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Abstract 
Recent empirical studies often support the positive relationship between corporate environmental 

performance (CEP) in terms of carbon dioxide (CO2) and greenhouse gas (GHG) emissions and 

corporate financial performance (CFP). However, this depends on the measurements of CEP (the 

absolute and relative CEP) and CFP (accounting-based and market-based CFP). To understand the 

relationship structurally, based on the literature, this study proposes identity models that integrate CO2 

and GHG emissions and financial factors. The models decompose CO2 (GHG) emissions into carbon 

intensity (GHG intensity), energy intensity, the cost-to-sales ratio, the total-assets-turnover ratio 

(TATR), leverage, and equity. The model of supply-chain GHG emissions additionally adopts supply-

chain GHG intensity. As a decomposition method, this study uses the log-mean Divisia index (LMDI). 

As an application example of the carbon dioxide model, this study targets Japanese manufacturing 

firms in 16 sectors from fiscal years (FY) 2011 to 2015. Results show that the change in CO2 emissions 

as of 2015 (−802.1 kilotonnes [kt]) is decomposed into 2922.5 kt for carbon intensity, −26036.3 kt for 

energy intensity, −6350.5 kt for the cost-to-sales ratio, −8495.6 kt for the TATR, −7912.3 kt for 

leverage, and 45070.1 kt for equity. Average values of relative contribution ratios are 20.6% for carbon 

intensity, 19.1% for energy intensity, and the remaining approximately 60% for financial factors. 

Among the 16 sectors, as of 2015, the change in total CO2 emission is statistically significantly positive 

for equity and significantly negative for the TATR and leverage, and it is not significantly correlated 

to the carbon intensity, the energy intensity, and the cost-to-sales ratio. 

 

Keywords: Carbon dioxide and greenhouse gas emissions; Japanese manufacturing sectors; Kaya 
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1. Introduction 

In the literature of corporate social responsibility (CSR), many studies have examined the 

relationship between corporate social performance (CSP) and corporate financial performance (CFP) 

(Aguinis and Glavas, 2012; Carroll and Shabana, 2010; Griffin and Mahon, 1997; Margolis and Walsh, 

2003; Roman et al., 1999). In particular, CSP-CFP research has shifted to corporate environmental 

performance (CEP)-CFP research, focusing on carbon dioxide (CO2) and greenhouse gas (GHG) 

emissions, because of an increasing awareness of climate change issues in recent years (Busch and 

Hoffmann, 2011). Recent empirical studies mainly support the positive relationship between corporate 

performance in terms of CO2/GHG emissions (that is, their amount) and CFP, such as return on assets 

(ROA), return on equity (ROE), return on investment (ROI), return on sales (ROS), and Tobin’s q 

(market value divided by replacement value) (Busch and Hoffmann, 2011; Fujii et al., 2013; Hatakeda 

et al., 2012; Wang et al., 2014a). In addition to improving CEP, the recent literature tends to support 

the view that CO2/GHG emissions management enhances CFP in the manufacturing sectors (except 

for energy-intensive sectors) (Capece et al., 2017; Nishitani et al., 2014). These findings seem to 

indicate that while CO2/GHG emissions are essential to corporate profits, improvement in 

environmental performance (and its management efforts) is directly linked to CFP.  

Recently, Busch and Lewandowski (2017) reviewed CEP-CFP studies (published between 

2010 and 2016) for a meta-analysis. Examining 68 individual estimates from 32 studies, they find that 

the relationship between CEP and CFP tends to be positive (for 46 of 68 estimates), as noted above, 

but depends on the measurements of CEP and CFP. Two measurements of carbon performance (CEP) 

are absolute emissions (e.g., emission reductions) and relative emissions (i.e., emissions divided by a 

certain variable) whereas two measurements of CFP are accounting-based (e.g., ROA) and market-

based (e.g., Tobin’s q). As a matter of convenience, this study calls these emissions absolute and 

relative CEP, respectively, and calls these measurements of CFP accounting-based and market-based 

CFP, respectively. Among the 68 estimates, relative CFP is predominant (53 estimates) whereas the 

CFP are almost equally divided (36 for accounting-based CFP and 32 for market-based CFP). Busch 

and Lewandowski (2017) find that market-based CFP is more likely to support the positive relationship 
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between CEP and CFP (24 of 32 estimates) than accounting-based CFP (22 of 38 estimates).  

Based on this background, we have the following three questions. First, why is it that the 

positive relationship of CEP and CFP is often supported in the first place? Second, why is it that 

relative CEP is adopted much more often in the literature than absolute CEP? Third, why is it that 

accounting-based CFP often has a less robust relationship with CEP than does market-based CFP? We 

believe that these questions are important in the CEP-CFP literature, potentially extending our 

knowledge. The motivation of this study is to answer these questions, focusing on CO2/GHG 

emissions as CEP and accounting-based CFP in a simple framework.  

Regarding the first question (the positive relationship of CEP and CFP in general), this study 

supposes that it is understandable by considering cash flow and material flow in a certain company. 

Material flow here refers to non-financial flow within a company, including CO2/GHG emissions and 

energy use. Simply stated, this study assumes that if cash flow is smooth, material flow will also be 

smooth: smooth cash flow will make for better CFP whereas smooth material flow causes better CEP, 

leading to the positive relationship between CEP and CFP. Because this idea is just our intuition, 

however, this study aims to explain it in a somewhat more scientific manner, using the concepts of 

cash flow and material flow within a company. Related to the combination of cash flow and material 

flow, material flow cost accounting (MFCA) has in recent years been standardized as ISO 14051 and 

ISO 14052 by the International Organization for Standardization (ISO) (Asian Productivity 

Organization [APO], 2014; ISO, 2011, 2017). MFCA is a cost-accounting tool that simultaneously 

considers material flow and cash flow (APO, 2014). Considering the relationship between material 

flow (including CO2/GHG emissions) and cash flow, based on the MFCA concept, it seems clear that 

CO2/GHG emissions and CFP are closely tied together. Specifically, this is because manufacturing 

companies purchase raw materials from suppliers and process products, exhausting CO2/GHG 

emissions, and sell those products to consumers. These economic activities are supported by funds 

from financial and stock markets.  

Regarding the second question (why absolute CEP is not often popular), the two reasons are, 

intuitively, that absolute CEP and relative CEP are different from each other and that, compared to 
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relative CEP, absolute CEP often has an uncertain relationship with CFP. Numerically, absolute and 

relative CEP are clearly different because absolute CEP takes a size value (e.g., the amount of CO2 

reduction) while relative CEP takes a ratio value (e.g., CO2 emissions per sales). Meanwhile, CFP 

often takes a ratio value (e.g., ROA is equal to profit divided by total assets) rather than a size value 

(e.g., sales). Therefore, we expect CFP to more often be correlated to relative CEP than to absolute 

CEP because of numerical sense. Note, however, that this idea is just intuitive and has no scientific 

form. Thus, as research motivation, this study aims to integrate absolute and relative CEP as well as 

CFP in a simple framework because both absolute and relative CEP are important for sustainable 

development.  

Regarding the third question (why accounting-based CFP is not robustly correlated with 

CEP), we suppose that one of the reasons is the measurement of accounting-based CFP. For example, 

ROA is the most widely represented CFP in the literature and is usually expressed as profit (return) 

divided by total assets. We here consider ROA to be potentially unstable for two reasons. First, profit 

(return, the numerator) is uncertain because it is the remaining factor that is calculated by sales minus 

all costs, which are affected by various factors. Thus, the profit often takes a negative value. Second, 

ROA itself is affected by several factors, leading to it being unstable. Because a given manufacturing 

sector usually puts much importance on the cost of goods sold (COGS) and sales, ROA can be divided 

into the following three factors: profit divided by COGS (as profitability), COGS divided by sales (as 

the proportion of operation), and sales divided by total assets (as the efficiency of the funds [or cash 

flow]). Because these changes (the profitability, the proportion of operation, and the efficiency of the 

funds) do not always match, ROA can be unstable (affected by various factors). In this way, 

accounting-based CFP is usually decomposed into different, smaller units. As motivation for this study, 

this kind of decomposition can lead to a structural understanding of the relationship between CEP and 

CFP because the literature does not much focus on this kind of decomposition in its empirical models. 

