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Abstract

This paper examines the extent to which flood-risk revisions, on their own, can

affect the size of the community and real estate values over time. I compile a new

measure of insured and uninsured losses for 4,147 communities and identify relatively

small flood events that occur in places with different flood history. I show that flood

history determines the extent to which events are anticipated and covered by insur-

ance. Only locations with flood surprises experience declines in population. These

occur in attractive communities with high pre-flood growth where real estate prices do

not compensate for higher flood risk. Flood surprises in communities where housing

prices decrease and compensate for higher risk have stable population.
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1 Introduction

Flooding is a frequent concern across the US since damage to buildings and equipment is

hard to reverse. This is why the US Government maintains a subsidized flood insurance

program which conveys local risk through designated flood zones. Changes in climate, local

development, and outdated prevention can shift risk beyond these zones, prompting house-

holds to learn about risk through experience and update their expectations. When a flood

actually occurs we usually see jumps in insurance take-up, either by rational choice or due

to relief requirements.1 This implies that flood-prone places tend to be insured, while low

flood-history places have higher take-up only after surprise-driven increases in perceived risk.

Flood events do not just affect future risk. A sizable impact on the housing stock or pro-

ductivity can decrease the size of the community, at least in the short term. While health

hazards have been shown to affect population and house prices, there is little evidence related

to flood risk, particularly in the absence of confounding housing or productivity effects.23

This paper examines the extent to which changes in flood risk – in the absence of housing

supply or productivity shocks – can affect the size of the community and real estate values

over time. The availability of insurance is important for each of these. Increased risk can be

offset with insurance, as required by zoning changes or by rational choice. Yet, this raises the

cost of living in the community.4 Additionally, there are other costs such as foregone wages

and temporary relocation expenses which are not insurable. The size of the community

can decrease with higher risk as it becomes less attractive compared to other places with

similar characteristics but unchanged flood risk. This is a standard implication of models of

location choice such as Bunten and Kahn (2014). The effect is minimized by the durability of

1See Gallagher (2014) and Kousky (2017)
2Examples of papers that show that increased environmental hazard decreases population density are

Banzhaf and Walsh (2008), Kahn (2010), Greenstone and Gallagher (2008). Davis (2004) shows that real
estate values decrease with increased health risk.

3The literature on natural disasters such as Boustan et al. (2012, 2017), Strobl (2011), and Deryugina
(2017) has focused on the composite effect of risk revision and direct damage.

4Insurance premiums vary by house elevation. This can further encourage significant upgrades in the
existing structures and increase cost of living in the community.
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existing houses (Glaeser and Gyourko 2005), making population less sensitive to increases in

risk as house prices will compensate for the insurance cost. However, in the case of growing

communities with new construction, higher risk can delay land development and increase

house prices (Capozza and Helsley 1990). Homes in these areas are also likely to have higher

price-to-cost ratios, which encourages investments in home improvement, increasing house

prices after a flood (Gyourko and Saiz 2004). Finally, stringent land-use regulation can

further slow down the growth of a community after risk revisions (Gyourko et al 2008).

As a result, newcomers, who choose among a set of destinations, may steer away. Higher

flood probability can, therefore, affect the size of the community, especially if it has been an

attractive destination prior to the risk revision.

The main results focus on risk revisions due to unusual but small flooding. They are based

on a new dataset of insured and uninsured damage for 4,147 communities in 38 states between

2003 and 2013. Expectations are the main driver since relative damages are small.5 I separate

communities into high- and low-history of flooding based on the number of structures fully

destroyed in the past 25 years. The main evidence compares population and house price

changes for communities above and below the state median (alternatively with and without

prior destruction).6 Some locations can be attractive destinations with significant population

growth due to productivity shocks (Blanchard and Katz 1992), the presence of human capital

(Glaeser et al. 1995) or other amenities (Glaeser et al. 2001). Since booming and declining

communities experience contrasting housing and productivity conditions, risk revisions can

have different impact. To explore this interaction, I further divide locations based on their

pre-flood growth. Finally, I examine regional differences, risk spillover to neighbors, the role

of local social capital, and regulatory stringency.

The evidence suggests that flood history is important for the perceived flood risk as

revealed by insurance purchases. Locations with high flood history have a higher footprint

5For the distribution of damages as a fraction of local real estate value 0.87% represents the 95th percentile.
6I use the total number of building completely destroyed by flooding since 1978. While local risk can

be based on events that occurred before 1978, Boustan et al. (2017) show that migration flows were not
sensitive to disasters prior to 1978.
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in a flood zone, more insurance purchases, and a higher insurance coverage. They get 23%

more insurance payouts after a flood, controlling for total losses. This likely reflects not only

the higher number of people required by the flood zoning to purchase insurance but also the

higher perceived risk in the proximity. In these communities population and house values

are not affected after flooding. This is consistent with the higher insurance coverage and

with population sorting emphasized by Bunten and Kahn (2014). Smaller floods may also

not be sufficient to raise risk expectations in communities with history of damages.

Places with low flood history respond very differently to floods. They utilize insurance

much less, which suggests that when floods do occur they are not widely expected and

constitute surprises. This limits the concern related to population sorting based on flood

risk prior to the surprises. Smaller payouts after events indicate that floods occur outside

the flood zone or that insurance take-up within the zone is small. In a simple specification,

population in the year following the surprise declines by 0.3% relative to a fixed effect and

a linear trend. This effect is persistent and also includes a break in the pre-flood trend,

which has a significant compounded long-term impact. With controls for the composition of

the damage and community characteristics the impact is substantially higher: 1.2% initial

drop and 0.6% lower pre-flood trend. The population effects are mostly driven by attractive

communities with positive pre-flood growth. Non-growing communities do not lose additional

population. Instead, they see close to a 4% drop in real estate values, with the biggest

effect among expesnive housing. This is consistent with evidence from Glaeser and Gyourko

(2005) where adjustments in house values can limit population changes. The fact that more

expensive housing declines echoes Boustan et al. (2017) and Strobl (2011) who find that high-

income individuals leave affected communities. Interestingly, in the attractive communities

house prices do not decline, only population growth is affected. This is consistent with the

model of Capozza and Helsley (1990) where higher uncertainty delays new construction and

increases its price. The combination of higher price for new construction and lower demand

for new housing can explain the fact that real estate prices remain unchanged. Alternatively,

3



population-driven decline in demand for housing may not affect prices if owners of existing

houses invest in substantial home improvement after flooding.7 This is likely to be the

case in growing communities where price is above replacement cost as shown by Gyourko

and Saiz (2004). Finally, regional evidence shows that the population decline in attractive

communities after a flood surprise is a general phenomenon across the nation.

All together, the results suggest the following interpretation. Flood surprises increase

expected probability of a future flood which, in turn, raises the cost of living. In locations

where demand for housing is low, existing structures are sold at a discount that covers the

additional cost. This appears to be sufficient to maintain the existing population trajectory.

In locations where demand for housing is high, increasing risk delays/increases the price of

new construction, which drives new movers to other destinations.

Climate change will likely cause some significant flood events but, more importantly, it

will also change expected risk across a much wider set of communities. The evidence here

helps understand how risk affects where people live and how much they pay for housing.

Historical experience with flooding leads to the institution of local preventive measures such

as zoning, which requires mandatory insurance coverage. Consequently, additional flooding

is in line with expectations and only generates insurance payouts. Flood surprises, on the

other hand, deviate from expectations and raise flood risk. Even without productivity and/or

house supply reduction, higher risk will not just increase insurance purchases but will also

reduce the total number of people that choose to live there. The attractiveness of the

community determines the impact of surprises: places with strong demand for new housing

experience population declines; places with weaker demand see lower house prices.

This paper can be placed within several different literatures. First, it is related to the

vast literature on local outcomes, which examines factors that cause the rise and fall of the

economic status of different communities. Within this literature Moretti (2011), Diamond

(2014), and Notowidigdo (2011), among others, use the concept of the spatial labor market

7Homeowners likely raise existing structures to decrease insurance premiums and do general home im-
provements at the same time.
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equilibrium and focus on the effect of productivity or amenity shocks on local population,

wages, and house prices. I emphasize the impact of changes in expectations related to

amenities and, therefore, build on insights from Topel (1986). I further show that durable

housing, as originally discussed by Glaeser and Gyourko (2005), is key to understanding

why flood-risk shocks have asymmetric impact across growing and declining locations. A

different set of papers, reviewed by Rosenthal and Ross (2015), more generally study what

causes population and economic differences across communities. Davis (2004), Banzhaf and

Walsh (2008), and Kahn (2010) examine the effect of environmental risks on population and

housing. The former finds compensating declines in real estate values, while the latter two

find a negative association between population and health risk. Albouy et al. (2016) studies

the preference for climate and how climate change will affect welfare across the US.

The paper is also related to the literature on natural disasters. This literature mostly

focuses on the effect of hurricanes at different geographical levels and measures damage in

a variety of ways. The current study also includes hurricanes since they produce signifi-

cant flood damage. Strobl (2011) uses wind speed as a proxy for damage and finds that

hurricanes lower county GDP by 0.5% and do not change total population but affect its

composition. Deryugina (2017) uses hurricane paths and simulation estimates of damage to

examine the disaster and non-disaster transfers to affected communities as well as the effect

on demographic and economic variables. She finds that population is not affected. Both

papers utilize county-level data and hurricane paths. Boustan et al. (2012, 2017) studies

the impact of disasters historically and over a long period of time and finds negative popu-

lation effects. Bin and Polasky (2004) focus on one county and one hurricane and find price

declines within the flood plane. Hallstrom and Smith (2005) focus on a different county and

show that a “near miss” hurricane still lowers prices in the flood plane. Murphy and Strobl

(2010) find that coastal cities see increases in house values after hurricanes. The current

study extends this literature by unpacking the composite effect of a natural disaster and

focusing on the risk channel. It emphasizes the importance of pre-existing expectations and
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the availability of insurance. It shows that underlying factors that affect the attractiveness

of the community interact with risk revisions and determine whether population or house

values are ultimately impacted. Finally, the analysis uses a more granular level while still

covering the whole country.

This paper is also related to the literature on expectation formation and learning after

rare events. It is close to Gallagher (2014) which examines the change in insurance take

up after flood events. The paper concludes that flood events lead to revisions of perceived

risk which lead to higher insurance purchase that is not very persistent. The evidence is

complementary to my findings since it suggests that living in flooded communities becomes

more expensive.

The rest of the paper is structured as follows. Section 2 discusses the institutional details

of the flood insurance program and describes how the flood data was compiled. Section 3

presents the main results. Section 4 examines the regional heterogeneity of the main results.

Section 5 includes extensions and robustness and Section 6 concludes the paper.

2 Flooding Dataset and Institutional Details

Flood damage can be insured or uninsured. In order to properly measure overall damages

from an event one needs to account for both. The existing literature on natural disasters

does not utilize actual recorded damages but estimates them based on disaster declarations

across counties and hurricane paths. An important part of the data-building exercise for this

paper is to properly account for insured damage.

