
Munich Personal RePEc Archive

Consistent Pseudo-Maximum Likelihood

Estimators and Groups of

Transformations

Gouriéroux, Christian and Monfort, Alain and Zakoian,

Jean-Michel

1University of Toronto, TSE and PSL, Dauphine, CREST, CREST

2018

Online at https://mpra.ub.uni-muenchen.de/87834/

MPRA Paper No. 87834, posted 11 Jul 2018 16:01 UTC



Consistent Pseudo-Maximum Likelihood Estimators and Groups

of Transformations

C., Gouriéroux(1), A. Monfort(2), and J.M., Zakoian(3)

(Revised version, June, 2018)

Abstract

In a transformation model yt = c[a(xt,β),ut], where the errors ut are i.i.d and independent of
the explanatory variables xt, the parameters can be estimated by a pseudo-maximum likelihood
(PML) method, that is, by using a misspecified distribution of the errors, but the PML estimator
of β is in general not consistent. We explain in this paper how to nest the initial model in an
identified augmented model with more parameters in order to derive consistent PML estimators
of appropriate functions of parameter β. The usefulness of the consistency result is illustrated
by examples of systems of nonlinear equations, conditionally heteroskedastic models, stochastic
volatility, or models with spatial interactions.
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1 Introduction

In this paper, we are interested in transformation models of the type:

yt = c[a(xt,β);ut], (1.1)

where yt ∈ Y is a n-dimensional vector of observed endogenous variables, a(xt,β) ∈ A ⊂ R
J is a

vector of index functions depending on exogenous and/or lagged endogenous explanatory variables
xt and on a parameter β ∈ B ⊂ R

K , and ut ∈ U are independent identically distributed (i.i.d.)
error terms of dimension n , ut being independent of xt. The true value of parameter β ∈ B is
β0, and the true distribution of the errors is P0 ∈ P . When P0 is unknown, for given observations
(yt,xt), t = 1, . . . , T , the parameter of interest β can be estimated by pseudo-maximum likelihood
(PML), that is, by a maximum likelihood approach of (1.1) using a given distribution P ∈ P for
the errors. Since P 6= P0, the PML estimator β̂T of β is in general not consistent for β0.

In this paper, we introduce an augmented version of the initial model (1.1), for which a function
of β can be consistently estimated by PML. For this purpose, we assume that (i) the set of functions
C = {ca : u 7→ c[a;u],a ∈ A} from U to Y is a group for the operation ◦ of function composition4;
(ii) the function a 7→ ca is one-to-one from A to C. Under these assumptions, the group structure
on C induces a group structure on A, for a group operation denoted ∗ which is defined by:

ca ◦ cb = ca∗b, a, b ∈ A.

The augmented transformation model is defined by:

yt = c[a(xt,β) ∗ λ;ut], (β,λ) ∈ B ×A, (1.2)

where the extra parameter λ varies freely in A. This extra parameter plays the role of an "intercept"
introduced at an appropriate place. Two cases can be considered:

1) when (β,λ) is identifiable, we prove in this paper that the PML estimator of (θ,λ) := (β,λ)
is such that the PML estimator of θ = β converges to β0.

2) However, the initial model can already include some "intercept" parameters. In this case, we
can put aside these intercepts λ(β), say, such that:

c[a(xt,β);ut] = c[a(xt,θ(β)) ∗ λ(β);ut], (1.3)

for some functions θ : B → θ(B), λ : B → A and a valued in A.
Then, the identifiable augmented model becomes:

yt = c[a(xt,θ) ∗ λ;ut], (θ,λ) ∈ θ(B)×A, (1.4)

and we prove that the PML estimator of θ is a consistent estimator of θ(β0), while the
PML estimator of λ does not necessarily converge to λ(β0). To get identification in model
(1.4), the function β 7→ θ(β) has often reduced rank: dim[θ(B)] ≤ K = dim(B), but with
a possibly increased dimension of the augmented parameter: dim[θ(B)] + J ≥ K = dim(B).
The parametrizations β and (θ,λ) are not necessarily one-to-one.

4A group A is a (finite or infinite) set of elements endowed with a binary operation ∗ (called the group operation)
that satisfies the properties of closure (for each a, b ∈ A, we have a ∗ b ∈ A), associativity ((a ∗ b) ∗ c = a ∗ (b ∗ c)),
the identity property (existence of an identity element e such that a ∗ e = e ∗ a = a for any a ∈ A), and the inverse
property (each a ∈ A admits an inverse a−1

∈ A satisfying a ∗ a−1 = a−1
∗ a = e).
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Our analysis differs from the standard literature considering the consistency of the PML esti-
mator of an index function interpretable as a conditional expectation, a conditional median and/or
a conditional variance [see Gouriéroux et al. (1984), Bollerslev and Wooldridge (1992), Gouriéroux
and Monfort (1995), Chapter 8]. It also differs from analyses where the shape of the true and/or
pseudo error distribution is constrained. Due to the lack of ex-ante interpretation of the index in
model (1.1), and to the lack of restrictions on the pseudo-distribution, we introduce a parameter λ

allowing for consistency of PML estimators of θ(β0) for any pseudo-distribution satisfying minimal
regularity conditions. Our analysis is thus not limited to a class such as the linear exponential
family [as in Gouriéroux et al. (1984)], the conditionally heteroskedastic models [as in Francq et al.
(2011), Fan et al. (2014)], or to multivariate conditionally heteroskedastic dynamic regression mod-
els [as in Fiorentini, Sentana (2016)]. Section 2 illustrates the usefulness of the consistency result by
considering the examples of regression model with conditional heteroskedasticity, Cholesky ARCH
model, and model with homogenous spatial interactions. Section 3 derives the main result of the
paper, that is, the consistency of the PML estimator. In the rest of the paper, we focus on linear
(affine) transformation models. These models are studied in Section 4. We discuss the choice of the
appropriate parametrization for the examples of Section 2 and provide other applications to network
models, to the multivariate regression model with conditional heteroskedasticity, and to models for
observations of volatility matrices. Assumptions and identification issues are discussed in Section
5, with special focus on the Cholesky ARCH model and on an interaction model. Section 6 derives
the asymptotic distribution of the PML estimator for a class of linear commutative transformation
models. Section 7 concludes. Additional results and proofs are collected in an on-line Appendix.

2 Examples of groups and augmented models

In this section, we consider examples of models (1.1) and (1.2) and their associated groups. At this
stage, we discuss some identifiability issues in the augmented model (but the main discussion of
identifiability is postponed to Section 5).

Example 1: The Newey-Steigerwald model
The model of interest is a unidimensional "regression" model with conditional heteroskedasticity:

yt = a1(xt,β) + a2(xt,β)ut, (2.1)

where yt, a1(·) ∈ R and a2(·) ∈ R
∗ = R − {0}. The group of functions is C = {ca : u 7→ a1 +

a2u, (a1, a2) ∈ R × R
∗} and the operation on the associated group R × R

∗ is defined by (a1, a2) ∗
(b1, b2) = (a1 + a2b1, a2b2). Note that this group is not commutative. Therefore, the augmented
model is:

yt = a1(xt,β) + λ1a2(xt,β) + λ2a2(xt;β)ut. (2.2)

The introduction of two additional parameters λ1, λ2 to get consistency of PML estimators for Model
(2.1) is due to Newey and Steigerwald (1997). The identifiability issue in Model (2.2) depends on
functions a1, a2. For illustration purposes, let us consider the standard modelling with a1(xt,β) =
x′
tβ11 + β12, a1(xt,β) = exp(x′

tβ21 + β22), assuming that the regressors are not colinear. The
augmented model is:

yt = x′
tβ11 + β12 + λ1 exp(x

′
tβ21 + β22) + λ2 exp(x

′
tβ21 + β22)ut.
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We see that the parameters λ1, λ2 and β22 are not identifiable and that the identified augmented
model is

yt = x′
tθ1 + θ2 + λ1λ2 exp(x

′
tθ3) + λ2 exp(x

′
tθ3)ut.

