequilibrium but we need to test the weak 

exogeneity of real gross domestic product and price. We do this by regressing ∆𝑥𝑥𝑡𝑡 and ∆𝑝𝑝𝑡𝑡−1 

on 𝑢𝑢�𝑡𝑡−1 and determining if the coefficient of 𝑢𝑢�𝑡𝑡−1 is not significantly different from zero 
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using the 𝑡𝑡-test. The 𝑡𝑡-test is applicable since the variables in the regression are I(0). The 

results of the tests are reported in Table 5.1. 

 

Table 5.1. Tests of Weak Exogeneity 

 ∆𝑥𝑥𝑡𝑡  ∆𝑝𝑝𝑡𝑡−1 

Constant 𝑡𝑡-value 𝑝𝑝-value          

0.0444 

(10.5520) 

(0.0000) 

0.0043 

(0.2699) 

(0.7902) 𝑢𝑢�𝑡𝑡−1 𝑡𝑡-value  𝑝𝑝-value         

0.0079 

(0.1500) 

(0.8823) 

0.3252 

(1.4698) 

(0.1580) 

F 𝑝𝑝-value      

0.0225 

(0.8822) 

2.1604 

(0.1579) 𝑅𝑅2 0.0011 0.1021 

 

 

The test equations in Table 5.1 pass the standard diagnostic tests. Since the coefficients of 𝑢𝑢�𝑡𝑡−1 are not significantly different from zero, we conclude that real gross domestic product 

and electricity price are weakly exogenous. 

Model (5.1) may be estimated by the two-step residual-based Engle-Granger 

method (Harris [1995]) but the recommended approach is to estimate the long-run 

relationship jointly with the short-run dynamics as given in model (5.1). This approach is 

preferred because estimating the cointegrating equation (4.2) separately results in 

considerable small-sample bias (Kennedy [2003]; Banerjee et al. [1993]; Inder [1993]). 

Moreover, Bewley [1979] showed that simultaneous estimation results in more efficient 

estimates of the long-run parameter. To estimate model (5.1), we rewrite it as 

 ∆𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1∆𝑥𝑥𝑡𝑡 + 𝛼𝛼2∆𝑝𝑝𝑡𝑡−1 + 𝛼𝛼3𝑧𝑧𝑡𝑡 + 𝜆𝜆𝑦𝑦𝑡𝑡−1 + 𝛾𝛾𝑥𝑥𝑡𝑡−1 + 𝜈𝜈𝑡𝑡                           (5.2) 

 

where 𝛼𝛼0 = −𝜆𝜆𝛽𝛽0 and 𝛾𝛾 = −𝜆𝜆𝛽𝛽1. Note that the long-run parameters 𝛽𝛽0 and 𝛽𝛽1 are identified 

since 𝛼𝛼0, 𝜆𝜆, and 𝛾𝛾 are estimated in (5.2). Model (5.2) was estimated using data for the period 

1992-2014 and the regression results are shown in Table 5.2.  
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Table 5.2. Estimated ECM1: Annual Electricity Consumption 

      Dependent variable: ∆𝑦𝑦 

     
 Coefficient Std. Error 𝑡𝑡-Statistic 𝑝𝑝-value 

Constant 1.164 0.163 7.142 0.0000 ∆𝑥𝑥 0.937 0.212 4.422 0.0005 ∆𝑝𝑝−1 -0.132 0.054 -2.470 0.0260 ∆𝑧𝑧 1.417 0.414 3.417 0.0038 𝑦𝑦−1 -0.188 0.055 -3.413 0.0039 𝑥𝑥−1 0.105 0.060 1.751 0.1003 𝐹𝐹 = 16.94    0.0000 𝑅𝑅2 = 0.85 𝐷𝐷𝐷𝐷 = 1.25    

 

 

The estimated equation passes Ramsey’s RESET test for specification error, Breusch-

Godfrey Serial Correlation LM Test, Breusch-Pagan-Godfrey Heteroskedasticity Test, the 

Jarque-Bera Normality of Residuals Test, the CUSUM Test and the CUSUM of Squares Test 

for parameter stability (Vogelgang [2005])4. A summary of these test results is given in 

Table 5.3 and in Figure 5.1 and Figure 5.2. 

