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Abstract 

Almost all the existing panel stochastic frontier models treat technical efficiency as 

static. Consequently there is no mechanism by which an inefficient producer can improve 

its efficiency over time. The main objective of this paper is to propose a panel stochastic 

frontier model that allows the dynamic adjustment of persistent technical inefficiency. The 

model also includes transient inefficiency which is assumed to be heteroscedastic. We 

consider three likelihood-based approaches to estimate the model: the full maximum 

likelihood (FML), pairwise composite likelihood (PCL) and quasi-maximum likelihood 

(QML) approaches. Moreover, we provide Monte Carlo simulation results to examine and 

compare the finite sample performances of the three above-mentioned likelihood-based 

estimators. Finally, we provide an empirical application to the dynamic model.  
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1. Introduction 

In almost all panel stochastic frontier (SF) models, the inefficiency component is usually 

assumed to be independent across time and fails to capture the dynamics of its adjustment process 

over time. Although consideration of such dynamic models is necessary, inference in such models is 

relatively complicated, particularly for the likelihood-based approach. This paper contributes in this 

direction. We consider a panel SF model with dynamic technical inefficiency that follows a 

first-order autoregressive (AR(1)) process and propose to estimate the model using three 

likelihood-based approaches. 

The earlier SF panel models (Pitt and Lee, 1981; Schmidt and Sickles, 1984; Kumbhakar, 1987; 

among others) treated technical inefficiency as time invariant. Although subsequent researchers 

allowed the inefficiency to vary over time, they assumed the inefficiency to be a deterministic 

function of time (Cornwell et al. 1990; Kumbhakar, 1990; Battese and Coelli, 1992; Lee and Schmidt, 

1993; Kumbhakar and Wang, 2005). Another feature of the time-varying panel SF model is that it 

permits separating technical efficiency from technology change. For instance, studies by Kumar and 

Russell (2002) and Kumbhakar and Wang (2005) treated economic growth convergence as countries’ 

movements toward the world production frontier. The former uses a nonparametric approach, while 

the latter assumes that both the technology and technology inefficiency are systematic functions of 

time. However, none of the aforementioned studies are formulated in a dynamic framework with the 

specification that inefficiency is a stochastic time-series process perhaps due to the difficulty in 

formulating the likelihood function of the dynamic stochastic frontier (DSF) model.  

The DSF model proposed by Ahn et al. (2000) is the first to incorporate the dynamic structure in 

the technical inefficiency, where the inefficiency evolves over time following a first order 

auto-regressive process. Although firms that are relatively inefficient in one time period will try to 

reduce their inefficiency over time, they will probably be inefficient in other time periods also 

(Amsler et al. (2014)). Therefore, one may expect the inefficiencies to be positively correlated over 

time. The nature of the dynamic inefficiency is captured by an AR(1) process, which allows the 

inefficiency in the current period to be influenced by its past levels of inefficiency.  

The DSF model under investigation in this paper is more closely related to the model proposed 

by Ahn et al. (2000). Here, we make AR(1) assumption on the inefficiency term ݑ௧ in order to 

incorporate the dynamics of the technical inefficiency. The main difference is that we include the 

heterogeneity (determinants) in the inefficiency component, which follows a heteroscedastic half 

normal distribution. On the contrary, Ahn et al. (2000) assume that the heterogeneity comes from the 

speed of the adjustment, i.e., the AR(1) coefficient. They propose using the generalized method of 



3 
 

moments approach to estimate the model and here we propose using the likelihood-based approach 

which helps us to estimate firm-specific inefficiency – not just the long-run inefficiency. With the 

dynamic panel setting, we are also able to investigate how the evolution of the production technology 

and technical inefficiency over time.  

Due to the complexity of the likelihood function, Ahn et al. (2000) suggest using the 

generalized method of moments (GMM) approach to estimate their DSF model. Although the GMM 

approach gives estimates of firm-specific long-run inefficiency, it cannot provide estimates of both 

short-run and long-run inefficiency, and therefore the evolution of inefficiency over time.  Later on, 

Tsionas (2006) and Emvalomatis (2012) also reconsider the DSF models with different settings in 

the dynamics of the inefficiency. Both Tsionas (2006) and Emvalomatis (2012) suggest estimating 

their models by the Bayesian approach. Here we suggest non-Bayesian approaches to the DSF 

models. 

Since our objective in this paper is to provide the likelihood-based approaches to estimate a 

DSF model that retains the general setting of the inefficiency, we do not compare our proposed 

estimator with the other existing estimators, such as the Bayesian estimators with different 

assumptions on the inefficiency distribution. In particular, our main focus is on the full maximum 

likelihood (FML), par-wise composite likelihood (PCL), and quasi-maximum likelihood (QML) 

estimation methods, where the last two approaches provide different alternatives to the FML 

approach when the true joint probability function is difficult to evaluate or the time span of the 

observed data is long. 

The rest of the paper is organized as follows. Section 2 briefly reviews and discusses some 

relevant literatures and introduces the DSF model. In section 3 we discuss the likelihood-based FML, 

PCL and QML estimation methods and the estimators of the (in)efficiency in section 3. We present 

some Monte Carlo simulation results and compare the finite sample performance of these estimators 

in section 4. We provide an empirical application using unbalanced panel data of the Taiwan hotel 

industry to illustrate the working of our model in section 5. Section 6 concludes the paper. 

2. The dynamic stochastic frontier model 

2.1. Review of the dynamic stochastic frontier models  

In this section, we provide a brief review of the DSF models. Let ݕ௧ be the log of output and ݔ௧  be the ݇ ൈ 1 log of input vector, where ݅ ൌ 1,… ,ܰ denotes the ݅୲୦ firm and ݐ ൌ 1,… , ܶ 

denotes the time period. We consider the following DSF model: 
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௧ݕ ൌ ߚ௧ݔ  ݃௧  ௧ݒ െ  ௧,                          (1)ݑ

where ݃௧  is the time-varying component of technology, ݒ௧ ~݅. ݅. ݀. ܰሺ0,  ௩ଶሻ is the symmetricߪ

stochastic error, and ݑ௧  0  represents the one-sided stochastic technical inefficiency. The 

time-varying component of the technology ݃௧ can be described by a deterministic function of time 

and is common to all firms. The model can be further generalized by allowing ݃௧	 to be 

non-separable. Below we discuss some results from the previous studies. The main differences 

between these models lie on the econometric specifications about the random components ݒ௧ and ݑ௧. We summarize the main assumptions of these models in Table 1. 

    The model specification of Ahn et al. (2000) is more general than the other models in Table 1 in 

the sense that they do not impose any distributional assumption on ݒ௧ and ݑ௧, and they also allow 

the AR coefficient to be firm-specific. They suggest using firm dummies for the AR coefficients. 

The main drawback in doing this is that the number of parameters will increase with the number of 

firms. Thus the model is likely to suffer from the incidental parameter problem. They estimate the 

model by the GMM approach, which is less efficient compared to the standard ML estimation but 

more robust to the distribution misspecification. Their distribution free approach has another 

shortcoming with respect to predicting the technical efficiencies (TE). The model can only predict 

long-run inefficiency which in their model is firm-specific. However, it is not possible to predict 

observation-specific inefficiency, and therefore one cannot estimate the temporal pattern of 

inefficiency for each firm. Further, in reality firm efficiencies may systematically differ across firms, 

so we need a model that produces not only magnitudes of these inefficiencies but can also explain 

their systematic differences in terms of some covariates. We do this in our model. 

    Tsionas (2006) and Emvalomatis (2012) also consider DSF models with different settings of 

the dynamics of the inefficiency. The former assumes the logarithm of inefficiency, ln(ݑ௧), to follow 

an AR(1) process and the latter assumes the logarithm of the ratio of the technical efficiency (TE) 

index to the inefficiency index, i.e., ln(TE/(1-TE)), to follow an AR(1) process. Moreover, 

Emvalomatis (2012) separates the time-invariant unobserved heterogeneity from a first-order 

autoregressive inefficiency and suggests estimating the model using a Bayesian correlated 

random-effects approach in which a distribution for the unit-specific effects is specified. The main 

common characteristic of these two models is that they both apply some kinds of transformations to 

the inefficiency term ݑ௧ so that the transformed inefficiency term follows an AR(1) process with a 

normal stochastic error while keeping the inefficiency ݑ௧ positive in the meantime. The joint 

distribution of the transformed inefficiencies is simply a multivariate normal distribution, which 

seems to be easier to deal with in the likelihood-based approach. However, the joint distribution of 
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the cross-period composite errors in the DSF model is almost intractable after the transformation. 

Therefore, both Tsionas (2006) and Emvalomatis (2012) apply the Bayesian approach to estimate the 

model.  That is, because of the complexity in deriving the likelihood function, they both used 

Bayesian MCMC approach.  

In addition to the above models that directly specify the dynamic adjustment process of the 

technical (in)efficiency, Amsler et al. (2014) suggest using a copula function to capture the time 

dependence of the panel SF models. With a correctly specified marginal distribution and an 

appropriately chosen copula function, one may approximate the true joint pdf and estimate the 

parameters by the quasi-maximum likelihood approach, which seems to be the easiest one to 

implement from the practical point of view. However, the loss of efficiency in the QML approach 

compared with the FML estimation has not yet been investigated in the SF studies.  

2.2. The proposed model 

In this paper, we consider the DSF model specified in equation (1). For simplicity, we assume 

that the technical innovation is linear in time, t. Although t can be included in the ݔ௧ vector, we 

assume that ݃௧ is a linear function of time as in Ahn et al. (2000), i.e., ݃௧ ൌ ߨ   (2)          .ݐଵߨ

The technical inefficiency component ݑ௧ is assumed to be dynamic and follows an autoregressive 

(AR) process of order one, i.e., ݑ௧ ൌ ௧ିଵݑߩ  ∗௧ݑ ݐ	    , ൌ 1, … , ܶ,      (3) 

where ߩ is the AR(1) coefficient and ݑ௧∗  is a nonnegative random noise. We restrict the coefficient ߩ to be bounded between 0 and 1 so that ݑ௧  0 for all ݅, The restriction 0 .ݐ  ߩ ൏ 1 implies 

that the inefficiency component must be positively correlated with the previous inefficiency 

component. The standard SF model corresponds to the special case when ߩ ൌ 0. If ߩ ൌ 1, then (3) 

suggests that the inefficiency level is equal to the sum of all past inefficiency levels ݑ௧∗ , and 

therefore ݑ௧ would explode. Therefore, a firm with ߩ ൌ 1 cannot survive in the long-run in a 

competitive industry.  

The inefficiency component ݑ௧ in equation (3) is decomposed into two components. At time ݐ, 
a firm ݅ faces the persistent inefficiency, ݑ௧ିଵwhich comes from the previous period’s inefficiency. 

The persistent inefficiency the firm needs to deal with in the current period is ݑߩ௧ିଵ ൏  ௧ିଵ. Theݑ

firm ݅ in period ݐ also faces the transient inefficiency ݑ௧∗ . Thus the overall inefficiency for firm ݅  
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in period ݐ is ݑߩ௧ିଵ  ∗௧ݑ . To incorporate the heterogeneity in the inefficiency, we assume that the 

transient inefficiency component follows a half normal distribution with firm-specific variance, viz., ݑ௧∗ ~ܰାሺ0, ௨ଶߪ ሻ, for ݐ ൌ 1,… , ܶ,   (4a) 

and ݑ~ܰାሺ	0, ௨ଶߪ	 /ሺ1 െ  ሻ.                                      (4b)		ଶሻߩ

Moreover, ݑ௧∗  and ݑ௦∗  are independent of each other for a given ݅. In order to accommodate 

determinants of inefficiency, we specify  ߪ௨ଶ ൌ exp	ሺߜݓሻ,            (5) 

where ݓ is the ݄ ൈ 1 vector of exogenous firm-specific time-invariant variables that are viewed 

as the determinants of the firm-specific transient inefficiency. With the dynamic specification in (3) 

and (4), we are able to estimate the persistent and transient inefficiencies as well as the long-run 

inefficiency, the expected value of which is Eሺݑ௧∗ ሻ/ሺ1 െ ሻߩ ൌ 	ඥሺ2/ߨሻߪ௨/ሺ1 െ  ሻ. As in the Ahnߩ

et al. (2000) model, the long-run inefficiency is firm-specific and its variation across firms can be 

explained by the ݓ variables. The expected value of overall inefficiency is Eሺݑ௧ሻ ൌ ௧ିଵሻݑEሺߩ Eሺݑ௧∗ ሻ ൌ ௧ିଵሻݑEሺߩ  ሺ1 െ ܴܮሻߩ , where ܴܮ ൌ Eሺݑ௧∗ ሻ  is the expected value of long-run 

inefficiency. Thus, the expected value of the overall inefficiency is the weighted average of the 

expected values of persistent and long-run inefficiency. 