Flood insurance in the US is administered by the federal government through the National

Flood Insurance Program (NFIP). The program makes insurance available to communities –

cities, towns, townships, counties – that maintain a flood zone map and enforce local building

code. The map delineates Special Flood Hazard Areas (SFHA) with varying degrees of flood

risk. Two general SFHAs are the 100-year and 500-year flood zones, where flood is expected
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to occur with certainty every 100/500 years respectively. The risk within the 500-year SFHA

is not uniform – areas close to the 100-year zone will have a higher risk of flooding if the

geography is similar. Insurance purchase is mandatory for structures within the 100-year

zone but not required elsewhere. This is important because risk expectations rather than

local regulation will determine the insurance purchase outside of the 100-year zone. Kousky

(2018) provides an in-depth discussion of the NFIP.

The flooding dataset is based on the NFIP’s insured damage and on the FEMA/Small

Business Administration (SBA) information on uninsured damage. The sample covers 38 US

states with disaster declarations related to flooding. Data is aggregated at the community

level, which includes 4,147 distinct location with median size of 34 thousand people. The

insured damage is matched to actual disaster declarations which, in turn, are associated to

uninsured damages. 75% of community/year cases feature total losses based on insured and

uninsured damage. All together, total damage in the data has four components: insured

individual/business from NFIP; uninsured individual from FEMA and SBA; uninsured busi-

ness from SBA; uninsured public from FEMA. Here, I focus primarily on total damage. The

components are only used to control for events where most of the damage comes from one of

the source. Finally, I have limited information on the number of policies and total coverage

for a subset of years in the sample. Appendix A2 has additional information about the data.

Population information comes from the annual US Census estimates for cities and towns.

The geographical detail of this data maps directly into the community level of the flood

damage data. Locations with less than fifteen thousand people are combined with the

county balance areas to make sure that results are not driven by very small settlements.

Real estate information comes from the Zillow service and is available at the zip-code level.

It provides estimates of house values separated into three tiers. These are calculated by

splitting the price distribution of all housing into three parts and reporting the middle point

of each. Any zip-code level information is imputed to the level of the community by using
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census-block-based population weight for each zip code.8 The rest of the information used

in this paper comes from the 2000 US Census data at the block-group level.

The paper identifies floods according to the relative size of the damages. Cases where

more than 0.01% of the total real estate value of the community is destroyed constitute a

flood event while the rest are censored. I focus on a wide spectrum of events because relative

damage is context specific – less destructive floods can have significant impact on perceived

risk if they occur in areas with no flood history. I also replicate the main results in the paper

using a cut-off of 0.02% and after dropping locations with damage over 8.66%.

The first panel of Figure 1 shows all communities that flooded between 2003 and 2013.

Flooding appears to be widespread across the country and not only a coastal phenomenon.

In the interior, major floods result from significant rain or snowmelt which causes rivers

and creeks to spill in the surrounding areas. Some of the communities experience repeated

disasters during the sample period. The are separated into a different category since their

event study explicitly includes an interim period. Furthermore, the fact that these places

flood so frequently suggests that they are fundamentally different from the rest of the cases.

One example of this is the really high footprint in a flood zone as shown in the summary

statistics. The second panel of Figure 1 shows single and multiple flood locations. There are

about three times more single than multiple hit places (1,519 vs 542). A significant portion

of the latter are located by the coast while the former are more uniformly distributed.

I identify flood surprises using the total number of housing structures that were com-

pletely destroyed due to flooding between 1978 and 2003. Note that I have information on

total dollar amounts paid since 1978 but this is not ideal since, without proper historical

discounting, this cannot be compared across locations. The number of buildings completely

lost to flooding, on the other hand, is readily comparable between communities. I further

normalize this number by the total building structures and compare to the state median

across all location that experience a flood. Communities below the median are considered

8This is a standard approach and is utilized in Banzhaf and Walsh (2008)
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low-risk. The occurrence of a flood there is assumed to generate a surprise. Using the median

ensures that there are sufficient number of places which can be placed within each category

and that the distinction between high and low surprise is region specific. In an alternative

specification where the surprise category is not state-specific, I assume that high surprise are

only communities with zero lost structures. While this reduces the number of high-surprise

communities it ensures that when floods occur they are not consistent with the historical

experience. The main results do not change substantially with this specification.

The second panel of Figure 2 separates the high/low surprise locations. These tend to be

contiguous, suggesting that flood surprises occur when a flood extends beyond a high-risk

area and into a low-risk one. High-risk areas also tend to be contiguous to multiple-flood

areas, which reinforces the assumption that the former are at a generally higher risk of

flooding. The map also confirms that high/low surprise locations are relatively close and are

part of the same economic area.

Table 1 list summary statistics by the number of floods while Table 2 does this by

categories of communities. Note that, for the case of single floods, the 95th percentile of

relative damage is 0.87%. This confirms that the flood shocks have a minimal effect of

supply of housing and that any effect they have should run through risk revisions. Locations

that experience significant relative damage are those with multiple floods in the sample. The

number of no-flood and single-flood places are closely matched (1,771 vs 1,519). This reflects

the fact that the sample excludes 12 states and that flooding is a widespread phenomenon.

These groups have similar population, income, growth, and housing values. The no-flood

group has a smaller footprint in a flood zone and less active insurance policies. The single-

flood group with low historical flooding (high surprise) is similar to the no-flood group. The

communities with high/low flood surprise differ on important characteristics driven by their

different historical experience. The latter have higher damage, higher insured damage share,

more people in a flood zone, higher historical destruction, more insurance policies. These

differences emphasize the extent to which high-surprise locations do not anticipate flooding.
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Comparing relative damage and the fraction of population in a flood zone, we can see that

the high-surprise communities likely experience damage outside the flood zone while for the

low-surprise communities the observed damage is within the flood zone. Comparing high-

surprise communities by pre-flood growth reveals that the two groups are similar but for the

difference in real estate values which reflect their attractiveness.

3 Main Results

The extent to which disaster damages affect community size and property values seems to

be determined by its historical experience. Flooding at communities with low flood history

constitutes a surprise which increases expected future risk and raises the cost of living in such

places. To set the stage for the formal results, consider the experience of three communities

in Connecticut: Milford, Bridgeport, and New Haven. All were affected by hurricane Irene

in 2011 and Sandy in 2012. Since the events were consecutive they fall in the single-flood

group with no interim period. Milford made it into the local news for the extent of losses

and the fact that no one had the intention to move. It suffered $90 mil in damages (0.5% of

real estate value) while Bridgeport and New Haven suffered $16 mil (0.12%)/$7 mil (0.05%).

The difference in damages implies that Milford should be affected significantly more but its

flood history suggests that the event was not such a surprise. Between 1978 and 2003 Milford

lost 6.2% of its structures due to flooding while Bridgeport and New Haven lost 0.7%/0.5%

respectively. Figure 3 shows the population growth for each of the communities. We see that

the population in Milford was not affected. At the same time the communities with smaller

overall damage but with relatively low history of floods experienced population declines.

Notice that the communities did not experience a large-scale disaster since damages were

relatively small. Nevertheless, they seem to have changed the expectations about future

flood risk and the attractiveness of the communities with low history.
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Flood Surprise and Insurance Payouts

The first set of formal results examines the extent to which historical flood losses can be

used to identify flood surprises. Regulations require that structures within the 100-year

flood zone carry insurance if they have a federally-backed mortgage. Insurance purchase for

any other structures depend on the perceived risk of a flood. High flood history increases

perceived risk and leads to insurance purchase. I examine this relationship by comparing the

average insurance payouts across the high- and low-flood history groups in the cross-section

of all events. If flood history does not affect the extent to which floods are anticipated we

should not see differences in insurance coverage across these groups. I test whether more

insurance payouts are generated in locations with historical flood exposure, holding total

damage constant, by estimating:

ln (Payouts)i = αt + βFi ×Dami + γFi ×Dami × LSurprisei + {MFl}+ ǫi (1)

where Payouts is total insurance payouts per capita after an event at community i and

αt is an year effect. Fi is an indicator for a flood at a single-flood location i, Dami is

total damage per capita, and LSurprisei is an indicator for low surprise flooding (high

flood history). {MFl} abbreviates the same set of indicators for locations with multiple

floods.9 Positive γ implies that the same damage generates more payouts in low surprise

communities. Additionally, I estimate the above model without controlling for damage. In

that case γ represents the additional insurance payouts generated during an average flood

event at communities with history of flooding. Finally, I estimate the model using active

insurance policies for the set of communities where this data is available.

Table 3 shows the estimation results. Communities with a low-surprise flood have signif-

icantly higher insurance payouts per capita during an average flood event (model 1). This is

consistent with the higher number of active insurance policies observed. These locations re-

ceive almost double the insurance compensation relative to locations with low history. Model

9Note that for the single-flood locations i represents both the community and the event whereas for the
multiple-flood locations it represents a particular event at a given community.
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2 of Table 3 explores the regional heterogeneity. High history is associated with higher in-

surance payout in all six US regions. Notice that the Mid-Atlantic and South Atlantic region

have higher than national average payouts but even there low surprise communities receive

higher amounts. Since this specification does not control for damage, the low surprise events

in those regions likely have more insurance payouts because the events are generally more

damaging. Model (3) controls for overall damage. 1% increase in total damage leads to

0.43% increase in insurance payouts at communities with low history of flooding and 0.66%

increase in payouts at high flood history locations. Communities with previous floods have

50% more of their damage covered through insurance compared to the rest. Note that low

flood communities still have insurance coverage since they also have flood zones. Yet, the

coverage is smaller since their flood zones are not sufficiently big and/or residents choose

to not buy insurance. Model (4) shows that this result is consistent across regions of the

US. Models (5) and (6) show that affected low-surprise locations have more active insurance

policies. In fact, even though the active-policies sample is smaller the difference between the

number of policies and payouts is remarkably similar.

Overall, the results provide further confirmation of the group differences observed in

the summary statistics. They show that more people live in a flood zone in communities

with high flood experience. The bigger zones are likely a result of the past flood history.

Nevertheless, if communities in both groups anticipate flood events equally we would not

observe differences in the insurance coverage since the low-history communities will choose

to buy insurance outside of the flood zones. The fact that even at the same damage level

low history places have lower insurance coverage suggests that they discount existing flood

risk. The results also suggest that high damages do not necessarily imply big losses for the

community since these may be covered by insurance depending on its history.
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Population Responses

Locations where flood risk is discounted can revise the expected likelihood of future flooding

after they experience such an event. These changes can have an important implication for

the size of the community. I examine how such a revision affects the population trajectory

by estimating the following model in several variations:

lnPopist = αi+ti+γst+β1Fit−1+β2PostFit−2+β3PostTrendit−2+δXit−1+{MFlit−1}+ǫist (2)

Log population for community i within state s in year t is explained by a community aver-

age, αi, community linear trend, ti, and a state-year effect, γst. This specification is flexible

enough to allow for time-invariant differences in settlement size and community-specific dif-

ferences in the population trajectory.10 The former is important given the heterogeneity

in community size in the data. The latter accounts for differences in productivity, ameni-

ties, and prior flood events which give rise to different population changes across locations.

The state-year effect captures variations in local population which can be traced to the

state/national level.11 The Great Recession is an important factor in the sample which has

affected population and can be accommodated with the state-year controls.

I identify the effect of floods by first separating communities according to the number

of floods they experience. For the single-flood group, I include an indicator for the year

after the flood, Fit−1 , an indicator for the period from the second year onwards, PostFit−2,

and a trend break after the flood, PostTrendit−2. The multiple-flood group includes an

indicator for the period(s) between the floods. The results in this paper focus on the single-

hit communities since they represent the bulk of the location count and the identification is

more straightforward. Note that communities with two consecutive-year events are classified

as single-hit. β1 represents the contemporaneous effect of the flood i.e. within the first

year; β2 captures the persistence of the initial effect; β3 allows for a change in the trend

10For a discussion of size and trend-difference see Desmet and Henderson (2014) and Desmet and Rappaport
(2017).

