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Medical Decision-Making by Patients and Providers under 

Uncertainty and in the Presence of Antibiotic Resistance  

Abstract 

We analyze the medical decision-making process, first from the perspective of a patient 

and then from the perspective of a health care provider. Using a decision-tree, we describe the 

different actions a mother can take to treat her daughter, who she suspects has otitis media—an 

ear infection. Next, we use comparative statics and numerical analysis to show how altering 

inputs (magnitude of infection probability, cost terms) can affect the outputs. Finally, we 

examine how different socioeconomic variables influence the mother’s decision making process. 

With regard to the health care provider, we delineate the setting in which the physician operates 

and then derive the long run expected cost of providing health care that this physician seeks to 

minimize. Next, we set up the cost minimization problem and describe the optimal solution 

implicitly. Finally, we explain why this implicit characterization of the optimal solution is all that 

is possible analytically.  
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1. Introduction 

 Since the advent of penicillin in 1928, there are now a variety of antibiotics at our 

disposal which we regularly use to protect and cure individuals from bacterial infections. 

However, this ability to cure has come with costs. Antibiotic resistance is a real and imminent 

threat; it is the result of the misuse, or overuse, of antibiotics to treat illnesses. Studies have 

found that Streptococcus pneumoniae, Streptococcus pyogenes, and Staphylococci, organisms 

that cause respiratory and cutaneous infections, and members of the Enterobactenaceae and 

Pseudornonas families, which cause diarrhea, urinary infection, and sepsis are now resistant to 

almost all of the older antibiotics” (Neu 1992). The problem of antibiotic resistance has become 

so extreme that scientists have found strains of Streptococcus aureus---more commonly known 

as the strain of bacteria that causes “staph” infections---that are resistant to Vancomycin, which 

is considered to be one of the most potent antibiotics in the market (Gardete and Tomasz 2014). 

Antibiotic resistance is not just costly to health; it also results in financial costs. For instance, one 

estimate tells us that the annual deadweight loss associated with outpatient prescriptions for 

amoxicillin in the United States is US$ 225 million (Elbasha 2003).  

A unique and good example of a common condition where antibiotic abuse is a real risk 

is that of an ear infection (Otitis media). An ear infection is a familiar ailment among children. 

Here, it is often caused by an upper respiratory viral infection such as the common cold or the flu 

but can also be caused by bacterial infections such as sinusitis or pneumonia. Unlike other 

common ailments such as Streptococcal pharyngitis, commonly known as “strep throat,” there is 

no culture that can definitively confirm or deny the need to treat an ear infection with antibiotics. 

Thus, it is possible that doctors will prescribe antibiotics for an ear infection without knowing for 

certain whether or not that is the appropriate course of treatment, potentially giving rise to an 



  4

environment that is ideal for the development of antibiotic resistance. There are two commonly 

prescribed treatments in the case of an ear infection: the first is “watchful waiting” where the 

child is not prescribed an antibiotic (the child may be prescribed an over-the-counter medication 

to manage symptoms) and a parent monitors the child’s condition; the second is the prescription 

of an antibiotic.  

 Antibiotic resistance is not just an issue when it comes to common childhood illnesses or 

seasonal ailments. It can also be an issue that plagues less commonly thought of conditions such 

as acne. A common treatment for acne is an antibiotic, either in topical form or, in more severe 

cases, in oral form. Examples of such treatments are topical clindamycin or tetracycline, a class 

of drugs that includes doxycycline and minocycline. These treatments, which are quite common 

today, are gradually becoming less and less effective against acne. Typical acne, more commonly 

known as acne vulgaris, is caused by Propionbacterium acnes. P. acnes has recently been found 

to be more and more resistant to typical antibiotic treatment methods used in the last 30 years. 

The problem of resistance and how quickly this problem can develop is shocking. Studies have 

found that P. acnes develops resistance in 50 percent of individuals who use both oral and 

topical antibiotic treatment options (Swanson 2003). Another study found that 6.25 percent of 

individuals who had been on a short-term course of antibiotics (6-18 weeks) and 21.6 percent of 

individuals who had been on a longer course of antibiotics (18+ weeks) had developed resistance 

(Swanson 2003).  

 Contemporary research shows that bacteria are becoming resistant to existing antibiotics 

at a much faster rate than we can find ways to control this resistance and that there is now a 

pressing need to find alternate therapies (Amábile-Cuevas et al. 1995, McKenna 1998). The 

existing literature has documented the issue of antibiotic resistance—both its direct biological 
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cause and its resulting effects. Research regarding patient and physician behavior in the face of 

antibiotic resistance is much more limited than research about antibiotic resistance itself. When 

looking at studies about patient behavior in the case of ear infections, researchers have found that 

socio-economic variables such as health insurance and education have an impact on patient 

satisfaction when the underlying diagnosis involves “watchful waiting” (Vouloumanou et al. 

2009, Finkelstein et al. 2005). Other factors that are related to socio-economic factors include a 

parent’s ability to take time off from work to care for a child, how much of a burden having a 

child at home is for the family, and the age of the child (Voluloumanou et al. 2009, Finkelstein et 

al. 2005). Research also shows that the parent-physician relationship is significant. One study 

found that patient satisfaction was unaffected by a treatment option but, instead, depended on 

whether the parent felt that the physician had spent an adequate amount of time with himself or 

herself and had a meaningful discussion with him or her about the treatment options (Mangione-

Smith et al. 1999).  