    

3. Estimation 

For estimation we transform the model which is considered in the next subsection. This is followed 

by estimation methods of the transformed model. 

 
3.1 The transformed model 

The complete setting of the panel SF model includes equations (1)-(5). Since the inefficiency 

component ݑ௧ follows an AR(1) process, the cross-period correlation between the composite errors 

comes from ݑ௧′ݏ  but not ݒ௧′ݏ . To eliminate this autocorrelation in ݑ௧ , we apply the 

quasi-difference transformation to (1), subtracting ݕ௧ by ݕߩ௧ିଵ, and obtain the transformed model  ݕ௧ ൌ ௧ݔ௧ିଵሺݕߩ െ ߚ௧ିଵሻݔߩ  ሺ1ߨ െ ሻߩ  ݐଵሾߨ െ ݐሺߩ െ 1ሻሿ   ௧,    (6)ߝ

where the composite error is ߝ௧ ൌ ∗௧ݒ െ ∗௧ݑ  and ݒ௧∗ ൌ ௧ݒ െ ,௧ିଵݒߩ  for ݐ ൌ 1,… , ܶ . Let 
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݁௧ ൌ ௧ݕ െ ߚ௧ݔ െ ߨ െ ௧ߝ  then the composite error can also be represented as ,ݐଵߨ ൌ ݁௧ െ  ௧ିଵ,          (7)݁ߩ

which has the representation of a moving averaging (MA) process of order 1. In order to implement 

the maximum likelihood method to estimate the model, it is necessary to derive the joint distribution 

of ߝଵ, … , ்ߝ  for each ݅.1 
Since in the transformed model (6), the autocorrelation between ߝ௧ᇱ s only comes from ݒ௧ᇱ s, not 

from ݑ௧ᇱ s, the marginal distribution of the composite error ߝ௧ is simply a combination of two 

normal and one half-normal random variables. Let ݒ. ൌ ൫ݒ, … , ்൯ݒ  and ݑ.∗ ൌ൫ݑଵ∗ , … , ∗்ݑ ൯	be ሺ ܶ  1ሻ ൈ 1  and ܶ ൈ 1  vectors. Then the vector of the composite errors ߝ. ൌ ൫ߝଵ, … ,  ்൯ can be written asߝ

.ߝ  ൌ Qݒ. െ ∗.ݑ ൌ ∗.ݒ െ ∗.ݑ ,         (8) 

where ݒ.∗ ൌ Qݒ. is a ܶ ൈ 1 vector and  

 Q ൌ ۈۉ
ߩെۇ 1 0 0 ⋯ 00 െߩ 1 0 ⋯ 0⋮ 	 ⋱ ⋱ 	 ⋮⋮ 	 	 ⋱ ⋱ 00 ⋯ ⋯ 0 െߩ ۋی1

ۊ
       (9) 

is a ܶ ൈ ሺ ܶ  1ሻ matrix. We call the matrix Q the quasi-difference transformation matrix. 

 

3.2 The full maximum likelihood (FML) estimator  

Below we discuss the derivation of the likelihood function of the transformed model in (6). Let ߶்ሺ∙; ,ߟ Ξሻ and Φ்ሺ∙; ,ߟ Ξሻ be the probability density function (pdf) and cumulative distribution 

function (cdf) of a T-dimensional normal distribution with mean ߟ and variance matrix Ξ. Let ்ܫ 

denote a ܶ ൈ ܶ  identity matrix and ்ܱ  be a ܶ ൈ 1  vector of zeros. With the distributional 

assumptions on ݒ. and ݑ.∗ , we are able to derive the joint distribution of ߝ.. The main results are 

summarized in Theorem 1.  

  

                                                 
1 Note that to avoid the endogeneity problem due to the presence of lagged dependent variable in (6) we consider the 
joint pdf of the entire vector ߝଵ, … ,  ் for each i. Alternatively, one can derive the likelihood function based on theߝ

untransformed model in (1), the log-likelihood function of which will be a linear function of the log-likelihood function 
of the transformed model in (6). Because of this the ML estimates will be the same. We used the transformed model in (6) 
because it is easier to estimate the transformed model. 
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Theorem 1: Under the model specified in (1)-(5), if ݒ௧ ~݅. ݅. ݀. ܰሺ0, ∗௧ݑ ,௩ଶሻߪ ~ܰାሺ0, ௨ଶߪ ሻ, and ߝ௧ ൌ ሺݒ௧ െ ௧ିଵሻݒߩ െ ∗௧ݑ , the vector of the composite errors ߝ. of the transformed model in (6) 

has the closed skew normal (CSN)
2
distribution, i.e., ߝ.	~்ܰܵܥ,் ቀ்ܱ , Σఌ , െߪ௨ଶΣఌି ଵ, ்ܱ , ்ܫ௨ଶ൫ߪ െ ௨ଶΣఌିߪ ଵ൯ቁ, 

where Σఌ ൌ ௩ଶQQߪ  ௨ଶߪ  is a ்ܶܫ ൈ ܶ matrix, Q is defined in (9) and ߪ௨ଶ ൌ exp	ሺߜݓሻ. The 

corresponding joint pdf of ߝ. is 

ఌ݂.ሺߝ.; ሻߠ ൌ 2்߶்ሺߝ.; ்ܱ , ΣఌሻΦ்ሺെߪ௨ଶΣఌି ଵߝ.; 	்ܱ , ்ܫ௨ଶሺߪ െ σ௨ଶΣఌି ଵሻሻ,    (10) 

where ߠ ൌ ሺߚ, ,ߨ ,ଵߨ ,௩ଶߪ	 ,ߩ  .ሻ denotes the vector of parametersߜ

 

In the appendix we provide the proof and details about the CSN random vector. With the joint 

pdf of ߝ. in (10), we are able to write down the full log-likelihood function of the transformed 

model  lnܮሺߠሻ ൌ ∑ ln ఌ݂.ሺߝ.; ሻேୀଵߠ .         (11) 

The FML estimator is defined as  ߠ ൌ argmaxఏ∈ lnܮሺߠሻ,        (12) 

where Θ denotes the parameter space. Under the usual regularity conditions3,  √ܰሺߠ െ ~ሻߠ ௗܰሺܱௗ , െܪሺߠሻିଵሻ, 
where ݀ is the dimension of ߠ and ܪሺߠሻ ൌ E ቂడమ୪୬ሺఌ.;ఏሻడఏడఏ ቃ is the Hessian matrix. Empirically, one 

can estimate the variance of ߠ from the inverse of the Hessian matrix, i.e., 

ܸar ሺߠሻ ൌ െ ቂ∑ డమ୪୬൫ఌො.;ఏూై൯డఏడఏேୀଵ ቃିଵ,      (13) 

where ߝ̂. is the predicted residual vector of the transformed model.  

It is worth mentioning that evaluation of equation (10) involves a numerical integration of 

dimension ܶ, which has no closed form and usually relies on Gaussian quadrature or a simulation 

approach to evaluate its function value. If the number of periods ܶ  is large, the numerical 

integration would be difficult and the approximation error is almost intractable. Below we discuss 

                                                 
2  See the Appendix for the definition of the closed skew-normal distribution. 
3 See section 4.5 of Bierens (1994) for the details. 
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two alternative approaches, where the first one is based on the likelihood function of the paired 

composite errors of (8) and the second is based on the approximated joint pdf of the ܶ ൈ 1 vector 

of the composite errors.  

 

3.3 The composite likelihood (CL) estimator 

Following the suggestions of Arnold and Strauss (1991) and Renard et al. (2004), here we 

consider the CL (which is also referred to as the pseudo likelihood in the literatures) method to 

simplify the computations. A CL consists of a combination of valid likelihood objects and is usually 

related to small subsets of data. The merit of the CL method is that it reduces the computational 

complexity so that it is possible to deal with high dimensional and complex models. We illustrate the 

main idea of the CL approach below.  

Let f (Y; ߸) be a density function, then the usual ML estimator is obtained by maximizing the 

full likelihood f (Y; ߸) over ߸. If Y can be partitioned into three pieces, say Ya, Yb, and Yc, where Yb 

or Yc may be an empty set, then the conditional density f(Ya|Yb;	߸) or the marginal density if Yb is an 

empty set, continues to depend on at least part of the true parameter ߸. Given a collection of such 

partitions, the conditional densities can be multiplied together to yield a composite likelihood, whose 

maximum over ߸ can be referred to as the composite ML estimator (see Cox and Reid (2004) and 

Mardia et. al (2009)). The CL approach suggests that one may replace the joint likelihood function by 

any suitable product of conditional or marginal densities. More discussions on the consistency and 

asymptotic normality of the CL estimator can be found in Arnold and Strauss (1991) and Renard et al. 

(2004). 

For the transformed model in (6), the composite likelihood function is much easier to evaluate 

than the full likelihood function. However, the convenience may come at a cost of losing efficiency 

since the cross-period sample information is not fully incorporated. Since how much efficiency we 

lose due to using the pairwise composite likelihood (PCL) approach is not clear, we will investigate 

this issue by comparing the finite sample performance of the PCL and FML estimators using Monte 

Carlo simulations later in section 4. 

Below we illustrate the CL approach to estimate the transformed model and focus our 

discussion on the pairwise composite likelihood approach. Recall that ߝ௧ ൌ ሺݒ௧ െ ௧ିଵሻݒߩ െ ∗௧ݑ , so 

the composite errors have an MA(1) representation due to the quasi-difference transformation. The 

correlation matrix of the vector ߝ.	 has the structure 
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Corrሺߝ.ሻ ൌ ۈۈۉ
ۇ 1 ∗ߩ 0 ⋯ ∗ߩ0 1 ∗ߩ 	 00 ∗ߩ ⋱ 	 ⋮	⋮ 	 	 ⋱	 ∗0ߩ 0 ⋯ ∗ߩ 1 ۋۋی

ۊ
,                      (14) 

where the correlation coefficient ߩ∗ ൌ െ ఘఙೡమቂఙೡమሺଵାఘమሻାఙೠమ ቃ is due to the correlation between the ݒ௧∗ ᇱs, 

which are normal random variables. It is worth mentioning that the pair (ߝ௧ , ݐ| ௦) is independent ifߝ െ |ݏ  1 and thus their joint pdf is the product of their marginal pdfs. The joint pdf of an arbitrary 

pair ሺߝ௧ ,  ௦ሻ has the following two formsߝ

ఌ݂,ఌೞሺߝ௧ , ;௦ߝ ሻߠ ൌ ൜	 ଵ݂ሺߝ௧ , ;௦ߝ 								,ሻߠ if	|ݐ െ |ݏ  1;	 ଶ݂ሺߝ௧ , ;௦ߝ 								,ሻߠ if	|ݐ െ |ݏ ൌ 1;	      (15) 

where ଵ݂ሺߝ௧ , ;௦ߝ ௧ߝ ሻ is the product of the marginal pdfs ofߠ  and ߝ௦  when |ݐ െ |ݏ  1, and ଶ݂ሺߝ௧ , ;௧ାଵߝ  ௧’s. Both of the marginal pdf and joint pdf canߝ ሻ is the joint pdf of two consecutiveߠ

be treated as special cases of Theorem 1 when ܶ ൌ 1 and  ܶ ൌ 2, respectively. We summarize the 

main results in Corollaries 1 and 2 below. 