11Blachanrd and Katz (1992) discuss the important differences in population patterns across sates.
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relative to the pre-flood one. Xit−1 includes a set of additional indicators that have been

interacted with Fit−1, PostFit−2, and PostTrendit−2. These include indicators based on the

state distribution for: top 66th percentile of FEMA/NFIP/SBA business/SBA homeowners

damage shares; bottom 33th percentile of relative damages; top 50th percentile of share of

non-construction occupations; top 50th percentile of share of renters. The last two indicators

are based on the 2000 Census values and, therefore, are time-invariant. While the fixed

effects already control for these differences I can still identify whether locations with more

non-construction workers and more renters respond differently to flood events. The first

controls for two separate effects: availability of job opportunities outside construction, which

is usually over-represented in communities with less robust local economy; and the general

lack of construction workers, which can lead to the inflow of such workers in order to conduct

local repairs. Both of these are expected to lead to increases in population after a flood.

The second controls for the capacity to accommodate the displaced from floods, as well as

emergency or temporary workers. This can also lead to increases in local population even if

the community is hit by a flood. The control will not be sufficient if these additional workers

are placed in temporary housing. In this case it is important to examine the persistence

of the estimated flood impact since temporary workers will lead to a reversal of the initial

impact as they leave.

The baseline model assumes that flood surprises are not relevant. I extend this by allowing

for different responses across the high/low history communities. Finally, I separate the

impact by pre-flood population growth (last five years). Growing locations attract more new-

comers and experience demand for new housing because of improved labor market or/and

local amenities. Conditioning on pre-growth can reveal how persistent demand for housing

affects the overall response to a flood surprise. It also helps us interpret the trend break

by identifying whether growing or stagnant locations see a change in trajectory. Note that

pre-growth is time varying while the controls for the local economy/renters are not. The

former accounts for higher-frequency shocks while the latter identifies lower-frequency ones
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such as an urban status. For example, urban communities with diversified local economies

are not expected to necessarily be growing. For that to happen they need additionally to be

affected by a productivity shock. Although both factors are important the paper emphasizes

the effect of existing positive net migration – a higher-frequency shock – and simply control

for the time-invariant differences.

I also estimate the above model using a stricter criterion for the high-surprise category

– including only locations with no building destruction in the past 25 years. This limits the

number of high-surprise communities but ensures that the occurrence of a flood breaks with

the location’s history. Evidence from this specification can further confirm that results are

driven by changes in expected flood risk.

Table 4 shows the results from the population model. Each of the three versions of the

baseline model includes estimates without/with Xit−1 controls. Population at the average

location in model (1) is not affected by a flood. The average location from model (2) with

a less diversified economy and lower availability of rentals, among other controls, sees a

0.92% decline in population in the year following the event. This decline is persistent and is

accompanied by a 0.4% decline in the pre-flood trajectory. The difference in results comes

from the fact that the composition of the local economy, the availability of rentals, and the

share of FEMA-recorded damages each soften the flood impact or, in some cases, increase

population. While these are important results on their own the paper focuses on the impact

of flood surprises and persistent demand for new housing so they are designated to the set

of controls.12 Overall, model (2) shows that flooded places with lower rental share, higher

construction occupations share, and intermediate damage shares see a decrease in expected

population which is persistent and accompanied by a trend break. Even without accounting

for the level of surprise, population is negatively impacted.

The effect of flood surprises is identified in models (3) and (4). The evidence shows that

12Kahn (2009) points out that urban areas can experience population growth after a flood because the city
infrastructure provides safety. Since urban areas have more diversified economies and higher renter shares,
I implicitly account for this.
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population declines are significantly stronger in communities that experience a flood suprise.

An average location from (3) is only affected when the flood is unexpected. On impact,

population drops by 0.3%; the effect is persistent; pre-flood trend declines by 0.15% after

the event. Compared to (1), where floods do not affect population, we see that identifying

surprises is critical. This is consistent with the insurance results and suggests that revisions of

flood risk disrupt the pre-flood population dynamic. With controls, flood surprises generate

significantly bigger declines in population: 1.2% decline on impact, 1% in the post period,

and 0.6% decline in pre trend. Low surprise floods also affect population. Interestingly, the

regional results show that this effect is not a nation-wide phenomenon but comes from the

northeastern region. Both estimates (3) and (4) strongly suggest that population declines

when a flood is unexpected. While the initial decline in population is persistent it is still

relatively small at 1%. The trend break represents a much bigger impact on the population

of a community following the event. A 0.6% decline in the pre-trend amounts to a 3%/6%

lower population in 5/10 years. The fact that most events have relatively small magnitude

implies that the effect stems from revisions of risk expectations. Consequently, the biggest

population changes will not necessarily overlap with biggest damages. Note that flooding

seems to lead to some population increases in places with more diversified local economies

and more rental capacity. The result is consistent with findings in Boustan et al. (2012),

who show that floods actually increase population. This effect can offset the decline in

population from the increase in riskiness. In the cases of flood surprises the second effect is

much stronger and leads to overall decrease in population.

The evidence so far shows that surprises disrupt the pre-existing population trajectory.

A decline in the linear trend implies a slow down in expansion and stabilizing of population

in a growing location; in a stable or declining place it implies loss of population or an ac-

celeration of such loss. To help interpret the trend break I estimate separately the impact

for locations with positive (constant) and negative growth in the preceding five years. This

also helps understand how a productivity/amenity shock interacts with risk revisions. The
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results in (5) and (6) show that the surprise driven population decline occurs primarily in at-

tractive communities with non-negative pre-flood growth. Population drops by 0.55%/1.4%

without/with controls and remains lower in the post period. There is a decline in the pre

trend of 0.4%/0.8%. These communities effectively stop expanding after the flood surprise

and population becomes fixed at its pre-flood level. Locations with declining population are

either not affected (with controls) or see an increase (without controls). The difference in

outcomes suggests that the population decline is related to the demand for new housing or

excess of newcomers. This is consistent with a decrease in the attractiveness of the commu-

nity following a revision of expected flood risk. Importantly, it requires that the real estate

market does not fully compensate the risk increase with a discount that offsets the cost of

insurance. Similarly, the fact that lower growth communities are not affected suggests that

the real estate there may provide compensation for the higher risk.

Results in (7) and (8) show that a stricter definition of flood surprise is associated with

stronger declines in population. They imply that some of the locations with positive historical

destruction likely anticipate future flooding. Yet, given that the estimated coefficients are

similar this is not a big concern. Finally, Table A1 in the online appendix shows that the

results are not changed when I increase the cut-off for a flood event to 0.02%, which is the

25th percentile of the baseline sample as seen in the summary statistics. The results are also

not affected when I drop locations with more than 8.66% of damage, which is the the 95th

percentile of the baseline sample for locations with multiple flood events. These results are

listed in Table A2 in the online appendix.

It is possible that the observed interaction between pre-flood growth and flood surprises

is due to differences in income or local land-use regulation, not in the growth per se. For

example, weak regulation may be driving growth in locations that ultimately see higher

flood risk. Revisions of risk, therefore, may be more impactful where regulation is low.

Alternatively, strong regulation can significantly limit new construction and make the repair

of existing structures very costly. This can lead to higher population impact in highly-
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regulated communities. Similar concern exist across communities with different income level.

I explore these alternatives in the robustness section. The evidence generally suggests that

they are not able to explain why population decreases after a risk revision.

It is important to point out an issue that relates to the possible endogeneity of flooding

and an unobservable local economic factor. It is possible that such a factor causes commu-

nities to invest less in flood protection and ultimately causes bigger damages. Here it really

matters how this factor is related to the population trajectory before and after the flood. If

it causes population to be decreasing before the flood then I incorporate this in the model

by allowing location-specific trajectory before the flood. If it cause population to respond

differently only after the flood then it is hard for me to disentangle the effect. I accommodate

this possibility with a set of controls in Xit−1.

Real Estate Responses

Constant community size does not necessarily imply that flooding has no impact. Commu-

nities have turnover which allows for compositional changes with little overall size difference.

Instead, what can change are real estate prices. I examine how the housing market responds

to surprises and, more specifically, whether there is evidence of compensating effects by esti-

mating the most restricted version of the model as in (6) above. Results are listed in Table

5 for each of the three tiers provided by Zillow.

There is no evidence that house values, across all three tiers, compensate for the increase

in flood risk at locations with high pre-growth. The result is at odds with the observed

decrease in population in the previous part, since a decline in house demand should lead to

lower prices, holding house supply constant. To understand this, recall that the attractive

communities are growing prior to the flood – growth seemingly achieved by new construction.

The model by Capozza and Helsley (1990) shows that in the case of expanding communities

higher risk leads to increases in the price and delays of new construction. It suggests that

the increase in flood risk generates a decrease in the supply of new houses. The fact that
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equilibrium house prices do not adjust indicates that the community experiences both a

decrease in the demand and supply of new houses. Alternatively, growing communities are

likely to have an incentive to invest in home improvement after expected future risk increases.

This is due to the higher price-to-cost ratio in these communities (Gyourko and Saiz 2004).

In other words, following risk increases, owners can raises their homes and add another floor,

among other improvements, which increases the house value. In either case, local housing

becomes relatively more expensive and new-comers choose other locations, which limits the

size of the community.

Interestingly, house prices in low-growth communities decline after a surprise. Top and

middle-tier housing decrease by 2.3%-3.4% on impact; the dip is persistent and remains 4.4%

lower in the post period. Bottom-tier housing does not appear to decrease on impact although

there is evidence of a decline in the post period. The change in real estate prices paired with

the lack of population declines suggests that locations without demand for additional housing

provide a discount that can compensate for the increase in expected flood risk and the

associated costs. This result is similar to Glaeser and Gyourko (2005), and more recently

to Notowidigdo (2011), who point out that negative productivity shocks will not lead to

population declines but to reduction in local house prices. The fact that more expensive

houses take the brunt of the adjustment indicate that the higher-wealth population likely

leaves the community. This is consistent with findings by Boustan et al. (2017) and Strobl

(2011) who show that high-income individuals leave communities affected by disasters.

All together the housing and population results suggest the following interpretation.

Flood surprises drive upward revisions of the underlying probability of a future flood which

in turn raises the cost of living. In locations where demand for housing is low, existing

structures are sold at a discount that covers the additional cost. This appears to be sufficient

to maintain the existing population trajectory. In location where demand for housing is high,

there is both a decrease in the demand and supply of new housing. This leads house prices

unchanged and reduces long-term population.
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Low wealth incidence

The decline in house prices is consistent with turnover in the community whereby higher-

risk tolerant households replace less-risk tolerant ones after a reduction in prices. This leaves

population unchanged but alters the type of people remaining. This is an example of sorting

based on changes in perceived risk. It relies on the assumption that households can finance

their exit from the community by trading their house for a comparable structure somewhere

else. If this is not the case sorting will not take place as people are prevented from leaving.

This is an example of a lock-in effect as in Stein (1995).