In fact, the initial model already includes an intercept on the log-volatility at the right place and
corresponds to

θ(β) = (β′
11,β

′
12,β

′
21)

′ := (θ′
1(β),θ

′
2(β),θ

′
3(β))

′, λ(β) = (0, exp(β22))
′.

However, the usual intercept for the mean is not appropriate and, to recover consistency, a "risk
premium" λ1λ2 exp(x

′
tθ3) has to be introduced. Then the parameters β11,β12 and β21 can be

consistently estimated by PML, but not parameter β22.

Example 2: Cholesky ARCH model
Let us consider a bivariate (n = 2) Cholesky ARCH model (see Dellaportas, Pourahmadi (2012)):

yt =





a11(xt,β) 0

a21(xt,β) a22(xt,β)



ut := A(xt,β)ut.

The group of functions is C = {u 7→ Au,A invertible lower triangular matrix}. We can take5

a = vech(A) = (a11, a21, a22)
′ and the operation ∗ in the group of vectors in R

∗ × R × R
∗ is given

by a ∗ b = vech(AB), that is a ∗ b = (a11b11, a21b11 + a22b21, a22b22)
′. The augmented model is:

y
t
=





a11(xt,β) 0

a21(xt,β) a22(xt,β)









λ11 0

λ21 λ22



ut =





a11(xt,β)λ11 0

a21(xt,β)λ11 + a22(xt,β)λ21 a22(xt,β)λ22



ut.

Identifiability issues for this augmented model will be discussed in Section 5.

Example 3: Model with homogenous dynamic spatial interactions
The model of interest is:

yt = a1t













1 a2t . . . a2t

a2t 1
...

...
. . . a2t

a2t . . . 1













ut, (2.3)

with two index functions a1t = a1(xt,β) ∈ R
∗, a2t = a2(xt,β) ∈ (−1/(n− 1), 1), and yt,ut ∈ R

n.
The group of functions for the composition operation is the set of functions:

C =

{

ca,a = (a1, a2) ∈ R
∗ ×

(

− 1

n− 1
, 1

)}

where c(a,u) = a1













1 a2 . . . a2

a2 1
...

...
. . . a2

a2 . . . 1













u,

5The vech operator stacks into a vector the lower triangular part of a matrix. It is used in our framework for a
non symmetric matrix.
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and the operation ∗ of the associated group on A is defined by:

(a1, a2) ∗ (b1, b2) =
(

a1b1[1 + (n− 1)a2b2],
a2 + b2 + (n− 2)a2b2

1 + (n− 1)a2b2

)

.

The identity element of this group is e = (1, 0) and the inverse of a is:

a−1 =

(

1 + (n− 2)a2
a1(1− a2)(1 + (n− 1)a2)

,
−a2

1 + (n− 2)a2

)

,

which belongs to A for any a ∈ A. In this case, both groups (A, ∗) and (C, ◦) are Abelian.
The augmented model is:

yt = c[a(xt,β) ∗ λ,ut] = ã1t













1 ã2t . . . ã2t

ã2t 1
...

...
. . . ã2t

ã2t . . . 1













ut,

with

ã1t = a1(xt,β)λ1[1 + (n− 1)a2(xt,β)λ2], ã2t =
a2(xt,β) + λ2 + (n− 2)a2(xt,β)λ2

1 + (n− 1)a2(xt,β)λ2
.

Identifiability of the augmented model will be discussed in Section 5.

3 Main result

We consider the model of interest
yt = c[a(xt,β);ut], (3.1)

with true parameter value β0. The assumptions given in Section 1 are summarized and completed
as follows.

Assumption A.1: yt,ut ∈ Y = U ⊂ R
n, a(xt,β) ∈ A ⊂ R

J , β ∈ B ⊂ R
K . Moreover,

(i) the set of functions C = {ca : u 7→ c[a;u],a ∈ A} is a group for the composition ◦;
(ii) the function a 7→ ca is one-to-one from A to C.
(iii) U is a manifold, and, for any a ∈ A, the function ca is a diffeomorphism6 from U ⊂ R

n to
U .

As already mentioned, it follows from Assumption A.1 that the group (A, ∗) induced by the group
(C, ◦) is characterized by:

ca ◦ cb = ca∗b, a, b ∈ A, (3.2)

and in the following, we denote by e the identity element and a−1 the inverse of a for the operation
∗: we have c[a ∗ a−1,u] = c[a−1 ∗ a,u] = c[e,u] = u. We have ca−1 = c−1

a ; therefore the sets Y
and U must coincide. Note also that y = c(a,u) ⇔ u = c(a−1,y).

6A diffeomorphism is a bijection which is differentiable and such that its inverse is differentiable as well.
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By differentiating (3.2) with respect to u, we get:

∂ca
∂u′

◦ cb =
∂ca∗b
∂u′

·
[

∂cb
∂u′

]−1

, a, b ∈ A. (3.3)

For expository purpose, we do not distinguish below functions a and a and we consider the
identifiable (see assumptions below) augmented model:

yt = c[a(xt,θ) ∗ λ;ut], (θ,λ) ∈ θ(B)×A, (3.4)

Recall that the model of interest (3.1) and the augmented model (3.4) are linked via c[a(xt,β);ut] =
c[a(xt,θ(β)) ∗ λ(β);ut]. This model can be estimated by a PML method in which the errors are
assumed to follow a given distribution P . This pseudo-distribution is in general different from the
true distribution P0. The PML estimator (θ̂T , λ̂T ) of the true value (θ0,λ0) = (θ(β0),λ(β0)) is
defined as any measurable solution of:

(θ̂T , λ̂T ) = arg max
(θ,λ)∈θ(B)×A

LT (θ,λ), where LT (θ,λ) =
1

T

T
∑

t=1

l[a(xt,θ) ∗ λ,yt], (3.5)

and l denotes the pseudo log-likelihood corresponding to the observation of date t.
Let us introduce the following assumptions:

Assumption A.2: The joint process (xt,ut) is strictly stationary ergodic and ut are i.i.d. error
terms, with continuous true distribution P0 and density g0 w.r.t. the Lebesgue measure.

Assumption A.3: xt and ut are independent.

Assumption A.3 concerns the variables xt,ut, not the processes (xt), (ut). Let Ex,0 denote the
expectation with respect to the stationary distribution of (ut,xt)

Assumption A.4: the function l[a(xt,θ) ∗ λ,yt]| is measurable with respect to (xt,yt) and
Ex,0| sup(θ,λ)∈θ(B)×A l[a(xt,θ) ∗ λ,yt]| < ∞, Moreover, the random function (θ,λ) → l[a(xt,θ) ∗
λ,yt] is a.s. continuous over θ(B)×A.

We will consider a pseudo distribution with pseudo density g w.r.t. the Lebesgue measure on
R
n. Under Assumptions A.1-A.4, the objective function converges to a limiting objective function

equal to an expected pseudo log-likelihood. More precisely, let E0 denote the expectation with
respect to the true errors distribution P0, and let

L(a;P, P0) = E0{log g[c(a−1;u)] + log | det ∂c

∂u′
(a−1;u)|}.

We now derive the expression of the limiting objective function limT→∞ a.s.LT (θ,λ) by applying
the standard change of variables in multiple integrals based on the determinant of the Jacobian
matrix.