Corollary 1: Suppose 	ݒ௧∗~ܰሺ0, ௩∗ଶߪ ሻ and ݑ௧∗ ~ܰାሺ0, ௨ଶߪ ሻ, where ߪ௩∗ଶ ൌ ௩ଶሺ1ߪ  ∗௧ݒ ଶሻ andߩ  and ݑ௧∗  are independent of each other. Define ௧ߝ	 ൌ ∗௧ݒ െ ∗௧ݑ .  Then ߝ௧  has the following closed 

skew-normal distribution ߝ௧~ܵܥ ଵܰ,ଵ ൬0, ௩∗ଶߪ  ௨ଶߪ , ିఙೠఙೡ∗మ ାఙೠమ , 0, ఙೡ∗మఙೡ∗మ ାఙೠమ ൰,          (16) 

which has the pdf 

ఌ݂ሺߝ௧; ሻߠ ൌ ଶටఙೡ∗మ ାఙೠమ ߶ଵቌ ఌටఙೡ∗మ ାఙೠమ ቍΦଵ ቌെ ఙೠఙೡ∗ ఌටఙೡ∗మ ାఙೠమ ቍ.         (17) 

Equation (17) gives the marginal pdf of ߝ௧ . It follows from (14) and (17) that when the lag 

difference |ݐ െ |ݏ  1, the joint pdf of ߝ௧ and ߝ௦ is  

ଵ݂ሺߝ௧ , ;௦ߝ ሻߠ ൌ ఌ݂ሺߝ௧; ሻߠ ఌ݂ೞሺߝ௦;  ሻ,     (18)ߠ

where ݂ሺߝ௧;  .ሻ is given in (17)ߠ

For ݐ ൌ 2,… , ܶ െ 1, define ߝ௧ ൌ ሺߝ௧ , ௧ାଵሻ as a 2ߝ ൈ 1 vector of the composite errors from 

consecutive periods. In a manner similar to (8), ߝ௧ can be represented as  ߝ௧ ൌ Qݒ௧ െ ∗௧ݑ ൌ ∗௧ݒ െ ∗௧ݑ ,       (19) 
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where ݒ௧ ൌ ሺݒ௧ିଵ, ௧ݒ , ∗௧ݒ ,௧ାଵሻݒ ൌ ሺݒ௧∗ , ∗௧ାଵݒ ሻ, ݑ௧∗ ൌ ሺݑ௧∗ , ∗௧ାଵݑ ሻ and Q ൌ ൬െߩ 1 00 െߩ 1൰.        (20) 

Note that since Var൫ݒ௧൯ ൌ ଷܫ௩ଶߪ  and ݑ௧∗ ~ܰାሺܱଶ, ௨ଶߪ ,ଶܫ ሻ , each element in ݒ௧  and ݑ௧∗  is 

independent across time. The joint pdf of ߝ௧ is given in Corollary 2. 

 

Corollary 2: Under the same assumption of Theorem 1, the 2 ൈ 1 vector ߝ௧ defined in (19) has 

the following closed skew-normal distribution, ߝ௧~ܵܥ ଶܰ,ଶ ቀܱଶ, Σఌ , െߪ௨ଶ Σఌି ଵ, ܱଶ, ௨ଶߪ ൫ܫଶ െ ௨ଶߪ Σఌି ଵ൯ቁ,    (21) 

where Σఌ ൌ Q	௩ଶQߪ  ௨ଶߪ ଶ is a ܶܫ ൈ ܶ matrix and Q is defined in (20). The corresponding joint 

pdf of ߝ௧ is 

ఌ݂൫ߝ௧; ൯ߠ ൌ 4߶ଶሺߝ௧; 0, ΣఌሻΦଶሺെߪ௨ଶ Σఌି ଵߝ௧; 	0, ௨ଶߪ ሺܫଶ െ ௨ଶߪ Σఌି ଵሻሻ.   (22) 

 

By Corollary 2, we have ଶ݂ሺߝ௧ , ;௦ߝ ሻߠ ൌ ݂൫ߝ௧;  ൯. Therefore, it follows from (18) and (22) that theߠ

pairwise composite log-likelihood function for all combinations of possible pairs for the firm ݅ is lnܮେሺߠሻ ൌ ∑ ∑ ln ఌ݂,ఌೞሺߝ௧, ;௦ߝ ሻ்௦ୀ௧ାଵ்ିଵ௧ୀଵߠ    		ൌ ∑ ln ଵ݂ሺߝ௧ , ;௧ାଵߝ ሻߠ  ∑ ∑ ln ଶ݂ሺߝ௧ , ;௦ߝ ሻ்௦ୀ௧ାଶ்ିଵ௧ୀଵ்ିଵ௧ୀଵߠ , (23) 

where the summation contains ܶሺ ܶ െ 1ሻ/2  factors. It follows that the pairwise composite 

log-likelihood for the whole sample is  lnܮେሺߠሻ ൌ ∑ lnܮେேୀଵ ሺߠሻ.       (24) 

The maximum PCL estimator is defined as  ߠେ ൌ argmaxఏ∈ lnܮେሺߠሻ. 
According to Varin and Vidoni (2005), under the usual regularity conditions the PCL estimator is 

consistent and asymptotically normally distributed, i.e.,  √ܰ൫ߠେ െ ൯~ܰሺܱௗߠ ,  ,ሻିଵሻߠେሺܪሻߠେሺܬሻିଵߠେሺܪ
where ܪେሺߠሻ ൌ E డమ୪୬ౌ ిైሺఏሻడఏడఏ ൨ and ܬେሺߠሻ ൌ E డ୪୬ౌ ిైሺఏሻడఏ డ୪୬ౌ ిైሺఏሻడఏ ൨. Empirically, ܪሺߠሻ and ܬሺߠሻ can be estimated by their sample counterparts 
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େ൯ߠେ൫ܪ ൌ ଵே∑ డమ୪୬ౌ ిై൫ఏౌిై൯డఏడఏேୀଵ   

and ܬመେ൫ߠେ൯ ൌ ଵே∑ డ୪୬ౌ ిై൫ఏౌిై൯డఏ డ୪୬ౌ ిై൫ఏౌిై൯డఏேୀଵ . 

Therefore, it follows that the variance of ߠେ can be estimated by  

ݎܸܽ ൫ߠେ൯ ൌ ∑ డమ୪୬ౌ ిై൫ఏౌిై൯డఏడఏேୀଵ ൨ିଵ ∑ డ୪୬ౌ ిై൫ఏౌిై൯డఏ డ୪୬ౌ ిై൫ఏౌిై൯డఏேୀଵ ൨  

ൈ ∑ డమ୪୬ౌ ిై൫ఏౌిై൯డఏడఏேୀଵ ൨ିଵ.     (25) 

 

3.4 The quasi-maximum likelihood (QML) estimator 

In addition to the aforementioned FML and PCL estimations, we also use the QML approach to 

estimate the transformed model in (6). According to the Sklar’s theorem (Sklar, 1959, and Schweizer 

and Sklar, 1983), the joint distribution of ߝ. can be constructed with the given marginal distribution 

of ߝ௧, denoted as ௧݂ሺߝ௧; ݐ ሻ, forߠ ൌ 1,… , ܶ and an appropriate copula function ܥሺ∙ሻ, which binds 

the marginal distributions with the given dependent structure. In this case, we have correctly 

specified the marginal model under the assumptions, and have approximated a joint distribution 

based on the copula function. 

Recall that the composite error of the transformed model is ߝ௧ ൌ ∗௧ݒ െ ∗௧ݑ . Corollary 1 shows 

that the marginal distribution of ߝ௧ follows a closed skew-normal distribution (CSN), which has the 

pdf given in equation (16) and has the cdf given by ܨሺߝ௧ሻ ൌ 2Φଶ ൭ቀߝ௧0 ቁ ; ቀ00ቁ , ቆߪ௩∗ଶ  ௨ଶߪ ௨ߪ௨ߪ 1 ቇ൱.     (26) 

The correlation coefficient matrix for .i is given by (14).  

According to Sklar’s theorem, the joint distribution of ߝ. can be written as  ܨ൫ߝଵ, … , ;்ߝ ൯ߠ ൌ ;ଵߝଵሺܨሺܥ ,ሻߠ … , ;்ߝ൫்ܨ  ሻ,     (27)ߣ	;൯ߠ

where ߣ is the parameter of the copula function. The corresponding probability density function is  

 ݂൫ߝଵ, … , ;்ߝ ൯ߠ ൌ ܿ൫ܨଵሺߝଵ; ,ሻߠ … , ;்ߝ൫்ܨ ;൯ߠ ൯ߣ ଵ݂ሺߝଵ; …ሻߠ ்݂ ൫ߝ்;  ൯,  (28)ߠ

where ܿሺ∙ሻ ൌ డሺ∙ሻడிభሺఌభ;ఏሻ…డிቀఌ;ఏቁ.  

    From our previous discussion, we know that the correlation between ߝ௧ and ߝ௧ିଵ purely 
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comes from the correlation between ݒ௧∗  and ݒ௧ିଵ∗ , which are normally distributed. In other words, 

if ݒ௧∗  and ݒ௧ିଵ∗  were independent of each other, then ߝ௧ and ߝ௧ିଵ would be also independent. 

Therefore, we may conjecture that the correlation of ܨ௧ሺߝ௧; ;௧ିଵߝ௧ିଵሺܨ ሻ andߠ ∗௧ݒ ሻ also comes fromߠ  and ݒ௧ିଵ∗  and expect that their correlation matrix has a similar structure to (14).  

In order to impose the prior information about the correlation structure, we use the Gaussian 

copula to construct the quasi-likelihood function. The Gaussian copula implies a symmetric 

correlation structure on its marginals, and its variance-covariance matrix has a similar structure as 

that of the original vector ߝ. in (14). More specifically, the correlation matrix Λ of the Gaussian 

copula should have the structure  

Λ ൌ ۈۉ
1ۇ ߣ 0 ⋯ ߣ0 1 ߣ 	 00 ߣ ⋱ 	 ⋮	⋮ 	 	 ⋱	 0ߣ 0 ⋯ ߣ ۋی1

ۊ
,        (29) 

where ߣ is the correlation coefficient between ܨ௧ሺߝ௧ሻ and ܨ௧ିଵሺߝ௧ିଵሻ. We expect that ߣ and ߩ∗ should have a one-to-one correspondence, i.e., ߣ ൌ  ∗ሻ. However, the explicit form of theߩሺߣ

function ߣሺ∙ሻ is complicated and almost intractable. We, therefore, use a series polynomial4of ߩ∗ to 

approximate the true ߣ. In order to ensure that ߣ is bounded between െ1 and 1, we assume 

∗ሻߩሺߣ  ൌ ୣ୶୮ቀ∑ ఊೕఘ∗ೕೕసబ ቁିଵୣ୶୮ቀ∑ ఊೕఘ∗ೕೕసబ ቁାଵ ,        (30) 

where ܬ is the order of the polynomial function of ߩ∗. Therefore, under the Gaussian copula 

specification we have the quasi-joint distribution  ீܥ൫ܨଵሺߝଵ; ,ሻߠ … , ;்ߝ൫்ܨ ;൯ߠ Λ൯ ൌ Φ்ሺΦିଵሺܨଵሺߝଵ; ,ሻሻߠ … ,Φିଵሺ்ܨ൫ߝ்; ;൯ሻߠ Λሻ,  

where Φ்ሺ∙ሻ  is the cumulative distribution function (cdf) of a ܶ -variate standard normal 

distribution and Φሺ∙ሻ is the cdf of a univariate standard normal distribution. The corresponding 

Gaussian copula density is  ܿீ൫ܨଵሺߝଵ; ,ሻߠ … , ;்ߝ൫்ܨ ;൯ߠ Λ൯ ൌ ଵ|ஃ|భ/మ exp	ሺെ ଵଶ ሺΛିߟ ଵ െ  ሻ,  (31)ߟሻܫ

where ߟ ൌ ሺΦିଵሺܨଵሺߝଵ; ,ሻሻߠ … ,Φିଵሺ்ܨ൫ߝ்;  ൯ሻሻ. According to (28), the log quasi-likelihoodߠ

function is  

 ln୕ܮሺߠሻ ൌ ∑ lnܮ୕ ሺߠሻேୀଵ  

             ൌ ∑ ln݂൫ߝଵ, … , ;்ߝ ,ߠ ൯ேୀଵߣ  

                                                 
4 By the Weierstrass approximation theorem, every continuous function defined on a closed interval can be uniformly 
approximated as closely as desired by a polynomial function. 
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ൌ ∑ ቄെ ଵଶ ln	|Λ| െ ଵଶ ሺΛିߟ ଵ െ ߟሻܫ  ∑ ln ௧݂ሺߝ௧; ሻ்௧ୀଵߠ ቅேୀଵ  .      (32) 

The corresponding quasi-maximum likelihood (QML) estimator can then be defined as  ߠொெ ൌ argmaxఏ∈ ln୕ܮሺߠሻ. 
Since the quasi-likelihood function is an approximation of the true likelihood function, the sandwich 

standard error is suggested. The remaining statistical inference is quite standard in the QML 

literatures.  