Based on the above motivations, the contribution of this study to the literature is to propose 

a single model that integrates corporate CO2/GHG emissions and financial factors (based on corporate 

accounting). Specifically, this study improves Kaya identity (Kaya and Yokoburi, 1998; Raupach et 
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al., 2007) for corporate analysis. The model of this study decomposes CO2, direct + indirect GHG 

(Scope 1+2), and supply-chain (or corporate value-chain) GHG emissions (Scope 1+2+3) into 

financial factors. The CO2 model decomposes CO2 emissions into CO2 intensity (carbon intensity), 

energy intensity, the cost-to-sales ratio (or COGS-to-sales ratio [COGSR]), the total-assets-turnover 

ratio (TATR), leverage, and equity. The model of direct + indirect GHG emissions (Scope 1+2) uses 

GHG intensity instead of CO2 intensity, and the model of supply-chain GHG emissions (Scope 1+2+3) 

additionally adopts supply-chain intensity. This study proposes to use the log-mean Divisia index 

(LMDI) as the model’s decomposition method (Ang, 2004, 2015; Ang and Zhang, 2000; Cansino et 

al., 2015; Chapman et al., 2018; Chong et al., 2015; Fujii, 2016; Fujii and Managi, 2016; Fujii et al., 

2016, 2017; Kwon et al., 2017; Wang et al., 2014b).  

The specific research contribution is that this study integrates absolute and relative CEP and 

part of CFP. Previous studies often adopt ad-hoc regression models, where the dependent variable is 

absolute or relative CEP and the key independent variable is (accounting-based or market-based) CFP, 

controlling for other firm-specific effects. However, the ad-hoc regression models do not fully show 

the structure of the relationships among absolute and relative CEP and CFP. The model of this study 

is an identity equation of CO2/GHG emissions as absolute CEP. Because the identity equation has no 

errors, the model can provide the detailed effects of all terms as the whole structure. In addition, the 

model considers the decomposition of relative CEP and CFP to understand the relationship between 

CEP and CFP structurally. It considers part of the relative CEP (carbon intensity and energy intensity), 

part of ROA (COGSR and TATR), and part of ROE (i.e., leverage, because ROE is equal to ROA times 

leverage). The model also includes the scale effect (equity) due to considering absolute CEP as a size 

value (i.e., as noted above, the size values of CEP-CFP tend to be correlated with each other 

numerically). This kind of model development using the identity equation (e.g., Kaya identity) is 

seldom conducted, as shown in our review and Busch and Lewandowski (2017). As to limitations, the 

model of this study does not consider profit (return) because it often takes zero or a negative value 

(i.e., zero or a negative value is not appropriate for the identity equation). Nevertheless, we believe 

that the model of this study is useful for understanding the relationship between CEP and CFP 
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structurally. 

Given data availability, this study targets 225 Japanese listed firms in 16 manufacturing 

sectors for the fiscal years (FY) 2011 to 2015 as an application example of a CO2 decomposition model 

among the three models. Because FY2011 is the year after the Great East Japan Earthquake (GEJE) 

(March 2011), this study investigates how CO2 emissions changed as the supply of electricity 

recovered in that period (Hayashi, 2012; Hayes et al., 2017; Managi and Guan, 2017).  

Results of the entire sample show that the change in CO2 emissions as of 2015 (−802.1 

thousand tonnes [kilotonnes, kt]) is decomposed into 2922.5 kt for carbon intensity, −26036.3 kt for 

energy intensity, −6350.5 kt for the COGSR, −8495.6 kt for the TATR, −7912.3 kt for leverage, and 

45070.1 kt for equity. Hence, the largest positive and negative factors at the aggregated level are equity 

and energy intensity, respectively. Average values of relative contribution ratios (or explained portions 

of relative variations in corporate CO2 emissions) are 20.6% by CO2 intensity, 19.1% by energy 

intensity, and the remaining approximately 60% by financial factors. Note that the relative contribution 

ratios refer to how a particular term (i.e., each of the six terms) changes between certain periods 

relative to the remaining (five) terms in the model. 

Among the 16 sectors, as of 2015, the change in total CO2 emissions is statistically 

significantly positive for equity and significantly negative for the TATR and leverage, and it is not 

significantly correlated to the carbon intensity, the energy intensity, or the COGSR. Regarding the first 

question above, this thus indicates that absolute CEP is not significantly correlated to relative CEP 

(carbon intensity and energy intensity). In addition, this study finds that the effects of carbon intensity 

and energy intensity are significantly negatively correlated with each other, indicating that relative 

CEP consists of the adverse factors. Similarly, it finds that the effects of the COGSR and the TATR 

(which are part of ROA as CFP) are significantly positively correlated with each other, indicating that 

ROA also consists of the adverse factors. Therefore, regarding the second and third questions above, 

these results imply that both relative CEP and ROA (as CFP) may be unstable indicators because they 

respectively have two contrasting effects on CO2 emissions (as absolute CEP). 

The structure of this study is organized as follows. As the background of this study, Section 
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2 examines the literature on the CSP-CFP relationship. Section 3 shows how this study treats 

CO2/GHG (Scope1+2+3) emissions and financial factors, based on MFCA. Section 4 proposes the 

models that decompose CO2, direct + indirect GHG (Scope 1+2), and supply-chain GHG emissions 

(Scope 1+2+3) into financial factors and the application method of LMDI. As an application example, 

Section 5 adopts the CO2 decomposition model using data from Japanese manufacturing firms from 

FY2011 to FY2015. Finally, Section 6 concludes.  

 

 

2. Background: literature on the CSP-CFP relationship 

Looking at the literature on company analysis in the energy and environmental fields, 

activities exhausting CO2/GHG emissions are often regarded as types of CSR activities (Busch and 

Hoffmann, 2011). One of the key themes in the CSR literature is to examine the relationship between 

CSP and CFP (Aguinis and Glavas, 2012; Carroll and Shabana, 2010). In particular, 127 empirical 

studies have been found from 1972 to 2002 (Griffin and Mahon, 1997; Margolis and Walsh, 2003; 

Roman et al., 1999). Some studies support the positive relationship between CSP and CFP (CSP 

enhances CFP or vice versa), whereas others show a negative or no relationship between the two. In 

recent years, it has been recognized that it is important to investigate not only the simple correlation 

between CSP and CFP but also the structure and mediating and moderating variables for the 

relationship (Aguinis and Glavas, 2012; Carroll and Shabana, 2010).  

Following the growing awareness of climate-change issues, the discussion of CSP has been 

shifting to CEP, such as CO2/GHG emissions performance, in recent years (for discussion, see Busch 

and Hoffmann, 2011). Recent empirical studies have examined the relationship between CEP of 

CO2/GHG emissions (and its management efforts) and CFP, which often includes ROA, ROE, ROI, 

and ROS (as profitability), and Tobin’s q (Busch and Hoffmann, 2011; Capece et al., 2017; Delmas et 

al., 2015; Fujii et al., 2013; Hatakeda et al., 2012; Nishitani et al., 2014; Wang et al., 2014a).  

Busch and Hoffmann (2011) were the first in recent years to conduct a typical empirical 

study examining the relationship between CO2/GHG emissions performance (as CEP) and ROA, ROE, 
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and Tobin’s q (as CFP), carefully reviewing the CSP-CFP literature. They analyze 174 firms in the 

Dow Jones Global Index in 2007, uniquely classifying CEP into outcome-based and process-based 

CEP. Their three hypotheses are: 1) outcome-based CEP is positively associated with CFP; 2) process-

based CEP is negatively associated with CFP; and 3) process-based CEP moderates the effects of 

outcome-based CEP. The results indicate that outcome-based CEP is positively associated with Tobin’s 

q and process-based CEP is negatively associated with ROE and Tobin’s q. However, they have no 

evidence that process-based CEP moderates the effects of outcome-based CEP. 

Wang et al. (2014a) examine whether an increase in CO2 emissions affects Tobin’s q using 

data of 69 listed firms in ASX200 (Australian Securities Exchange) in 2000. Estimated elasticity is 

significantly positive, ranging from 0.26 to 0.3. In addition, they find the carbon emissions can explain 

6.2% of the variation in Tobin’s q.  