 There is very little theoretical research that looks at a physician’s decision-making when 

(s)he treats patients with antibiotics and resistance is an issue to contend with. In fact, most 

studies typically assume that all physicians behave in a similar manner which is the result of their 

prior medical training. A review of the literature shows that like patients, doctors are also 

susceptible to social pressures and differential expectations. For instance, one study found that 

the perceived pressure from a patient for a certain diagnosis affected the physician’s decision 

about whether to prescribe antibiotics (Mangione-Smith et al. 1999). Another meta-analysis 

showed that phenomena such as confirmation bias, gambler’s fallacy, hindsight bias, and 

anticipated regret all influence a physician’s decision-making process (Bornstein and Emler 

2001). 
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 Existing studies about the behavior of both patients and physicians in the face of potential 

antibiotic resistance are typically not theoretical. Instead, they are either the result of surveys or 

focus groups or aim to generalize findings by performing a meta-analysis on pre-existing studies. 

The point we would like to emphasize is that there are very few studies in the literature that 

employ dynamic or stochastic mathematical modeling.4 This is true even though some 

researchers have noted that such modeling permits researchers to have a stronger grasp of 

structures, interactions, and feedback loops present in complex systems (Manzo 2007). By 

utilizing mathematical modeling in our analysis of medical decision-making, we aim to fill a gap 

in the present literature. 

More specifically, in this paper, we model medical decision-making under uncertainty 

from two different perspectives when antibiotic resistance is a potential problem. In section 2, we 

study a patient’s perspective about whether or not to use an antibiotic treatment option. Using 

decision-tree analysis, we demonstrate the efficacy of our conceptual model. Next, we pose 

different questions and then demonstrate how differences in a patient’s socio-economic 

background alters the nature of this patient’s decision making. In section 3, we analyze a 

physician’s decision-making when resistance to a prescribed antibiotic is an issue to contend 

with. Specifically, we examine some of the factors that go into a physician’s decision-making 

process when this physician is interested in minimizing the long run expected cost of treating a 

patient. We explore the roles that sociological and economic variables such as the geographic 

location of a physician’s clinic and the socioeconomic status of patients visiting the clinic play in 

influencing the physician’s decision-making process. Finally, in section 4, we conclude and then 

delineate two ways in which the research described in this paper might be extended. 

                                                       
4  
See Furceri (2010), Kryzanowski and Mohsni (2010), and Chen et al. (2015) for alternate examples of empirical but not 
theoretical research on healthcare related issues. 
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2. Decision-Making under Uncertainty from a Patient’s Perspective 

2.1. The theoretical framework 

 Consider a scenario in which a parent (the mother) arrives at a medical clinic with her 

sick child (the daughter). The mother must decide what course of action to take given that she 

suspects her daughter has an ear infection. The mathematical analysis in this section is static. 

The reader should think of this scenario as one in which the mother’s decision-making and the 

resulting payoffs to her and to her daughter occur in a single time period. That said, we recognize 

that many interesting aspects of medical decision-making from a patient’s perspective have a 

temporal dimension to them. Therefore, we discuss this point in greater detail in section 2.4 

below.  

The mother has three possible options available to her. First, she can ask a physician in 

the clinic to treat her daughter with an antibiotic regardless of the result that a medical 

examination may yield. Second, she can first ask the physician to do a medical examination on 

her daughter and then request that an antibiotic be given only if the medical exam yields a 

positive result, i.e., a result that confirms her suspicion that her daughter has an ear infection. 

Finally, she can seek no formal medical attention and simply wait out the suspected illness---this 

is the case of “watchful waiting.”  

The above three possible courses of action give rise to specific consequences and these 

consequences are shown in detail in figure 1. It is important to understand that the mother’s  

Figure 1 about here 

medical decision-making is ex ante in nature. This means that she makes a decision before the 

uncertainty about the outcome of this specific decision— and hence her ultimate payoff from this 

specific decision—is resolved. To see this clearly, consider the mother’s decision to ask the 
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physician to conduct a medical examination on her daughter. As shown in figure 1, this decision 

will yield either a positive or a negative result and either of these two possibilities will affect her 

eventual payoff that is shown in the last column on the right-hand-side (RHS) of figure 1. Even 

so, when the mother makes the decision to request a medical exam, she does not know which 

outcome—and hence which payoff—will materialize. Finally, observe from figure 1 that even 

the decision to seek no medical treatment can result in one of two possible outcomes and 

therefore one of two possible payoffs.  

2.2. Decision-tree 

 Consistent with the description of the theoretical framework in section 2.1, we set up a 

decision-tree in figure 1 to illustrate the three options available to the mother and the payoffs to 

her—and to her daughter—that arise from the pursuit of each of these three options. When 

studying figure 1, the reader should keep the following five points in mind. First, if the daughter 

receives an antibiotic when she is not infected, then we assume that she will develop resistance 

to the antibiotic. This means that the antibiotic in question will not kill infections that she (the 

daughter) may get in the future. Specifically, the daughter will develop resistance with fixed 

probability ܲோ  0 and this will then result in additional costs for subsequent treatment that we 

denote by ܥோ  0. Second, if the daughter is infected and she receives the antibiotic then we 

assume that she will be cured immediately and that there will be no side effects. Third, if the 

daughter is infected but not treated then this infection will develop into some kind of 

complication and the treatment of this complication will cost ܥ  0. Fourth, the fixed 

probability that the daughter is infected before she receives any kind of treatment is ௌܲ  0 and 

this probability is known to her mother. We assume that ௌܲ, or the likelihood of being infected, is 

a function of economic and sociological variables that are unique to the mother-daughter pair in 
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our model. Finally, the cost of an antibiotic is ܥ  0, the cost of conducting a medical 

examination is ܥா  0, and the cost of watchful waiting is ܥௐ  0. 