Proposition 1 Let us consider the nonlinear transformation model (3.4) with the true parameter
value (θ0,λ0). Under Assumptions A.1-A.4, we have, for some constant K independent of θ,λ:

lim
T→∞

a.s.
1

T

T
∑

t=1

l[a(xt,θ) ∗ λ,yt] = ExL[λ
−1
0 ∗ a−1(xt,θ0) ∗ a(xt,θ) ∗ λ;P, P0] +K.
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Proof: We get:

lim
T→∞

a.s
1

T

T
∑

t=1

l[a(xt,θ) ∗ λ,yt]

= Ex,0{log g[c(λ−1 ∗ a−1(xt,θ);yt)] + log | det[ ∂c
∂u′

(λ−1 ∗ a−1(xt,θ);yt)]|}

= ExE0{log g[c(λ−1 ∗ a−1(xt,θ); c[a(xt,θ0) ∗ λ0;ut])]

+ log | det[ ∂c
∂u′

(λ−1 ∗ a−1(xt,θ); c[a(xt,θ0) ∗ λ0;ut])]|}

= ExE0{log g[c(λ−1 ∗ a−1(xt,θ) ∗ a(xt,θ0) ∗ λ0;ut)]

+ log | det[ ∂c
∂u′

(λ−1 ∗ a−1(xt,θ) ∗ a(xt,θ0) ∗ λ0;ut)]|}+K

= ExL[λ
−1
0 ∗ a−1(xt,θ0) ∗ a(xt,θ) ∗ λ;P, P0] +K, (3.6)

where K = −ExE0 log | det[
∂c

∂u′
(a(xt,θ0) ∗ λ0;ut)]| is independent of θ,λ, and Ex denotes the

expectation with respect to the stationary distribution of xt. The first equality follows from the
ergodic theorem, which can be applied under A.2 and A.4. The second equality uses the inde-
pendence assumption A.3. The third equality uses (3.2) and the last one is obtained by applying
(3.3).

QED

Then we make the following additional assumptions:

Assumption A.5: There is a unique solution to the optimization problem:

a∗
0 = argmax

a∈A
L(a;P, P0).

Assumption A.6: There is a unique solution to the optimization problem:

(θ∗
0,λ

∗
0) = arg max

(θ,λ)∈θ(B)×A
ExL[λ

−1
0 ∗ a−1(xt,θ0) ∗ a(xt,θ) ∗ λ;P, P0]. (3.7)

Assumption A.7: θ(B) and A are compact parameter sets.

Under Assumptions A.1-A.7, we will show that the PML estimator (θ̂T , λ̂T ) exists and tends
a.s. to the pseudo-true value (θ∗

0,λ
∗
0).

Proposition 2 Let us consider the transformation model (3.4) with true parameter value (θ0,λ0).
Under Assumptions A.1-A.7, the PML estimator (θ̂T , λ̂T ) converges a.s. to θ∗

0 = θ0,λ
∗
0 = λ0 ∗a∗

0.

Proof: Let us first prove that the limit criterion is uniquely maximized at (θ∗
0,λ

∗
0). By Assumption

A.5 and the fact that (A, ∗) is a group, we get:

L[λ−1
0 ∗ a−1(xt,θ0) ∗ a(xt,θ) ∗ λ;P, P0] ≤ L(a∗

0;P, P0), ∀xt ∈ X ,θ ∈ θ(B),λ ∈ A.

We deduce that:

ExL[λ
−1
0 ∗ a−1(xt,θ0) ∗ a(xt,θ) ∗ λ;P, P0] ≤ L(a∗

0;P, P0),

6



and the maximum is reached for θ0 and λ∗
0 satisfying λ−1

0 ∗ λ∗
0 = a∗

0. The uniqueness of the
maximizer follows directly from A.6.

Now we will prove that, for any (θ1,λ1) 6= (θ0,λ
∗
0), there exists a neighborhood V (θ1,λ1) such

that
lim
T→∞

a.s. sup
(θ,λ)∈V (θ1,λ1)

LT (θ,λ) < L(a∗
0;P, P0) +K, (3.8)

where K is defined in (3.6). For any positive integer k, let Vk(θ1,λ1) be the open ball of center
(θ1,λ1) and radius 1/k. We have

lim
T→∞

a.s. sup
(θ,λ)∈Vk(θ1,λ1)

LT (θ,λ) ≤ lim
T→∞

a.s.
1

T

T
∑

t=1

sup
(θ,λ)∈Vk(θ1,λ1)

l[a(xt,θ) ∗ λ,yt]

= ExE0 sup
(θ,λ)∈Vk(θ1,λ1)

l[a(xt,θ) ∗ λ,yt],

by the ergodic theorem. By Beppo Levi’s theorem, ExE0 sup(θ,λ)∈Vk(θ1,λ1) l[a(xt,θ)∗λ,yt] decreases
to ExE0l[a(xt,θ1)∗λ1,yt] as k → ∞. We have already shown that the latter expectation is strictly
less than L(a∗

0;P, P0) +K, thus (3.8) is established.
The end of the proof uses a standard compactness argument. First note that for any neighbor-

hood V (θ0,λ
∗
0) of (θ0,λ

∗
0),

lim
T→∞

a.s. sup
V (θ0,λ

∗

0
)∩θ(B)×A

LT (θ,λ) ≥ lim
T→∞

a.s. LT (θ0,λ
∗
0) = L(a∗

0;P, P0) +K. (3.9)

Next, we note that the compact set θ(B)×A is covered by the union of an arbitrary neighborhood
V (θ0,λ

∗
0) of (θ0,λ

∗
0) and the set of the neighborhoods V (θ1,λ1) satisfying (3.8), with (θ1,λ1) ∈

θ(B)×A\V (θ0,λ
∗
0). Thus, there exists a finite subcover of Θ of the form V (θ0,λ

∗
0), V (θ1,λ1), . . . ,

V (θk,λk), where for i = 1, . . . , k, V (θi,λi) satisfies (3.8). It follows that

sup
θ(B)×A

LT (θ,λ) = max
i=1,...,k

sup
V (θi,λi)∩θ(B)×A

LT (θ,λ).

The inequalities (3.8) and (3.9) show that, almost surely, the PML estimator belongs to V (θ0,λ
∗
0)

for T large enough. The consistency of the PML estimator follows.

QED

At this stage, it is useful to introduce the notion of generic model defined as ỹ = c(a;u), with
the true parameter a0 = e, and the true error distribution P0. The objective function L(a;P, P0)
can be interpreted as a limiting pseudo log-likelihood in this model without explanatory variable.
Indeed, we have, for any a ∈ A, ỹ ∈ U ⊂ R

n,

E0l(a, ỹ) = E0{log g[c(a−1; ỹ)] + log | det ∂c

∂u′
(a−1; ỹ)|}

= E0{log g[c(a−1;u)] + log | det ∂c

∂u′
(a−1;u)|}

= L(a;P, P0),

since, for the true value of the parameter, ỹ = c(a0;u) = c(e;u) = u.

7



Remark 1: It is usual in practice to introduce the effect of the explanatory variables through
some parameters. In other words, a generic model without explanatory variables, ỹ = c(a;u), is
transformed into an econometric model as yt = c[a(xt,β);ut], say. In general, a PML estimator
of β0 in the econometric model is not consistent. Proposition 2 means that an artificial extra
parameter λ and possibly a (re)parametrization have to be introduced in the model to ensure the
consistency of the PML estimator of some functions of β0 (see the Introduction and Section 5).

Remark 2: In a semi non-parametric estimation approach of Model (3.4), the vector of unknown
parameters becomes (θ0,λ0, P0) = (θ0(β0),λ0(β0), P0). However, it can be noted that λ0 and P0

may not be identifiable, whatever the estimation method. Indeed, at the true parameter value,
equation (3.4) can equivalently be written as:

yt = c[a(xt,θ0);vt], vt = c(λ0;ut). (3.10)

The distribution of yt conditional on xt is thus invariant by any change of (λ0, P0) leaving unchanged
the distribution of c(λ0;ut). However, the distribution of vt is identifiable and can be estimated
through residuals v̂t,T = c[a(xt, θ̂T )

−1;yt], t = 1, . . . , T .

Remark 3: Proposition 2 can be applied after preliminary one-to-one changes on the observed
variables y 7→ y∗ = h1(y) ∈ Y∗ = U∗, errors u 7→ u∗ = h2(u) ∈ U∗ = Y∗, and/or indexes
a 7→ a∗ = h3(a), that is to econometric models of the form:

y∗
t = h1

{

c[h−1
3 (a(xt,β));h

−1
2 (u∗

t )]
}

≡ c∗[a∗(xt,β);u
∗
t ].

The property of group of (A, ∗) is easily transferred to the new parametrization a∗ ∈ A∗ = h3(A),
with the operation ∗̃ defined by a∗∗̃ b∗ = h3[h

−1
3 (a∗) ∗ h−1

3 (b∗)].