I examine the extent to which low wealth can explain the lack of population changes in

low growth areas. I do this by using the FEMA relief payments data. Guidelines from the

agency imply that lower income applicants for disaster relief will be given non-refundable

payments as opposed to loans. A lower-wealth household will be able to pay lower amount

out of pocket and therefore will likely be given a higher non-refundable payment for a given

amount of damage. I test whether flood incidence among low-wealth households is higher

in low growth communities by examining total FEMA payments per damage recorded and

how they differ in low-growth communities. In particular I estimate:

ln(FemaPay)i = βDami + γ1Dami × LSurpi + γ2Dami × LGri + αY + {MulF l}+ ǫi (3)

where FemaPay is total relief payments per capita, Dam is total damages recorded, and αY

is a year effect. The specification estimates the fraction of damages disbursed by fema, β,

and allows this to be different for low-surprise events, γ1, and at low growth locations, γ2.

Positive γ2 indicates that FEMA disburses more per given amount of damages in low growth

locations, a result consistent with higher low-wealth incidence of flooding.

Results are shown in Table 6. The national cross-section, (1), reveals that low-growth

locations do receive more non-refundable payments per recorded damage. When I estimate

the same model allowing for regional heterogeneity we see that floods affect poorer commu-

nities in low growth areas mostly in Northeast and Mid/South Atlantic. Overall, there is
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evidence that at least in some parts of the US insufficient wealth can explain the lack of

population change after flood surprises. It suggests that sorting will not necessarily occur

in these parts. It still remains to be seen how real estate values respond in those regions as

well.

Let us go back to the case of Milford vs the two neighbors. Figure 4 shows the evolution

of population and real estate. Milford has a high history of flooding and the flood events

do not constitute surprises. We see that population and real estate values (top tier) are not

affected. New Haven and Bridgeport, on the other hand, see a decline in population but

in line with the results in this section housing closely follows the trajectory of Milford and

does not decline. This puts the two neighbors in the high-pre-growth group where demand

for new housing seems to prevent a compensating decline that offsets higher risk. The cost

increase is consistent with population decline.

4 Regional Results

The main results are based on a national sample which combines locations across various

geographies each with specific climates and regulatory settings. The econometric specifica-

tion accounts for this heterogeneity with the individual average, trend, and state-year effects

but we cannot be certain that the identified responses are a general phenomenon occurring

across the country. It is possible that population responds strongly only in one area of the

US with there being no effect elsewhere. Additionally, I have also argued that real estate

variations are closely related and help understand population effects. It is important to con-

firm that this relationship is maintained within separate regions. I investigate within-country

heterogeneity by allowing the main coefficients to vary by a Census regions.13

The regional results for population are listed in Table 7. The coefficients reported in the

table are all based on one estimation – different columns show estimates by surprise/pre-

growth group. For example, the coefficients for the high-surprise/high-growth group from

13I have split region 1 into Northeast and Mid-Atlantic and region 3 into South Atlantic and South Central.
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the Mid-Atlantic region is listed in the second column rows 2, 8, and 14. The results confirm

that surprises affect population at high pre-growth communities. Not all regions experience

on impact, post, and trend break effects but all of them feature some combination. This

suggests that the national results identify a general phenomenon where new movers choose

a different destination after risk increases. Notice that the population declines at high pre-

growth/low surprise communities seen in the main results are only identified in the Northeast

region. This cautions against directly interpreting the national results without confirming

that they hold at the regional level.

Regional real estate results for top-tier housing are shown in Table 8. We see no real

estate depreciation in any of the regions for high-surprise/high-growth locations. The only

exception is the Northeast region which sees a trend break. The lack of compensating

decreases in housing and the simultaneous decrease in population at these locations across

all regions supports the interpretation in the main results. It suggests that these communities

become relatively more expensive everywhere. The case of the South Atlantic is somewhat

different. High-surprise/high-growth areas do not experience population decline on impact

– they see a trend break. This implies that population was not significantly affected and

demand for new housing persisted. Uninterrupted population is reflected in the increase in

house prices for this group. This suggests that expected flood risk may not have adjusted

significantly after the flood surprises. Alternatively, it is likely that the high-surprise group

includes locations where risk is already perceived to be high – consistent with the insurance

estimates for South Atlantic in Table 3. Risk awareness in these communities can facilitate

population sorting which can minimize the sensitivity of population and housing values to

risk revisions. This point is discussed in Bunten and Kahn (2014). The authors point out

that incumbents, who have sorted into high-risk locations, may be better at dealing with

disasters and value local amenities highly enough so that risk revisions do not alter the

relative attractiveness of their current location.

Housing depreciates in low pre-growth communities in all regions except for the Midwest
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and South Central. The reduction in real estate values paired with the minimal changes in

population is consistent with the interpretation in the main results. Durable housing com-

pensates for the increased risk and leaves population unchanged. In the case of the Midwest

and South Central there are both minimal population changes and no price adjustment. Liv-

ing in these areas effectively becomes more expensive since the real estate does not provide

compensation. The evidence from the FEMA payments suggests that at least for the South

Central area the incidence of the disaster may be higher on low-wealth households. This can

explain why we do not observe any population effects – these communities are locked in.

Overall, the regional results for housing and population are closely matched. They pro-

vide evidence for the interaction between revisions of perceived flood risk and existing de-

mand for new housing which ultimately determine whether more people will inhabit risky

locations.

5 Extensions and Robustness

Flood Spillovers

Floods can have an effect on other locations that may not themselves be affected. Gallagher

(2014) shows that insurance purchases pick up after floods at locations within the same

media market. To accommodate this, I extend the baseline model in two important ways:

add a set of indicators in Xit that allow the impact, persistence, and trend-break to differ

for places neighboring counties with floods; estimate a set of flood effects for locations that

do not experience a flood but are located in a county where others have floods. The first

case makes sure that the baseline results are not driven by events in neighboring counties i.e.

that being next to a multiple-flood county drives population away not the flood at location.

The second case looks at the possible change in perceived risk that occurs in places that are

close to floods but are not themselves affected. The literature on natural disasters imputes

damages based on wind gradients and hurricane paths. It is likely that some of the locations
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do not sustain damages but are assumed to be affected. The results here help us understand

how this influences these estimates.

The evidence is shown in Table 9. Model (1) estimates the baseline results with the

addition of controls for floods occurring in the neighboring counties. We see that the results

are robust to this set of controls. In Model (2) shows that locations that are not affected

directly but are within an affected county experience a decline in population and a trend

break. Note that the spillover effect is smaller than the direct effect. This is consistent

with an increase in perceived risk since the spillover is based on locations without direct

damage. Model (3) separates the previous effect depending on whether the nearby floods

were surprises. The results are mixed suggesting that proximity to high surprises being

marginally significant. It is not obvious a-priori if low or high surprise floods will have

different spillover effects for unaffected locations. The evidence suggests that low-surprise

floods have stronger population effects. Models (4)-(6) examine the effect on real estate

values. We see negative spillovers on top- and mid-tier housing. The spillover of a high-

surprise flood has a somewhat stronger effect on prices which is consistent with the weaker

population impact.

Relative Damage vs Flood Indicator

The results in this paper use an indicator for a flood based on a cutoff for minimum relative

damage. I investigate the extent to which actual relative damage affects the main results

regarding population. I introduce variations in damage by replacing the flood indicator with

three indicators for relative damage. These indicators reflect the lower 33th/33th-66th/upper

66th percentile respectively of the distribution of damages at the state level. Specifying the

main population model with them rather than a flood indicator allows us to examine whether

events with relatively higher damage are different from those with relatively lower one. The

results are shown in Table 10. Focusing on the models with controls we can see that all parts

of the damage distribution reduce population for the respective groups that are affected in
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the main results. The effect of the upper 66th percentile is slightly lower while the lower 33th

percentile generally has higher effects. These are not statistically different from each other.

Local Social Organizations and Churches

A big literature on resilience after natural disasters emphasizes the importance of local

social capital (Aldrich 2012). Literature on deeper roots of productivity across the US

also emphasizes endowments of social capital (Fulford et al 2018). To accommodate this

I use information from the County Business Patterns dataset which lists the total number

of establishments at a zip code by 6-digit industry code. I calculate the total number of

civic and social organizations (NAICS 813410) and religious organizations (NAICS 813110)

per capita in each community and define an indicator for locations with above state-median

number. I then include it among the rest of the controls in Xit. The results for population

and real estate are listed in Table 11. The coefficient estimates for the impact of higher level

of social capital are listed at the bottom of the table. The overall results are very similar

to the baseline. Social capital weakens the decline in the pre-flood trend for population and

lowers the decline in the post period for the real estate values. These results are consistent

with the literature on social capital which suggests that communities with higher endowment

will do better after disasters.

Land-use Regulation and Income

The paper emphasizes the importance of pre-flood positive net migration and its interaction

with flood surprises. Here I also explore whether the local housing supply elasticity or the

local income level can explain the observed population patterns. For house elasticity, I use

the Wharton Residential Land Use Regulation Index (WRLURI) from Gyourko et al. (2007).

I am able to match a third of the baseline sample with the WRLURI and this limited sample.

Locations with above state-median values for the index are considered to be highly regulated.

For the case of local income, I use the 2000 Census and assign locations based on the state
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median income. Results are listed in Table 12. Estimations (2) and (4), which include Xit

controls, show that land regulation and income cannot fully explain the population declines.

Namely, flood surprises reduce population both in locations with high and low regulation.

However, the observed effect in the high-regulated communities is higher, suggesting that a

contraction in the supply of new construction is a part of the reason why population declines.

It is likely that highly-regulated places will reduce the construction of new houses more than

low-regulated ones when flood risk increases. The estimates in (2), therefore, suggest that

some of the observed population decline is due to lower housing supply. The interaction of

income with flood surprise is also not able to completely explain the population declines –

both high and low income places are affected after a flood.

6 Conclusion

This is the first study that examines the effect of flood surprises using consistent national

data of insured and uninsured damages at the level of the community. It investigates how

changes in underlying flood risk affect the local population trajectory and real estate values.

I find that changes in risk expectations are much more important that the amount of overall

damage – at least in the case of lower scale events. Locations with a history of flooding do

not experience changes in population and real estate. This indicates that flooding is widely

expected and the local population is already somewhat insulated from the risk with insur-

ance. Locations with flood surprises see a combination of declines in population and house

value depreciation. The level of pre-existing demand for new housing is critical. Attractive

communities that are surprised by a flood experience population declines and no housing

depreciation, a combination consistent with newcomers steering away. Less attractive loca-

tions see predominately house price declines and stable population. Using these results to

interpret how climate change will affect communities within the US, we expect to see three

general local outcomes. First, risky locations will not see any changes. Second, attractive
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locations where risk increases will experience population declines leading to stabilizing of

population at the pre-flood level. Third, locations where risk increase and where demand

for new housing is low will not see changes in population but will experience depreciation of

housing.
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Tables and Figures

Table 1: Summary Statistics by Number of Floods

Floods Freq. Percent Cum.