In addition to the costs and the probabilities specified in the previous paragraph, there 

also are benefit terms that we have specified in figure 1. In this regard, ܤሺݐ݊݁݉ݐܽ݁ݎݐሻ is the 

benefit that the mother and her daughter experience as a result of a successful medical 

intervention using an antibiotic. Similarly, ܤሺ݊	݊݅ݐ݂ܿ݁݊݅ሻ is the benefit that the mother and 

her daughter experience when the daughter has no infection and hence an antibiotic is not needed 

to cure her. Note that all infections being discussed above refer to bacterial infections, not viral 

infections. Now, to show how alternate actions by the mother lead to distinct payoffs to the 

mother-daughter pair, we discuss some of the payoffs described in figure 1.  

2.3. Alternate outcomes 

 Suppose that the mother goes to the medical clinic and requests a doctor to conduct a 

medical examination of her daughter. As shown in figure 1, this decision can result in two 

different outcomes and these outcomes in turn lead to two possible payoffs. The first outcome is 

that the doctor performs an examination and finds that the daughter’s ear infection requires an 

antibiotic. In this case, the payoff to the mother is ܥா  ௌܲሼܥ   ሻሽ. This payoff isݐ݊݁݉ݐܽ݁ݎݐሺܤ

numbered (4) in the table right after the decision-tree. In words, this payoff arises because of two 

reasons. First, the mother definitely pays the cost ܥா of the medical examination. Second, she 

also pays the cost ܥ of the antibiotic and her daughter obtains the benefit from the treatment 

denoted by ܤሺݐ݊݁݉ݐܽ݁ݎݐሻ but these last two terms need to be weighted by the probability ௌܲ 

that they are experienced.  

Note that the mother could ask for a medical examination and this examination may 

reveal that her daughter does not have an ear infection. The resulting payoff in this case is 
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ாܥ  ሺ1 െ ௌܲሻܤሺ݊	݊݅ݐ݂ܿ݁݊݅ሻ. This payoff is numbered (5) in the table right after the decision-

tree. Here, the mother is still definitely paying the cost of the medical examination ܥா but the 

benefit from not having an ear infection or ܤሺ݊	݊݅ݐ݂ܿ݁݊݅ሻ is weighted by the probability ሺ1 െ ௌܲሻ that the daughter is not infected.  

 In contrast to asking for a medical examination, the mother may decide to not seek 

medical treatment and use “watchful waiting” to monitor her daughter’s condition herself. This 

possibility is described by the third or bottom branch of the decision-tree. Choosing this course 

of action results in two possible outcomes. The first is the possibility that the daughter’s illness 

will persist and that she will develop a complication such as rheumatic fever. When this happens, 

the payoff to the mother–daughter pair is the cost of the complication ܥ multiplied by the 

probability ௌܲ that this cost is incurred or ܥௐ  ௌܲܥ. The mother’s decision to not seek any 

medical attention can also result in the daughter being cured of her own accord. The benefit from 

this outcome is ܤሺ݊	݊݅ݐ݂ܿ݁݊݅ሻ and the probability that this benefit will be incurred is ሺ1 െ
ௌܲሻ. Therefore, the payoff to the mother-daughter pair in this instance is ܥௐ  ሺ1 െ
ௌܲሻܤሺ݊	݊݅ݐ݂ܿ݁݊݅ሻ and this payoff is numbered (7) in the table right after the decision-tree. We 

now discuss how changes in the infection probability ௌܲ influence the mother’s medical 

decision-making and the resulting payoffs.  

2.4. Comparative statics 

Using the method of comparative statistics—also known as sensitivity analysis—with the 

various payoffs in the figure 1 decision-tree, we can see how the payoffs (the endogenous 

variables of interest) are affected when the value of the infection probability ௌܲ (the exogenous 

variable) changes.  
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As noted in the first paragraph of section 2.1, our mathematical analysis in this second 

section is static. Therefore, it is reasonable to suppose that ௌܲ is fixed and exogenous. However, 

if we allow historical factors—that arise over multiple time periods—to influence the mother’s 

decision-making, then, consistent with the discussion in the first paragraph of section 2.2, it 

would make more sense to think of ௌܲ not as a fixed number but instead as a variable that is itself 

a function of economic and sociological variables. For concreteness, we suppose that the 

economic variable is income ሺܫሻ and that the sociological variable is education ሺܧሻ. Put 

differently, when historical factors are allowed to influence the decisions that the mother is 

making, it makes sense to think of income and education as exogenous variables of interest. That 

said, we can now express ௌܲ as  

ௌܲ ൌ ݂ሺܫ,  ሻ,       (1)ܧ

where ݂ሺ∙ሻ is the function that links the probability of being infected to one’s family income and 

education. In our model, we assume that all else being fixed, as either income or education rises, 

the infection probability ௌܲ goes down. Mathematically, we obtain5 

 

డೄడூ ൌ డሺ∙ሻడூ ൏ 0      (2) 

 

and 

డೄడா ൌ డሺ∙ሻడா ൏ 0.      (3) 

 

                                                       
5  
See Adler and Newman (2002), Finkelstein et al. (2005), and Hahn and Truman (2015) for a more detailed corroboration of the 
validity of these assumptions. 
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The logic behind the negative signs in equations (2) and (3) is as follows: as a family gets 

richer or more educated, this family acquires better knowledge about personal hygiene, nutritious 

meals, wholesome diets, and is therefore faced with a lower infection probability ௌܲ for a family 

member such as a daughter. In contrast, when a family becomes impoverished or has a low level 

of education, this family is less well able to deal with medical ailments for a family member and 

hence the infection probability ௌܲ is higher.  