 

 

 Table 5.3. Summary of Statistical Diagnostic Tests for ECM1 (Table 5.2) 

 

Test H0 Statistic 𝑝𝑝-value 

Ramsey’s RESET No specification error 0.6625 0.4293 

Breusch-Godfrey Serial 

Correlation LM Test 

No serial correlation 5.6834 0.1280 

Breusch-Pagan-Godfrey 

Heteroskedasticity Test 

No heteroskedasticity 4.9300 0.4245 

Jarque-Bera Normality Test Normal residuals 0.2916 0.8643 

 

 

 

 

 

 

 

 

                                                           
4 Because of the small sample size, these tests are indicative rather than exact tests. 
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Figure 5.1. The CUSUM TEST 

 

The graph of the CUSUM Test statistic is inside the 5% significance level bounds; hence, the 

parameters are stable. 
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Figure 5.2. CUSUM OF SQUARES TEST 

 

The graph of the CUSUM of Squares Test statistic is inside the 5% significance level band; 

hence, the parameters are stable. 
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The estimated equation is written in ECM equation form (5.1) as 

 ∆𝑦𝑦𝑡𝑡 = 0.937∆𝑥𝑥𝑡𝑡 − 0.132∆𝑝𝑝𝑡𝑡−1 + 1.417∆𝑧𝑧𝑡𝑡 − 0.188(𝑦𝑦𝑡𝑡−1 − 6.191− 0.558𝑥𝑥𝑡𝑡−1)         (5.3) 

 

The results show that short-run changes in real gross domestic product and temperature 

have significant positive effects on electricity consumption while short-run changes in price 
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have significant negative effects. The speed of adjustment, denoted by 𝜆𝜆 in equation (5.1) 

and whose estimate is −0.188, has the correct sign in accordance with convergence toward 

long-run equilibrium. Moreover, it is significantly different from zero, indicating that an 

error correction representation exists, thereby confirming, by the Granger Representation 

Theorem, the earlier result that electricity consumption and GDP are cointegrated. It says 

that about 19% of the discrepancy between actual and equilibrium value of electricity 

consumption is corrected every year. 

The short-run price elasticity of −0.13 is significant and conforms to the common 

finding that in the short run, electricity demand has a low sensitivity to price (Zachariadis 

[2010]; Galindo [2005]; Hunt and Manning [1989]; Bianco et al. [2010]). 

The model estimates a short-run income elasticity of 0.94 which is higher than the 

estimated long-run income elasticity of 0.105/0.188 = 0.56. This result, where short-run 

income elasticity is higher than long-run income elasticity, has also been observed in other 

countries (Hunt and Manning [1989] for UK and Amarawickrama and Hunt [2008] for Sri 

Lanka). They argued that an increase in income causes “an immediate increase in derived 

demand for energy in the short-term, but this derived demand is reduced in the longer-term 

as more energy efficient machines are installed” (Hunt and Manning [1989]). In the 

Philippines, some indication of energy efficiency can be observed during the period 2003-

2014, coinciding with the second half of the estimation period. Energy efficiency may be 

measured by energy intensity, defined as electricity consumption per unit of output. Energy 

intensity steadily declined from 13.21 GWh/billion pesos in 2003 to 10.78 GWh/billion 

pesos in 2014 or an average decline of 1.8% per year. This suggests that, during the 2003-

2014, the Philippines was producing more output with less energy. 

 

6. Model Forecasting Performance 

 

The forecasting performance of models is usually measured by the accuracy of the 

model’s forecasts. The most widely used measure of accuracy is the mean absolute percent 

error (MAPE)5 which has the advantage of being dimensionless. The estimated model 

performed well in historical simulation with an MAPE of 1.47%. In addition, the Theil 

inequality coefficient of 0.009 is close to zero, where zero indicates a perfect forecast 

                                                           

5 MAPE =
1𝑇𝑇∑ �𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡𝑦𝑦𝑡𝑡 � × 100𝑇𝑇𝑡𝑡=1 , where 𝑦𝑦𝑡𝑡  is the actual value of the dependent variable and 𝑦𝑦�𝑡𝑡  is the predicted 

value. 
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(Vogelvang [2005]).  The actual and forecasted electricity consumptions for the estimation 

period are graphically shown in Figure 6.1.  

 

 Figure 6.1. Historical Simulation: 1992-2014 
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Out-of-Sample Forecast Performance 

 

  Besides model performance “within-sample”, as was done above, the model is also 

tested “out-of-sample”, where forecasts are made ex post (i.e., forecasts for which actual 

values are known but are outside the estimation period). For this purpose, the model was 

reestimated over the sample period 1992-2010, making 2011-2014 the holdout period. The 

reestimated model’s forecast in the holdout period had an MAPE of 0.97% and a Theil 

inequality coefficient of 0.006. These results validate the within-sample performance of the 

model. The graphs of the out-of-sample forecast together with the actual values are shown 

in Figure 6.2. 

 

Figure 6.2. Out-of-Sample Forecast 
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A Comparison with Other Models 

 

It would be interesting to see if the presence of drivers of electricity consumption 

other than GDP, as in ECM1, improves the forecasting ability of the error correction model. 