 

3.5 Prediction of the technical (in)efficiency  

Once the ML, PCL or QML estimator for the parameters is obtained, we proceed to predict the 

technical efficiency (TE) index and technical inefficiency. In order to predict the TE, it is necessary 

to find the conditional expectation TE௧ ൌ Eሺ݁ି௨|Ω௧ሻ. Under the specification of (3), the TE index 

is predicted from  TE௧ ൌ Eሺ݁ି௨|Ω௧ሻ,                            (33) 

where Ω௧ denotes the information set available at time ݐ. Since the inefficiency term ݑ௧ follows 

an AR(1) process, the iterative substitution suggests ݑ௧ ൌ ௧ିଵݑߩ  ∗௧ݑ  ൌ ∑ ∗௧ି௦ݑ௦ߩ  ௧ିଵ௦ୀݑ௧ߩ ,         (34) 

which has a moving average representation. Under the independence assumption of ݑ௧∗  and ݑ௦∗  for 

all ݐ ് suggests that  Eሺ݁ି௨|Ω௧ሻ (34) ,ݏ ൌ Eሾexp	ሺെ∑ ௧ି௦∗௧ିଵ௦ୀݑ௦ߩ ሻ ∙ exp	ሺെߩ௧ݑሻ|Ω௧ሿ  ൌ ∏ Eሾexp	ሺെߩ௦ݑ௧ି௦∗ ሻ|Ω௧ି௦ሿ௧ିଵ௦ୀ ∙ Eሾexpሺെߩ௧ݑሻሿ    ൌ ∏ Eሾexp	ሺെߩ௦ݑ௧ି௦∗ ሻ|ߝ௧ି௦ሿ ∙௧ିଵ௦ୀ Eሾexpሺെߩ௧ݑሻሿ,        (35) 

where the second equality is due to the prediction of ܧሾexp	ሺെݑ௧∗ ሻ|Ω௧ሿ, which requires only the 

information of ߝ௧ at the current period. In other words, Eሾexpሺെݑ௧ି௦∗ ሻ |Ω௧ሿ ൌ Eሾexp	ሺെݑ௧ି௦∗ ሻ|Ω௧ି௦ሿ,  for any	ݏ  0. 

 

Theorem 2: Let the composite error ߝ௧ ൌ ∗௧ݒ െ ∗௧ݑ , where ݒ௧∗ ൌ ௧ݒ െ .݅~௧ݒ ,௧ିଵݒߩ ݅. ݀. ܰሺ0, ∗௧ݑ ,௩ଶሻߪ ~ܰା൫0, ௨ଶߪ ൯  and ݑ~ܰା ቀ0, ௨ଶߪ /ሺ1 െ ଶሻቁߩ . Define ߪଶ ൌ ൫ଵାఘమ൯ఙೡమఙೠమሺଵାఘమሻఙೡమାఙೠమ  and ߤ௧ ൌ െߝ௧ߪ௨ଶ /
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ቀሺ1  ௨ଶߪ௩ଶߪଶሻߩ ቁ, then the moment generating function of ݑ௧∗  given ߝ௧ is  ݉௨∗	|	ఌሺߛሻ ൌ E൫݁ఊ௨∗ ௧൯ߝ| ൌ exp ቄଵଶ ଶߪଶߛ  ௧ቅΦߤߛ ቀఓఙ  ቁߪߛ /Φቀఓఙ ቁ   (36) 

and  ݉௨∗	|	ఌᇱ ሺ0ሻ ൌ Eሺݑ௧∗ ௧ሻߝ| ൌ ௧ߤ  ߪ థ൬	ഋ ൰൬	ഋ ൰.               (37) 

Further, the moment generating function of 0ݑ is  ݉௨బሺߛሻ ൌ ሺ݁ఊ௨బሻܧ ൌ 2 ∙ exp ቀ ఊమఙೠమଶሺଵିఘమሻቁ ∙ Φ ൬ ఊఙೠඥଵିఘమ൰     (38) 

with the first moment  

݉௨బᇱ ሺߛሻ ൌ ሻݑሺܧ ൌ ට ଶఙೠమగሺଵିఘమሻ.            (39) 

 

Using equations (34)-(39), we are able to derive the predictors of TE and technical inefficiency. 

We summarize them in Corollary 3.  

Corollary 3: Let ߛ ൌ െߩ௦, for ݏ ൌ 0, 1, … ,  Under the same assumption of Theorem 1, the .ݐ

predictor of TE index Eሺ݁ି௨|Ω௧ሻ is 

TE௧ ൌ 2exp ൜ ఘమఙೠమଶሺଵିఘమሻ∑ ቀଵଶߩଶ௦ߪଶ െ ௧ି௦ቁ௧ିଵ௦ୀߤ௦ߩ ൠ  

ൈ ൭∏ ൬ഋషೞ ିఘೞఙ൰൬ഋషೞ ൰௧ିଵ௦ୀ ൱Φ൬െ ఘఙೠඥଵିఘమ൰.     (40) 

Similarly, it follows from (25) and (28) that the predictor of technical inefficiency	Eሺݑ௧|Ω௧ሻ is  

Eሺݑ௧|Ω௧ሻ ൌ ௧ටߩ ଶఙೠమగሺଵିఘమሻ ∑ ௦ߩ ൭ߤ௧ି௦  ߪ థ൬ഋషೞ ൰൬ഋషೞ ൰൱௧ିଵ௦ୀ .    (41) 

 

Equations (40) and (41) provide the predictors of TE௧  and the technical inefficiency. 

Empirically, one replaces the parameters by their FML, PCL or QML estimates in the formulae 

above. Moreover, under the AR(1) setting ݑ௧ ൌ ௧ିଵݑߩ  ∗௧ݑ , the long-run inefficiency is  lim௧→ஶ Eݑ௧ ൌ ௨∗ଵିఘ.          (42) 

Now ݑ௧∗ ~ܰାሺ0, ௨ଶߪ ሻ  implies that Eݑ௧∗ ൌ ටଶగ ௨ߪ . Therefore, the long-run inefficiency can be 

simplified as  
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lim௧→ஶ Eݑ௧ ൌ ටଶగ ఙೠଵିఘ,       (43) 

which can be predicted by replacing the parameters with their estimates.  

 

4. The Monte Carlo experiment 

In this section, we conduct some Monte Carlo experiments to examine the finite sample 

performances of the FML, PCL and QML estimators and also investigate how much efficiency we 

lose due to adopting the composite likelihood or quasi-likelihood instead of the full likelihood 

method.  

 In our experiments, we estimate a DSF model with heteroscedastic ߪ௨ଶ  using FML, PCL and 

QML methods. The data-generating process (DGP) is specified as ݕ௧ ൌ ଵ,௧ݔଵߚ  ଶ,௧ݔଶߚ  ߨ  ݐଵߨ  ௧ݒ െ        ,௧ݑ

where ݑ௧ ൌ ௧ିଵݑߩ  ∗௧ݑ  follows an AR(1) process. The exogenous variables are drawn from 

normal distributions, ݔଵ,௧~ܰሺ5, 1.5ଶሻ  and 	ݔଶ,௧~ܰሺ3,1ሻ . The two random components are ݒ௧~݅. ݅. ݀. ܰሺ0, ∗௧ݑ ௩ଶሻ andߪ ~ܰା൫0, ௨ଶߪ ൯, where ߪ௨ଶ ൌ expሺߜ  ,~ܰሺ0ݓ  is drawn fromݓ ሻ and the exogenous variableݓଵߜ 2ଶሻ. The parameters in the data generating process are ߚଵ ൌ ଶߚ	,0.3 ൌ0.2, ߨ ൌ ଵߨ ,1 ൌ ௩ଶߪ ,0.5 ൌ ߜ ,0.1 ൌ െ0.5 and	ߜଵ ൌ 0.1. 

Moreover, we set the AR(1) coefficient as  ߩ ൌ ሼ0.35, 0.7ሽ  

and consider various combinations of ܶ and ܰ 

 ܰ ൌ ሼ25, 50, 100ሽ and ܶ ൌ ሼ5, 10, 15ሽ.  

We compare the performance of the FML and PCL and QML estimators using the relative 

biases (RBias) and relative MSEs (RMSEs), which are defined as RBiasଵ ൌ ୧ୟୱሺఏౌిైሻ୧ୟୱሺఏూైሻ, RBiasଶ ൌ ୧ୟୱሺఏ్ైሻ୧ୟୱሺఏూైሻ, RBiasଷ ൌ ୧ୟୱሺఏ్ైሻ୧ୟୱሺఏౌిైሻ  
and RMSEଵ ൌ ୗሺఏౌిైሻୗሺఏూైሻ, RMSEଶ ൌ ୗሺఏౌిైሻୗሺఏూైሻ, RMSEଷ ൌ ୗሺఏ్ైሻୗሺఏౌిైሻ , 
where ߠ, ߠେ and ߠ୕ denote the FML, PCL and QML estimators for the parameter ߠ, 

respectively. Therefore, RBiasଵ  1 suggests that the bias of the PCL estimator ߠେ is larger than 
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that of the FML estimator ߠ. The relative efficiency of PCL and FML estimators is evaluated by 

the RMSE. RMSEଵ  1 suggests that the FML estimator is more efficient than the PCL estimator. 

The programs are written in Stata 14.0. For the FML estimation, the numerical integration of the 

multivariate normal cdf is evaluated using Stata’s Geweke-Hajivassiliou-Keane (GHK) simulator 

(Geweke (1989), Hajivassiliou and McFadden (1998), and Keane (1994)), which is applicable if the 

dimension of the cdf is 20 or less. In our experiment, the maximum dimension of the normal cdf we 

evaluated is 14 since the maximum in the untransformed model is ܶ ൌ 15 . We use linear 

approximation in the QML estimation, so ܬ ൌ 2 in (30) and thus ߣሺߩ∗ሻ ൌ ୣ୶୮ሺఊబାఊభఘ∗ሻିଵୣ୶୮൫ఊబାఊభఘ∗൯ାଵ. 
We report the biases, MSEs, the RBias and RMSEs when ߩ ൌ 0.35 in Tables 2-5, and the 

results when ߩ ൌ 0.7 are reported in Tables 6-9. As shown in Tables 2 and 3, all biases and MSEs 

of the QML, PCL and FML estimators are in small magnitudes. In particular, all MSEs of the three 

estimators decrease when we increase ܰ or T, but the pattern of biases is not so clear.  

Tables 3 and 4 provide some comparisons of the three estimators in terms of RBias and RMSE. 

The RBiases and RMSEs are marked in bold if they have values greater than 1. Panel A of Table 4 

compares the biases of PCL and FML estimators. Among the eight parameters in our model, the PCL 

estimators of ߜ and ߨ tend to have relatively larger biases than those of FML estimators when 

the sample is small. This may be due to the cross period information not being fully incorporated in 

the objective function. ߨ plays the role of the intercept term in the transformed model in (6), thus 

underestimation of ߨ  will be accompanied by underestimation of the intercept ߜ  in ߪ௨ଶ ൌexpሺߜ   ሻ, and vice versa. There are 27 out of the 72 RBiases5 (about 37.5% of the parametersݓଵߜ

in all cases) that are greater than 1, which indicates that the PCL estimator works as well as the FML 

estimator, on average.  