Given the discussion in the previous paragraph, when we lower the infection probability 

ௌܲ, we are mimicking the effect of making a family richer or more educated. In contrast, when 

we raise ௌܲ, we are mimicking the effect of making this same family poorer or less educated. In 

the remainder of this second section, we shall discuss the interplay between the mother’s static or 

single time period decision-making—where ௌܲ is fixed and exogenous—and the income and 

education variables that matter historically or over multiple time periods where ௌܲ is more 

appropriately viewed as a function of income and education. Note that our thinking about the 

connection between income, education, and the infection probability ௌܲ is supported by research. 

For example, a report published by the Royal College of Pediatrics and Child Health in the 

United Kingdom found that nearly two-thirds of pediatricians believe that food insecurity and 

homelessness contribute to the ill health of children while half of all pediatricians believe that 

financial stress also makes a significant contribution (Bulman 2017).  

In order to further understand the relationship between ௌܲ and the different numbered 

payoffs in figure 1, we shall, as an example, hold all other things fixed and take the derivative of 

the payoff numbered (3) in which the mother chooses to treat her daughter with an antibiotic 

because she believes her daughter has an infection. This gives us  
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డሼಲାೄሺ௧௧௧ሻሽడೄ ൌ ሻݐ݊݁݉ݐܽ݁ݎݐሺܤ  0.     (4) 

 

Equation (4) tells us two things. First, the relationship between ௌܲ and this payoff is positive for 

all values of ௌܲ between zero and one. Second, irrespective of whether a particular family has 

high or low socioeconomic status, as the probability of an infection rises, treatment with an 

antibiotic gives rise to a positive benefit denoted by ܤሺݐ݊݁݉ݐܽ݁ݎݐሻ.  
Now, consider figure 2. This figure shows a cutoff point on the horizontal ௌܲ axis.  

Figure 2 about here 

Consistent with our discussion earlier in this section, to the left of the cutoff point are families 

with relatively high socioeconomic status and hence they face a relatively low probability of 

infection. In contrast, to the right of the cutoff point are families with relatively low 

socioeconomic status and therefore they face a relatively high probability of infection. In 

addition, the point 0 on the horizontal axis corresponds to families that are either very wealthy or 

very well educated or both. In contrast, the point 1 on this same axis corresponds to families that 

are either impoverished or poorly educated or both. Note that our analysis thus far allows for the 

possibility that the magnitude of the benefit from antibiotic treatment, i.e., the size of ܤሺݐ݊݁݉ݐܽ݁ݎݐሻ in the RHS of equation (4) is larger for a family with low socioeconomic status 

as opposed to one with high socioeconomic status. However, the opposite result is also possible. 

This means that of the two (high and low) socioeconomic groups under consideration, the 

question about which socioeconomic group benefits more from antibiotic treatment cannot be 

resolved definitively without making additional assumptions about how changes in the infection 

probability ௌܲ affect the slope of the function describing the payoff numbered (3) in the table 

right after the decision-tree in figure 1.  
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We would like to emphasize the point that the impact of small changes in ௌܲ on the 

payoff to the mother-daughter pair from the mother’s choice of a treatment option is very 

sensitive to the specific treatment option chosen by the mother. We can show this in two steps. In 

the first step, observe from equation (4) that when the mother chooses to treat her daughter with 

an antibiotic and this daughter is infected, the impact of a small increase in ௌܲ on the payoff 

numbered (3) in the table right after the decision-tree is positive. In the second step, consider the 

case where the mother once again chooses to treat her daughter with an antibiotic but the 

daughter is, in fact, not infected and hence develops resistance. The relevant payoff to focus on 

now is the one numbered (1) in the table right after the decision-tree. Mathematically, we get  

 

డሼಲାሺଵିೄሻಲೃಲೃሽడೄ ൌ డሼିೄಲೃಲೃሽడೄ ൌ െ ܲோܥோ ൏ 0.   (5) 

 

Equation (5) shows that the impact of a small increase in ௌܲ on the payoff is negative. This 

verifies the claim made in the first sentence of this paragraph.  

We have shown how comparative statics can be used to shed light on some aspects of 

medical decision-making by the mother. We now show how simple numerical analysis can shed 

yet more light on the mother’s decision-making when her focus is on minimizing a particular 

objective such as expected cost.  