So we construct another ECM, denoted as ECM2, with real GDP as the only explanatory 

variable. We also present the forecasting performance of an elasticity-based model (where 

elasticity is the elasticity of electricity consumption with respect to real GDP). This is a 

commonly used forecasting method in the absence of an econometrically developed model 

because it is simple, can be done quickly, and does not require a sophisticated forecaster to 

implement. These models are presented below.  

 

(a) ECM2: ECM with GDP as the only explanatory variable 

Table 6.1. Estimation of ECM2 

      Dependent variable: ∆𝑦𝑦 

     
 Coefficient Std. Error 𝑡𝑡-Statistic 𝑝𝑝-value 

Constant 0.927 0.226 4.095 0.0007 ∆𝑥𝑥 1.002 0.340 2.949 0.0086 𝑦𝑦−1 -0.133 0.075 -1.783 0.0914 𝑥𝑥−1 0.062 0.085 0.727 0.4764 𝐹𝐹 = 6.35    0.0040 𝑅𝑅2 = 0.51 𝐷𝐷𝐷𝐷 = 2.20    

 

(b) Elasticity-based model 

 In income elasticity-based forecasting we use the following definition of income 

elasticity of demand (𝜂𝜂𝑡𝑡): 𝜂𝜂𝑡𝑡 =
(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡−1)/𝑌𝑌𝑡𝑡−1

(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1)/𝑋𝑋𝑡𝑡−1, 

 

where 𝑌𝑌𝑡𝑡 is total electricity consumption and 𝑋𝑋𝑡𝑡 is real GDP. Solving for 𝑌𝑌𝑡𝑡, we get 

 𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 �𝜂𝜂𝑡𝑡 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1𝑋𝑋𝑡𝑡−1 + 1� .                                                   (6.1) 
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A historical value of 𝜂𝜂 is obtained and assumed to remain constant in the forecast horizon. 𝑌𝑌𝑡𝑡 is forecast given a starting value 𝑌𝑌0 and the assumed values of 𝑋𝑋𝑡𝑡 in the forecast horizon. 

For our purpose, we use 𝜂𝜂 = 1.016, the average of the yearly income elasticities for the 

period 2007-2010, the four years prior to the holdout period 2011-2014.  

The three models are compared with respect to their out-of-sample MAPEs and 

Theil inequality coefficients. These are presented in Table 6.2. The results show that ECM1 

outperforms the other models. Thus, the presence of drivers of electricity consumption 

other than GDP appears to improve the forecasting performance. It is also worth noting that 

ECM2 outperforms the non-ECM elasticity-based model. 

 

Table 6.2. Forecasting Performance of Three Models 

Model Out-of-Sample Performance 

MAPE THEIL 

ECM1 (Table 5.1) 0.97% 0.006 

ECM2 (Table 6.1) 1.62% 0.012 

Elasticity-based model 2.55% 0.014 

 

 

7. Forecasting: A Scenario Analysis  

 

This section presents the results of simulations for the forecast horizon 2015-2030.  

We stipulate a baseline forecast where the drivers of electricity consumption in ECM1 (real 

GDP, electricity price, and temperature) follow historical trends. Several alternative 

scenarios examine how changes in these drivers affect electricity consumption over the next 

15 years when compared with the baseline forecast.  

The baseline forecast assumes the following: real GDP grows at a rate of 6% per 

year, the growth rate during the last five years (2010-2014) of the estimation period; 

electricity price and temperature follow their historical trends. The results are given as 

Scenario 1 (Baseline) in Table 7.1. Under the baseline forecast, electricity consumption will 

grow at an average annual rate of 3.41% from 80,542 GWh in 2015 to 133,193 GWh by 

2030, an increase of 65%.  
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Table 7.1. Simulated Effects of Alternative Scenarios 

 

Scenario 

Number 

Assumptions Forecast Annual 

Growth Rate: 

2015-2030 

Forecast for 

2030 (GWh) 

% Increase 

over base 

case 

1. Baseline 

    GDP Growth 

GDP annual growth rate:  6% 

Price: historical trend 

Temp: historical trend 

3.41% 133,193  

2. High GDP 

    Growth 

GDP annual growth rate: 7% 

Price: historical trend 

Temp: historical trend 

4.02% 146,715 10.15 

3. Low GDP 

    Growth 

GDP annual growth rate: 5% 

Price: historical trend 

Temp: historical trend 

2.76% 120,146 - 9.80 

4. Price  

    Reduction 

GDP annual growth rate: 6% 

Price: reduction by 1%/year 

Temp: historical trend 

3.45% 133,989 0.60 

5. Temp. 

     Increase 

GDP annual growth rate: 6% 

Price: historical trend 

Temp: 0.05°C increase/year 

3.79% 135,016 1.37 

6. Combined 

    Changes 

GDP annual growth rate: 7% 

Price: reduction by 1%/year 

Temp: 0.05°C increase/year 

4.20% 149,617 12.33 

  

 

The Impact of High and Low GDP Growth Rates 

 

The high GDP growth rate (Scenario 2) assumes a growth rate of 7% per year while 

the low GDP growth rate (Scenario 3) assumes 5% per year. Electricity price and 

temperature follow their historical trends. The results are given in Table 7.1. Under the high 

GDP growth scenario, electricity consumption will grow at the rate of 4% per year and by 

2030, electricity consumption will reach 146,715 GWh, about 10% higher than under the 

baseline scenario. This will require an additional generation capacity of about 1,540 MW. 