Hatakeda et al. (2012) investigate the relationship between GHG emissions performance 

(which is GHG emissions times 3,000 Japanese yen [JPY] divided by total assets) and profitability 

(ROA). Using data of 1,089 Japanese listed firms of manufacturing industries in FY2006, results show 

that GHG emissions performance is positively related to profitability. 

Fujii et al. (2013) examine whether environmental efficiency (EE) affects CFP (ROA, ROS, 

and capital turnover). They use two proxy variables of EE, sales per CO2 emissions using 758 

observations from 2006 to 2008, and sales per toxic release using 2,498 observations between 2001 

and 2008. Results show that EE of CO2 emissions is positively related to ROA. Meanwhile, the EE of 

toxic release is positively related to ROS and has an inverted-U relationship for ROA and capital 

turnover.  

While the above four studies (Busch and Hoffmann, 2011; Fujii et al., 2013; Hatakeda et al., 

2012; Wang et al., 2014a) use common ad-hoc regression models, Nishitani et al. (2014) and Capece 

et al. (2017) derive regression models based on the Cobb-Douglas production function, examining 

whether corporate management of CO2/GHG emissions affects CFP. Nishitani et al. (2014) examine 

whether the degree of GHG emissions management (CO2 management score, CO2 emissions score, 

and CO2 reduction score) affects CFP (net sales over raw materials expense), using data of 423 
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Japanese manufacturing firms between 2007 and 2008. Results show that GHG emissions 

management enhances CFP through an increase in demand and improvement in productivity (except 

for energy-intensive firms). Meanwhile, Capece et al. (2017) empirically show that the adoption of an 

environmental management system and CO2 emissions management enhance ROI, using data from 

237 Italian companies from 2008 to 2013. However, this enhancing effect varies among sectors, and 

they find the positive effect in six sectors (paper, non-metal minerals, food, textiles, chemical, and 

other activities) and negative effect in two sectors (energy and metals).  

These series of studies show that CO2/GHG emissions performance and management efforts 

are likely to be positively related to CFP (except for energy-intensive sectors). Note, however, that 

some studies indicate that there is more likely to be a positive relationship between CEP and CFP for 

market-based CFP (e.g., Tobin’s q) than accounting-based CFP (e.g., ROA). Delmas et al. (2015) 

examine the relationship between CEP and CFP using a dataset of 1,095 U.S. firms from 2004 to 2008. 

Their regression model adopts total GHG emissions (absolute emissions) as a negative CEP and ROA 

and Tobin’s q as accounting-based and market-based CFP, respectively, adding to other control 

variables. The result shows that there is a positive relationship between CEP and Tobin’s q and a 

negative relationship between CEP and ROA (i.e., total GHG emissions have a negative effect on 

Tobin’s q and a positive effect on ROA). 

Recently, Busch and Lewandowski (2017) have conducted a meta-analysis for the 

relationship between corporate carbon (as part of CEP) and CFP. This analysis reviewed 68 individual 

estimates from 32 studies (26 journal articles and 6 working papers examining firms in North America, 

Europe, and Asia) between 2010 and 2016. One of the most important characteristics of this review is 

the measurement perspective of carbon performance and CFP. Two measurements of carbon 

performance are relative emissions based on annual emissions (i.e., emission ratios or carbon 

efficiency) and absolute emissions (e.g., actual emission reductions between two or more years). 

Similarly, two measurements of CFP are accounting-based (e.g., ROA) and market-based (e.g., 

Tobin’s q). The review uniquely categorizes the 68 estimates in terms of carbon performance 

measurement and CFP. The former characteristics are reporting scheme (mandatory [25 estimates] or 
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voluntary [43 estimates]), emission scope (direct [31 estimates] or direct + indirect [37 estimates]), 

standardization (absolute [15 estimates] or emission ratio [53 estimates]), and perspective (current [60 

estimates] or reduction [8 estimates]). The latter characteristic is whether measurements are 

accounting-based [36 estimates] or market-based [32 estimates].  

Among the 68 estimates, the relationship between CEP and CFP can be divided into positive 

correlations for 46 estimates, negative correlations for 16 estimates, and no correlation for 6 estimates. 

Thus, the majority of estimates support a positive relationship. However, Busch and Lewandowski 

(2017) argue that this tendency is different due to the measurement characteristics. Regarding CFP 

measurement (accounting-based and market-based), the 36 estimates with accounting-based CFP 

show positive, negative, and no correlations for 22, 12, and 2 estimates, respectively, whereas the 32 

estimations with market-based CFP indicate positive, negative, and no correlations for 24, 4, and 4 

estimations, respectively. This indicates that market-based CFP is more likely to support a positive 

relationship between CEP and CFP than accounting-based CFP. Meanwhile, regarding the 

standardization of CEP (relative emissions [53 estimations] and absolute emissions [15 estimations]), 

the meta-analysis shows that relative CEP (relative emissions) is significantly positively related to 

CFP but absolute CEP (absolute emissions) is not significantly related to CFP. In summary, Busch and 

Lewandowski (2017) conclude “that climate change mitigation does not yet have the financial 

relevance it deserves” because their meta-analysis supports a positive relationship between CEP and 

CFP only for relative CEP improvements but not for absolute CEP. 

 

 

3. Research perspective regarding CEP-CFP 

3.1 The structural relationship between CEP and CFP based on material and cash flow  

As shown above, the literature often supports a positive relationship between CEP and CFP. 

However, there are differences depending on the types of measurement. Regarding CFP, a positive 

relationship is more likely to be robust for market-based CFP than accounting-based CFP. Regarding 

CEP, a positive relationship is likely to be supported by using relative CEP (e.g., carbon efficiency) 
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but not by using absolute CEP (e.g., carbon reductions).  

Based on this background, this study aims to understand the structure of the CEP-CFP 

relationship from the viewpoint of accounting variables (including accounting-based CFP) rather than 

market-based variables. In other words, it aims to examine why the relationship of CEP-CFP is often 

positive but sometimes not robust. It investigates the relationships among absolute CEP, relative CEP, 

and accounting-based CFP in a simple framework. We propose that understating the relationships will 

be useful for corporate managers and industrial policymakers seeking to predict and mitigate corporate 

CO2/GHG emissions with corporate activity.  

In considering absolute and relative CEP and accounting-based CFP, this study focuses on 

a company’s material flow and cash flow. This is because manufacturing companies purchase raw 

materials from suppliers and process products, exhausting CO2/GHG emissions, and sell products to 

consumers; these economic activities are supported by funds from financial and stock markets. 

Therefore, the higher the energy efficiency (lower cost, lower emissions), the better the flow of cash 

and funds (and vice versa). Thus, rather than empirically examining the relationship between 

CO2/GHG and CFP, the motivation of this study is to integrate CO2/GHG emissions and financial 

factors in a single model.  

In devising a model that integrates CO2/GHG emissions and financial factors, Figure 1 

explains how this study treats CO2/GHG emissions in corporate accounting, based on material and 

cash flow. This study adopts as analogy the idea of MFCA, which considers both corporate material 

and cash flow, as an accounting tool. The reason this study adopts the idea of MFCA is that we consider 

CEP as related to material flow (including CO2/GHG emissions) and CFP consists of cash flow, as in 

MFCA.  

MFCA is an accounting method that combines cost accounting and material flow 

management and is an effective management tool for improving corporate material efficiency through 

material flow transparency (APO, 2014). Since MFCA is standardized by ISO as ISO 14051 and 14052 

(ISO, 2011, 2017), it has become easier for firms to implement MFCA (for the history of MFCA, see 

Wagner, 2015; for a general explanation, see Bierer et al., 2015; Christ and Burritt, 2015; Guenther et 
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al., 2015; Kokubu and Kitada, 2015; Rieckhof et al., 2015; Schaltegger and Zvezdov, 2015). MFCA 

divides COGS into the material cost (MC), energy cost (EC), system cost (SC, which consists of other 

costs, such as the labor cost), and waste management cost (WMC) (APO, 2014). These costs are further 

divided into positive products (usual products) and negative products (waste and/or recycled items) 

and are allocated in each quantity center.  