0 1,771 42.71 42.71
1 1,519 36.63 79.33
2 542 13.07 92.4
3 238 5.74 98.14
4 77 1.86 100

Total 4,147 100

Number of Floods

State 0 1 2 3+

Alabama 41 50 5
Arkansas 20 40 17
California 316 45 1
Colorado 38 23
Connecticut 36 33 7 5
Delaware 4 2
Florida 7 99 34 47
Georgia 99 43 12 3
Illinois 74 74 54 27
Indiana 38 88 6 4
Iowa 6 44 29
Kentucky 22 48 31 6
Louisiana 6 6 20 40
Maryland 29 5
Massachusetts 46 67 21 2
Minnesota 90 23 6 2
Mississippi 8 30 26 23
Missouri 38 48 30
Nevada 13 2
New Hampshire 2 24
New Jersey 12 83 14 77
New York 66 74 19 34
North Carolina 82 51 8 2
North Dakota 4 11
Ohio 89 73 34 6
Oklahoma 25 38 15
Oregon 45 10 2
Pennsylvania 39 82 49 31
Rhode Island 2 12 14
South Carolina 51 15
South Dakota 7 7 1
Tennessee 38 75
Texas 170 65 56
Vermont 3 13 2
Virginia 67 28 6 4
Washington 64 26
West Virginia 20 23 5 2
Wisconsin 58 46 7

Total 1771 1519 542 315

Relative Damage

Fl p25 p50 p75 p90 p95

1 0.02% 0.05% 0.14% 0.46% 0.87%
2 0.02% 0.06% 0.19% 0.69% 1.55%
3 0.02% 0.07% 0.25% 0.86% 1.72%
4 0.02% 0.09% 0.34% 1.27% 8.66%

Total Damage ($1 mil)

Fl p25 p50 p75 p90 p95

1 0.64 1.67 5.02 16.14 42.39
2 0.64 1.80 5.70 20.75 47.18
3 0.79 2.45 9.14 33.90 76.74
4 0.83 3.42 13.50 69.68 213.80

Average Pop (1,000)

Fl p25 p50 p75 p90 p95

0 21 34 62 111 167
1 21 31 57 110 179
2 22 32 55 104 207
3 21 35 60 139 214
4 23 36 77 138 184

Population Growth

Fl p25 p50 p75 p90 p95

0 -0.04% 0.55% 1.36% 2.50% 3.44%
1 -0.15% 0.39% 1.14% 2.22% 3.18%
2 -0.24% 0.28% 0.97% 1.97% 2.90%
3 -0.27% 0.21% 0.75% 1.71% 2.51%
4 -0.20% 0.31% 0.96% 2.20% 3.12%

Table 2: Summary Statistics by Surprise and Pre-Flood Growth

Single Flood Single Flood

No Surprise High Surprise Low Surprise Two+

Flood All High Low Low Growth High Growth Low Growth High Growth Floods

Count 1771 1519 934 585 229 705 171 414 857
Relative Damage 0 0.05% 0.04% 0.07% 0.05% 0.04% 0.08% 0.06% 0.06%
Total $ Damage (100k) 0 16.67 13.43 24.51 12.91 13.55 18.49 27.36 21.04
Share of Insured Damages 0 14.42% 7.45% 24.83% 3.50% 9.39% 24.57% 25.21% 27.82%
Share of Uninsured FEMA 0 17.44% 20.65% 13.66% 23.67% 19.50% 11.83% 14.29% 13.80%
Share of Uninsured Home SBA 0 2.78% 2.74% 2.87% 4.08% 2.38% 2.04% 3.19% 1.69%
Share of Uninsured Business SBA 0 22.42% 24.77% 19.75% 23.91% 25.48% 16.16% 20.49% 19.42%
Total Structures Lost (1978/2000) 0 0.27% 0.12% 0.83% 0.13% 0.12% 0.93% 0.81% 0.89%
Population (10k) 33.66 31.35 30.38 33.67 25.53 32.84 26.25 38.97 32.73
Median Income (10k) 39.89 38.78 38.23 39.22 33.49 40.56 35.16 41.14 37.54
Population Growth 0.55% 0.39% 0.41% 0.35% -0.31% 0.70% -0.30% 0.65% 0.26%
Fraction of Population in 100 year zone 0.00% 0.08% 0.03% 0.77% 0.00% 0.07% 0.04% 1.51% 1.93%
Insurance Policies 67 120 72 261 54 80 234 271 256
Total $ Coverage (1M) 10.65 15.92 10.48 32.51 7.37 11.76 25.99 35.76 32.54
Top Tier House Value 2.19 1.90 1.88 1.92 1.17 2.12 1.28 2.22 1.80
Middle Tier House Value 1.45 1.25 1.24 1.26 0.73 1.39 0.82 1.44 1.19
Bottom Tier House Value 1.00 0.84 0.83 0.85 0.46 0.93 0.50 1.01 0.77

Table lists median values for the listed variables.
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Table 3: Flood Surprises and Insurance

(1) (2) (3) (4) (5) (6)
VARIABLES ln (Payouts)i ln (Payouts)i ln (Payouts)i ln (Payouts)i ln (Policies)i ln (Policies)i

F 0.450*
(0.230)

F × LSurprise 0.963***
(0.119)

F × Northeast 0.0442
(0.588)

F × Mid-Atlantic 0.706***
(0.228)

F × Midwest -0.0915
(0.216)

F × South Atlantic 1.048**
(0.472)

F × South Central 0.209
(0.358)

F × West -0.438
(0.307)

F × Northeast × LSurp 1.338***
(0.145)

F × Mid-Atlantic × LSurp 0.929***
(0.150)

F × Mid West × LSurp 1.265***
(0.257)

F × South Atlantic × LowSurp 0.624*
(0.339)

F × South Central × LSurp 0.796***
(0.221)

F × West × LSurp 1.668***
(0.185)

F × Dam 0.428*** 0.841***
(0.0886) (0.0978)

F × Dam × LSurprise 0.234*** 0.266***
(0.0276) (0.0370)

F × Dam × Northeast 0.476*** 0.537***
(0.148) (0.0844)

F × Dam × Mid-Atlantic 0.640*** 0.979***
(0.0508) (0.0919)

F × Dam × Midwest 0.396*** 0.420**
(0.0554) (0.170)

F × Dam × South Atlantic 0.355*** 1.045***
(0.115) (0.0730)

F × Dam × South Central 0.448*** 0.447***
(0.0840) (0.0899)

F × Dam × West 0.366*** 0.916***
(0.0597) (0.0845)

F × Dam × Northeast × LSurp 0.266*** 0.310***
(0.0593) (0.0420)

F × Dam × Mid-Atlantic × LSurp 0.153*** 0.176***
(0.00957) (0.0465)

F × Dam × Mid West × LSurp 0.298*** 0.467***
(0.0227) (0.0571)

F × Dam × South Atlantic × LowSurp 0.241*** 0.290***
(0.0428) (0.0439)

F × Dam × South Central × LSurp 0.171*** 0.321**
(0.0594) (0.115)

F × Dam × West × LSurp 0.317*** 0.247**
(0.0438) (0.0915)

Observations 3,443 3,443 3,443 3,443 1,474 1,474
R-squared 0.613 0.620 0.778 0.793 0.867 0.891
Xit Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. ln (Payouts)i is log insurance payouts per capita at location i. ln (Policies)i is log of active
insurance policies. F is an indicator for flooding at a single-flood location. Dam is total damage per capita. LSurp is an indicator for
a high history of flooding i.e. low-surprise event. The estimation results do not report the coefficients for multiple-flood communities.
Sample covers the period between 2000 and 2016. SE clustered by state.
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Table 4: Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6) (7) (8)

HSurp: Below State Median Lost Structures HSurp: No Lost Structures

VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.000840 -0.00918***
(0.00113) (0.00203)

PostF -0.00396*** -0.00934***
(0.00144) (0.00278)

PostTrend -4.08e-05 -0.00404***
(0.000484) (0.000855)

F × HSurp -0.00310** -0.0120*** -0.0173**
(0.00121) (0.00241) (0.00691)

F × LSurp 0.00292 -0.00487** -0.00889***
(0.00193) (0.00234) (0.00203)

PostF × HSurp -0.00462*** -0.0103*** -0.0162*
(0.00174) (0.00312) (0.00941)

PostF × LSurp -0.00259 -0.00758** -0.00916***
(0.00217) (0.00309) (0.00282)

PostTrend × HSurp -0.00148** -0.00582*** -0.00911***
(0.000582) (0.000911) (0.00322)

PostTrend × LSurp 0.00213*** -0.00140 -0.00383***
(0.000615) (0.000931) (0.000848)

F × HSurp × LGr 0.00664*** -0.00305 -0.00703
(0.00115) (0.00243) (0.00454)

F × HSurp × HGr -0.00552*** -0.0141*** -0.0197**
(0.00142) (0.00243) (0.00879)

F × LSurp × LGr 0.0118** 0.00347 0.000248
(0.00537) (0.00505) (0.00257)

F × LSurp × HGr 0.000115 -0.00752*** -0.0113***
(0.00132) (0.00210) (0.00212)

PostF × HSurp× LGr 0.000943 -0.00530 -0.0107*
(0.00190) (0.00333) (0.00625)

PostF × HSurp× HGr -0.00534*** -0.0113*** -0.0155
(0.00206) (0.00315) (0.0122)

PostF × LSurp× LGr 0.00253 -0.00267 -0.00390
(0.00478) (0.00474) (0.00310)

PostF × LSurp× HGr -0.00329 -0.00841*** -0.00999***
(0.00213) (0.00318) (0.00289)

PostTrend × HSurp× LGr 0.00695*** 0.00222** 0.000915
(0.000597) (0.000894) (0.00213)

PostTrend × HSurp× HGr -0.00410*** -0.00788*** -0.0130***
(0.000655) (0.000917) (0.00422)

PostTrend × LSurp× LGr 0.00891*** 0.00498*** 0.00360***
(0.000874) (0.00104) (0.000842)

PostTrend × LSurp× HGr -0.000591 -0.00381*** -0.00609***
(0.000693) (0.000967) (0.000835)

Observations 70,403 70,403 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.005 0.023 0.009 0.028 0.039 0.052 0.025 0.05
Xit Controls No Yes No Yes No Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period following the first year of
impact. PostTrend is a linear trend starting the in the period following the impact. LSurp/HSurp is an indicator for a low/high surprise event.
LGr/HGr is an indicator for positive/negative population growth 5 years prior to the event. Estimation (7) and (8) use a different definition for
surprise – zero buildings destroyed between 1978 and 2003. Sample: 2000/2016. SE clustered by community. Additional controls: indicators
for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for multiple-flood communities.
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Table 5: Flood Surprises and Real Estate Values

(1) (2) (3)

VARIABLES TopTier MiddleTier BottomTier

F × HSurp × LGr -0.0338*** -0.0230* -0.0204
(0.0122) (0.0134) (0.0162)

F × HSurp × HGr -0.00211 0.00941 0.0175
(0.00900) (0.00916) (0.0117)

F × LSurp × LGr -0.0147 0.00534 0.00815
(0.0138) (0.0129) (0.0167)

F × LSurp × HGr 0.00410 0.0132 0.0170
(0.00944) (0.00943) (0.0120)

PostF × HSurp× LGr -0.0425*** -0.0439** -0.0553***
(0.0153) (0.0174) (0.0204)

PostF × HSurp× HGr -0.00408 0.00425 0.00116
(0.0115) (0.0115) (0.0142)

PostF × LSurp× LGr -0.0117 0.00724 -0.0166
(0.0176) (0.0173) (0.0200)

PostF × LSurp× HGr -0.000138 -0.00135 -0.00581
(0.0123) (0.0123) (0.0149)

PostTrend × HSurp× LGr -0.000319 0.00314 0.00870*
(0.00365) (0.00403) (0.00471)

PostTrend × HSurp× HGr -0.00526* -0.00270 0.000444
(0.00278) (0.00296) (0.00331)