4 Application to linear transformation models

In this section, we focus on linear (affine) transformation models and provide different examples,
some of them including as special cases the examples of Section 2. As above, we do not distinguish
below the functions a and a of the augmented and identifiable augmented models defined in (1.3).

4.1 Linear transformation model

Proposition 2 can in particular be applied to linear transformation models:

yt = A(xt,β)ut, β ∈ B,A(xt,β) ∈ A, (4.1)

where yt,ut are n×1 vectors, A(xt,β) is a n×n matrix and A is a group for the usual matrix mul-
tiplication operation, that is, a sub-group of the group of invertible matrices (by Cayley’s Theorem).
The associated identifiable augmented model is:

yt = A(xt,θ)Λut, θ ∈ θ(B),Λ ∈ A. (4.2)

In this case, the generic model is ỹ = Au, with the true parameter A0 = In, and the true error
distribution P0. We have, for any A ∈ A, ỹ ∈ R

n,

E0l(A, ỹ) = E0 log g(A
−1ỹ) + log | det[A−1]| = E0 log g[A

−1u] + log | det[A−1]| = L(A;P, P0).
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If A is an Abelian group, that is a commutative group, the augmented model (4.2) can equivalently
be written as yt = ΛA(xt,θ)ut. When A is not Abelian, the augmented model has to be taken of
the form (4.2).

Corollary 1 Let us consider the linear transformation model (4.1). Under the assumptions of
Proposition 2, we have: θ∗

0 = θ0,Λ
∗
0 = Λ0A

∗
0, where A∗

0 = argmaxA∈A L(A;P, P0).

4.2 Linear affine transformation model

The linear affine transformation model is:

yt = µ(xt,β) +A(xt,β)ut, β ∈ B,µ ∈ E ,A(xt,β) ∈ A. (4.3)

We have: c(a,u) = µ +Au where a = (µ,A), and the group operation is: (µ1,A1) ∗ (µ2,A2) =
(µ1 +A1µ2,A1A2). The associated identified augmented model is:

yt = µ(xt,θ) +A(xt,θ)λ+A(xt,θ)Λut, θ ∈ θ(B),λ ∈ E ,Λ ∈ A. (4.4)

Then, Proposition 2 can be applied whenever A is a group for the multiplication of matrices, E is
closed for the addition and such that AE ⊂ E . This augmented model is a multivariate extension of
the Newey, Steigerwald univariate model in Example 1.

We can associate with model (4.3) the generic model ỹ = b +Au, with true parameters b0 =
0,A0 = In, and true error distribution P0. The limiting pseudo log-likelihood corresponding to the
generic model is:

L(A, b;P, P0) = E0 log g[A
−1(ỹ − b)] + log | det[A−1]|

= E0 log g(−A−1b+A−1u) + log | det[A−1]|.

Corollary 2 Let us consider the linear affine transformation model (4.3). Under the assump-
tions of Proposition 2, we have: θ∗

0 = θ0,Λ
∗
0 = Λ0A

∗
0 and λ∗

0 = λ0 + Λ0b
∗
0, where (A∗

0, b
∗
0) =

argmaxA∈A,b∈E L(A, b;P, P0).

When E = {0}, we are back to Model (4.1). However, there exist structural models where the set
E is constrained without being reduced to {0}. This is the case of the one-factor model used in the
Arbitrage Pricing Theory (APT). The standard APT model is such that ỹ = µf + (bIn + cff ′)u
with parameters µ, b, c, (the factorial direction f being fixed), where ỹ is a vector of excess returns.
In this setting, E is the vector space generated by f .

Model (4.3) can be considered as a limit case of Model (4.1). Indeed, let us consider the set

A∗ of matrices





A b

0 1



, where A ∈ A, b ∈ E with AE ⊂ E . Then A∗ is also a group for the

multiplication of matrices. A generic model is





ỹ

1



 =





A b

0 1









u

1



, which is equivalent to

ỹ = Au+ b. This is a limit case of the linear model in which the errors distribution is degenerate.
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4.3 Exponential transformation models

We now provide specific examples of linear transformation models through their associated generic
model. In the exponential transformation model, the matrix A is of the type:

A = exp



−
J
∑

j=1

ajCj



 , (4.5)

where the Cj , j = 1, . . . , J are n × n matrices that commute.7 The augmented model is obtained
with:

A(xt,θ)Λ = exp



−
J
∑

j=1

[aj(xt,θ) + λj ]Cj



 .

The extra parameter can be interpreted as an intercept and the augmented model as the econometric
model with intercept.

Example 3 (cont.): Model with homogenous spatial interactions
Let us consider a decomposition of IRn into J orthogonal vector spaces and let us denote P j , j =

1, . . . , J , the associated orthogonal projectors. These projectors commute since P jP k = 0, ∀j 6= k,
and it can be checked that:

exp(−
J
∑

j=1

ajP j) =

J
∑

j=1

exp(−aj)P j . (4.6)

Then we can use Proposition 2 for the Abelian group of matrices exp(−
J
∑

j=1

ajCj) with Cj = P j .

Example 3 corresponds to the special case where: J = 2, P 1 = 1l1l′/n,P 2 = In − 1l1l′/n, 1l denotes
the vector with unitary components, and the transformation is of the type

exp{−α1(xt,β)}P 1 + exp{−α2(xt,β)}P 2,

where α1(xt,β), α2(xt,β) are in a one-to-one relationship with a1(xt,β), a2(xt,β) of Example 3
(see Section 5.3 below).

Example 4: Observations of volatility matrices
The set of symmetric positive definite (SPD) matrices is also a manifold denoted Sym+(n) and

our approach can be applied to SPD matrix valued data such as observed volatility matrices [see
Arsigny et al. (2007), Yuan et al. (2012), Huang et al. (2014), and the references therein for other
SPD matrix valued data in the medical imaging literature].

Let us consider a SPD matrix U of size (n, n), another (n, n) matrix B, and the application:

U 7→ exp(aB)U exp(aB′) := Y .

7The exponential of a matrix is defined as:

exp(aC) =

∞∑

h=0

(ah
C

h)

h!
.
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This defines a group of linear transformations on Sym+(n). To link this group with our general
specification, let us apply the vec operator. We have:

vec(Y ) = vec{exp(aB)U exp(aB′)} = {exp(aB)⊗ exp(aB)}vec(U), (4.7)

where ⊗ denotes the Kronecker product. The transformation in (4.7) can also be written as:
vec(Y ) = exp(aC)vec(U) where C is the so-called infinitesimal generator.

To find matrix C, let us now consider the behaviour of this transformation when a is close to
zero. We get:

{exp(aB)⊗exp(aB)}vec(U) ∼ {(I+aB)⊗(I+aB)}vec(U) ∼ vec(U)+a{B⊗I+I⊗B}vec(U).

Therefore, the underlying infinitesimal generator C is:

C = B ⊗ I + I ⊗B, (4.8)

and the transformation (4.7) can be equivalently written as:

vec(Y ) = exp{a(B ⊗ I + I ⊗B)}vec(U). (4.9)

Therefore, the methodology of our paper is valid for groups of such transformations applied to
observed realized volatility matrices, or to observed implied volatility matrices derived from observed
derivative prices.

Example 5: Stationary spatial models
Let us denote C(k) the (n, n) matrix with unitary values on the upper kth diagonal and with

zero anywhere else, i.e. with entries Cij(k) = 1, if j = i + k, = 0, otherwise. By convention,
C(k) = 0 for k ≥ n. These matrices commute since:

C(k)C(l) = C(k + l) = C(1)k+l, ∀k, l ≥ 0. (4.10)

By applying formula (4.10), we see that:

exp[
n−1
∑

j=0

ajC(j)] ≡
n−1
∑

j=0

bj(a)C(j), say, (4.11)

where b(a) = [bj(a)] is a one-to-one function of the vector a = (aj). Formula (4.11) explains how to
reparametrize for asymptotic bias adjustment spatial models of the type:

ỹ =







b0 b1 bn−1

0
. . . b1

0 0 b0






u ≡ Bu. (4.12)

Such specifications are the spatial reduced form counterparts of models of the type ỹ = Rỹ + ut,
where (In −R)−1 = B, since the inverse of a triangular Toeplitz matrix is also triangular Toeplitz
for large n. Thus, to facilitate bias adjustment, it is preferable to parametrize directly the reduced
form, that is to avoid the modelling with simultaneous equations. These types of models are used in
the literature on spatial data, networks, interactions, and peer effects. 8 Model (4.12) corresponds
to hierarchical peer effects.