This subsection discusses a series of basic corporate behaviors: purchasing, production, 

sales, and financing. Suppose a manufacturing firm emits CO2/GHG and waste as two kinds of 

absolute emissions (as negative CEP), based on material and cash flow. We believe that it will be 

possible to structurally understand the relationships among absolute and relative CEP and accounting-

based CFP by taking into account raw materials (as input factors); CO2/GHG emissions, waste, and 

products (as outputs); and energy use (as intermediate inputs). Thus, the framework of this study is 

versatile, as it can be applied not only to CO2/GHG emissions but also to waste analysis.  

Figure 1 shows a simple model of material (a straight line) and cash (a dotted line) flows in 

a manufacturing firm, treating raw materials used, positive products, waste (negative product), and 

CO2/Scope 1+2+3 for simplification purposes. Here CO2 refers to direct + indirect CO2 emissions. For 

simplification, EC is assumed to be incurred only in the manufacturing process, including all energy 

use in a firm. Note that Scope 1 is direct GHG emissions (in a narrow sense) by a company, and Scope 

2 is indirect GHG emissions from purchased energy (see the GHG protocol, as in WRI and WBCSD, 

2004). Therefore, Scope 1+2 comprises direct + indirect GHG emissions, which the previous studies 

refer to for CEP. In recent years, Scope 3 has been developed as supply-chain GHG emissions within 

a corporate value chain (i.e., GHG emissions from activities outside a company, such as resource 

harvesting, production, and transportation) (WRI and WBCSD, 2011). This consists of GHG 

emissions from 15 categories, both upstream and downstream of the corporate operations.  

From the left in Figure 1, raw materials (for negative and positive products) are purchased 

from suppliers, causing MC. The purchased materials are then made into the negative and positive 

products, causing EC and SC (EC&SC). From here, the flows of negative (upper) and positive (lower) 

products are different from each other. The negative product is processed as waste and dealt with 
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accordingly outside the firms, causing WMC. Note that the waste is assumed to be partially recycled 

into a MC process for simplicity. Meanwhile, the positive product does not cause WMC because it is 

not wasted; rather, it is managed for sales, causing selling, general, and administrative expenses (SGA), 

and sold to customers in the product markets, causing customers’ payment (as sales). Conversely, 

waste (negative product) causes costs in order of WMC, EC&SC, and MC, whereas the positive 

product causes costs in order of SGA, EC&SC, and MC. In addition, the payment from customers is 

equal to sales, which consists of COGS, SGA, and (operation) profit. Therefore, customers incur not 

only profits and all costs of positive products, but also all costs of negative products. In other words, 

customers do not receive the negative product but indirectly buy it. As another feature, these corporate 

activities are supported by funds (debt plus equity) from financial and stock markets. 

While the above flows are based on the MFCA concept, this study extends the idea to 

CO2/GHG emissions. In the process of EC&SC, a firm pays EC, causing CO2/Scope 1+2. Thus, 

conversely, CO2/Scope 1+2 emissions cause costs in order of EC&SC and MC for both of the negative 

and positive products. Customers do not receive but indeed indirectly buy CO2/GHG emissions. Thus, 

CO2/GHG emissions are directly linked to financial factors.  

In summary, absolute emissions seem closely related to relative CEP and CFP. As shown in 

Figure 1, absolute emissions (CO2/GHG) are caused primarily by energy use (or EC), indicating that 

carbon/GHG intensity is important for absolute emissions. Meanwhile, EC relies largely on COGS 

(the manufacturing process) and sales; hence, for smaller EC, COGS and sales are more advantageous 

in reducing the absolute emissions. Similarly, sales activity is supported by funds and higher leverage 

(more efficient funds) and more equity (more scale) tend to cause greater absolute emissions.  

 

3.2 Decomposition of the relative CEP and CFP 

Based on the background of the relationship between CEP and CFP, we need to understand 

CEP and CFP in a more detailed way. This may explain why the relationship between CEP and 

accounting-based CFP is occasionally not robust. 

Regarding CEP, absolute CEP refers to just the absolute emissions (CO2/GHG) or their 
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reduction and has little room for misunderstanding. On the other hand, in the literature, relative CEP 

usually refers to the emissions amount divided by an accounting variable (e.g., sales and total assets). 

We suppose that relative CEP can be unstable because it includes two different factors: carbon intensity 

and energy intensity. For example, suppose CO2 emissions (CO2) divided by sales as a representative 

relative CEP is decomposed:  

 CO2 CO2 Energy

Sales Energy Sales
   (1) 

where Energy stands for energy use. To improve carbon intensity, the choice of energy source is 

usually important. To improve energy intensity, meanwhile, general energy conservation is important. 

As with the relative CEP, CFP also consists of several factors. For example, we can 

decompose ROA (profit divided by total assets), the most representative CFP, as follows: 

 Profit COGS Sales
ROA

COGS Sales Assets

Profit Margin Sales

Margin Sales Assets

  

 
   
 

 (2) 

 

where COGS is equal to sales minus gross margin (denoted by Margin). Because COGS and gross 

margin are inextricably linked based on the sales, equation 2 has two versions (upper for COGS and 

lower for the gross margin). The first term is profitability in a narrow sense, meaning the amount of 

profit generated by the operation process (or gross margin). The second term is the COGSR, which 

means the proportion of the operating process. The third term is the TATR, which is the efficiency of 

the company’s funds (assets). Thus, ROA may be somewhat unstable due to consisting of three 

different factors. ROA is also unstable because the profit (the numerator of CFP) often changes easily. 

This is because profit is the remainder from sales minus all costs and hence often takes a negative 

value.  

For the same reason, other CFP may be also unstable. For example, ROE, as another 

representative CFP, is equal to ROA times leverage (i.e., total assets divided by total equity). Therefore, 

because of the leverage, ROE is expected to be more unstable than ROA.  
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In summary, we first argue that the positive relationship in the literature between CEP and 

accounting-based CFP is natural because CO2/GHG emissions are generated by corporate funds (cash 

flow). In other words, a better CFP (more fluent cash flow) tends to lead to a better CEP (more fluent 

material flow) (and vice versa). Second, we suppose that the reason why the relationship of CEP and 

accounting-based CFP is occasionally not robust is probably because they each consist of several 

different factors. Relative CEP usually consists of carbon intensity and energy intensity, while ROA, 

as the representative CFP, is decomposed into profitability, operational proportion, and TATR. Based 

on these discussions, it is necessary as the motivation of this study to not only verify whether the 

relationship between CEP and CFP is positive or negative but also understand the structure of that 

relationship. 

 

 

4. Model 

4.1 Identity equations of CO2/GHG emissions 

The contribution of this study to the literature is to propose a single model that integrates 

each of corporate CO2/GHG emissions and financial factors. Specifically, this study improves the 

Kaya identity for corporate analysis. The Kaya identity is one of the most popular models that 

decomposes CO2/GHG emissions (Kaya and Yokoburi, 1998; Raupach et al., 2007). This study finds 

94 articles (including 64 journal articles) published by 2017 in the academic literature by using “kaya 

identity” as keywords in the topic search of Web of Science (Thomson Reuters’ journal database). It 

is usually expressed by the following formula for CO2 (or GHG):  

 CO2 Energy GDP
CO2 Pop

Energy GDP Pop
     (3) 

The amount of CO2 emissions is decomposed by the product of the following four terms. The first 

term is carbon intensity (CO2 intensity), which is CO2 per unit of energy use [Energy]). The second 

term is energy intensity (energy use per unit gross domestic product [GDP]). The third term is GDP 

per capita, which is a proxy for the degree of economic activity. The fourth term is the national 
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population, indicating the magnitude of the scale. 

The Kaya identity is useful for macro analysis but not especially suited for corporate analysis 

because GDP (value added) and population, in particular, are rarely considered in corporate accounting. 