On the other hand, under the low GDP growth scenario, electricity consumption will grow at 

2.76% per year and by 2030, electricity consumption will reach 120,146 GWh which is 9.8% 

lower than under the baseline scenario. The three scenarios are graphed in Figure 7.1. 
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 Figure 7.1. Electricity Consumption Forecasts Corresponding to Low, Baseline, and High 

                                    GDP Growth Rates 
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The Impact of a Price Decrease 

 

 In this forecast (Scenario 4) we assume the baseline scenario for GDP growth (6%), 

a 1% per year decline in real electricity price, and a temperature that follows its historical 

trend. The effect is to increase the growth rate of electricity consumption from 3.41% to 

3.45% and by 2030, electricity consumption will reach 120,146 GWh, just about 0.6% 

higher than under the baseline scenario. This small effect is expected because of the low 

price elasticity in absolute terms. 

 

The Impact of a Temperature Increase 

 

 

 In this scenario (Scenario 5), we assume that GDP grows at 6% per year, electricity 

price follows its historical trend, and temperature increases at the uniform annual 

increment of 0.05°C from 26.2°C in 2014 to 27.0°C in 2030.6 Although the temperature 

elasticity of demand is greater than 1, the increase in consumption is not large because the 

projected temperature increase by 2030 is only 0.8°C. Electricity consumption will reach 

135,016 GWh by 2030, 1.37% higher than the baseline. 

 

                                                           
6 Temperature is projected to increase between 0.9°C and 1.1°C from 2000 to 2020 (Cinco et al. [2013]). Taking the 

midpoint projection at 1°C and dividing by 20 years, we get 0.05°C per year. This projection was extended to 2030. 
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The Impact of Combined Changes in the Explanatory Variables 

 

 Besides looking at the impact of each explanatory variable separately, it is also 

useful to look at the impact of the combined changes of the explanatory variables. This 

simulation (Scenario 6) combines the assumptions of the previous simulations: (a) high 

GDP growth of 7%, (b) a 1% per year decline in electricity price, and (c) a uniform increase 

in temperature of 0.05°C per year up to 2030. As expected, electricity consumption and its 

growth rate are higher. Under this scenario, electricity consumption will reach 149,617 

GWh by 2030, 12.33% higher than under the baseline scenario. Compared with the high 

growth scenario (Scenario 2), this is higher by 2,902 GWh. Thus, the effect of including price 

and temperature changes to changes in GDP is to increase electricity consumption by about 

2%. 

 

Figure 7.2. Result of Simulation with Combined Changes in All Explanatory Variables 
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8. Concluding Remarks 

 

The aim of this paper is to construct an error correction model for forecasting electricity 

consumption in the Philippines based on income, price, and temperature. The empirical 

evidence shows that there is a long-run positive and inelastic relationship between 

electricity consumption and income. We find that income, price, and temperature have 

significant short-run effects. Short-run demand is positive and inelastic with respect to 

income, negative and inelastic with respect to price, and positive and elastic with respect to 
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temperature. Despite the small sample size, the model passes the standard diagnostic and 

parameter stability tests and performs well in within-sample and out-of-sample forecasting. 

It can be used not only for forecasting but also for exploring, through simulations, how 

changes in income, price, and temperature affect future electricity consumption. 

The simulations confirm that, in the long run, electricity consumption is mainly driven 

by economic growth. If GDP growth rate increases from 6% per year to 7%, electricity 

consumption grows by 82% from 80,542 GWh in 2015 to 146,715 GWh in 2030, the latter 

increasing the baseline by 10%. Although the effect of electricity price on electricity 

consumption is small (because of low price elasticity in absolute terms) and the effect of 

temperature change is also small (because annual average temperature change is small), 

their joint effects could add up and our simulation indicates that under very conservative 

assumptions, electricity consumption at the end of 15 years could rise further by 2%. Thus, 

it is important for planners to know the likely directions that the driver variables will take 

in order to account for their combined effects. This will provide a more accurate forecast of 

electricity demand and consequently, a more accurate determination of the generation 

capacity needed to meet the demand. 
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