8See e.g. Cressie (1993), Banerjee et al. (2004) for spatial data, Manski (1993), Goldsmith-Pinkham and Imbens
(2013) for linear-in-mean models with peer effects, Felsenstein (1973) for evolutionary trees in Genomics.
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5 Identification

Let us discuss the assumptions A.5-A.6 and the identification issues in the linear transformation
model (4.2). First note that the assumptions depend on both P and P0. For instance, Assump-
tion A.6 defined functions θ∗

0(θ0,Λ0;P, P0),Λ
∗
0(θ0,Λ0;P, P0). For given P, P0, we get the binding

functions that explain how the pseudo-true values θ∗
0,Λ

∗
0 depend on the true values θ0,Λ0. These

binding functions extend in a semi-parametric framework the parametric binding function intro-
duced in (White (1982), Gouriéroux et al. (1984)). We expect Assumptions A.5-A.6 to be satisfied
for a large class of true and pseudo distributions, i.e. for any P, P0 ∈ P. In particular they have to
be satisfied for P = P0 ∈ P. When P = P0, the PML reduces to the standard ML estimator, is con-
sistent i.e. θ∗

0 = θ0,Λ
∗
0 = Λ0, and Assumption A.6 is simply the standard asymptotic identification

condition.
Let us now discuss in more details Assumption A.5 on the generic artificial model and Assump-

tion A.6 on the augmented model (4.2).

5.1 Identification in the generic model

In the generic model, ỹ = Au, with A0 = In and P0 the true distribution, the pseudo-true value
A∗

0(A;P, P0) in Assumption A.5 depends on P, P0 and on the group A. This identification problem
is related to the identification problem encountered in Independent Component Analysis (see e.g.
Comon (1994), Hyvarinen et al. (2001)). To each group A can be attached a set P(A) such that
Assumption A.5 is satisfied for any P, P0 ∈ P(A).

In order to apply the results in Eriksson and Koivunen (2004), we assume that the set of
distributions P(A) includes the distributions such that the components uit are independent, with
different distributions and at most one Gaussian marginal distribution.

If A is the group of square invertible matrices, i.e. the linear group GL(n), then A∗
0 is unique

up to permutations and homothetic transformations of the columns (see Eriksson and Koivunen
(2004), Gouriéroux et al. (2016)). From a group perspective, the set generated by the permutations
and homotheties forms a sub-group M and the identifiable parameter is an element of the quotient
group GL(n)/M .

If A is the group of triangular matrices with positive diagonal elements, then A∗
0 is unique up to

homothetic transformations of the columns. Indeed, the permutations of the columns are no longer
possible. It is neither necessary to assume a priori spherical distributions, nor distributions with
symmetry properties, nor to assume the existence of first and second-order moments.

We now consider examples introduced in the previous sections.

5.1.1 Newey-Steigerwald model (Example 1 continued)

Conditions for identification have been analyzed in Newey-Steigerwald (1997). As noted in their
paper p. 588 (see also Th. 2): "If one additional parameter is introduced (that is in the augmented
model), the identification condition for consistency is satisfied even if the symmetry condition (on the
"assumed innovation" and "true innovation" densities) does not hold." In this case, the identification
can be derived without introducing restrictions on the distribution of u. This is compatible with
the discussion in Section 5.1 of identification in the generic model. Indeed, in the one-dimensional
case, the set P(A) includes Gaussian as well as non Gaussian distributions.
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5.1.2 Exponential transformation model (Examples 3,4,5)

Identification can be studied directly by considering the limiting expected conditional pseudo-
likelihood derived in Proposition 1 and Section 9.1 in the on-line appendix. In view of (6.2),
the identification condition in the generic model is that

max
aj

E0 log g



exp





J
∑

j=1

ajCj



u



+

J
∑

j=1

ajTr(Cj), (5.1)

has a unique solution. Under the Eriksson and Koivunen condition on the distribution of u, it is
satisfied if and only if

exp





J
∑

j=1

ajCj



 = exp





J
∑

j=1

αjCj



 ,

up to a permutation of columns and scale effects on the columns, implies aj = αj , for j = 1, . . . , J .
This condition is equivalent to

J
∑

j=1

βjCj = 0 ⇒ βj = 0, j = 1, . . . , J,

since matrix 0 is invariant by permutation of columns and scale effects on the columns. Thus,
the identification in the generic model is equivalent to the linear independence of matrices Cj , j =
1, . . . , J. This identification condition is clearly satisfied in Example 3 where the orthogonal projec-
tors Pj are linearly independent. Indeed, if

∑J
j=1 βjP j = 0, we also have

∑J
j=1 βjP jP k = βkP

2
k =

βkP k = 0, for any k, which entails βk = 0.
The identification condition is also satisfied for any model with J = 1 and C1 6= 0, as in Example

5 on volatility matrices.

5.2 Identification in the augmented model (for given P )

Assumption A.6 concerns the identification of pseudo-true values in the augmented model. The
identification depends on the properties of the generic model, but also on the specification of the
index functions.

Under Assumption A.5, Assumption A.6 is satisfied under the primitive condition of A-identification
defined below.

Definition 1 Parameters (θ,Λ) are A-identified iff

A(xt,θ)Λ = A(xt, θ̃)Λ̃, Px − a.s. with θ, θ̃ ∈ Θ,Λ, Λ̃ ∈ A,

implies θ = θ̃ and Λ = Λ̃.

In practice, two cases have to be distinguished:

• If, for a given P , (β,Λ) is identifiable in the unconstrained augmented model, we can choose
θ = β,Λ as new parameters, that is without changing the notation. The true distribution
corresponds to the special values θ0 = β0,Λ0 = In.
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• If, for a given P , (β,Λ) is not identifiable in the unconstrained augmented model, we have to
reparametrize the augmented model as yt = A(xt,θ(β))Λut, where the function β 7→ θ(β)
has reduced rank, and Λ is still left free to vary in A. Then, to apply Proposition 2, we have to
check that this reduced rank augmented model with constrained θ is nesting the initial model,
that is, that A(xt,β0) can be written in this new parametrization as A(xt,θ(β0))Λ(β0), say,
for any β0 ∈ B.

Let us now provide examples of identification analysis to show how to carefully proceed and in
particular how to (re)parametrize the model of interest.

5.3 Example of identified models

In practice, the two identification issues that are the identification in the generic model and the A-
identification issue concerning the specification of the score function have to be taken into account.
It is known in the standard econometric literature that the A-identification has to be analyzed
case by case according to the expression of the scores and the possible exclusion restrictions on
the explanatory variables. We consider below two specific examples: we first consider a Cholesky
ARCH model with linear scores, then we discuss the restrictions on the scale parameter in a model
with spatial interactions.

Example 2 (cont.): Cholesky ARCH model

Let us consider a Cholesky ARCH model:

yt =





x′
tβ11 0

x′
tβ21 x′

tβ22



ut := A(xt,β)ut.