Therefore, based on the Kaya identity, this study proposes simple new models that decompose 

CO2/GHG emissions into financial factors. The CO2 model is expressed as follows: 

 CO2 Energy COGS Sales Assets
CO2 Equity

Energy COGS Sales Assets Equity

CO2Int EneInt COGSR TATR AtER Equity

     

     
 (4) 

Equation 4 decomposes CO2 emissions on the left-hand side (LHS) into the following six terms. The 

first term is CO2 intensity (COInt; carbon intensity), or CO2 divided by energy consumption. This is 

the same as in the Kaya identity. The second term is (corporate) energy intensity (EneInt), which is 

energy use divided by COGS. This indicates how much energy is consumed compared to the 

production cost (energy pressure over production cost). The third to sixth terms are common financial 

factors. The third term is the COGSR, which is COGS divided by sales (the cost ratio). The fourth 

term is the TATR, which is sales divided by total assets. The fifth term is the total-assets-to-equity 

ratio (AtER), indicating the degree of leverage. The sixth term is total equity (Equity), which is proxy 

for firm size.  

Although basic interpretations of the third to sixth terms are provided, this study performs 

an additional interpretation from a management (or stakeholder) perspective. The COGSR is 

considered an indicator of operation pressure because relatively higher COGS (numerator) values 

mean that firms depend on a higher proportion of value creation than other financial factors (gross 

margin). The TATR is interpreted as market pressure because a higher sales (numerator) value means 

that the firm will face a larger market (more money in the market). The AtER is an internal firm 

decision but is considered as financial market pressure because debt (part of the numerator) is brought 

from the financial market. In addition, equity is considered stock market pressure simply because of 

the funds coming from the stock market.  

We note that each decomposed factor in the model, as well as the Kaya identity, does not 

always have the positive relationship with CO2 emissions (for example, Raupach et al. (2007) show 
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that some terms in the Kaya identity have changed negatively from 1980 to 2004 although the total 

CO2 emissions have increased during the period). We also note that if researchers cannot obtain certain 

financial variables, because the third to sixth terms in Equation 4 are canceled out, Equation 4 can be 

further simplified. An example equation is 

 CO2 Energy
CO2 Sales

Energy Sales
    (5) 

Energy use per sales (the second term) denotes another energy intensity and sales denotes another size 

variable.  

This study further proposes models that decompose each of Scope 1+2 (direct + indirect 

GHG emissions) and Scope 1+2+3 (supply-chain GHG emissions) as follows. Equation 6 decomposes 

Scope 1+2 (denoted by S12) as follows: 

 S12 Energy COGS Sales Assets
S12 Equity

Energy COGS Sales Assets Equity

GHGInt EneInt COGSR TATR AtER Equity

     

     
 (6) 

The first term is GHG intensity, which is Scope 1+2 divided by energy use, instead of CO2 intensity 

in equation 4. Meanwhile, equation 7 decomposes Scope 1+2+3 (denoted by S123) as follows:  

 S123 S12 Energy COGS Sales Assets
S123 Equity

S12 Energy COGS Sales Assets Equity

SCInt GHGInt EneInt COGSR TATR AtER Equity

      

      
 (7) 

The first term is supply chain intensity (SCInt). It is more greatly increased to the extent that other 

companies in the supply chain exhaust more GHG emissions (Scope 1+2+3) compared to a certain 

firm’s direct + indirect GHG emissions (Scope 1+2). 

 

 

4.2 LMDI  

Because equations 4, 6, and 7 are just identity equations, this study uses index 

decomposition analysis (IDA) to identify the degrees of contribution in each term. Two approaches 

are popular in the literature of the decomposition analysis: structural decomposition analysis (SDA) 

(Su and Ang, 2012), and IDA (Ang, 2004; Ang and Zhang, 2000; Cansino et al., 2015). Typically, IDA 
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is easier to adopt than SDA because it requires only the aggregated data (Ang, 2015). In IDA, LMDI 

is a popular method for the analysis of energy and CO2 emissions usually based on the IPAT equation 

and Kaya identity (for recent studies, see Cansino et al., 2015; Chapman et al., 2018; Chong et al., 

2015; Fujii, 2016; Fujii and Managi, 2016; Fujii et al., 2016; Fujii et al., 2017; Kwon et al., 2017; 

Wang et al., 2014b).  

Because equations 4, 6, and 7 are similar to each other, this study shows LMDI for equation 

4 (see Appendix for LMDI of equations 6 and 7). For identity equations, LMDI decomposes the change 

between two periods on LHS into each of the change rates on the right-hand side (RHS). The two 

periods usually refer to the base (beginning) and other years. Suppose there are i firms in j sectors 

from the base year 0 to a certain year t, and summation of the change in CO2 emissions (ΔCO2) of j-

th sector from years 0 to t is expressed as follows: 

  0t t

ij ij ij

i i

t t t t

ij ij ij ij

i i i i

t t

ij ij

i i

CO2 CO2 CO2

CO2Int EneInt COGSR TATR

AtER Equity

  

       

   

 

   

 

 (8) 

where 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
CO2Int

L CO2 CO2 CO2Int CO2Int if CO2 CO2

    
 

 (9) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
EneInt

L CO2 CO2 EneInt EneInt if CO2 CO2

    
 

 (10) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
COGSR

L CO2 CO2 COGSR COGSR if CO2 CO2

    
 

 (11) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
TATR

L CO2 CO2 TATR TATR if CO2 CO2

    
 

 (12) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
AtER

L CO2 CO2 AtER AtER if CO2 CO2

    
 

 (13) 
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   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if CO2 CO2
Equity

L CO2 CO2 Equity Equity if CO2 CO2

    
 

 (14) 

 

 
0

0

0
,

ln ln

t

ij ijt

ij ij t

ij ij

CO2 CO2
L CO2 CO2

CO2 CO2





 (15) 

Each term (ΔCO2Int, ΔEneInt, ΔCOGSR, ΔTATR, ΔAtER, and ΔEquity) represents a 

contribution to the change in waste (ΔCO2), which denotes how much each term explains changes in 

CO2 emissions (ΔCO2). From the above equations, ΔCO2 is expressed as the sum of equations 9 to 

14: 

     
     

0 0 0

0 0 0

ln ln ln

ln ln ln

ln

t t t t t t t

ij ij ij ij ij ij ij

t t t

ij ij ij ij ij ij

t t t

ij ij ij ij ij ij

t t

ij ij

CO2 CO2Int EneInt COGSR TATR AtER Equity

CO2Int CO2Int EneInt EneInt COGSR COGSR

TATR TATR AtER AtER Equity Equity

CO2 CO2

            

  

  

  0

ijCO2

 (16) 

 

When ΔCO2 is not equal to zero, based on the index number, the contribution ratios sum up to 100% 

as follows: 

 
100%

t t t t t t

j j j j j j

t t t t t t

j j j j j j

CO2Int EneInt COGSR TATR AtER Equity

CO2 CO2 CO2 CO2 CO2 CO2

     
     

     
 (17) 

 

Note that because the numerators of each term in equation 17 are the product terms of ΔCO2 (see 

equations 9 to 15), the ΔCO2 of numerators and denominators can be canceled out. Thus, the sum of 

the change ratios of each term in log form divided by the change rate of CO2 in log form (ln(CO2t/ 

CO20)) is 100%: 

     
   
   

0 0 0

0 0

0 0

100% ln ln ln

ln ln

ln ln

t t t

ij ij ij ij ij ij

t t

ij ij ij ij

t t

ij ij ij ij

CO2Int CO2Int EneInt EneInt COGSR COGSR

TATR TATR AtER AtER

Equity Equity CO2 CO2

  

 



 (18) 

 

In addition, each contribution ratio (equation 17) is equal to each change ratio divided by 
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(ln(CO2t/CO20)) (equation 18), as follows:  

  
 

 
 

 
 

 
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0 0

0 0
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ln ln
;
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 
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0 0

0 0
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;

ln ln
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ij ijij ij ij ij

AtER AtER Equity EquityAtER Equity

CO2 CO2CO2 CO2 CO2 CO2

 
 
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 (19) 

 

Each of the change rates (equations 17 and 18) is helpful for understanding each contribution 

to the change in CO2 emissions. However, each term (ratio) may often be sensitive to outliers because 

of the lack of an error term. Therefore, to examine the relative degrees of contribution in each term, 

this study proposes to calculate the relative contribution ratios of each term by taking absolute values 

as follows: 

 

100%

t t t t

ij ij ij ij

t t t t

ij ij ij ij

t t

ij ij

t t

ij ij

CO2Int EneInt COGSR TATR

Denom Denom Denom Denom

AtER Equity

Denom Denom

   
   

 
 

 (20) 

where 

 t t t t t

ij ij ij ij ij

t t

ij ij

Denom CO2Int EneInt COGSR TATR

AtER Equity

       

   
 (21) 

 

Denom denotes a denominator in equation 20. No ratio (term) takes a negative value because they take 

absolute values. The relative contribution ratios of each term describe how a given term (i.e., each of 

the six terms) changes between certain periods, relative to the remaining (five) terms in the model. 