2.5. Numerical analysis 

One question that can be asked, given the different payoffs in the figure 1 table is the 

following: what is the expected cost to the mother when she decides to treat her daughter with 

only an antibiotic and with no medical examination? Using the decision-tree, we see that in this 

case, there are three possible payoffs to consider and these payoffs are numbered (1), (2), and (3) 
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in the table right after the decision-tree. Since our focus is only on the expected cost, we 

disregard the benefit terms in payoffs (2) and (3). This gives us ܥ  ሺ1 െ ௌܲሻ ܲோܥோ for payoff 

(1) and ܥ for payoffs (2) and (3). Now, substituting the numerical values for the various 

probabilities and the cost terms given in table 1, we get  

Table 1 about here ܥ  ሺ1 െ ௌܲሻ ܲோܥோ ൌ 10  0.5 ൈ 0.2 ൈ 30 ൌ 13, ܥ ൌ 10.  (6) 

 A second question that can be asked is the following: given the three possible courses of 

action available to the mother, if her goal is to minimize the expected cost only then what is her 

optimal decision? From equation (6), we already know that the expected cost of treatment with 

an antibiotic is either 10 or 13. So, to answer the preceding question, we will need to calculate 

the expected cost of the medical examination and the expected cost of choosing not to treat the 

daughter.  

When the mother chooses to have the physician conduct a medical examination on her 

daughter, the relevant payoffs to consider are the ones numbered (4) and (5) in the decision-tree. 

Since we are concentrating on costs we temporarily ignore the benefit terms in the two payoffs. 

This gives ܥா  ௌܲܥ for payoff (4) and ܥா for payoff (5). Substituting the numerical values for 

the costs and the probability in these expressions from table 1, we get  ܥா  ௌܲܥ ൌ 8.5  0.5 ൈ 10 ൌ 13.5, ாܥ ൌ 8.5.   (7) 

The expected cost of not treating the daughter requires us to focus on the payoffs 

numbered (6) and (7) in the decision-tree. Once again, because our focus is on costs, we 

disregard the benefit term in payoff (7). This gives us ܥௐ  ௌܲܥ for payoff (6) and ܥௐ for 

payoff (7). Substituting the numerical values from table 1 into the preceding two expressions, we 

obtain 
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ௐܥ  ௌܲܥ ൌ 17  	0.5 ൈ 1000 ൌ 517, ௐܥ ൌ 17.   (8) 

From an ex ante perspective, the mother does not know which of the three payoffs in 

equation (6) will actually arise were she to decide to treat her daughter with an antibiotic and 

with no medical examination. But the mother knows that ܥ  ሺ1 െ ௌܲ) ܲோܥோ   . So, we canܥ

disregard the first payoff and focus only on payoffs (2) and (3). Without imposing additional 

structure on the problem, we can break the tie between payoffs (2) and (3) by supposing that they 

are equally likely. In this case, the mother’s mean payoff from treating her daughter with an 

antibiotic only is 
ଵଶ ൈ 10  ଵଶ ൈ 10 ൌ 10. Similarly, looking at the case where the mother first has 

the physician perform a medical examination on her daughter, she can reason that ܥா  ௌܲܥ ܥா . So, disregarding payoff (4), we focus on payoff (5) only for this case and the mother’s payoff 

is 8.5. Finally, for the case where the mother does not treat her daughter, we have ܥௐ  ௌܲܥ ܥௐ. As such, we now disregard payoff (6) and focus only on payoff (7). Hence, the mother’s 

payoff is 17. Comparing these three payoffs, it is clear that the lowest cost is 8.5. So, if the 

mother’s goal is to minimize only the expected cost she incurs then her optimal decision is to 

have the physician first conduct a medical examination on her daughter.  

Is the mother’s optimal decision given in the preceding paragraph sensitive to changes in 

the infection probability ௌܲ? To answer this question concretely, observe from equations (6)-(8) 

that the infection probability does not appear in any one of the pertinent cost expressions. This 

tells us that when the mother focuses on costs only, her optimal decision is invariant to changes 

in the infection probability ௌܲ. The reader should note that this result is not general. In particular, 

when the mother’s focus changes from minimizing expected cost to maximizing the net benefit 

from alternate treatment options, it will be necessary to explicitly account for the benefit terms in 

the payoffs numbered (1) through (7). When this is done, changes in the infection probability ௌܲ 
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will alter the magnitudes of the net benefit terms in the various payoffs. As such, the optimal 

course of action now will be a function of the magnitude of the infection probability ௌܲ.  
It is possible that a mother possessing less education and earning a lower income will 

want to pick the option of directly choosing the antibiotic without a medical examination. Such a 

mother may not have the money or the time to administer a “watchful waiting” diagnosis and she 

may also not be well informed about the costs of antibiotic resistance. To such a mother, the 

immediate, lowest cost option may well be to treat her daughter directly with an antibiotic. There 

is support for this line of reasoning in the work of Finkelstein et al. (2005). These researchers 

found that a parent who had a lower education level was more disappointed when a physician 

would not prescribe an antibiotic to his or her child. Finkelstein et al. (2005) also found that 

parents who had attained higher educational degrees were more knowledgeable about antibiotic 

resistance and were also more satisfied with a “watchful waiting” diagnosis. We now discuss 

medical decision-making under uncertainty from the perspective of a physician. The model we 

use to conduct the analysis is adapted from Batabyal and Beladi (2018).  

3. Decision-Making under Uncertainty from a Physician’s Perspective 

3.1. Theoretical framework 

Consider a geographic area known as Cornellville that has a population of infected 

individuals. For the purpose of the analysis, we shall focus on one representative individual with 

this infection from Cornellville who shall hereafter be known as the patient. For concreteness, we 

assume this patient is a man and that the physician under consideration is a woman. The patient 

comes to a local clinic seeking attention for a medical condition. The nature of this medical 

condition is such that the man’s health deteriorates over time, but the random amount by which 

this deterioration occurs is unknown to the physician before an examination is conducted. In this 
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scenario, the default treatment option for the patient is an antibiotic but this antibiotic is not 

always successful in treating the patient. Therefore, in what follows, we shall focus on some 

aspects of medical decision-making given that the default antibiotic has failed to treat the patient. 