Panel B of Table 4 compares the biases of the QML and FML estimators. About 63.9% 

(ൌ 46/72) of the QML parameters have larger biases than the FML estimators, which is not a 

surprising result. In the QML estimation, only the marginal pdf is correctly specified and the 

cross-period dependence is imposed into the likelihood function by a copula function. However, if 

we further compare the values of RBiases in panel A and B, we find that almost all the RBiases in 

panel B have values less than 3, but this is not the case for panel A. This suggests that the Gaussian 

copula can effectively capture the cross-period dependence. The results in panel C are quite 

consistent with our findings from panels A and B. The QML estimators of ߜ and ߨ also have 

                                                 
5 There are totally nine combinations of N and T and 8 parameters in the model.      
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smaller biases than the PCL estimator, but this is not necessarily true for the remaining parameters.  

Panel A of Table 5 shows the RMSEs of the PCL and FML estimators. We found that only the 

RMSEs of ߜ are relatively large and all the other RMSEs are less than 1.007, which also indicates 

the PCL estimation has good performance in terms of RMSEs. In panel B, only 5 out of 72 

parameters are less than 1, which shows the QML is not as efficient as the FML estimator; however, 

all RMSES are quite close to one. Together with our findings from the RBiases in panel B of Table 4, 

we conclude that the loss of efficiency in QML estimation does not seem to be a serious problem. 

Panel C compares the PCL and QML estimation. Only the RMSEs of ߜ and three parameters have 

values greater than 1, which also suggests that the PCL estimator of ߜ is less efficient than both the 

FML and QML estimators, but this is not necessarily true for the remaining parameters.  

    Tables 6-9 summarize the results of our Monte Carlo experiments when ߩ ൌ 0.7. The objective 

of Tables 6-9 is to check whether our findings from previous simulations change when the AR(1) 

coefficient is higher, that is, when the persistency of the inefficiency is larger. We found that the 

magnitudes of biases are also small and have a decreasing tendency as the sample sizes increase. 

Moreover, all MSEs decrease quickly as N and T increase. The pattern is similar to what we found in 

Tables 2-5.  

    All of the above three likelihood-based estimators have some advantages compared with each 

other and there exist some tradeoffs in the FML, PCL and QML estimators. From the theoretical 

point of view, one may expect that the FML estimation is the most efficient and performs uniformly 

better than the other two approaches since it fully utilizes the sample information and its estimator is 

obtained from the true joint pdf of the sample. However, our simulation does not provide significant 

evidence showing that the FML estimator is uniformly better (in terms of biases and MSEs of all 

parameters) than the other two estimators. We suspect that this may be due to the approximation 

error of the numerical integration of the multivariate normal cdf in equation (10). Unfortunately, we 

cannot trace the approximation error of the numerical integration in our simulation. On the contrary, 

for the PCL approach we only need to evaluate a bivariate normal cdf, which simplifies the 

numerical computation. The likelihood function of PCL estimation comes from the paired sample; 

the joint pdf is correctly specified but the cross period information is not fully incorporated into the 

objective function. The main advantage of the PCL estimator is that we only need to deal with two 

dimensional integration no matter how long the time span is. The FML and PCL estimator are 

equivalent to each other in the special case when ܶ=2 in the transformed model.  
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For the QML method, we only need to evaluate the marginal pdf of the transformed model, 

where the cross-period information is incorporated into the likelihood function through the copula 

function. Therefore, the QML has a smaller computational burden than the other two, but the cost is 

that we only obtain the approximated likelihood function, instead of the true one. Moreover, if the 

product copula is used, then we have a composite marginal likelihood (Chandler and Bate, 2007), 

which permits inference only on marginal parameters. In this case, the information about the 

cross-period dependence is not incorporated.  

Based on the simulation results, we conclude that both PCL and QML estimators are reliable in 

terms of bias and RMSE. The loss of efficiency does not seem to be serious in our simulation results. 

We also conclude that the FML is the most efficient approach, PCL ranks second and QML ranks 

third. As a rule of thumb, when the time span of the sample is not large or the likelihood function is 

not too complicated, the FML estimation is recommended for an empirical study. However, when the 

time span is moderately long in the sense that the multivariate normal cdf is difficult to evaluate, we 

may adapt the PCL estimation instead. The QML estimation may be used when the time span is 

extremely long in the sense that there are too many paired combinations of the sample (i.e., lim்→ஶ ଶ்ܥ  	 combinations) that need to be considered.  

 

5. Empirical Application  

    In this section, we apply the DSF model to a study of the hotel industry in Taiwan, that 

focuses on estimating the production technology. The data comes from the annual report of the 

Taiwan Tourism Bureau at the Ministry of Transportations and Communications. This unbalanced 

panel data, including 63 international grand hotels from 2006-2013, provides 475 sample 

observations for the empirical study. The output for each hotel is measured in total revenue (Y), 

while the inputs include the total number of workers (L), the total number of rooms (K), and other 

expenses (Other), which includes utilities, materials, and maintenance fees. All revenues and other 

expenses are measured in thousand New Taiwan (NT) dollars. In addition to these input and output 

variables, we use a time trend (to capture technical change that shifts the production function over 

time) in the production function and a dummy variable that indicates whether the hotel is leagued 

with foreign hotels as the firm specific determinant of ߪ௨ଶ . We define time, t = 1,...,8, for years 

2006,...,2013. The summary statistics of the variables are reported in Table 10.  

     The upper panel of Table 11 reports the estimates of the parameters for the model in (1)-(5). 

Overall, the estimates of the PCL method seem to be closed to the FML estimates than the QML 



20 
 

estimates are. The numbers in parentheses are the standard errors of the FML, PCL and QML 

estimators and computed using the inverse of the negative Hessian matrix. The numbers in brackets 

are the standard errors of the PCL and QML estimators and are computed using (25) and the 

sandwich formula. Therefore, the standard errors in parentheses are valid only for the FML, and the 

correct standard errors of the PCL and QML estimators are in brackets. The coefficients of inputs are 

interpreted as elasticity (percentage increase in revenue output for a 1% change in L, K and Other, 

respectively), and are all positive as expected. The returns to scale, measured by the sum of the input 

elasticities, are about 1.0659, 1.0728 and 1.0477 for the FML, PCL and QML estimations, 

respectively. The coefficient of time (when multiplied by 100) shows the percentage change in 

revenue over time, holding input quantities unchanged. It is interpreted as technical change. Thus, a 

value of 0.0332 by the FML estimation means technical progress of 3.32% per annum and, similarly, 

for the PCL and QML it is 2.7% and 3.28%, respectively.   

The negative coefficient of League in ߪ௨ଶ  suggests that hotels leagued with foreign hotels are 

more efficient. Our estimates of the AR coefficient (ρ) for the FML, PCL and QML estimations are 

0.794, 0.7827 and 0.8445, which suggest technical inefficiency is highly persistent in the hotel 

industry data. Our findings here also indicate the importance to incorporate the dynamics of 

inefficiency into the model when conducting empirical analysis using panel data.  

The bottom panel of Table 11 provides summary statistics of the predictions of the long-run 

inefficiency, transient inefficiency and efficiency score of the three approaches. For the FML 

estimation, the long-run and transient inefficiency are found to be 0.549 and 0.259, on average. The 

gap between the transient and long-run inefficiency is about 0.29, which is consistent with our 

previous finding of the high persistence inefficiency. The mean efficiency score is about 0.7782. The 

predictions of efficiency from the PCL estimation are closer to those of the FML than those from the 

QML.  

6. Conclusion 

    In this paper, we proposed a panel SF model with a dynamic adjustment of the heteroscedastic 

inefficiency. In addition to the full maximum likelihood estimation, we propose two other 

likelihood-based approaches, viz., the pairwise composite likelihood function and the 

quasi-maximum likelihood function, as alternatives to the FML estimation. In the PCL method, we 

focus on the lower dimension of the joint distribution and formulate the pairwise composite 

likelihood by considering all possible pairs of the subsample. Alternatively, in the QML method we 

evaluate the marginal pdf of the transformed model and then incorporate the cross period 
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dependence by using a copula function. These two alternatives are applicable when the true 

likelihood function is difficult to evaluate or the time span of the observed data is long. We compare 

the finite sample performance of the PCL, QML and FML estimators from the Monte Carlo 

simulations and find that the PCL and QML estimators perform quite well in our finite sample 

experiments. The issue of efficiency loss does not seem to be a serious problem.  

In our present model dynamic stochastic frontier model, we did not include the firm-specific 

random/fixed effect in the frontier part. However, it is a straightforward extension of our model to 

include the random effects. The aforementioned three likelihood-based approaches can be easily 

combined with the simulated likelihood approach, which integrates out the random effects by 

simulation. On the other hand, if the fixed effects are included in the model, such as in Belotti and 

Ilardi (2017)6, then one may need to apply either first difference or within transformation first to 

eliminate the fixed effect. We leave these extensions for the future. 

    

                                                 
6  Belotti and Ilardi (2017) consider a panel SF model with fixed effect and time dependent inefficiency. In their model, 
the dynamic process of the inefficiency term is not specified.   
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Appendix: 

Definition: Consider   1, ݍ  1, ߨ ∈ ܴ, ߢ ∈ ܴ , an arbitrary ݍ ൈ    matrix Γ , positive 

matrices ΣandΔof dimensions  ൈ ݍ and  ൈ  respectively. A p-dimensional closed skew-normal ,ݍ

random vector ݕ  with parameters ߨ, Σ, Γ, ,ߢ Δ , denoted as ܵܥ~ݕ ܰ,ሺߨ, Σ, Γ, ,ߢ Δሻ , has the 

probability density function 

௬݂ሺݕሻ ൌ ,ݕሺ߶ܤ ,ߨ ΣሻΦሺΓሺݕ െ ;ሻߨ ,ߢ Δሻ,                         (a1) 

and the cumulative distribution function ܩ,ሺݕሻ ൌ Φାܥ ቀ0ݕቁ ; ቀߢߨቁ , ൬ Σ െΣΓെΓΣ Δ  ΓΣΓ൰൨,                 (a2) 

where ݕ ∈ ܴ, and ିܤଵ ൌ Φሺ0; ,ߢ Δ  ΓΣΓሻ. Moreover, the moment generating function (mgf) of ݕ is   

ሻݎ௬ሺܯ  ൌ ሺஊ;,ାஊሻሺ;,ାஊሻ eగାభమஊ୰, where ݎ ∈ ܴ.           (a3) 

More details about the closed skew-normal distribution may be referred to Gonzalez-Farias, 

Dominguez-Molina and Gupta (hereafter GDG, 2004).  

 

Proof of Theorem 1: 

Let Σ௩ ൌ 	QQߪ௩ଶ, Σ௨ ൌ  and Σఌ்ܫ௨ଶߪ ൌ Σ௩  Σ௨. The mgf’s of ݒ.∗ and ݑ.∗  are 

݉௩∗ሺݎሻ ൌ ൫݁௩⋅∗൯ܧ ൌ ݁ଵଶஊೡ 

and ܯ௨∗ሺݎሻ ൌ ∗⋅൫݁௨ܧ ൯ ൌ ݁భమஊೠ ∙  	ሺஊೠ;	ை ,ஊೠሻሺை;	ை ,ஊೠሻ . 

Therefore, the mgf of ߝ. is 

ሻݎఌ.ሺܯ   ൌ ൫݁௩∙∗൯ܧ ∙ ∗∙൫݁ି௨ܧ ൯ ൌ ݁భమሺஊೡାஊೠሻ ∙  	ሺିஊೠ;	ை ,ஊೠሻሺை;ை ,ஊೠሻ . 

By the definition of CSN, the parameters in equation (a3) are ߨ ൌ ்ܱ , Σ ൌ Σ௩  Σ௨ ൌ Σఌ, and ߢ ൌ ்ܱ. Moreover, ΓΣ ൌ െΣ௨ implies Γ ൌ െ	Σ௨Σఌି ଵ and ∆  ΓΣΓ ൌ Σ௨ implies ∆ൌ Σ௨ െΣ௨Σఌି ଵΣ௨. Therefore, we have ߝ∙~்ܰܵܥ∙்ሺ்ܱ	, Σఌ 	, െΣ௨Σఌି ଵ, ்ܱ	, Σ௨ െ Σ௨Σఌି ଵΣ௨) 
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and a further simplification gives ்ܰܵܥ,் ቀ்ܱ , Σఌ , െߪ௨ଶΣఌି ଵ, ்ܱ , ்ܫ௨ଶ൫ߪ െ ௨ଶΣఌିߪ ଵ൯ቁ.              Q.E.D. 