The matrix A(xt,β) belongs to the group GL(n) and to the group of lower triangular matrices as
well. When the marginal components of ut are independent, with different marginal distributions
and at most one Gaussian distribution, we can introduce two identified augmented models that are:

Model 1: yt =





x′
tθ11 x′

tθ12

x′
tθ21 x′

tθ22









λ11 λ12

λ21 λ22



ut,

for A=GL(n), and

Model 2: yt =





x′
tθ11 0

x′
tθ21 x′

tθ22









λ11 0

λ21 λ22



ut,

for the second group. Let us assume K linearly independent explanatory variables, and denote
Θk, k = 1, . . . ,K the matrices of coefficients of xkt in the models. A condition of A-identification
of parameters Θk, k = 1, . . . ,K,Λ in both augmented models is Θ1 = I2. The model of in-

terest can be written as yt =
∑K

k=1 xktBkut, with Bk =





β11,k 0

β21,k β22,k



 whereas the iden-

tified augmented model is yt =
∑K

k=1 xktΘkΛut. Since Θ1 = I2, we get Λ(β) = B1 and
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Θk(β) = BkB
−1
1 , k = 2, . . . ,K whenever B1 is invertible. The parameters Θk(β) are consis-

tently estimable. Since BkB
−1
1 =







β11,k

β11,1
0

β21,k

β11,1
− β22,k

β22,1

β21,1

β11,1

β22,k

β22,1






, the parameters in the diagonal

indexes are consistently estimable up to a multiplicative factor. The transformation is more com-
plicated for the off diagonal terms, except if one explanatory variable for instance the first one is
excluded from the off-diagonal term, i.e. if β21,1 = 0. Then, parameters β11,k, β21,k (resp. β22,k) are
identifiable up to a multiplicative factor.

Example 3 (cont.): Model with homogenous dynamic spatial interactions
Let us now discuss the identification issue for the model considered in Example 3 in Section 4.3.

To understand the notion of intercept, we first need to reparametrize the generic model under the
form:

ỹ = exp{−α1P 1 − α2(In − P 1)}u = {exp(−α1)P 1 + exp(−α2)(In − P 1)}u,
where P 1 = 1l1l′/n. This is a linear transformation corresponding to a matrix with diagonal elements:
exp(−α2) +

1
n
{exp(−α1) − exp(−α2)}, and out-of-diagonal elements 1

n
{exp(−α1) − exp(−α2)}.

Therefore, the parametrization a1, a2 of Example 3, Section 2, is such that

{

a1 = exp(−α2) +
1
n
{exp(−α1)− exp(−α2)},

a2 = 1
n
{exp(−α1)− exp(−α2)}/

[

exp(−α2) +
1
n
{exp(−α1)− exp(−α2)}

]

.

Equivalently, the parametrization in Section 4.3 is related to the one of Section 2 by:

{

α1 = − log{a1(1 + (n− 1)a2)},
α2 = − log{a1(1− a2)},

which is well defined for a1 > 0, a2 ∈
(

− 1
n−1 , 1

)

(see Section 2). As seen in Section 4.3, the

intercepts are parameters µ1, µ2, say, to be added to the αi(xt,β)’s, i = 1, 2, in the econometric
model. Therefore, an identification problem arises in the initial parametrization a1t = a1(xt,β),
a2t = a2(xt,β) if and only if there is a scale parameter in either a1t(1 + (n− 1)a2t), or a1t(1− a2t).
This occurs if there is a scale parameter in a1t, or a scale parameter in 1− a2t, or a scale parameter
in 1+ (n− 1)a2t. Such scale parameters are constrained by the conditions on the admissible values
of a1t, a2t. For instance if 0 < a2t < 1 for all t, the associated scale parameter has to belong to
(0, 1).

6 Asymptotic distribution of the PML estimator

The asymptotic theory for PML estimators was initially developed in the i.i.d. setting (see e.g.
White (1994), Gouriéroux, Monfort (1995), chap. 24). In our framework, we will assume indepen-
dence between ut and the past of xt, a stronger condition than A.3:

Assumption A.8: ut is independent from the xt−i, for i ≥ 0.

Under the Assumptions A.1-A.8 and other regularity conditions (see the on-line Appendix), the
PML estimator is asymptotically normal with asymptotic variance-covariance matrix obtained by
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a sandwich formula:

Vas

[√
T

(

θ̂T − θ0

λ̂T − λ∗
0

)]

= A−1BA−1,

where

A = E0

[

− ∂2

∂ϑ∂ϑ′ lt(θ0,λ
∗
0)

]

, B = V0

[

∂

∂ϑ
lt(θ0,λ

∗
0)

]

,

ϑ = (θ′,λ′)′ = (ϑj)1≤j≤K+J and lt(ϑ) = l[a(xt;θ) ∗ λ,yt].

The expression of matrices A and B simplifies when the group is commutative9, as in the
exponential transformation model of Section 4.3, namely:

yt = exp



−
J
∑

j=1

[aj(xt,θ0) + λ0j ]Cj



ut, (6.1)

where the n × n matrices Cj , j = 1, . . . , J commute. The limiting pseudo log-likelihood in the
generic model without explanatory variable is:

L(a;P, P0) = E0l(u,a), where l(u,a) = log g



exp





J
∑

j=1

ajCj



u



+
J
∑

j=1

ajTr(Cj),(6.2)

and the pseudo log-likelihood corresponding to date t in Model (6.1) is l(yt,a(xt,θ) + λ).

The asymptotic distribution of the PML estimator will follow from the property of martingale
difference of the pseudo score, and the asymptotic variance-covariance matrix of the PML estimator
is obtained by a simplified sandwich formula.

Proposition 3 Under the Assumptions A.1-A.8 and other regularity conditions (see the on-line
Appendix), the PML estimator is asymptotically normal:

√
T





θ̂T − θ0

λ̂T − λ∗
0





d→ N
(

0,A−1BA−1
)

,

where λ∗
0 = λ0 + a∗

0 and:

B = Ex

[(

∂a′(xt;θ0)
∂θ

IJ

)

K

(

∂a′(xt;θ0)
∂θ

IJ

)′]

, A = Ex

[(

∂a′(xt;θ0)
∂θ

IJ

)

L

(

∂a′(xt;θ0)
∂θ

IJ

)′]

,

where the J × J matrices K and L only depend on the true and pseudo densities of ut and are
displayed in the proof.

Proof: See the on-line Appendix.

9When the group is not commutative, for example for the Cholesky ARCH model, this simplification does not
exist.
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7 Concluding Remarks

We have provided group transformation models such that the PML estimators of functions θ(β0) of
the parameter of interest are consistent for any "regular" pseudo-distribution, when the error ut is
independent from the explanatory variable xt. For a given transformation c and a given index func-
tion a(xt,θ), we get an infinite number of PML estimators θ. We have shown that for multivariate
models based on exponential transformations, under appropriate regularity conditions, these PML
estimators are asymptotically normal with asymptotic variance-covariance matrices obtained by the
so-called sandwich formula. These matrices can be used to select an accurate PML among all the
consistent ones and to construct misspecification tests. The existence of representation (3.10), with
identifiable parameter θ0 and estimable errors distribution, suggests studying adaptive estimation
methods, as in Hafner and Rombouts (2007) for the Gaussian PML in multivariate volatility models,
in which an estimator of the errors distribution is used to efficiently estimate θ0. This is left for
further research.

References

[1] Anderson, T.W. (1970): "Estimation of Covariance Matrices which are Linear Combinations
or Whose Inverse are Linear Combinations of Given Matrices", in Essays in Probability and
Statistics, 1-24, University of North-Carolina Press, Chapel Hill.

[2] Arsigny, V., Fillard, P., Pennec, X., and N., Ayache (2007): "Geometric Means in a Novel
Vector Space Structure on Symmetric Positive-Definite Matrices", Siam J. Matrix Anal. Appl.,
29, 328-347.

[3] Banerjee, S., Carlin, B., and A., Gelfand (2004): "Hierarchical Modelling and Analysis for
Spatial Data", Chapman Hall.

[4] Bollerslev, T., and J., Woolridge (1992): "Quasi-Maximum Likelihood Estimators and Inference
in Dynamic Models with Time Varying Covariance", Econometric Reviews, 11, 143-172.

[5] Comon, P. (1994) : "Independent Component Analysis : A New Concept ?", Signal Processing,
36, 287-314.

[6] Cressie, N. (1993): "Statistics for Spatial Data", New-York, Wiley.

[7] Dellaportas, P., and M., Pourahmadi (2012): "Cholesky-GARCH Models with Application to
Finance", Stat. Comput., 22, 849-855.