It is important to note that the likelihood of a treatment being successful is probabilistic. In 

particular, the patient may develop resistance to an antibiotic being used and we shall be 

interested in exploring some of the implications of this possibility.  

The patient comes to the clinic for routine check-ups at pre-determined points in time that 

are represented by ݐ ൌ 0, 1, 2, … In each time period between two successive check-ups, an organ 

in the patient’s body incurs a random amount of damage and these damage amounts accumulate 

over time. At the check-ups, the physician examines the amount of accumulated damage the 

relevant organ has suffered. We assume that the random damage between successive visits to the 

physician’s office can be described by independent random variables that have a common 

exponential distribution with mean 1 ⁄.ߚ  A real life example of this kind of damage is when the 

intake of iron supplements results in iron deposits accumulating over time within the body.  

When the patient comes to the clinic for his periodic check-ups, the physician is able to 

examine both the patient’s health and the accumulation of damage to the relevant organ. The 

physician’s ultimate goal is to cure the patient of his illness and as such, a related goal is to keep 

the total amount of damage in the patient’s body lower than a critical level denoted by ܴ. In this 

case, ܴ represents the resistant state and reaching ܴ means that the resistant state has been 

reached. This kind of thinking is consistent with previous research (Howard 2004). When the 

resistant state is reached, the physician switches the patient from his current treatment to an 

alternate antibiotic. The cost of switching is high and denoted by ܥோ  0. Put differently, ܥோ is 

the cost the physician bears when the patient must be put on the alternate antibiotic treatment; it 
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is not the cost of the alternate antibiotic treatment to the patient. From the physician’s 

perspective, allowing the accumulated damages in the patient’s body to reach the resistant state ܴ is the worst possible outcome.  

The physician also has the option of putting the patient on a non-antibiotic treatment 

regimen as long as the accumulated damage in the patient’s body or ݎ is less than ܴ but greater 

than 0. From the physician’s perspective, state 0	ሺܴሻ is the best (worst) possible state. In 

symbols, we have 0  ݎ  ܴ. We stress that state ݎ refers to the cumulative amount of damage 

that the patient accumulates in his body and this damage is both measurable by and known to the 

physician upon the completion of a check-up.  

When the cumulative amount of damage in the patient’s body is ݎ, the physician will 

prescribe the non-antibiotic treatment which has a cost of ܥ and is less expensive than the 

alternate antibiotic and hence we have 0 ൏ ܥ ൏   is the cost that theܥ ,ோ. Put differentlyܥ

physician incurs as a result of treating the patient with the non-antibiotic option in state ݎ. The 

amount of damage incurred during successive visits to the physician’s office is denoted by ݎ, ,ଵݎ ,ଶݎ …where ݎ is the total organ damage in the patient’s body when visiting the physician’s 

office at time ݐ ൌ  ଵ is the total or accumulated organ damage when visiting the physician’sݎ ,0

office at time ݐ ൌ 1, and so on and so forth. Because the successive damage amounts are random, 

they are not known precisely by the physician. This feature also explains why the physician is 

operating in an environment of uncertainty. Note that it is in the interest of both the physician 

and the patient to keep ݎ low and, in particular, to ensure that the value of ݎ does not reach or 

exceed the resistant state denoted by ܴ. Also and in contrast with the section 2 analysis, we are 

now explicitly modelling the passage of time and hence our analysis is dynamic. The features of 

the problem that we have been discussing thus far are shown pictorially in figure 3. We now  
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Figure 3 about here 

discuss a particular but informative application of this section’s theoretical framework. 

3.2. Specific application 

 Suppose that the infected patient described above is a patient who is suffering from 

moderate acne. Although acne is typically considered to be a cosmetic issue, it can be quite 

severe and hence require potent medication. This patient comes to a clinic to see a dermatologist. 

After examining the patient and his acne related history, the dermatologist decides to prescribe 

the patient a topical clindamycin gel, an antibiotic. After using this antibiotic for 9 to 12 weeks, 

the patient sees absolutely no improvement in his condition and hence both the dermatologist and 

the patient decide that this default treatment option is ineffective.  

 At this point, the dermatologist has a choice. She can either prescribe a non-antibiotic 

option, in this case a topical retinoid, or she can prescribe an oral antibiotic such as doxycycline. 

The latter treatment option can only be instituted once the patient’s acne has reached the resistant 

state ܴ, or in this case, cycstic/nodular acne. It is in the best interest of the dermatologist to keep ݎ, or in this case the acne, as minimal as possible. A patient who is on the oral doxycycline will 

need to have a prescription that is filled on a monthly basis, meaning that the dermatologist must 

provide the patient with more frequent care than the topical retinoid which usually lasts a patient 

about three to six months, depending on usage. The cumulative damage that the dermatologist 

assesses at each visit, ݎ, can be measured in terms of the new scarring that appears between 

successive visits and in terms of how active and numerous the current acne is. The amount of 

damage that the dermatologist finds during a visit in time ݐ ൌ 0,1,2,… is ݎ, ,ଵݎ  .ଶ, respectivelyݎ

We now describe the “renewal-reward theorem” that will be used to derive the long run expected 

cost of providing medical treatment by the physician.  
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3.3. Renewal-reward theorem 

The following description of the renewal-reward theorem is taken from Ross (2003, pp. 