PostTrend × LSurp× LGr -0.00615 -0.00567 0.00167
(0.00402) (0.00416) (0.00450)

PostTrend × LSurp× HGr -0.00588** -0.00341 0.000448
(0.00290) (0.00297) (0.00362)

Observations 61,454 60,825 54,459
Within R-squared 0.02 0.023 0.021
Xit Controls Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. Top/Middle/BottomTier refers
to the log of the respective house price Zillow index. F is an indicator for
flood event. PostF is an indicator for the period following the first year
of impact. PostTrend is a linear trend starting the in the period following
the impact. LSurp/HSurp is an indicator for a low/high surprise event.
LGr/HGr is an indicator for positive/negative population growth 5 years
prior to the event. Sample: 2000/2016. SE clustered by community. Addi-
tional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above me-
dian renter fraction; below 33th perc. tot. damage.
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Table 6: Low-wealth Incidence in Low-Growth Communities

(1) (2)

VARIABLES ln(FemaPay) ln(FemaPay)

F × Dam 0.859***
(0.0141)

F × Dam × LSurp -0.00489
(0.00808)

F × Dam × LGr 0.0307**
(0.0143)

F × Dam × Northeast 0.923***
(0.0285)

F × Dam × Mid-Atlantic 0.816***
(0.0188)

F × Dam × Midwest 0.911***
(0.0154)

F × Dam × South Atlantic 0.816***
(0.0162)

F × Dam × South Central 0.881***
(0.0102)

F × Dam × West 0.821***
(0.0247)

F × Dam × LSurp × Northeast -0.0435
(0.0392)

F × Dam × LSurp × Mid-Atlantic 0.0140
(0.0244)

F × Dam × LSurp × Midwest -0.0116
(0.0143)

F × Dam × LSurp × South Atlantic 0.00162
(0.0143)

F × Dam × LSurp × South Central -0.0158
(0.0130)

F × Dam × LSurp × West -0.0159
(0.0243)

F × Dam × LGr × Northeast 0.0318**
(0.0124)

F × Dam × LGr × Mid-Atlantic 0.0253***
(0.00757)

F × Dam × LGr × Midwest 0.00139
(0.0190)

F × Dam × LGr × South Atlantic -0.00168
(0.0267)

F × Dam × LGr × South Central 0.0359*
(0.0191)

F × Dam × LGr × West -0.109**
(0.0521)

Observations 3,105 3,145
R-squared 0.973 0.971
Xit Controls Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. FemaPay refers to total FEMA
relief per capita, Dam refers to total FEMA damage recorded, LSurp is
an indicator for low-surprise event, and LGr is an indicator for low pre-
growth location. Sample: 2000/2016. SE clustered by state. Additional
controls: indicators for top 66th perc. of fema/insured/business/sba dam-
age; above median non-construction-based local economy; above median
renter fraction; below 33th perc. tot. damage.
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Table 7: Regional Population Responses

lnPopstist

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

F × Northeast -0.00754** -0.0101*** -0.00669* -0.00998***
(0.00303) (0.00286) (0.00396) (0.00273)

F × Mid-Atlantic -0.00504 -0.0163*** 0.00213 -0.00901*
(0.00540) (0.00488) (0.00376) (0.00463)

F × Midwest 0.00438 -0.0137*** -0.000326 -0.00311
(0.00355) (0.00381) (0.00577) (0.00295)

F × South Atlantic 0.000893 -0.00667 0.00518 -0.00812
(0.00687) (0.00576) (0.00532) (0.00507)

F × South Central -0.00315 -0.0141** 0.0184 -0.00271
(0.00668) (0.00630) (0.0164) (0.00611)

F × West -5.64e-05 -0.0189*** -0.00613 -0.00849
(0.0104) (0.00660) (0.0123) (0.00832)

PostF × Northeast -0.0142*** -0.0175*** -0.0122* -0.0139***
(0.00527) (0.00435) (0.00676) (0.00455)

PostF × Mid-Atlantic -0.00925 -0.0113 -0.00333 -0.0113
(0.00998) (0.00786) (0.00711) (0.00765)

PostF × Midwest 0.000359 -0.0134*** -0.00254 0.000863
(0.00434) (0.00450) (0.00531) (0.00403)

PostF × South Atlantic -0.00438 -0.00197 -0.00829 -0.0164**
(0.00908) (0.00794) (0.00793) (0.00800)

PostF × South Central -0.00242 -0.00915 0.0113 0.00184
(0.00815) (0.00802) (0.0143) (0.00999)

PostF × West 0.00316 -0.0267*** -0.0112 -0.0132
(0.0130) (0.00820) (0.0163) (0.0105)

PostTrend × Northeast 0.00171 -0.000892 0.00366 -0.00297**
(0.00154) (0.00147) (0.00230) (0.00149)

PostTrend × Mid-Atlantic 0.00374 -0.00868*** 0.00531** -0.00171
(0.00290) (0.00268) (0.00252) (0.00256)

PostTrend × Midwest 0.00396*** -0.00714*** 0.00443*** -0.00498***
(0.00117) (0.00157) (0.00129) (0.00133)

PostTrend × South Atlantic 0.000617 -0.0112*** 0.00492* -0.00305
(0.00293) (0.00249) (0.00276) (0.00250)

PostTrend × South Central 0.00477*** -0.00460*** 0.00850*** -0.000660
(0.00183) (0.00176) (0.00277) (0.00263)

PostTrend × West 0.00638* -0.0106*** 0.00903** -0.00701**
(0.00362) (0.00306) (0.00446) (0.00281)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 4 for details. Sample:
2000/2016. SE clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.
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Table 8: Regional Real Estate Responses for Top Tier Housing

TopTier House Index

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

F × Northeast -0.0404** -0.0296* -0.0280 -0.0381**
(0.0191) (0.0153) (0.0256) (0.0151)

F × Mid-Atlantic 0.00921 0.0203 0.0108 -0.00540
(0.0293) (0.0260) (0.0332) (0.0253)

F × Midwest -0.0196 0.00228 0.00589 0.0163
(0.0222) (0.0157) (0.0181) (0.0148)

F × South Atlantic -0.0917*** 0.0378** -0.0200 0.0232
(0.0251) (0.0164) (0.0308) (0.0175)

F × South Central -0.00133 0.00963 0.0132 0.0459**
(0.0228) (0.0193) (0.0245) (0.0218)

F × West -0.159*** -0.00704 -0.120*** -0.0419
(0.0300) (0.0274) (0.0299) (0.0282)

PostF × Northeast -0.0572** -0.0373* -0.0356 -0.0519**
(0.0268) (0.0221) (0.0355) (0.0220)

PostF × Mid-Atlantic -0.0959*** -0.0261 -0.0492 -0.0597*
(0.0370) (0.0333) (0.0414) (0.0323)

PostF × Midwest 0.000684 0.0177 0.0161 0.0361**
(0.0256) (0.0167) (0.0234) (0.0163)

PostF × South Atlantic -0.0428 0.0459* -0.000888 0.0241
(0.0395) (0.0253) (0.0372) (0.0295)

PostF × South Central 0.0134 0.0173 0.0339 0.0424
(0.0296) (0.0240) (0.0359) (0.0266)

PostF × West -0.219*** -0.0265 -0.0863* -0.0806**
(0.0424) (0.0330) (0.0501) (0.0387)

PostTrend × Northeast -0.0154** -0.0126** -0.00827 -0.00917
(0.00642) (0.00568) (0.00969) (0.00604)

PostTrend × Mid-Atlantic 0.0287*** 0.00497 0.0218** 0.0128
(0.00967) (0.00966) (0.00913) (0.00814)

PostTrend × Midwest -0.00199 -0.00443 -0.00780 -0.00386
(0.00522) (0.00420) (0.00493) (0.00430)

PostTrend × South Atlantic -0.0280*** -0.00343 -0.0201* -0.0182**
(0.0101) (0.00815) (0.0117) (0.00780)

PostTrend × South Central 0.00462 -0.00172 -0.00222 0.00628
(0.00758) (0.00576) (0.00760) (0.00599)

PostTrend × West -0.00554 -0.00358 0.00233 -0.0103
(0.0107) (0.00710) (0.0266) (0.00821)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 5. Sample: 2000/2016.
SE clustered by community. Additional controls: indicators for top 66th perc. of
fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.
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Table 9: Flood Spillovers

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist TopHVI MidHVI BotHVI

F × HSurp × LGr -0.00283 -0.00326 -0.00321 -0.0348*** -0.0239* -0.0231
(0.00293) (0.00295) (0.00295) (0.0129) (0.0142) (0.0176)

F × HSurp × HGr -0.0140*** -0.0143*** -0.0143*** -0.00381 0.00761 0.0136
(0.00288) (0.00288) (0.00288) (0.00964) (0.0100) (0.0131)

F × LSurp × LGr 0.00409 0.00371 0.00371 -0.0156 0.00443 0.00556
(0.00476) (0.00477) (0.00477) (0.0144) (0.0138) (0.0181)

F × LSurp × HGr -0.00685*** -0.00733*** -0.00734*** 0.00403 0.0121 0.0143
(0.00238) (0.00239) (0.00239) (0.00989) (0.0100) (0.0127)

PostF × HSurp× LGr -0.00668* -0.00716* -0.00708* -0.0346** -0.0327* -0.0455**
(0.00387) (0.00390) (0.00390) (0.0159) (0.0181) (0.0220)

PostF × HSurp× HGr -0.0134*** -0.0137*** -0.0137*** -0.000572 0.0106 0.00442
(0.00368) (0.00368) (0.00368) (0.0122) (0.0124) (0.0156)

PostF × LSurp× LGr -0.00357 -0.00404 -0.00397 -0.00518 0.0184 -0.00556
(0.00466) (0.00467) (0.00467) (0.0180) (0.0181) (0.0212)

PostF × LSurp× HGr -0.00887*** -0.00943*** -0.00938*** 0.00617 0.00749 0.00155
(0.00344) (0.00345) (0.00345) (0.0131) (0.0131) (0.0159)

PostTrend × HSurp× LGr 0.00212** 0.00224** 0.00229** -0.00338 -0.000543 0.00600
(0.00103) (0.00104) (0.00104) (0.00388) (0.00421) (0.00504)

PostTrend × HSurp× HGr -0.00784*** -0.00764*** -0.00760*** -0.00696** -0.00511 -0.000937
(0.000961) (0.000970) (0.000969) (0.00298) (0.00312) (0.00354)

PostTrend × LSurp× LGr 0.00491*** 0.00509*** 0.00513*** -0.00894** -0.00928** -0.00127
(0.00111) (0.00113) (0.00113) (0.00431) (0.00437) (0.00481)

PostTrend × LSurp× HGr -0.00386*** -0.00367*** -0.00362*** -0.00795** -0.00629** -0.00191
(0.00102) (0.00103) (0.00103) (0.00314) (0.00316) (0.00373)

FNeighbor -0.00975**
(0.00427)

PostFNeighbor -0.00469
(0.00545)

PostTrendNeighbor -0.00375**
(0.00168)

FNeighbor × HSurp -0.00862* -0.0301** -0.0354*** -0.0195
(0.00480) (0.0143) (0.0135) (0.0165)

FNeighbor × LSurp -0.00936** -0.0250** -0.0282*** -0.0176
(0.00420) (0.0103) (0.0105) (0.0122)