[8] Eriksson, J. and V., Koivunen (2004): "Identifiability, Separability and Uniqueness of Linear
ICA Models", IEEE Signal Processing Letters, 11, 601-604.

[9] Fan, J., Qi, L. and D., Xiu (2014): "Quasi Maximum Likelihood Estimation of GARCH Models
with Heavy-Tailed Likelihoods", Journal of Business and Economic Statistics, 32, 193-198.

[10] Felsenstein, J. (1973): "Maximum-Likelihood Estimation of Evolutionary Trees from Continu-
ous Characteristics", American Journal of Human Genetics, 25, 471-492.

17



[11] Fiorentini, G., and E., Sentana (2016): "Consistent non-Gaussian Pseudo Maximum Likelihood
Estimators", DP CEMFI.

[12] Francq, C., Lepage, G. and J-M., Zakoïan (2011): "Two-Stage non Gaussian QML Estimation
of GARCH models and Testing the Efficiency of the Gaussian QMLE", Journal of Econometrics,
165, 246-257.

[13] Goldsmith-Pinkham, P., and G., Imbens (2013): "Social Networks and the Identification of
Peer Effects", Journal of Business and Economics Statistics, 31, 253-264.

[14] Gouriéroux, C., and A., Monfort (1995) : "Statistics and Econometric Models", Cambridge
University Press.

[15] Gouriéroux, C., Monfort, A., and J.P., Renne (2016): "Statistical Inference for Independent
Component Analysis", Journal of Econometrics, 196, 111-126.

[16] Gouriéroux, C., Monfort, A., and A., Trognon (1984): "Pseudo Maximum Likelihood Methods:
Theory", Econometrica, 52, 681-700.

[17] Hafner, C.M. and J.V.K. Rombouts (2007): "Semiparametric multivariate volatility models",
Econometric Theory, 23, 251-280.

[18] Huang, Z., Wang, R., Shao, S., Li, X., and X., Chen (2015): "Log Euclidean Metric Learning
on Symmetric Positive Definite Manifolds with Applications to Image Set Classification", in
Proceedings of the 32nd International Conference on Machine Learning, JMLR, vol 37.

[19] Hyvarinen, A., Kaihunen, J., and E. Oja (2001): "Independent Component Analysis", Nee-
York, Wiley.

[20] Manski, C (1993): "Identification of Endogenous Social Effects : The Reflection Problem",
Review of Economic Studies, 60, 531-542.

[21] Newey, W., and D., Steigerwald (1997): "Asymptotic Bias for Quasi-Maximum Likelihood
Estimators in Conditional Heteroskedastic Models", Econometrica, 65, 587-599.

[22] White, H. (1982): "Maximum Likelihood Estimation of Misspecified Models", Econometrica,
50, 1-26.

[23] White, H. (1994): "Estimation, Inference and Specification Analysis", Cambridge Univ. Press.

[24] Yuan, Y., Zhu, H., Lin, W., and J., Marron (2012): "Local Polynomial Regression for Sym-
metric Positive Definite Matrices", Journal of the Royal Statistical Society, Series B, 74, 697-719.

[25] Zwiernik, P., Uhler, C., and D., Richards (2016): "Maximum Likelihood Estimation for Linear
Gaussian Covariance Models", JRSS B, 1-24.

18



Consistent Pseudo-Maximum Likelihood Estimators and Groups of
Transformations:

On-line Appendix (not for publication)

This document consists of two sections of additional results: i) Regularity conditions for Propo-
sition 3 and sketch of proof; ii) Derivatives of functions based on exponential of matrices.

8 Regularity conditions for Proposition 3

Let ϑ = (θ′,λ′)′ = (ϑj)1≤j≤K+J and lt(ϑ) = l[a(xt;θ) + λ,yt].

Together with Assumptions A.1-A.7, Proposition 3 requires the following assumptions:

Assumption A.9: ϑ∗
0 = (θ0,λ

∗
0) belongs to the interior of θ(B)×A.

Assumption A.10: For any x, the function θ → a(x;θ) has continuous third-order derivatives.
The pseudo-density function g is three times continuously differentiable.

Assumption A.11: The matrices K and L defined in the proof are positive definite.

Assumption A.12: For at least one j ∈ {1, . . . , J}, the matrix V0

(

∂aj
∂θ

(xt,θ0)

)

is positive

definite.

Assumption A.13: There exists a neighborhood V (ϑ∗
0) of ϑ∗

0 such that, for i, j = 1, . . . , r,

for all ϑ ∈ V (ϑ∗
0), the process

{

∂

∂ϑ′

(

∂2

∂ϑi∂ϑj
ℓt(ϑ)

)}

is strictly stationary and ergodic, and,

E0 sup
ϑ∈V (ϑ∗

0
)

∥

∥

∥

∥

∂

∂ϑ′

(

∂2

∂ϑi∂ϑj
ℓt(ϑ)

)∥

∥

∥

∥

< ∞.

9 Proof of Proposition 3

In this Section, we will explain how to use an appropriate Central Limit Theorem (CLT), and we
will derive the asymptotic covariance matrix.

9.1 The pseudo-score

For Model (6.1), the pseudo log-likelihood for one observation takes the form:

lt(ϑ) = lt(θ,λ) = log g



exp







J
∑

j=1

[aj(xt;θ) + λj ]Cj







yt



+

J
∑

j=1

[aj(xt;θ) + λj ]Tr(Cj).

Let

zt(θ,λ) = exp







J
∑

j=1

[aj(xt;θ) + λj ]Cj







yt.
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For γ = (Tr(C1), . . . ,Tr(CJ))
′, we have:

lt(θ,λ) = log g{zt(θ,λ)}+ γ ′{a(xt;θ) + λ}.

Using the computations of Section 10.3, it follows that:

∂

∂θ′ lt(θ,λ) =
∂ log g

∂u′
{zt(θ,λ)}

∂zt(θ,λ)

∂θ′ + γ ′{a(xt;θ) + λ},

=

(

∂ log g

∂u′
{zt(θ,λ)}C[IJ ⊗ zt(θ,λ)] + γ ′

)

∂a(xt;θ)

∂θ′

:= h′t(θ,λ)
∂a(xt;θ)

∂θ′ .

Proceeding similarly with parameter λ, we find that:

∂

∂ϑ
lt(θ,λ) =

(

∂
∂θ

lt(θ,λ)
∂
∂λ

lt(θ,λ)

)

=

(

∂a′(xt;θ)
∂θ

IJ

)

ht(θ,λ).

9.2 The martingale difference property

Replacing yt by exp
{

−
∑J

j=1[aj(xt;θ0) + λ0j ]Cj

}

ut, we find that

zt(θ0,λ
∗
0) = exp







J
∑

j=1

(λ∗
0j − λ0j)Cj







ut := Γ(λ∗
0 − λ0)ut.

Thus,

∂

∂ϑ
lt(θ0,λ

∗
0) =

(

∂
∂θ

lt(θ0,λ
∗
0)

∂
∂λ

lt(θ0,λ
∗
0)

)

=

(

∂a′(xt;θ0)
∂θ

IJ

)

k(ut),

where

k(ut) = [IJ ⊗ (Γ(λ∗
0 − λ0)ut)

′]C ′∂ log g

∂u
{Γ(λ∗

0 − λ0)ut}+ γ.

Noting that

k(ut) = [IJ ⊗ (Γ(a∗
0)ut)

′]C ′∂ log g

∂u
{Γ(a∗

0)ut}+ γ,

where a∗
0 is defined in A.5, we have E{k(ut)} = 0 from the first-order conditions in the generic

model. Thus, using Assumption A.8,
(

∂
∂ϑ

lt(θ0,λ
∗
0),Ft

)

is a martingale difference sequence, where
Ft = σ{(ui,xi), i ≤ t}. The asymptotic normality follows from applying a CLT for the square
integrable, ergodic and stationary martingale difference (see Billingsley, 1961). We get

Vas

[√
T

(

θ̂T − θ0

λ̂T − λ∗
0

)]

= A−1BA−1,

where

A = E0

[

− ∂2

∂ϑ∂ϑ′ lt(θ0,λ
∗
0)

]

, B = V0

[

∂

∂ϑ
lt(θ0,λ

∗
0)

]

.
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9.3 Computation of matrix the asymptotic covariance matrix

We have

B = V0

[

∂

∂ϑ
lt(θ0,λ

∗
0)

]

= E0

[(

∂a′(xt;θ0)
∂θ

IJ

)

K

(

∂a′(xt;θ0)
∂θ

IJ

)′]

, K = V0 [k(ut)] .