416-425). A stochastic process ሼܳሺݐሻ: ݐ  0ሽ is said to be a counting process if ܳሺݐሻ denotes the 

total number of events that have occurred by time ݐ. Now let ଵܺ denote the time or epoch at 

which the first event occurs. Further, for ݍ  1, let ܺ denote the time between the ሺݍ െ 1ሻ݄ݐ 

and the ݄ݐݍ event. These ܺ, ݍ  1, are known as the interarrival times. A counting process for 

which these interarrival times have an arbitrary distribution is called a renewal process.6 

 Consider a renewal process ሼܳሺݐሻ: ݐ  0ሽ with interarrival times ܺ , ݍ  1, that have 

cumulative distribution function ܨሺ∙ሻ. Further, suppose that a monetary reward ܴ is earned 

when the ݄ݐݍ renewal is completed. Let ܴሺݐሻ, the total reward by time ݐ, be given by ∑ ܴொሺ௧ሻୀଵ . In 

addition, let ܴൣܧ൧ ൌ ൧ܺൣܧ ሾܴሿ and letܧ ൌ  ሾ∙ሿ is the expectation operator. Theܧ ሾܺሿ, whereܧ

renewal-reward theorem tells us that if ܧሾܴሿ and ܧሾܺሿ are finite, then with probability one, 

 ݈݅݉௧→ஶ ாሾோሺ௧ሻሿ௧ ൌ ாሾோሿாሾሿ.      (9) 

 

So, if we think of a cycle being completed every time a renewal occurs, then the long run 

expected reward is the expected reward in a cycle divided by the expected amount of time it 

takes to complete this cycle. The renewal-reward theorem holds for positive rewards (revenue) 

and for negative rewards (costs). In addition, a renewal process is also a “regenerative process.” 

We shall work with certain properties of an appropriately defined regenerative process to derive 

the physician’s long run expected cost of providing medical treatment.  

                                                       
6  
Note that a renewal process is a more general stochastic process than either a discrete-time Markov chain (DTMC) or a 
continuous-time Markov chain (CTMC). 
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3.4. Expected cost function 

 To use the renewal-reward theorem, it will be necessary to first define two concepts from 

renewal theory (Ross 2003, chapter 7). The first concept is the renewal or mean value function 

(Ross 2003, pp. 403-404). This function, often denoted by ݉ሺݐሻ, tells us the mean number of 

renewals by time ݐ. The second concept is the excess variable (Ross 2003, pp. 424-425). The 

excess variable ݕሺݐሻ tells us the random amount of time that has elapsed from epoch ݐ until the 

next renewal after epoch ݐ.  
 Let us now calculate the expected length of a cycle. The mean value function asks how 

many renewals have occurred with respect to time but in the setting of this third section, we are 

interested in how many renewals have occurred with respect to ݎ, the cumulative amount of 

damage to the relevant organ in the patient’s body. This means that the mean value function we 

are interested in is ݉ሺݎሻ. We know from the discussion in section 3.1 that the random damage 

between successive visits by the patient to the physician’s office is described by independent 

random variables that are exponentially distributed with mean 1 ⁄.ߚ  Therefore, from Ross (2003, 

p. 405), we can tell that the mean value function in our case is  ݉ሺݎሻ ൌ  (10)       .ݎߚ

In addition, given the exponentially distributed damage amounts, the excess variable ݕሺݎሻ is also 

exponentially distributed with mean 1 ⁄.ߚ  With these two pieces of information in hand, we infer 

that the average length of a cycle is  ܧሾ݈݄݁݊݃ݐ	݂	݁݊	݈݁ܿݕܿሿ ൌ 1 ݉ሺݎሻ ൌ 1   (11)   .ݎߚ

Equation (11) shows that the expected length of a cycle depends on the mean value function ݉ሺݎሻ ൌ   .ݎߚ
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 The next step in finding the long run expected cost function is to determine the expected 

cost of one cycle. To do this, we shall follow the thought process of the physician in the setting 

of this third section and then translate the resulting decisions into probabilistic terms. We know 

that the default antibiotic that the physician initially prescribed to the patient has been found to 

be ineffective. We also know that the patient will come to the physician’s office to be examined 

at fixed points in time. If the physician finds the cumulative organ damage in the patient’s body ݎ 

to be anywhere between 0 and ܴ,	then the patient is prescribed a non-antibiotic treatment. In 

contrast, if the patient is found to have cumulative organ damage that is either equal to or above 

the resistant state ܴ then he is switched to an alternate antibiotic. This alternative is costlier than 

the non-antibiotic treatment option.  

The physician’s objective is to keep ݎ low and in particular to ensure that ݎ does not 

equal or exceed ܴ. This means that whenever ݎ ൏ ܴ, the patient will definitely be on the non-

antibiotic treatment. With this information, we know that the cost ܥ will appear in the numerator 

of the ratio describing the long run expected cost function in equation (9). The next step is to 

account for the chance that the cumulative amount of organ damage in the patient’s body will 

exceed ܴ. The way in which we shall do this is by determining the additional cost that will be 

incurred by the physician when she switches from the non-antibiotic treatment option to the 

alternate antibiotic and then weighting this cost by the probability that it will, in fact, be incurred. 