Note that this study does not calculate the relative contribution ratio when Denom = 0. 

As another way of thinking, note that equations 22 and 23 have the same meaning as the 

relative ratios of changes in each term, as in equations 20 and 21: 
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 (22) 

where 
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 (23) 

 

 

5. Example application to Japanese manufacturing sectors 

5.1 Data 

As an application example of the three proposed models considering data availability, this 

study demonstrates LMDI for equation 4, using data of 225 Japanese listed firms in 16 manufacturing 

sectors from FY2011 to FY2015. It obtains data on CO2 emissions and energy consumption from 

Bloomberg Professional Service (provided by Bloomberg L.P., the U.S.), and financial data from 

Nikkei NEEDS-FinancialQUEST (provided by Nikkei Inc., Japan). One of the reasons it chooses 

Japanese manufacturing sectors is because data are relatively easy to access among countries. Among 

33 sector indices of Tokyo Stock Exchanges, this study selects 16 manufacturing sectors: foods (#4, 

Foods), textiles and apparels (#5, Textiles), pulp and paper (#6, Pulp), chemicals (#7, Chem), 

pharmaceutical (#8, Pharma), oil and coal products (#9, OilCoal), rubber products (#10, Rubber), glass 

and ceramics products (#11, Glass), iron and steel (#12, Iron), nonferrous metals (#13, Nonferrous), 

metal products (#14, MetalProd), machinery (#15, Machinery), electric appliances (#16, ElecApp), 

transportation equipment (#17, Transport), precision instruments (#18, PrecInst), and other products 

(#19, Other).  

This study finds 1,506 Japanese listed firms in the 16 manufacturing sectors for the period 

(Table 1). Table 2 indicates descriptive statistics. This study selects firms where data on financial 

factors (COGS, sales, assets, and equity), CO2 emissions, and energy consumption are available for 
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the five years. Note that data on CO2 emissions and energy consumptions are relatively difficult to 

access. Also, because there often seem to be outliers of CO2 emissions and energy consumption, 

probably because of record errors, this study excludes firms that have more than five-time fluctuations 

in CO2 emissions or energy consumption for the period. As a result, this study selects 225 firms (225 

uncensored firms), whereas there are 1,281 censored firms (see Supplementary material for the raw 

dataset [a comma-separated values file of the 225 firms] of this study, including information on sector, 

firm [identification numbers without names], year, CO2 [co2], energy use [energy], COGS [cogs], 

sales, assets, and equity).  

This study also notes that the fiscal year in this study refers to account-closing date from 

April 1 to March 31 because Japanese firms tend to adopt December or March as account-closing 

months. Account-closing year of FY2011 (the base year) includes the year of GEJE (March 11, 2011) 

(Hayes et al., 2017), and/or the next year. GEJE generated triple disasters: the biggest earthquake 

(magnitude 9.0) on record, tsunami, and the nuclear problem of Fukushima (Managi and Guan, 2017). 

According to the Fire and Disaster Management Agency, Japan (2018) (of March 1, 2018), the death 

toll are 19,630 people and there are 2,569 missing persons. The damage to residences is 121,781 

complete destruction, and 280,962 half-destruction. Economic damage is estimated as 6% of GDP 

(Hayashi, 2012). Also, coastal areas were washed away, logistics and supply chains were stopped, and 

there were various problems such as electric power and medical problems (Managi and Guan, 2017). 

Therefore, this study investigates how CO2 emissions have changed over the four years immediately 

after GEJE when the supply of electricity was severely disrupted.  

There may be sample selection bias, because this study selects a higher number of firms that 

disclose more information on CO2 emissions and energy consumption. Therefore, this study conducts 

t-tests to determine whether there is a difference in the average values of the two groups, censored and 

uncensored observations, in terms of financial items (COGS, sales, assets, and equity; unit is million 

JPY). In Table 3, the average values of COGS, sales, assets, and equity are 117018.3, 151272.3, 

159975.8, and 69220.6 million JPY, respectively, for the censored firms (non-selected firms) and 

340939.6, 448159.0, 480685.5, and 198773.9 million JPY, respectively, for the uncensored firms (the 
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sample firms of this study). Thus, average values for the uncensored firms (the sample of this study) 

are higher than those for the censored firms (non-selected firms). T-values are −10.7, −11.7, −12.1, 

and −12.7, respectively, indicating a statistically significant difference at the 1% level. This indicates 

that these average values differ in a statistically significant way between the censored firms (non-

selected firms) and the uncensored firms (the sample of this study). Thus, this study selects relatively 

large firms among the Japanese manufacturing sectors. 

 

5.2 Results of LMDI 

Table 4 shows a summation of each financial item from FY2011 to FY2015. Data in FY2011 

are 289,672 kt for CO2 emissions, 1,043,980 MWh for energy consumption, 71,061,331 million JPY 

for COGS, 92,833,893 million JPY for sales, 97,018,265 million JPY for total assets, and 40,385,463 

million JPY for total equity. As of 2015, relative percentages (2010 = 100%) are 99.7%, 99.1%, 111.6%, 

113.5%, 115.9%, and 118.8%, respectively, for CO2 emissions, energy consumption, COGS, sales, 

assets, and equity. Thus, the sample firms have expanded their economic activities but decreased 

environmental burdens, indicating CEP has improved at the aggregated level.  

Table 5 and Figure 2 (for the entire sample) show the results of LMDI. They show the results 

not only in FY2015 but also for other years FY2012 to FY2014, because this makes it easy to confirm 

the robustness of the results over years (from FY2011). Regarding the entire sample, the changes in 

CO2 emissions (△CO2) are −5465.1, 4536.6, 9380.0, and −802.1 kt in FY2012 to FY2015, 

respectively. This indicates that the changes in CO2 emissions do not fluctuate much at the aggregated 

level. The change in CO2 emissions as of 2015 (−802.1 kt) is decomposed into 2922.5 kt for △CO2Int, 

−26036.3 kt for △EneInt, −6350.5 kt for △COGSR, −8495.6 kt for △TATR, −7912.3 kt for △AtER, 

and 45070.1 kt for △Equity. Thus, the largest positive and negative factors are △Equity (firm size) 

and △EneInt (energy intensity), respectively.  

Regarding each sector, as of 2015, the largest positive factors of the change in CO2 emissions 

are △CO2Int in 1 sector (#4), △EneInt in 1 sector (#9), △COGSR and △TATR in no sectors, △AtER 

in 2 sectors (#7, #16), △Equity in 12 sectors (#5, #6, #8, #10, #11, #12, #13, #14, #15, #17, #18, #19). 
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On the other hand, the largest negative factors are △CO2Int in no sectors, △EneInt in 9 sectors (#4, 

#5, #7, #10, #13, #14, #15, #17, #19), △COGSR in 1 sector (#8), △TATR in 1 sector (#11), △AtER 

in 3 sectors (#6, #12, #18), and △Equity in 1 sector (#9, #16).  

Table 6 and Figure 3 show average values of the relative contribution ratios in each sector. 

Average values for the entire sample are 0.206 for △CO2Int, 0.191 for △EneInt, 0.255 for △COGSR, 

0.055 for △TATR, 0.138 for △AtER, and 0.155 for △Equity. Thus, approximately 40% of the 

variations in the changes in CO2 emissions are explained by carbon intensity and energy intensity 

(39.7% = 20.6%+19.1%), whereas the remaining approximate 60% are explained by financial factors 

(60.3% = 25.5%+5.5%+13.8%+15.5%). Therefore, COGSR (operation pressure) and TATR 

(consumer pressure) have the most and least contributions to variations in CO2 emissions, respectively, 

on average.  