Now,

∂2

∂θ∂θ′ lt(θ,λ) =
∂h′t(θ,λ)

∂θ

∂a(xt;θ)

∂θ′ + {h′t(θ,λ)⊗ Ip}A(xt;θ),

where A(xt;θ) is the Jp× p matrix:

A(xt;θ) =









∂2a1(xt;θ)
∂θ∂θ′

...
∂2aJ (xt;θ)

∂θ∂θ′









.

Noting that:

h′t(θ,λ) =

[

∂ log g

∂u′
{zt(θ,λ)}C1zt(θ,λ), . . . ,

∂ log g

∂u′
{zt(θ,λ)}CJzt(θ,λ)

]

+ γ ′,

we compute:

∂

∂θ

{

∂ log g

∂u′
{zt(θ,λ)}Cjzt(θ,λ)

}

=
∂

∂θ

{

∂ log g

∂u′
{zt(θ,λ)}

}

Cjzt(θ,λ) +

[

∂

∂θ
{Cjzt(θ,λ)}′

]{

∂ log g

∂u′
{zt(θ,λ)}

}′

=
∂z′t(θ,λ)

∂θ

∂2 log g

∂u∂u′
{zt(θ,λ)}Cjzt(θ,λ)

+
∂a′(xt;θ)

∂θ
[IJ ⊗ zt(θ,λ)]

′C ′C ′
j

∂ log g

∂u
{zt(θ,λ)}

=
∂a′(xt;θ)

∂θ
[IJ ⊗ zt(θ,λ)]

′C ′

×
{

∂2 log g

∂u∂u′
{zt(θ,λ)}Cjzt(θ,λ) +C ′

j

∂ log g

∂u
{zt(θ,λ)}

}

.

It follows that:

∂2

∂θ∂θ′ lt(θ,λ)

=
∂a′(xt;θ)

∂θ
[IJ ⊗ zt(θ,λ)]

′C ′

×
J
∑

j=1

{

∂2 log g

∂u∂u′
{zt(θ,λ)}Cjzt(θ,λ) +C ′

j

∂ log g

∂u
{zt(θ,λ)}

}

∂aj(xt;θ)

∂θ′

+{h′t(θ,λ)⊗ Ip}A(xt;θ)

=
∂a′(xt;θ)

∂θ
[IJ ⊗ zt(θ,λ)]

′C ′∂
2 log g

∂u∂u′
{zt(θ,λ)}C[IJ ⊗ zt(θ,λ)]

∂a(xt;θ)

∂θ′

+
∂a′(xt;θ)

∂θ
[IJ ⊗ zt(θ,λ)]

′C ′G[zt(θ,λ)]
∂a(xt;θ)

∂θ′ + {h′t(θ,λ)⊗ Ip}A(xt;θ),
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where G(u) is the n× J matrix:

G(u) =

[

C ′
1

∂ log g

∂u
(u) C ′

2

∂ log g

∂u
(u) . . . C ′

J

∂ log g

∂u
(u)

]

.

Note that the first-order conditions imply Eh′t(θ0,λ
∗
0) = 0. Therefore

A = E0

[

− ∂2

∂ϑ∂ϑ′ lt(θ0,λ
∗
0)

]

= E0

[(

∂a′(xt;θ0)
∂θ

IJ

)

L

(

∂a′(xt;θ0)
∂θ

IJ

)′]

where:

L = −E0

{

[IJ ⊗ Γ(λ∗
0 − λ0)ut]

′C ′∂
2 log g

∂u∂u′
{Γ(λ∗

0 − λ0)ut}C[IJ ⊗ Γ(λ∗
0 − λ0)ut]

+[IJ ⊗ Γ(λ∗
0 − λ0)ut]

′C ′G (Γ(λ∗
0 − λ0)ut)

}

.

10 Derivatives of functions based on exponential of matrices

10.1 Derivatives of a → log g(eaCy)

For a ∈ R, y ∈ R
n, C a n× n matrix, g : Rn → R

+ a function,

∂

∂a
(eaCy) = CeaCy,

∂2

∂a2
(eaCy) = C2eaCy

∂

∂a
log g(eaCy) =

[

∂ log g

∂u′
(eaCy)

]

CeaCy,

∂2

∂a2
log g(eaCy) =

(

CeaCy
)′
[

∂2 log g

∂u∂u′
(eaCy)

]

CeaCy +
(

C2eaCy
)′
[

∂ log g

∂u
(eaCy)

]

.

10.2 Derivatives of θ → ea(θ)Cy and θ → log g(ea(θ)Cy)

For a : Rp → R and θ ∈ R
p,

∂

∂θ′

{

ea(θ)Cy
}

= Cea(θ)Cy
∂a(θ)

∂θ′ ,

∂

∂θ
log g

{

ea(θ)Cy
}

=
∂

∂a
log g

{

ea(θ)Cy
}

· ∂a(θ)
∂θ

=

{[

∂ log g

∂u′

{

ea(θ)Cy
}

]

Cea(θ)Cy

}

· ∂a(θ)
∂θ

,

∂2

∂θ∂θ′ log g
{

ea(θ)Cy
}

=
∂

∂a
log g

{

ea(θ)Cy
}

· ∂
2a(θ)

∂θ∂θ′ +
∂2

∂a2
log g(eaCy) · ∂a(θ)

∂θ

∂a(θ)

∂θ′

=

{[

∂ log g

∂u′

{

ea(θ)Cy
}

]

Cea(θ)Cy

}

· ∂
2a(θ)

∂θ∂θ′ +

{

(

Cea(θ)Cy
)′
[

∂2 log g

∂u∂u′
(ea(θ)Cy)

]

Cea(θ)Cy

+
(

C2ea(θ)Cy
)′
[

∂ log g

∂u
(ea(θ)Cy)

]}

· ∂a(θ)
∂θ

∂a(θ)

∂θ′ .

In these equalities, "·" indicates the multiplication of a matrix by a scalar.
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10.3 Derivatives of θ → exp
{

∑J

j=1[aj(xt;θ) + λj]Cj

}

yt

Let zt(λ,θ) = exp
{

∑J
j=1[aj(xt;θ) + λj ]Cj

}

yt, where λ = (λ1, . . . , λJ)
′ ∈ R

J , aj(·) are real valued

functions with θ ∈ R
p , yt ∈ R

n, Cj are n × n matrices. Let a(xt;θ) = (a1(xt;θ), . . . , aJ(xt;θ))
′.

For i = 1, . . . , J , let the n× 1 vectors

z
(i)
t (θ,λ) = exp







i−1
∑

j=1

[aj(xt;θ) + λj ]Cj







Ci exp {[ai(xt;θ) + λi]Ci}

× exp







J
∑

j=i+1

[aj(xt;θ) + λj ]Cj







yt,

where the first and last sums are replaced by 0 when i = 1 and i = J , respectively. Let the n × J
block-matrix

Zt(θ,λ) = [z
(1)
t (θ,λ)| . . . |z(J)

t (θ,λ)].

We have
∂zt(θ,λ)

∂θ′ = Zt(θ,λ)
∂a(xt;θ)

∂θ′ .

When the matrices Cj commute, we have z
(i)
t (θ,λ) = Cizt(θ,λ) and

Zt(θ,λ) = [C1zt(θ,λ)| . . . |CJzt(θ,λ)] = C[IJ ⊗ zt(θ,λ)],

where C = [C1| . . . |CJ ]. Thus, when the Cj commute,

∂zt(θ,λ)

∂θ′ = C[IJ ⊗ zt(θ,λ)]
∂a(xt;θ)

∂θ′ .
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