PostFNeighbor × HSurp -0.00670 -0.0234 -0.0552*** -0.0525***
(0.00602) (0.0182) (0.0158) (0.0182)

PostFNeighbor × LSurp -0.00115 -0.0370*** -0.0614*** -0.0657***
(0.00570) (0.0142) (0.0144) (0.0165)

PostTrendNeighbor × HSurp -0.00593*** -0.00461 0.00138 0.00425
(0.00180) (0.00451) (0.00398) (0.00460)

PostTrendNeighbor × LSurp -0.00201 -0.00477 -0.00328 0.000537
(0.00183) (0.00369) (0.00357) (0.00407)

Observations 69,927 69,927 69,927 61,378 60,844 54,497
Within R-squared 0.064 0.081 0.083 0.032 0.036 0.034
Neighbor County Flood Controls Yes Yes Yes Yes Yes Yes
Xit Controls Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period
following the first year of impact. PostTrend is a linear trend starting the in the period following the impact.
LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative population
growth 5 years prior to the event. FNeighbor is an indicator for a community with no flooding located in county
with a single flood only. PostFNeighbor and PostTrendNeighbor are respectively the post- and post-trend for such
a location. Sample: 2000/2016. SE clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-based local economy; above median renter
fraction; below 33th perc. tot. damage. The estimation results do not report the coefficients for multiple-flood
communities.
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Table 10: Population Responses with Spline Damage Specification

(1) (2) (3) (4)
VARIABLES lnPopist lnPopist lnPopist lnPopist

F × Dam1 -0.000581 -0.00872***
(0.00181) (0.00241)

PostF × Dam1 -0.00343 -0.00833**
(0.00221) (0.00342)

PostTrend × Dam1 0.000144 -0.00371***
(0.000606) (0.000927)

F × Dam2 -0.00191 -0.00995***
(0.00162) (0.00220)

PostF × Dam2 -0.00455* -0.00958***
(0.00238) (0.00296)

PostTrend × Dam2 -0.00104 -0.00473***
(0.000800) (0.000931)

F × Dam3 0.000262 -0.00760***
(0.00134) (0.00229)

PostF × Dam3 -0.00383* -0.00861**
(0.00200) (0.00343)

PostTrend × Dam3 0.000915 -0.00277***
(0.000675) (0.00102)

F × HSurp × Dam1 -0.00441** -0.0130***
(0.00173) (0.00327)

F × LSurp × Dam1 0.00823* 0.00108
(0.00433) (0.00360)

PostF × HSurp × Dam1 -0.00679*** -0.0143***
(0.00249) (0.00482)

PostF × LSurp × Dam1 0.00460 0.00313
(0.00424) (0.00420)

PostTrend × HSurp × Dam1 -0.00118 -0.00498***
(0.000730) (0.00126)

PostTrend × LSurp × Dam1 0.00292*** -0.000330
(0.000887) (0.00116)

F × HSurp × Dam2 -0.00276 -0.0120***
(0.00195) (0.00300)

F × LSurp × Dam2 -0.000601 -0.00753**
(0.00274) (0.00309)

PostF × HSurp × Dam2 -0.00214 -0.0107***
(0.00312) (0.00406)

PostF × LSurp × Dam2 -0.00856** -0.00972**
(0.00350) (0.00399)

PostTrend × HSurp × Dam2 -0.00280*** -0.00678***
(0.00105) (0.00124)

PostTrend × LSurp × Dam2 0.00156 -0.00155
(0.00108) (0.00125)

F × HSurp × Dam3 -0.000564 -0.00982***
(0.00173) (0.00319)

F × LSurp × Dam3 0.00112 -0.00446*
(0.00180) (0.00261)

PostF × HSurp × Dam3 -0.00357 -0.0122**
(0.00258) (0.00479)

PostF × LSurp × Dam3 -0.00420 -0.00315
(0.00278) (0.00399)

PostTrend × HSurp × Dam3 -0.000159 -0.00412***
(0.000863) (0.00139)

PostTrend × LSurp × Dam3 0.00188** -0.00134
(0.000879) (0.00128)

Observations 70,403 70,403 70,403 70,403
Within R-squared 0.007 0.02 0.019 0.041
Xit Controls No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.Dam1/Dam2/Dam3 are indicators for the lower 33th

percentile/33th-66th percentile/upper 66th of damage within the state. F is an indicator for
flood event. PostF is an indicator for the period following the first year of impact. Post-
Trend is a linear trend starting the in the period following the impact. LSurp/HSurp is
an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Sample: 2000/2016. SE clustered by com-
munity. Additional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for
multiple-flood communities.

(5) (6)
VARIABLES lnPopist lnPopist

F × HSurp × LGr ×Dam1 0.00739*** 0.00615***
(0.00151) (0.00215)

F × HSurp × HGr ×Dam1 -0.00683*** -0.0166***
(0.00203) (0.00390)

F × LSurp × LGr ×Dam1 0.0202 0.00558
(0.0129) (0.00827)

F × LSurp × HGr ×Dam1 0.00349* -0.00192
(0.00199) (0.00253)

PostF × HSurp× LGr ×Dam1 -0.00139 0.000660
(0.00268) (0.00441)

PostF × HSurp× HGr ×Dam1 -0.00679** -0.0168***
(0.00291) (0.00586)

PostF × LSurp× LGr ×Dam1 0.0111 0.00513
(0.0109) (0.00755)

PostF × LSurp× HGr ×Dam1 0.00243 0.00149
(0.00316) (0.00431)

PostTrend × HSurp× LGr ×Dam1 0.00800*** 0.00562***
(0.000880) (0.00115)

PostTrend × HSurp× HGr ×Dam1 -0.00368*** -0.00716***
(0.000809) (0.00149)

PostTrend × LSurp× LGr ×Dam1 0.00909*** 0.00400***
(0.00167) (0.00149)

PostTrend × LSurp× HGr ×Dam1 0.000210 -0.00203
(0.000919) (0.00139)

F × HSurp × LGr ×Dam2 0.00732*** 0.00627**
(0.00180) (0.00279)

F × HSurp × HGr ×Dam2 -0.00545** -0.0159***
(0.00234) (0.00362)

F × LSurp × LGr ×Dam2 0.0126 -0.000747
(0.00971) (0.0100)

F × LSurp × HGr ×Dam2 -0.00372* -0.00930***
(0.00196) (0.00278)

PostF × HSurp× LGr ×Dam2 0.00361 0.00499
(0.00352) (0.00567)

PostF × HSurp× HGr ×Dam2 -0.00372 -0.0149***
(0.00371) (0.00473)

PostF × LSurp× LGr ×Dam2 0.00129 -0.00434
(0.00796) (0.00834)

PostF × LSurp× HGr ×Dam2 -0.00985** -0.0107**
(0.00382) (0.00458)

PostTrend × HSurp× LGr ×Dam2 0.00739*** 0.00514***
(0.000825) (0.00121)

PostTrend × HSurp× HGr ×Dam2 -0.00572*** -0.00926***
(0.00124) (0.00143)

PostTrend × LSurp× LGr ×Dam2 0.0103*** 0.00628***
(0.00141) (0.00162)

PostTrend × LSurp× HGr ×Dam2 -0.00115 -0.00364**
(0.00127) (0.00147)

F × HSurp × LGr ×Dam3 0.00429* 0.00324
(0.00236) (0.00324)

F × HSurp × HGr ×Dam3 -0.00279 -0.0130***
(0.00206) (0.00393)

F × LSurp × LGr ×Dam3 0.00315* -0.00757
(0.00187) (0.00627)

F × LSurp × HGr ×Dam3 0.000665 -0.00429
(0.00241) (0.00331)

PostF × HSurp× LGr ×Dam3 0.000924 0.00185
(0.00288) (0.00481)

PostF × HSurp× HGr ×Dam3 -0.00578* -0.0167***
(0.00335) (0.00620)

PostF × LSurp× LGr ×Dam3 -0.00569* -0.0103
(0.00331) (0.00657)

PostF × LSurp× HGr ×Dam3 -0.00241 -0.000780
(0.00358) (0.00522)

PostTrend × HSurp× LGr ×Dam3 0.00470*** 0.00259**
(0.000762) (0.00122)

PostTrend × HSurp× HGr ×Dam3 -0.00245** -0.00580***
(0.00111) (0.00180)

PostTrend × LSurp× LGr ×Dam3 0.00758*** 0.00357**
(0.00107) (0.00158)

PostTrend × LSurp× HGr ×Dam3 -0.000908 -0.00362**
(0.00102) (0.00164)

Observations 70,403 70,403
R-squared 0.061 0.081
Xit Controls No Yes
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Table 11: Population and Real Estate Responses Controlling for Local Churches and Social
Organizations

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist TopTier MiddleTier BottomTier

F -0.0101***
(0.00230)

PostF -0.00948***
(0.00318)

PostTrend -0.00545***
(0.000970)

F × HSurp -0.0128***
(0.00244)

F × LSurp -0.00577**
(0.00287)

PostF × HSurp -0.0103***
(0.00336)

PostF × LSurp -0.00772**
(0.00362)

PostTrend × HSurp -0.00723***
(0.00101)

PostTrend × LSurp -0.00281***
(0.00104)

F × HSurp × LGr -0.00325 -0.0369*** -0.0261* -0.0275*
(0.00244) (0.0125) (0.0135) (0.0160)

F × HSurp × HGr -0.0141*** -0.00445 0.00703 0.0122
(0.00246) (0.00917) (0.00930) (0.0118)

F × LSurp × LGr 0.00341 -0.0183 0.00181 0.000337
(0.00603) (0.0143) (0.0133) (0.0169)

F × LSurp × HGr -0.00758*** 0.00145 0.0107 0.0114
(0.00234) (0.00961) (0.00966) (0.0120)

PostF × HSurp× LGr -0.00501 -0.0545*** -0.0569*** -0.0694***
(0.00356) (0.0158) (0.0177) (0.0207)

PostF × HSurp× HGr -0.0108*** -0.0127 -0.00556 -0.00958
(0.00336) (0.0118) (0.0117) (0.0144)

PostF × LSurp× LGr -0.00213 -0.0249 -0.00689 -0.0321
(0.00561) (0.0183) (0.0177) (0.0205)

PostF × LSurp× HGr -0.00808** -0.00908 -0.0110 -0.0167
(0.00348) (0.0125) (0.0125) (0.0154)

PostTrend × HSurp× LGr 0.00124 0.00144 0.00518 0.00855*
(0.00104) (0.00379) (0.00422) (0.00500)

PostTrend × HSurp× HGr -0.00858*** -0.00398 -0.00118 0.000514
(0.00100) (0.00281) (0.00299) (0.00339)

PostTrend × LSurp× LGr 0.00400*** -0.00438 -0.00366 0.00149
(0.00120) (0.00414) (0.00427) (0.00464)

PostTrend × LSurp× HGr -0.00448*** -0.00474 -0.00207 0.000298
(0.00105) (0.00292) (0.00299) (0.00369)

F × Social 0.00222 0.00208 0.000223 0.00560 0.00552 0.0137*
(0.00194) (0.00194) (0.00210) (0.00581) (0.00606) (0.00729)

PostF × Social 0.00109 0.000896 -0.000535 0.0204*** 0.0228*** 0.0271***
(0.00256) (0.00255) (0.00258) (0.00753) (0.00790) (0.00959)