Doing this, the expected cost of one cycle is ܧሺܿݐݏ	݂	݁݊	݈݁ܿݕܿሻ ൌ ሺܥோ െ ሻ݁ିఉሺோିሻܥ      (12)ܥ

In equation (12), the first part of the first term, ሺܥோ െ  ሻ accounts for the additional cost thatܥ

will result from needing to switch from the non-antibiotic option to the alternate antibiotic. The 

second part of the first term or ݁ିఉሺோିሻ can be thought of as the probability that the cumulative 
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amount of organ damage in the patient’s body will equal or exceed ܴ. All this is added to ܥ, 

which is the cost of the non-antibiotic treatment option.  

 Now that both the expected cost of one cycle and the expected length of one cycle is 

known, it is possible to state the long run expected cost function. From equation (9), this function 

is the ratio of the two expectations found above. Therefore, dividing both sides of equation (12) 

by equation (11), the long run expected cost function is  

 

ݐݏܿ	݁݃ܽݎ݁ݒܽ	݊ݑݎ	݈݃݊	ݏᇱ݊ܽ݅ܿ݅ݏݕ݄ܲ ൌ 	 ሺೃିೝሻషഁሺషೝሻାೝଵାఉ ,  (13) 

 

with probability one. Now that we have obtained the long run expected cost function, we can set 

up and then use calculus to solve a cost minimization problem in which the physician chooses 

the value of the cumulative organ damage in the patient’s body ݎ to make the long run expected 

cost of providing medical treatment or the RHS of equation (13) as small as possible.  

3.5. Cost minimization  

 The physician solves 

 

݉݅݊ሼሽ ቂ	ሺೃିೝሻషഁሺషೝሻାೝଵାఉ ቃ.      (14) 

 

Differentiating the objective function in equation (14) with respect to the choice variable ݎ gives 

us the first-order necessary condition for a minimum. After some algebra, the physician’s long 

run expected cost of providing healthcare is minimal for the unique value of the cumulative 

amount of organ damage in the patient’s body ݎ∗ that solves the equation  
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ఉሺୖି∗ሻି݁ݎߚ ൌ ೝೃିೝ.       (15) 

 

 Two points about equation (15) are worth pointing out. First, the optimal ݎ∗ is given 

implicitly by this equation and it is not possible to explicitly solve for this ݎ∗. Second, to make 

further progress with equation (15) it will be necessary to solve this equation numerically. This 

completes our analysis of medical decision-making in a probabilistic setting. 

4. Conclusions 

 In this paper, we studied medical decision-making under uncertainty and in the presence 

of antibiotic resistance. In section 2, we first used a decision tree to describe the various actions 

that a mother could take to have her daughter treated for an infection that she suspects her 

daughter has. Next, we used comparative statics and numerical analysis to show how optimal 

actions were affected by the magnitude of the infection probability and the cost terms. Finally, 

we linked the discussion to economic and sociological variables and pointed out that a family’s 

high or low socioeconomic status influences how this family evaluates the pros and cons of 

alternate treatment options.  

 In section 3, we studied medical decision-making by a health care provider. After 

describing the setting in which the physician operates, we discussed a specific application of the 

theoretical framework. We then used the renewal-reward theorem to derive the long run expected 

cost of providing health care that the physician sought to minimize. We set up the cost 

minimization problem and then described the optimal solution ሺݎ∗ሻ to this implicitly. We took 

this course of action because it was not possible to solve for ݎ∗ explicitly. The approach used in 

this section shows one way to model and study a public policy issue of considerable importance, 

namely, how to provide health care to sick individuals at the lowest possible cost. 



  26

 Here are two suggestions for extending the research described in this paper. First, 

consistent with our observation in the last paragraph of section 3.5, it would be worthwhile to 

determine whether methods of the sort utilized by Lin et al. (2017) or other similar methods can 

be employed to solve equation (1) numerically and to see how sensitive the obtained solution is 

to alternate specifications of, for instance, the parameter ߚ. Second, it would also be interesting 

to use game theory---possibly as in Greenberg et al. (2002)---to analyze the patient-physician 

interaction as a game in which both players interact with each other repeatedly over time. Studies 

of medical decision-making by patients and physicians that incorporate these aspects of the 

problem into the analysis will provide further insights into the provision of health care in the 

presence of antibiotic resistance.  
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Reading the right-most boxes in Figure 1 from top to bottom 

ܥ 1  ሺ1 െ ௌܲሻ ܲோܥோ 

ܥ 2  ሺ1 െ ௌܲሻሺ1 െ ܲோሻሾܤሺݐ݊݁݉ݐܽ݁ݎݐሻሿ 
ܥ 3  ௌܲሾܤሺݐ݊݁݉ݐܽ݁ݎݐሻሿ 
ாܥ 4  ௌܲሾܥ   ሻሿݐ݊݁݉ݐܽ݁ݎݐሺܤ
ாܥ 5  ሺ1 െ ௌܲሻሾܤሺ݊  ሻሿ݊݅ݐ݂ܿ݁݊݅
ௐܥ 6  ௌܲܥ
ௐܥ 7  ሺ1 െ ௌܲሻሾܤሺ݊  ሻሿ݊݅ݐ݂ܿ݁݊݅

 

Figure 1: The decision-tree for the mother 
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Figure 2: Families with high and low socioeconomic status 
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ௌܲ ܲோ ܥ ܥா ܥௐ ܥோ ܥ 

0.5 0.2 10 8.5 17 30 1000 

 

Table 1: Numerical values of costs and probabilities 
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Figure 3: Treatment options depending on the cumulative amount of organ damage 
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