 

Proof of Theorem 2:  

Let ߪଶ ൌ ሺ1  ௨ଶߪ௩ଶߪଶሻߩ /ሾሺ1  ௩ଶߪଶሻߩ  ௨ଶߪ ሿ  and ߤ௧ ൌ െߪ௨ଶߝ௧/ሾሺ1  ௨ଶߪ௩ଶߪଶሻߩ ሿ . Then the 

condition distribution7 of ߤ௧∗  ௧ isߝ|

݂ሺݑ௧∗ ௧ሻߝ| ൌ ଵ√ଶగఙ exp ൜െ ൫௨∗ ି	ఓ൯మଶఙమ ൠ ቆ1 െ Φቀെ 	ఓఙ ቁቇ൘ ,  

where ߝ௧ ൌ ∗௧ݒ െ ∗௧ݑ  is defined in (6). The conditional moment generating function of ݑ௧∗ ሻߛ௧ is  ݉௨∗ሺߝ| ൌ ∗൫݁ఊ௨ܧ หߝ௧൯ ൌ න ݁ఊ௨ ∙ ݂ሺݑ௧∗ ௧ሻߝ| ∗௧ݑ݀ ,ஶ
  

ൌ  ଵ√ଶగఙ exp ൜െ ൫௨∗ ି	ఓ൯మଶఙమ  ଶఙమఊ௨∗ଶఙమ ൠ ௧ݑ݀ /Φቀ	ఓఙ ቁஶ ,  

ൌ exp ቄଵଶ ଶߪଶߛ  ௧ቅߤ	ߛ  ଵ√ଶగఙ exp ൜െ ൣ௨∗ ିሺ	ఓାఊఙమሻ൧మଶఙమ ൠ ∗௧ݑ݀ /Φ ቀ	ఓఙ ቁஶ ,  ൌ exp ቄଵଶ ଶߪଶߛ  ௧ቅߤ	ߛ ሾ1 െ Φሺ0; ௧ߤ  ,ଶߪߛ ఓఙ	ଶሻሿ/Φቀߪ ቁ,  ൌ exp ቄଵଶ ଶߪଶߛ  ௧ቅߤ	ߛ ቂ1 െ Φቀെ 	ఓఙ െ ቁቃߪߛ /Φቀ	ఓఙ ቁ,  ൌ exp ቄଵଶ ଶߪଶߛ  ௧ቅΦߤ	ߛ ቀ	ఓఙ  ቁߪߛ /Φቀ	ఓఙ ቁ. 

Let ߛ ൌ െߩ௦, where ݏ ൌ 0,1…	, then ܧ൫݁ିఘೞ௨∗ หߝ௧൯ ൌ exp ቄଵଶߩଶ௦ߪଶ െ ఓఙ	௧ቅΦቀߤ	௦ߩ െ ቁߪ௦ߩ /Φቀ	ఓఙ ቁ.  

݉௨∗ᇱ ሺ0ሻ ൌ ∗௧ݑሺܧ ௧ሻߝ| ൌ ௧ߤ  ߪ థ൬	ഋ ൰൬	ഋ ൰. 
Moreover, the moment generating function of 0ݑ is  ݉௨బሺߛሻ ൌ ሺ݁ఊ௨బሻܧ ൌ 2 ∙ exp ቀ ఊమఙೠమଶሺଵିఘమሻቁ ∙ Φ ൬ ఊఙೠඥଵିఘమ൰  

and its first moment is  

                                                 
7See page 77 of Kumbhakar and Lovell (2003). 
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݉௨బᇱ ሺߛሻ ൌ ሻݑሺܧ ൌ ට ଶఙೠమగሺଵିఘమሻ. 
Using (25), we obtain the results. 

Q.E.D. 

 

  



Table 1: Econometric specifications of the dynamic stochastic frontier models  

Setting Ahn et al. (2000) Tsionas(2006) Emvalomatis (2012) Amsler et. al 

(2014) 

Lai (2017) 

Time trend Linear trend No No No Linear trend 

Random 

error ݒ௧ • ܧሺݒ௧ሻ ൌ 0 for all ݅,  .ݐ
• No distribution 

assumption on ݒ௧ . 
~௧ݒ ݅. ݅. ݀. ܰሺ0, ௩ଶሻߪ ~௧ݒ ݅. ݅. ݀. ܰሺ0, ~௧ݒ ௩ଶሻߪ ݅. ݅. ݀. ܰሺ0, ~௧ݒ௩ଶሻߪ ݅. ݅. ݀. ܰሺ0,  ௩ଶሻߪ

Inefficienc

y ݑ௧ 
௧ݑ• ൌ ሺ1 െ ௧ିଵݑሻߩ ݑ௧∗ 
௧∗|Ω௧ିଵሻݑሺܧ• ൌ ߣ  0.  

•No distribution 

assumption on ݑ௧∗. 
 

 

•For ݐ ൌ 1, ln ଵݑ ൌ ௭ఊଵିఘ   ,∗ଵݑ
where ݑଵ∗~ܰሺ0, ఙೠమଵିఘሻ 
•For ݐ ൌ 2…ܶ, ln ௧ݑ ൌ ߛ௧ݖ ߩlnݑ,௧ିଵ   ,∗௧ݑ
where ݑ௧∗	~	݅. ݅. ݀. ܰሺ0, ௨ଶሻߪ
 

•Use the inverse of the 

logistic function for the 

transformation  

௧ݏ• ൌ ln ቀ ଵିቁ ൌln ቀ షೠଵିషೠቁ,  

where ݏ௧~ܰሺߩ  ߩ ∙ ,,௧ିଵݏ  ,௨ଶሻߪ
for 	ݐ ൌ 2…ܶ; and  ݏ௧~ܰሺ ఘబଵିఘ , ఙೠమଵିఘమሻ  

for ݐ ൌ 1. 

•Only assume the 

marginal 

distribution ݑ௧~		ܰାሺ0,  ௨ଶሻߪ
• The time 

dependence of the 

cross period ݑ௧’s 

are captured by a 

copula function 

௧ݑ • ൌ ௧ିଵݑߩ  ∗௧ݑ ,  

for ݐ ൌ 1,… , ܶ 

∗௧ݑ• ~ܰାሺ0, ௨ଶߪ ሻ,  

for ݐ ൌ 1,… , ܶ;  and ݑ~ܰାሺ0, ௨ଶߪ	 /ሺ1 െߩଶሻሻ. 

Estimation GMM Bayesian  Bayesian QML FML, QML, PCL 
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Table 2:  Biases of the FML, PCL and QML estimators under heterogeneous ߪ௨ଶ  when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ 0.35ܶ

  A. Bias of FML estimator 

5 25 0.0002 0.0013 -0.0528 0.0010 -0.0489 -0.0060 0.0024 -0.1268

50 0.0004 0.0002 -0.0259 0.0017 -0.0359 -0.0066 -0.0007 -0.0342

100 0.0001 0.0002 -0.0099 0.0002 -0.0230 -0.0045 -0.0007 -0.0114

        

10 25 -0.0002 -0.0001 -0.0139 0.0002 -0.0352 -0.0064 -0.0008 -0.0278

50 -0.0005 -0.0001 -0.0045 0.0002 -0.0240 -0.0047 -0.0009 -0.0064

100 -0.0005 0.0000 0.0010 -0.0001 -0.0099 -0.0020 -0.0005 -0.0036

        

15 25 0.0002 0.0005 -0.0069 0.0001 -0.0276 -0.0053 -0.0013 -0.0069

50 -0.0002 -0.0002 -0.0022 0.0002 -0.0141 -0.0028 -0.0007 -0.0024

100 0.0000 -0.0002 -0.0044 0.0001 -0.0161 -0.0035 -0.0004 -0.0013

B. Bias of PCL estimator 

5 25 -0.0003 0.0004 -0.0551 -0.0002 -0.0162 0.0027 -0.1243 0.0152

50 0.0005 0.0001 -0.0364 0.0021 -0.0133 -0.0007 -0.0334 0.0017

100 0.0000 0.0004 -0.0176 -0.0001 -0.0106 -0.0007 -0.0114 -0.0010

        

10 25 -0.0002 0.0000 -0.0288 0.0003 -0.0161 -0.0006 -0.0291 0.0013

50 -0.0005 0.0000 -0.0192 0.0002 -0.0142 -0.0008 -0.0078 0.0005

100 -0.0005 0.0000 -0.0140 -0.0001 -0.0119 -0.0003 -0.0052 0.0030

        

15 25 0.0003 0.0002 -0.0207 0.0001 -0.0150 -0.0012 -0.0072 0.0021

50 -0.0003 0.0001 -0.0166 0.0001 -0.0129 -0.0006 -0.0021 0.0010

100 0.0000 -0.0002 -0.0198 0.0001 -0.0140 -0.0003 -0.0016 0.0012

   C. Bias of QML estimator 

5 25 0.0000 0.0022 -0.0595 0.0015 -0.0819 -0.0093 0.0045 -0.1431

 50 0.0005 0.0002 -0.0237 0.0020 -0.0472 -0.0076 -0.0004 -0.0300

 100 0.0001 0.0003 -0.0099 0.0004 -0.0351 -0.0065 -0.0007 -0.0089

      

10 25 -0.0010 0.0002 -0.0093 0.0003 -0.0583 -0.0103 -0.0006 -0.0225

 50 -0.0003 0.0001 -0.0076 0.0001 -0.0415 -0.0081 -0.0008 -0.0040

 100 -0.0004 -0.0001 -0.0076 0.0000 -0.0348 -0.0073 -0.0003 -0.0049

      

15 25 0.0003 0.0005 -0.0119 0.0002 -0.0549 -0.0106 -0.0012 -0.0058

 50 -0.0002 -0.0001 -0.0070 0.0002 -0.0356 -0.0072 -0.0006 -0.0009

 100 0.0002 -0.0001 -0.0114 0.0001 -0.0375 -0.0081 -0.0003 -0.0016

Note: a. Total number of replications is 1000.  b. ߪ௨ଶ ൌ expሺߜ   .ሻݓଵߜ
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Table 3:  MSEs of the  FML, PCL and QML estimators under heterogeneous ߪ௨ଶ  when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ 0.35ܶ

  A. MSE of FML estimator 

5 25 0.0190 0.0356 0.2814 0.0516 0.3716 0.0785 0.0103 0.2067

50 0.0152 0.0221 0.1816 0.0327 0.2093 0.0464 0.0059 0.1329

100 0.0094 0.0159 0.1221 0.0224 0.1465 0.0329 0.0042 0.0916

        

10 25 0.0140 0.0198 0.1492 0.0128 0.2101 0.0466 0.0056 0.1292

50 0.0091 0.0152 0.1039 0.0088 0.1426 0.0320 0.0038 0.0859

100 0.0065 0.0101 0.0691 0.0059 0.0930 0.0211 0.0025 0.0595

        

15 25 0.0114 0.0164 0.1128 0.0063 0.1644 0.0367 0.0041 0.1012

50 0.0073 0.0116 0.0733 0.0042 0.1081 0.0244 0.0028 0.0668

100 0.0054 0.0081 0.0546 0.0030 0.0738 0.0167 0.0020 0.0473

B. MSE of PCL estimator 

5 25 0.0190 0.0357 0.2723 0.0488 0.0736 0.0103 0.2061 0.1132

50 0.0152 0.0222 0.1794 0.0324 0.0465 0.0058 0.1318 0.0538

100 0.0095 0.0159 0.1215 0.0223 0.0326 0.0043 0.0927 0.0363

        

10 25 0.0141 0.0198 0.1495 0.0128 0.0459 0.0057 0.1300 0.0705

50 0.0091 0.0152 0.1032 0.0088 0.0310 0.0038 0.0862 0.0362

100 0.0065 0.0101 0.0692 0.0059 0.0207 0.0026 0.0605 0.0248

        