PostTrend × Social 0.00284*** 0.00284*** 0.00150** -0.00265 -0.00318 0.000614
(0.000711) (0.000705) (0.000680) (0.00184) (0.00201) (0.00230)

Observations 70,403 70,403 70,403 61,530 60,920 54,554
Within R-squared 0.025 0.03 0.052 0.023 0.026 0.025
Xit Controls Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an indicator for the period
following the first year of impact. PostTrend is a linear trend starting the in the period following the impact.
LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Social is an indicator for above median number of social or-
ganizations and churches per capita. Sample: 2000/2016. SE clustered by community. Additional controls:
indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local
economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do not report
the coefficients for multiple-flood communities.
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Table 12: Land-use Regulation Index and Income

(1) (2) (3) (4)
VARIABLES lnPopist lnPopist lnPopist lnPopist

F × HSurp × L Regulation -0.00162 -0.0101**
-0.00247 -0.00414

F × HSurp × H Regulation -0.00959*** -0.0186***
-0.0031 -0.00481

F × LSurp × L Regulation 0.00228 -0.00976**
-0.00235 -0.00433

F × LSurp × H Regulation 0.000892 -0.00812*
-0.00314 -0.00452

PostF × HSurp× L Regulation -0.00373 -0.00878
-0.00351 -0.00544

PostF × HSurp× H Regulation -0.00837** -0.0142**
-0.0041 -0.00634

PostF × LSurp× L Regulation -0.00414 -0.0128**
-0.00405 -0.00634

PostF × LSurp× H Regulation -0.00674 -0.0132**
-0.00468 -0.00631

PostTrend × HSurp× L Regulation -0.000536 -0.00636***
-0.00126 -0.0018

PostTrend × HSurp× H Regulation -0.00558*** -0.0113***
-0.0015 -0.00237

PostTrend × LSurp× L Regulation 0.00137 -0.00486**
-0.00135 -0.00207

PostTrend × LSurp× H Regulation 0.00249 -0.00227
-0.00159 -0.00208

F × HSurp × L Income -0.000634 -0.00988***
-0.00117 -0.00234

F × HSurp × H Income -0.00679*** -0.0167***
-0.00223 -0.00307

F × LSurp × L Income 0.00485* -0.0039
-0.00288 -0.00284

F × LSurp × H Income 0.000459 -0.00752***
-0.0018 -0.00264

PostF × HSurp× L Income -0.00360** -0.00942***
-0.00176 -0.00307

PostF × HSurp× H Income -0.00597* -0.0126***
-0.00327 -0.00426

PostF × LSurp× L Income -0.000678 -0.00617*
-0.00293 -0.00334

PostF × LSurp× H Income -0.00490* -0.0101**
-0.00295 -0.00406

PostTrend × HSurp× L Income 0.000529 -0.00424***
-0.000611 -0.000901

PostTrend × HSurp× H Income -0.00468*** -0.00919***
-0.000983 -0.00126

PostTrend × LSurp× L Income 0.00294*** -0.00145
-0.000699 -0.000965

PostTrend × LSurp× H Income 0.00101 -0.00235*
-0.000957 -0.00123

Observations 23,747 23,747 70,403 70,403
Within R-squared 0.024 0.063 0.015 0.033
Xit Controls No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.F is an indicator for flood event. PostF is an
indicator for the period following the first year of impact. PostTrend is a linear trend
starting the in the period following the impact. LSurp/HSurp is an indicator for a low/high
surprise event. L Regulation/H Regulation is an indicator for below/above state-median
regulation of the local land use based on the Wharton Residential Land Use Regulation
Index. L Income/H Income is an indicator for below/above state-median income from the
2000 Census. Additional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for
multiple-flood communities.
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Figure 1: Locations with Single and Multiple Floods between 2003–2013

Figure 2: Locations with Flood Surprises between 2003–2013



Figure 3: Population Growth of Milford vs New Haven and Bridgeport

Figure 4: Population and Real Estate Values at Milford vs New Haven and Bridgeport
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Appendix 1: Additional Tables (for online publication

only)

Table A1: Censor at 2bps – Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.00147 -0.00709***
(0.000914) (0.00187)

PostF -0.00385*** -0.00798***
(0.00131) (0.00277)

PostTrend 0.000180 -0.00290***
(0.000489) (0.000875)

F × HSurp -0.00272** -0.00872***
(0.00112) (0.00211)

F × LSurp 0.000434 -0.00486**
(0.00127) (0.00192)

PostF × HSurp -0.00294* -0.00781***
(0.00171) (0.00301)

PostF × LSurp -0.00510*** -0.00832***
(0.00191) (0.00305)

PostTrend × HSurp -0.00144** -0.00448***
(0.000586) (0.000915)

PostTrend × LSurp 0.00242*** -0.000689
(0.000655) (0.000979)

F × HSurp × LGr 0.00669*** 4.92e-05
(0.00123) (0.00212)

F × HSurp × HGr -0.00526*** -0.0111***
(0.00132) (0.00217)

F × LSurp × LGr 0.00720*** 0.00154
(0.00267) (0.00283)

F × LSurp × HGr -0.00143 -0.00674***
(0.00128) (0.00195)

PostF × HSurp× LGr 0.00205 -0.00306
(0.00183) (0.00323)

PostF × HSurp× HGr -0.00350* -0.00894***
(0.00209) (0.00306)

PostF × LSurp× LGr -0.000959 -0.00447
(0.00278) (0.00342)

PostF × LSurp× HGr -0.00506** -0.00869***
(0.00240) (0.00335)

PostTrend × HSurp× LGr 0.00688*** 0.00350***
(0.000557) (0.000935)

PostTrend × HSurp× HGr -0.00442*** -0.00681***
(0.000681) (0.000905)

PostTrend × LSurp× LGr 0.00876*** 0.00552***
(0.000771) (0.000988)

PostTrend × LSurp× HGr -0.000423 -0.00312***
(0.000774) (0.00104)

Observations 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.007 0.024 0.012 0.029 0.04 0.051
Xit Controls No Yes No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.This table replicates the main results in the paper using a higher cut-off
for a flood event. Relative Damage below 2bps is censored. F is an indicator for flood event. PostF is an indicator
for the period following the first year of impact. PostTrend is a linear trend starting the in the period following the
impact. LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Estimation (7) and (8) use a different definition for surprise – zero
buildings destroyed between 1978 and 2003. Sample: 2000/2016. SE clustered by community. Additional controls:
indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local
economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do not report the
coefficients for multiple-flood communities.
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Table A2: Drop over 8.66% Relative Damage – Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopist lnPopist lnPopist lnPopist lnPopist lnPopist

F -0.000997 -0.00933***
(0.00112) (0.00202)

PostF -0.00388*** -0.00926***
(0.00144) (0.00277)

PostTrend -8.65e-05 -0.00414***
(0.000483) (0.000853)

F × HSurp -0.00325*** -0.0121***
(0.00120) (0.00241)

F × LSurp 0.00273 -0.00501**
(0.00193) (0.00231)

PostF × HSurp -0.00456*** -0.0103***
(0.00174) (0.00311)

PostF × LSurp -0.00250 -0.00739**
(0.00217) (0.00308)

PostTrend × HSurp -0.00144** -0.00580***
(0.000582) (0.000907)

PostTrend × LSurp 0.00196*** -0.00167*
(0.000617) (0.000934)

F × HSurp × LGr 0.00649*** -0.00319
(0.00115) (0.00245)

F × HSurp × HGr -0.00567*** -0.0143***
(0.00142) (0.00243)

F × LSurp × LGr 0.0117** 0.00327
(0.00543) (0.00505)

F × LSurp × HGr -6.37e-05 -0.00767***
(0.00131) (0.00209)

PostF × HSurp× LGr 0.000959 -0.00539
(0.00190) (0.00332)

PostF × HSurp× HGr -0.00526** -0.0113***
(0.00206) (0.00314)

PostF × LSurp× LGr 0.00253 -0.00279
(0.00484) (0.00474)

PostF × LSurp× HGr -0.00312 -0.00818***
(0.00211) (0.00317)

PostTrend × HSurp× LGr 0.00697*** 0.00223**
(0.000594) (0.000889)

PostTrend × HSurp× HGr -0.00405*** -0.00785***
(0.000655) (0.000914)

PostTrend × LSurp× LGr 0.00893*** 0.00488***
(0.000883) (0.00105)

PostTrend × LSurp× HGr -0.000818 -0.00413***
(0.000694) (0.000969)

Observations 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.003 0.024 0.007 0.029 0.042 0.056
Xit Controls No Yes No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.This table replicates the main results in the paper by dropping communities
with more than 8.66% relative damage. For additional details see Table A1
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Appendix 2: Data Construction (for online publication

only)

NFIP maintains an official record of the number of policies sold, total coverage, and total
payouts at the level of a given community since the program effectively partners with the local
authority enforcing the flood map and building code. The geographical level is consistent
with the US Census definition of general-purpose government units such as cities, towns,
townships, as well as the remaining county areas (county balance). I focus on 38 states with
FEMA disaster declarations related to flooding. Table 1 lists the states considered. Median
population across the 4,147 communities in 38 states in the sample is 34 thousand people.
Insurance information includes homeowners and business structures.

NFIP does not list payouts associated with particular flood events. Instead, it shows
up-to-date payouts starting from 1978. I use historical observations of the official record
taken approximately twice a year between 2003 and 2014 to calculate the amount of new
payouts claimed at each community. These represent insured damages associated with flood
events during each year. I carefully link the observed payouts to the set of FEMA disaster
declarations for each state. The matching was not automated but involved reading the
description of FEMA declarations for each state/year and associating flood events in the
covered counties to observed insurance payouts at communities in those counties. This link
allows me to identify both the amount of insured and uninsured damages for each FEMA
event. In approximately 25% of community/year cases total losses are based only on insured
damage. This is consistent with the fact that not all communities in counties with disaster
declarations will have significant uninsured losses.

The uninsured damages are sourced from FEMA’s individual/public assistance data and
from Small Business Administration’s (SBA) individual/business lending data. A disaster
declaration makes federal funding available to affected individuals without insurance. They
can receive either a direct non-refundable payment or a highly subsidized loan depending
on their ability to take on additional credit. FEMA administers the direct payments and
SBA extends the loans. Both maintain a registry that identifies the amount of assistance
provided and the related total damage at the zip-code level for each disaster declaration.
Altogether, total damage in the data has four components: insured individual/business from
NFIP; uninsured individual from FEMA and SBA; uninsured business from SBA; uninsured
public from FEMA. In this paper I focus primarily on total damage. The components are
only used to control for events where most of the damage comes from one of the source.

Relative damage is calculated using an estimate for the total value of the real estate
during the year of a flood. The value is calculated using information from the 2000 Census
at the block level. I add the total housing values listed in the Census across all of the value
categories for a total real estate value in 2000. I then use the annual state house values from
the FHFA to project the 2000 values forward for each year.

Zip-code data is associated to community-level data using block-level population weights.
In particular each Census block lists the total population, the zip-code, and the community.
This allows me to assign zip-code values to communities by appropriately weighting using
population.

Data on flood insurance policies is only available for the years of 2002-2006 and 2010.
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This is due to a change in the way data was reported across the years.
Fraction of population in a flood zone has been calculated by overlaying community flood

zones with census blocks from the 2000 Census. I have used area as weights to assign the
2000 population from each block in or outside of the flood zone.
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