The largest ratios in each sector are △CO2Int for two sectors (#4, #18), △EneInt for no 

sectors, △COGSR for 13 sectors (#5, #6, #7, #8, #9, #10, #11, #13, #14, #15, #16, #17, #19), △TATR 

for no sectors, △AtER for 1 sector (#12), and △Equity for no sectors. Similarly, the smallest ratios 

are △CO2Int, △EneInt, and △COGSR for no sectors, △TATR for 14 sectors (#4, #5, #6, #7, #9, #10, 

#11, #12, #13, #14, #15, #16, #17, #19), △AtER for 1 sector (#18), and △Equity for 1 sector (#8).  

 

5.3 Discussion of the results 

We confirm the relationship between CEP and CFP from the results of LMDI (as of 2015). 

Table 7 shows the correlation matrix of each term as of 2015 in the 16 sectors (i.e., 16 observations). △CO2 (change in total CO2) is statistically significantly positive for △Equity (0.662) and significantly 

negative for △TATR (−0.431) and △AtER (−0.846). This indicates that absolute CEP (△CO2) is not 

significantly related to relative CEP (0.226 for △CO2Int and −0.011 for △EneInt) and the operation 

factor (−0.344 for △COGSR) whereas it is significantly related to TATR (△TATR), leverage (△AtER), 

and firm size (△Equity).  

As to each term on the RHS in equation 4, △CO2Int is correlated significantly positively to △Equity (0.489) and significantly negatively to △EneInt (−0.734), △COGSR (−0.561), and △TATR 
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(−0.712). Similarly, △EneInt is correlated significantly positively to △COGSR (0.885) and △TATR 

(0.782) and significantly negatively to △CO2Int and △Equity (−0.680). △COGSR is correlated 

significantly positively to △EneInt, △TATR (0.891), and △AtER (0.696) and significantly negatively 

to △CO2Int and △Equity (−0.923). △TATR is correlated significantly positively to △EneInt, △COGSR, and △AtER (0.708) and significantly negatively to △CO2Int and △Equity (−0.887). △AtER is correlated significantly positively to △COGSR and △TATR and significantly negatively to △Equity (−0.911). Accordingly, △Equity is correlated significantly positively to △CO2Int and 

significantly negatively to △EneInt, △COGSR, △TATR, and △AtER.  

Regarding the relationship between CEP and CFP in this study, △CO2Int and △EneInt are 

part of CEP and △COGSR, △TATR, and △AtER are part of ROE (whereas △COGSR and △TATR 

are part of ROA), as noted above. Accordingly, Figures 4 and 5 show scatter plots among them, based 

on the results of LMDI as of 2015 for the 16 sectors (where the horizontal axes are △CO2Int for Figure 

4 and △EneInt for Figure 5). #6 (Pulp), #7 (Chem), #9 (OilCoal), #12 (Iron), and #16 (ElecApp) 

denote characteristic sectorial numbers.  

Regarding relative CEP, △CO2Int (carbon intensity) and △EneInt (energy intensity) are 

correlated negatively with each other (the correlation coefficient r = −0.734) (Figures 4 and 5). This 

negative relationship is probably because energy use is both the denominator of ΔCO2Int and the 

numerator of ΔEneInt, suggesting that greater energy use tends to decrease ΔCO2Int and increase 

ΔEneInt. Therefore, relative CEP consists of two adverse factors, leading to an unstable relationship 

with absolute CEP. As characteristically opposite sectors, #6 (Pulp) has the lowest △CO2Int and the 

highest △EneInt, while #12 (Iron) has the highest △CO2Int and the lowest △EneInt.  

Regarding the relationship between △CO2Int and parts of CFP (Figure 4), △CO2Int (carbon 

intensity) is correlated significantly negatively to △COGSR (the COGSR) and △TATR (the TATR) 

and not significantly to △AtER (leverage). On the other hand, regarding the relationship between △EneInt and parts of CFP (Figure 5), △EneInt (energy intensity) is correlated significantly positively 

to △COGSR and △TATR and not significantly to △AtER.  

This relationship provides an insight somewhat new to the literature: a greater carbon 
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intensity (worse CEP) is related to a smaller COGSR (better CFP) and smaller TATR (worse CFP) and 

not related to AtER. Similarly, a greater energy intensity (worse CEP) is related to a larger COGSR 

(worse CFP) and larger TATR (better CFP) and not related to AtER. This implies that ROA (as CFP) 

seems unstable because the COGSR (the worse CFP) is related significantly positively to the TATR 

(the better CFP), canceling out the effects on CEP.  

As contrasting examples (Figures 4 and 5), #9 (OilCoal) and #6 (Pulp) have the highest △COGSR and △TATR, respectively, as well as the smallest △CO2Int (and the highest △EneInt). 

Meanwhile, #12 (Iron) has the smallest △COGSR and △TATR as well as the highest △CO2Int (and 

the smallest △EneInt).   

Note that ROE is expected to have a less stable relationship with CEP than ROA. This is 

because ROE is equal to ROA times leverage, and leverage (△AtER) is not significantly correlated to 

carbon intensity and energy intensity (△CO2Int and △EneInt) as part of CEP in this study.  

In addition, firm size (scale factor) plays an important role in the model across the board 

because △Equity is correlated significantly with all factors in the model. △Equity is correlated 

significantly positively to △CO2. This is intuitive because we often find that larger firms tend to have 

higher CO2/GHG emissions. Regarding each term, the larger sectors (△Equity) tend to have higher 

carbon intensity (△CO2Int), lower energy intensity (△EneInt), lower COGSR (△COGSR), lower 

TATR (△TATR), and lower leverage (△AtER).  

 

 

6. Conclusions 

This study proposes new models that decompose corporate CO2/GHG emissions (CO2, 

direct + indirect GHG [Scope 1+2], and supply-chain GHG [Scope 1+2+3]) into financial factors using 

a decomposition method of LMDI. The model of CO2 consists of CO2 intensity, energy intensity, 

COGSR, TATR, leverage, and equity. The model of Scope 1+2 adopts GHG intensity instead of CO2 

intensity, whereas the model of Scope 1+2+3 additionally uses supply-chain GHG intensity. As an 

application example of the CO2 model, this study targets 225 Japanese listed firms in 16 manufacturing 
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sectors. Results show that the change in CO2 emissions as of 2015 (−802.1 kt) is decomposed into 

2922.5 kt for carbon intensity, −26036.3 kt for energy intensity, −6350.5 kt for the COGSR, −8495.6 

kt for the TATR, −7912.3 kt for leverage, and 45070.1 kt for equity. In the entire sample, therefore, 

the largest positive and negative factors for the change in CO2 emissions as of FY2015 are equity (firm 

size) and energy intensity, respectively. Average values of relative contribution ratios are 20.6% for 

CO2 intensity, 19.1% for energy intensity, and the remaining approximately 60% for financial factors 

(25.5% for COGSR, 5.5% for TATR, 13.8% for leverage, and 15.5% for equity).  

The results imply that, in order to reduce CO2/GHG emissions, we should focus on financial 

factors as well as carbon intensity and energy intensity, as suggested in previous empirical studies. 

Companies often tend to pay attention to carbon intensity and energy intensity when seeking to reduce 

CO2/GHG emissions, but the financial factors can explain the majority of CO2 emissions, on average, 

in the sample used in this study. In particular, at the aggregated level, the CO2 decrease by energy 

intensity is almost canceled out by the CO2 increase by firm size (equity). What should be noted here 

is the cost ratio (COGSR), which on average has the largest relative contribution (25.5%), indicating 

that reduction (improvement) of the cost ratio (hence, operation pressure) is directly linked to 

CO2/GHG emissions reduction. Thus, the models of this study are helpful for identifying which part 

of corporate activities contributes to CO2/GHG emissions.  

As implications for the literature, we first find that our sample has the following important 

tendencies in terms of the relationship between CEP and CFP. First, absolute CEP (△CO2) is not 

significantly related to relative CEP (the carbon intensity and energy intensity) and the operation factor 

(the COGSR), whereas it is significantly related to TATR, leverage, and firm size. This provides 

evidence that absolute CEP can be different from relative CEP, suggesting that the choice of CEP type 

is important when examining the relationship between CEP and CFP.  