15 25 0.0113 0.0165 0.1135 0.0063 0.0357 0.0042 0.1017 0.0548

50 0.0074 0.0116 0.0737 0.0042 0.0240 0.0029 0.0674 0.0278

100 0.0054 0.0080 0.0544 0.0030 0.0162 0.0020 0.0474 0.0193

  C. MSE of QML estimator 

5 25 0.0209 0.0373 0.3271 0.0540 0.4997 0.0984 0.0133 0.2417

 50 0.0153 0.0226 0.1947 0.0331 0.2904 0.0630 0.0060 0.1343

 100 0.0096 0.0161 0.1323 0.0225 0.1999 0.0441 0.0044 0.0945

      

10 25 0.0146 0.0203 0.1631 0.0129 0.2797 0.0610 0.0061 0.1251

 50 0.0094 0.0154 0.1160 0.0090 0.1873 0.0418 0.0039 0.0868

 100 0.0065 0.0102 0.0754 0.0059 0.1244 0.0279 0.0027 0.0613

      

15 25 0.0116 0.0169 0.1274 0.0064 0.2260 0.0499 0.0044 0.1006

 50 0.0073 0.0116 0.0827 0.0043 0.1511 0.0337 0.0029 0.0670

 100 0.0053 0.0081 0.0601 0.0031 0.1018 0.0228 0.0021 0.0486

Note: a. Total number of replications is 1000.  b. ߪ௨ଶ ൌ expሺߜ   .ሻݓଵߜ
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Table 4: Relative Biases of the likelihood-based estimators when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ ܶ 0.35

  A. Relative Bias ൌ Biasሺθେሻ/Biasሺθሻ 
5 25 -1.4491 0.3438 1.0442 -0.2029 0.3322 -0.4389 -50.9229 -0.1201

50 1.0594 0.6834 1.4052 1.2029 0.3691 0.1031 48.1521 -0.0507

100 0.3156 1.4707 1.7795 -0.3961 0.4629 0.1503 16.2296 0.0840

        

10 25 0.9302 0.0562 2.0632 1.3603 0.4577 0.0963 38.5710 -0.0482

50 0.9747 0.2306 4.2204 0.9972 0.5936 0.1736 8.2739 -0.0820

100 0.9903 -0.8169 -14.7317 0.8575 1.1966 0.1664 10.9380 -0.8556

        

15 25 1.4372 0.4861 3.0210 1.3633 0.5414 0.2174 5.7408 -0.3030

50 1.8077 -0.5381 7.6140 0.5774 0.9181 0.2025 2.9990 -0.4233

100 -0.1686 0.8050 4.4485 0.9572 0.8706 0.0834 4.2560 -0.9591

B. Relative Bias ൌ Biasሺߠ୕ሻ Biasሺߠሻ⁄  

5 25 0.1414 1.6895 1.1261 1.5395 1.6765 1.5338 1.8548 1.1280

50 1.1767 0.8791 0.9166 1.1744 1.3120 1.1617 0.5169 0.8775

100 1.0191 1.2838 0.9970 2.3450 1.5248 1.4566 1.0298 0.7792

        

10 25 5.1633 -2.1673 0.6668 1.3976 1.6546 1.6110 0.7294 0.8098

50 0.7193 -0.8748 1.6819 0.5577 1.7315 1.7241 0.8845 0.6201

100 0.7615 -2.2197 -7.9606 -0.1671 3.5060 3.7405 0.6775 1.3693

        

15 25 1.2355 1.0062 1.7425 3.3215 1.9860 1.9873 0.9249 0.8490

50 1.3175 0.2679 3.2157 1.0218 2.5280 2.5963 0.9399 0.3529

100 3.3834 0.4499 2.5547 0.9390 2.3312 2.3437 0.7661 1.2649

  C. Relative Bias ൌ Biasሺߠେሻ Biasሺߠ୕ሻൗ  

5 25 -10.2500 0.2035 0.9273 -0.1318 0.1982 -0.2862 -27.4546 -0.1065

 50 0.9003 0.7774 1.5331 1.0243 0.2813 0.0887 93.1521 -0.0578

 100 0.3097 1.1456 1.7849 -0.1689 0.3036 0.1032 15.7602 0.1078

     

10 25 0.1802 -0.0259 3.0939 0.9733 0.2766 0.0598 52.8791 -0.0596

 50 1.3550 -0.2636 2.5093 1.7881 0.3428 0.1007 9.3545 -0.1323

 100 1.3004 0.3680 1.8506 -5.1329 0.3413 0.0445 16.1450 -0.6248

     

15 25 1.1633 0.4831 1.7338 0.4105 0.2726 0.1094 6.2071 -0.3569

 50 1.3721 -2.0089 2.3677 0.5650 0.3632 0.0780 3.1908 -1.1997

 100 -0.0498 1.7891 1.7413 1.0193 0.3735 0.0356 5.5552 -0.7583

Note: a. The values in bold are either greater than 1 or less than െ1. 
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Table 5:  Relative MSEs of the likelihood-based estimators when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ ܶ 0.35

  A. Relative MSE ൌ MSEሺθେሻ/MSEሺθሻ 
5 25 0.9983 1.0036 0.9678 0.9464 0.1982 0.1306 19.9869 0.5478

50 1.0023 1.0055 0.9878 0.9921 0.2220 0.1250 22.4003 0.4047

100 1.0039 0.9992 0.9954 0.9947 0.2222 0.1305 22.0439 0.3961

        

10 25 1.0030 1.0003 1.0022 0.9989 0.2183 0.1233 23.2120 0.5456

50 0.9982 0.9990 0.9931 1.0014 0.2172 0.1198 22.9290 0.4211

100 0.9968 1.0083 1.0021 0.9989 0.2231 0.1249 23.9172 0.4162

        

15 25 0.9889 1.0049 1.0066 1.0020 0.2173 0.1132 24.7464 0.5421

50 1.0143 1.0001 1.0054 0.9832 0.2217 0.1180 23.9629 0.4159

100 0.9951 0.9859 0.9974 0.9983 0.2190 0.1229 23.5568 0.4073

B. Relative MSE ൌ MSEሺθ୕ሻ/MSEሺθሻ 
5 25 1.1004 1.0498 1.1625 1.0466 1.3448 1.2525 1.2865 1.1693

50 1.0074 1.0239 1.0724 1.0130 1.3874 1.3565 1.0245 1.0109

100 1.0195 1.0136 1.0837 1.0027 1.3648 1.3413 1.0393 1.0309

        

10 25 1.0416 1.0249 1.0933 1.0110 1.3309 1.3085 1.0891 0.9687

50 1.0228 1.0108 1.1166 1.0228 1.3142 1.3046 1.0296 1.0099

100 1.0019 1.0110 1.0921 1.0001 1.3381 1.3210 1.0609 1.0311

        

15 25 1.0223 1.0275 1.1295 1.0121 1.3747 1.3584 1.0751 0.9948

50 1.0067 0.9981 1.1281 1.0032 1.3974 1.3857 1.0217 1.0028

100 0.9842 0.9970 1.1002 1.0076 1.3789 1.3650 1.0379 1.0265

  C. Relative MSE ൌ MSEሺθେሻ/MSEሺθ୕ሻ  

5 25 0.9073 0.9560 0.8325 0.9042 0.1474 0.1043 15.5354 0.4685

 50 0.9949 0.9821 0.9211 0.9793 0.1600 0.0921 21.8643 0.4004

 100 0.9847 0.9858 0.9185 0.9920 0.1628 0.0973 21.2105 0.3842

     

10 25 0.9630 0.9760 0.9167 0.9881 0.1640 0.0942 21.3121 0.5632

 50 0.9759 0.9883 0.8893 0.9790 0.1653 0.0918 22.2696 0.4169

 100 0.9950 0.9973 0.9176 0.9988 0.1667 0.0945 22.5437 0.4036

     

15 25 0.9673 0.9781 0.8912 0.9900 0.1581 0.0833 23.0174 0.5449

 50 1.0076 1.0020 0.8912 0.9801 0.1586 0.0852 23.4546 0.4148

 100 1.0111 0.9889 0.9066 0.9908 0.1588 0.0900 22.6967 0.3968

Note: a. The values in bold are greater than 1. 
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Table 6:  Biases of the FML, PCL and QML estimator under heterogeneous ߪ௨ଶ  when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ 0.7ܶ

  A. Bias of FML estimator 

5 25 0.0004 0.0014 -0.0847 -0.0023 -0.0323 -0.0099 0.0016 -0.1154

50 0.0006 -0.0007 -0.0602 0.0028 -0.0290 -0.0074 -0.0007 -0.0325

100 0.0000 0.0003 -0.0301 -0.0002 -0.0211 -0.0050 -0.0006 -0.0130

        

10 25 0.0001 -0.0005 -0.0357 -0.0005 -0.0312 -0.0077 -0.0009 -0.0249

50 -0.0004 -0.0004 -0.0300 0.0001 -0.0245 -0.0057 -0.0007 -0.0093

100 -0.0003 -0.0001 -0.0093 -0.0003 -0.0119 -0.0027 -0.0004 -0.0021

        

15 25 0.0001 0.0004 -0.0322 0.0001 -0.0298 -0.0070 -0.0011 -0.0064

50 -0.0001 0.0000 -0.0178 0.0002 -0.0142 -0.0033 -0.0005 -0.0020

100 -0.0002 -0.0001 -0.0190 0.0004 -0.0152 -0.0034 -0.0004 -0.0001

B. Bias of PCL estimator 

5 25 0.0006 0.0014 -0.1777 0.0035 -0.0188 0.0017 -0.1250 0.0147

50 0.0005 -0.0006 -0.1036 0.0033 -0.0143 -0.0008 -0.0297 0.0035

100 0.0000 0.0004 -0.0755 -0.0004 -0.0121 -0.0005 -0.0132 0.0005

        

10 25 0.0002 0.0000 -0.1112 -0.0002 -0.0191 -0.0008 -0.0250 0.0035

50 -0.0004 -0.0004 -0.1010 0.0004 -0.0165 -0.0006 -0.0092 0.0027

100 -0.0005 -0.0001 -0.0827 -0.0002 -0.0137 -0.0003 -0.0053 0.0048

        

15 25 0.0001 0.0004 -0.1092 0.0000 -0.0189 -0.0008 -0.0100 0.0046

50 -0.0002 0.0002 -0.0933 0.0003 -0.0150 -0.0004 -0.0028 0.0029

100 -0.0002 -0.0001 -0.0981 0.0003 -0.0153 -0.0002 -0.0020 0.0031

  C. Bias of QML estimator 

5 25 -0.0008 0.0002 -0.0814 0.0000 -0.0432 -0.0134 0.0029 -0.1440

 50 0.0003 -0.0008 -0.0604 0.0047 -0.0310 -0.0083 -0.0005 -0.0294

 100 0.0000 0.0002 -0.0406 0.0003 -0.0309 -0.0073 -0.0005 -0.0118

      

10 25 -0.0006 0.0000 -0.0633 0.0012 -0.0507 -0.0124 -0.0007 -0.0219

 50 -0.0003 -0.0005 -0.0438 0.0002 -0.0381 -0.0088 -0.0007 -0.0087

 100 -0.0004 -0.0002 -0.0333 -0.0001 -0.0281 -0.0063 -0.0003 -0.0051

      

15 25 -0.0004 -0.0010 -0.0437 0.0003 -0.0447 -0.0105 -0.0009 -0.0090

 50 0.0000 -0.0001 -0.0503 0.0006 -0.0345 -0.0078 -0.0004 -0.0052

 100 -0.0002 0.0000 -0.0418 0.0003 -0.0295 -0.0065 -0.0003 -0.0015

Note: a. Total number of replications is 1000.  b. ߪ௨ଶ ൌ expሺߜ    .ሻݓଵߜ



33 
 

 

 
 
 

Table 7:  MSEs of the FML, PCL and QML estimator under heterogeneous ߪ௨ଶ  when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ 0.7ܶ

  A. MSE of FML estimator 

5 25 0.0172 0.0335 0.8360 0.1157 0.2753 0.0580 0.0097 0.2186

50 0.0140 0.0198 0.5283 0.0743 0.1771 0.0373 0.0054 0.1375

100 0.0087 0.0151 0.3364 0.0502 0.1172 0.0247 0.0037 0.0939

        

10 25 0.0132 0.0183 0.3604 0.0287 0.1669 0.0353 0.0052 0.1351

50 0.0084 0.0142 0.2430 0.0198 0.1149 0.0243 0.0035 0.0887

100 0.0060 0.0096 0.1620 0.0131 0.0734 0.0155 0.0024 0.0618

        

15 25 0.0107 0.0155 0.2634 0.0144 0.1318 0.0280 0.0037 0.1019

50 0.0067 0.0106 0.1685 0.0094 0.0884 0.0187 0.0026 0.0673

100 0.0050 0.0076 0.1228 0.0069 0.0611 0.0129 0.0019 0.0471

B. MSE of PCL estimator 

5 25 0.0174 0.0334 0.7934 0.1134 0.0575 0.0105 0.3375 0.1367

50 0.0140 0.0199 0.5047 0.0721 0.0374 0.0053 0.1379 0.0549

100 0.0087 0.0151 0.3265 0.0491 0.0249 0.0038 0.0942 0.0368

        

10 25 0.0134 0.0183 0.3570 0.0281 0.0357 0.0054 0.1372 0.0714

50 0.0085 0.0142 0.2405 0.0195 0.0243 0.0036 0.0894 0.0366

100 0.0060 0.0096 0.1610 0.0129 0.0161 0.0025 0.0624 0.0252

        

15 25 0.0107 0.0156 0.2599 0.0141 0.0285 0.0039 0.1042 0.0556

50 0.0068 0.0107 0.1668 0.0093 0.0191 0.0026 0.0699 0.0282

100 0.0050 0.0075 0.1201 0.0067 0.0130 0.0019 0.0489 0.0196

  C. MSE of QML estimator 

5 25 0.0184 0.0344 0.9989 0.1204 0.3288 0.0689 0.0121 0.3265

 50 0.0139 0.0202 0.5549 0.0765 0.2083 0.0439 0.0056 0.1409

 100 0.0088 0.0152 0.3605 0.0505 0.1399 0.0296 0.0040 0.0969

      

10 25 0.0139 0.0187 0.4023 0.0291 0.2001 0.0424 0.0058 0.1381

 50 0.0085 0.0142 0.2772 0.0201 0.1329 0.0281 0.0037 0.0908

 100 0.0061 0.0096 0.1801 0.0134 0.0871 0.0185 0.0025 0.0630

      

15 25 0.0108 0.0159 0.2981 0.0147 0.1598 0.0341 0.0041 0.1024

 50 0.0069 0.0113 0.1974 0.0098 0.1074 0.0228 0.0027 0.0706

 100 0.0050 0.0073 0.1374 0.0071 0.0718 0.0152 0.0019 0.0485

Note: a. Total number of replications is 1000.  b. ߪ௨ଶ ൌ expሺߜ   .ሻݓଵߜ
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Table 8: Relative Biases of the likelihood-based estimators when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ ܶ 0.7

  A. Relative Bias ൌ Biasሺθେሻ/Biasሺθሻ 
5 25 1.4055 0.9635 2.0993 -1.5690 0.5819 -0.1758 -78.1155 -0.1276

50 0.8924 0.8503 1.7228 1.1534 0.4941 0.1082 40.0052 -0.1078

100 1.5397 1.3525 2.5080 1.6942 0.5727 0.1074 21.5558 -0.0404

        

10 25 3.9386 -0.0261 3.1155 0.4383 0.6099 0.0973 27.7548 -0.1420

50 1.1431 0.9910 3.3727 4.3312 0.6737 0.1064 13.8886 -0.2863

100 1.4491 1.2181 8.9253 0.8172 1.1468 0.0987 12.3448 -2.3038

        

15 25 0.7050 0.9836 3.3941 -0.0166 0.6340 0.1186 9.1460 -0.7251

50 2.9202 45.4352 5.2549 1.0109 1.0572 0.1226 5.7742 -1.4421

100 0.6879 1.1621 5.1764 0.6854 1.0037 0.0637 5.2249 -22.0859

B. Relative Bias ൌ Biasሺθ୕ሻ/Biasሺθሻ 
5 25 -1.8170 0.1690 0.9613 -0.0118 1.3368 1.3567 1.8002 1.2479

50 0.4251 1.0949 1.0040 1.6628 1.0669 1.1203 0.7288 0.9053

100 1.1524 0.8695 1.3496 -1.3382 1.4664 1.4624 0.8661 0.9028

        

10 25 -10.5124 -0.0861 1.7730 -2.2433 1.6245 1.5999 0.8236 0.8793

50 0.8913 1.2267 1.4611 2.4015 1.5537 1.5361 0.9841 0.9367

100 1.2299 2.1220 3.5947 0.3976 2.3600 2.2877 0.7503 2.4583

        

15 25 -2.8828 -2.6316 1.3591 2.0280 1.4981 1.4972 0.7903 1.4125

50 -0.1251 -20.0849 2.8312 2.5505 2.4388 2.3512 0.8748 2.6079

100 0.7370 -0.3739 2.2073 0.7806 1.9388 1.9179 0.7370 10.4517

  C. Relative Bias ൌ Biasሺθେሻ/Biasሺθ୕ሻ 
5 25 -0.7735 5.7003 2.1838 133.2226 0.4353 -0.1296 -43.3933 -0.1022

 50 2.0992 0.7766 1.7159 0.6937 0.4631 0.0966 54.8945 -0.1191

 100 1.3361 1.5555 1.8583 -1.2660 0.3906 0.0734 24.8870 -0.0448

      

10 25 -0.3747 0.3032 1.7572 -0.1954 0.3755 0.0608 33.6993 -0.1614

 50 1.2825 0.8079 2.3083 1.8035 0.4336 0.0693 14.1129 -0.3056

 100 1.1782 0.5740 2.4829 2.0552 0.4859 0.0431 16.4534 -0.9372

      

15 25 -0.2445 -0.3738 2.4972 -0.0082 0.4232 0.0792 11.5735 -0.5133

 50 -23.3483 -2.2622 1.8560 0.3963 0.4335 0.0521 6.6007 -0.5530

 100 0.9334 -3.1078 2.3451 0.8780 0.5177 0.0332 7.0890 -2.1131

Note: a. The values in bold are either greater than 1 or less than െ1. 
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Table 9: Relative MSEs of the likelihood-based estimators when ߩ ൌ  ଵߜ ߜ ௩ଶߪ ߩ ଵߨ ߨ ଶߚ ଵߚ ܰ ܶ 0.7

  A. Relative MSE ൌ MSEሺθେሻ/MSEሺθሻ 
5 25 1.0160 0.9977 0.9491 0.9797 0.2089 0.1809 34.9357 0.6252

50 1.0071 1.0048 0.9554 0.9704 0.2111 0.1408 25.5925 0.3996

100 0.9964 0.9990 0.9706 0.9784 0.2124 0.1548 25.2412 0.3914

        

10 25 1.0152 0.9998 0.9905 0.9784 0.2138 0.1531 26.3528 0.5289

50 1.0154 0.9963 0.9896 0.9814 0.2115 0.1486 25.3562 0.4125

100 0.9966 1.0049 0.9938 0.9866 0.2194 0.1618 25.9343 0.4077

        

15 25 0.9944 1.0066 0.9869 0.9799 0.2163 0.1382 28.4252 0.5459

50 1.0136 1.0089 0.9898 0.9892 0.2159 0.1414 26.8185 0.4190

100 0.9859 0.9830 0.9780 0.9708 0.2124 0.1488 26.0822 0.4171

B. Relative MSE ൌ MSEሺθ୕ሻ/MSEሺθሻ 
5 25 1.0709 1.0268 1.1949 1.0401 1.1944 1.1885 1.2557 1.4934

50 0.9980 1.0216 1.0504 1.0285 1.1760 1.1764 1.0347 1.0248

100 1.0104 1.0082 1.0715 1.0058 1.1935 1.1989 1.0652 1.0318

        

10 25 1.0469 1.0214 1.1161 1.0141 1.1995 1.2011 1.1215 1.0224

50 1.0164 0.9976 1.1408 1.0145 1.1562 1.1563 1.0420 1.0231

100 1.0103 1.0073 1.1116 1.0240 1.1869 1.1941 1.0592 1.0188

        

15 25 1.0055 1.0243 1.1321 1.0218 1.2123 1.2160 1.1304 1.0051

50 1.0403 1.0599 1.1712 1.0495 1.2146 1.2232 1.0200 1.0483

100 0.9901 0.9591 1.1182 1.0181 1.1757 1.1800 0.9967 1.0289

  C. Relative MSE ൌ MSEሺθେሻ/MSEሺθ୕ሻ 
5 25 0.9488 0.9717 0.7943 0.9419 0.1749 0.1522 27.8211 0.4187

 50 1.0091 0.9836 0.9095 0.9435 0.1795 0.1197 24.7332 0.3900

 100 0.9861 0.9909 0.9058 0.9727 0.1780 0.1291 23.6969 0.3793

     

10 25 0.9488 0.9717 0.7943 0.9419 0.1749 0.1522 27.8211 0.4187

 50 1.0091 0.9836 0.9095 0.9435 0.1795 0.1197 24.7332 0.3900

 100 0.9861 0.9909 0.9058 0.9727 0.1780 0.1291 23.6969 0.3793

     

15 25 0.9889 0.9827 0.8718 0.9590 0.1784 0.1137 25.1463 0.5432

 50 0.9744 0.9519 0.8451 0.9426 0.1778 0.1156 26.2917 0.3997

 100 0.9958 1.0249 0.8747 0.9536 0.1806 0.1261 26.1673 0.4054

Note: a. The values in bold are greater than 1. 
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Table 10: The sample statistics 

Variable Mean S.D. Min Max 

lnY 19.853 0.865 17.382 21.867 

lnL 5.533 0.659 3.367 6.890 

lnK 5.573 0.496 3.912 6.772 

ln(Other) 19.781 0.841 16.911 21.684 

time 4.596 2.284 1.000 8.000 

League 0.225 0.418 0.000 1.000 

Note: The total number of observations is 475. 

 

Table 11: Empirical results

Variable \ Approach FML  PCL QML 

Frontier        

lnL 0.2114 (0.0477) ***a 0.2277 [0.1326] *b 0.0313 [0.0993] 

     (0.0203) ***  (0.0464) 
***

lnK 0.1126 (0.0422) *** 0.1344 [0.0749] * 0.1327 [0.0809] 
*

     (0.0187) ***  (0.0509) 
***

ln(Other) 0.7419 (0.0321) *** 0.7107 [0.1187] *** 0.8837 [0.1109] 
***

     (0.0148) ***  (0.0332) 
***

time 0.0332 (0.0105) *** 0.0270 [0.0113] ** 0.0328 [0.0156] 
**

     (0.0042) ***  (0.0125) 
***

Cons. 3.5925 (0.4691) *** 3.9912 [1.5216] *** 1.5570 [1.5088] 

     (0.2141) ***  (0.5184) 
***

AR coefficient 

(0.0188) 0.7964 ߩ  *** 0.7827 [0.0510] *** 0.8445 [0.0349] ***

     (0.0092) ***  (0.0217) ***

Random component ߪ௩ଶ ߚ௩	c -6.7386 (0.1768) *** -6.6484 [0.1921] *** -6.4513 [0.2608] 
***

     (0.0717) ***  (0.1471) 
௨ଶ League -0.4618 (0.1804)ߪ*** *** -0.6000 [0.2995] ** -0.1611 [0.2934] 

     (0.0850) ***  (0.2306) 

Cons. -3.8358 (0.1020) *** -3.9462 [0.3792] *** -4.8551 [0.3380] 
***

     (0.0467) ***  (0.1812) 
***

Mean and s.d. of predicted inefficiency and TElim௧→ஶEݑ௧ 0.5490 (0.0496) d  0.4808 (0.0553)  0.4449 (0.0147) 

 Eݑ௧∗  0.2591 (0.1350) 0.2297 (0.1235) 0.3128 (0.1379) 

 TE	 0.7782 (0.0769) 0.8004 (0.0730) 0.7380 (0.0743) 
Note:  a. ***, ** and * denote significance at the 1%, 5% and 10% levels. b. Numbers in parentheses are 
the FML or unadjusted standard errors; and number in brackets are the sandwich standard errors of the 
PCL and QML estimators. c. ߪ௩ଶ is parameterized as ߪ௩ଶ ൌ expሺߚ௩ሻ. d. Numbers in parentheses are 
standard deviations.

 

 