Second, we suppose that relative CEP and CFP are themselves unstable indicators because 

they contain adverse factors that are related to absolute CEP in opposite ways over years. Relative 

CEP can be divided into carbon intensity and energy intensity, which are correlated negatively with 

each other. Meanwhile, ROA, as the representative CFP, consists of operational profitability, the 
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COGSR (worse CFP), and the TATR (better CFP), whereas the COGSR and the TATR in the sample 

are correlated positively with each other.  

This study thus supports the view that there is a significant relationship between CEP and 

CFP because the carbon intensity, the energy intensity, the COGSR, and the TATR are significantly 

correlated with each other among the 16 sectors (as of 2015). Thus, it supposes that the reason the 

relationship between CEP and CFP is occasionally not robust in the literature is that the relative CEP 

and CFP are themselves unstable indicators, as noted above. 

As to limitations, the findings of this study may be unique to the Japanese manufacturing 

sectors and therefore future studies should investigate other examples (e.g., different sectors, countries, 

and times) to make the findings more robust. Also, regarding an issue of CFP, the model of this study 

does not include profit (return) because it often takes a negative value. However, model development 

may be able to include profit in some way. In addition, the model of this study only focuses on 

CO2/GHG emissions and energy use as non-financial variables. Potentially, however, the identity 

model can consider other materials, such as raw materials and waste. These issues with the sample and 

model development remain to be addressed in future study. 
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Appendix. LMDI for Scope 1+2 and Scope 1+2+3 

Regarding equation 6, suppose there are i firms in j sectors from the base year 0 to a certain 

year t, and summation of the change in Scope 1+2 emissions (ΔS12) of j-th sector from years 0 to t is 

expressed as follows: 

  0t t

ij ij ij

i i

t t t t

ij ij ij ij

i i i i

t t

ij ij

i i

S12 S12 S12

GHGInt EneInt COGSR TATR

AtER Equity

  

       

   

 

   

 

 (A1) 

where 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
GHGInt

L S12 S12 GHGInt GHGInt if S12 S12

    
 

 (A2) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
EneInt

L S12 S12 EneInt EneInt if S12 S12

    
 

 (A3) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
COGSR

L S12 S12 COGSR COGSR if S12 S12

    
 

 (A4) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
TATR

L S12 S12 TATR TATR if S12 S12

    
 

 (A5) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
AtER

L S12 S12 AtER AtER if S12 S12

    
 

 (A6) 

 

   
0

0 0 0

0, 0

, ln , 0

t

ij ijt

ij t t t

ij ij ij ij ij ij

if S12 S12
Equity

L S12 S12 Equity Equity if S12 S12

    
 

 (A7) 

 

 
0

0

0
,

ln ln

t

ij ijt

ij ij t

ij ij

S12 S12
L S12 S12

S12 S12





 (A8) 

Similarly, regarding equation 7, summation of the change in Scope 1+2+3 emissions (ΔS123) of j-th 

sector from years 0 to t is expressed as follows: 
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Table 1. The number of entire, censored, and uncensored firms 

# Sector Entire 
firms 

Censored 
firms 

Uncensored 
firms 

#4 Foods (Foods) 130 106 24 

#5 Textiles and Apparels (Textiles) 55 47 8 

#6 Pulp and Paper (Pulp) 26 20 6 

#7 Chemicals (Chem) 215 169 46 

#8 Pharmaceutical (Pharma) 66 56 10 

#9 Oil & Coal Products (OilCoal) 12 10 2 

#10 Rubber Products (Rubber) 19 17 2 

#11 Glass and Ceramics Products (Glass) 58 50 8 

#12 Iron and Steel (Iron) 47 38 9 

#13 Nonferrous Metals (Nonferrous) 36 26 10 

#14 Metal Products (MetalProd) 91 83 8 

#15 Machinery (Machinery) 233 209 24 

#16 Electric Appliances (ElecApp) 261 216 45 

#17 Transportation Equipment (Transport) 96 88 8 

#18 Precision Instruments (PrecInst) 52 49 3 

#19 Other Products (Other) 109 97 12 

Total  1506 1281 225 

 

  



36 

 

Table 2. Descriptive statistics for uncensored observations 

Variables Average SD Median Min Max 

Total CO2 emission (kt) 1294.2 7565.4 77.2 0.9 96965.0 

Total energy consumption (MWh) 4652.0 24384.7 310.2 2.1 309722.0 

COGS (million JPY) 340939.6 665566.7 118428.0 2443.0 4865787.0 

Sales (million JPY) 448159.0 812546.5 170685.0 4789.0 6489702.0 

Assets (million JPY) 480685.5 861736.4 180729.0 7517.0 7157929.0 

Equity (million JPY) 198773.9 322173.9 91057.0 2887.0 2552512.0 

Note: SD stands for standard deviation.  
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Table 3. T-test for censored and uncensored observations 

 Censored obs (1281 firms) Uncensored obs (225 firms)    

 obs Average (SD) obs Average SD Difference t-value Probability 

COGS (million JPY) 6219 117018.3 (519084.9) 1125 340939.6 (665566.7) −223921.3 −10.7 0.000 

Sales (million JPY) 6248 151272.3 (595497.7) 1125 448159.0 (812546.5) −296886.7 −11.7 0.000 

Assets (million JPY) 6245 159975.8 (544955.2) 1125 480685.5 (861736.4) −320709.7 −12.1 0.000 

Equity (million JPY) 6101 69220.6 (260676.1) 1125 198773.9 (322173.9) −129553.3 −12.7 0.000 
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Table 4. Summation of data from FY2011 to FY2015 

Year CO2 

(kt) 
Energy 

(Mhw) 
COGS 

(million JPY) 
Sales 

(million JPY) 
Assets 

(million JPY) 
Equity 

(million 
JPY) 

2011 289,672 1,043,980 71,061,331 92,833,893 97,018,265 40,385,463 

2012 284,207 1,018,408 71,804,964 93,349,160 103,482,411 41,855,892 

2013 294,208 1,065,570 79,377,191 104,558,703 110,525,822 45,462,230 

2014 299,052 1,070,509 81,998,402 108,026,283 117,311,371 47,949,518 

2015 288,870 1,035,047 79,315,176 105,410,839 112,433,350 47,967,521 

2011 (100.0%) (100.0%) (100.0%) (100.0%) (100.0%) (100.0%) 
2012 98.1% 97.6% 101.0% 100.6% 106.7% 103.6% 

2013 101.6% 102.1% 111.7% 112.6% 113.9% 112.6% 

2014 103.2% 102.5% 115.4% 116.4% 120.9% 118.7% 

2015 99.7% 99.1% 111.6% 113.5% 115.9% 118.8% 
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Table 5. Results of LMDI (unit: kt) 
Sector Year △CO2 △CO2Int △EneInt △COGSR △TATR △AtER △Equity 

#4 (Foods) 2012 309.1 80.4 102.4 −20.1 −70.9 82.0 135.3 

#4 (Foods) 2013 605.1 36.5 130.1 −16.0 70.8 31.8 351.9 

#4 (Foods) 2014 518.6 454.4 −488.8 32.8 −149.2 167.6 501.7 

#4 (Foods) 2015 624.1 455.8 −454.5 −28.3 132.8 188.0 330.3 

#5 (Textiles) 2012 −271.1 150.1 −88.6 32.7 −374.6 377.9 −368.6 

#5 (Textiles) 2013 −319.7 67.8 −251.4 50.1 −196.2 374.9 −364.8 

#5 (Textiles) 2014 −555.8 248.4 −595.5 −39.9 −378.8 328.3 −118.2 

#5 (Textiles) 2015 −665.8 121.3 −400.4 −193.4 −320.8 −47.1 174.6 

#6 (Pulp) 2012 110.8 −74.2 15.1 −41.4 −254.3 −910.0 1375.6 

#6 (Pulp) 2013 1172.5 −4540.6 3851.8 −236.0 1332.4 −2874.2 3639.0 

#6 (Pulp) 2014 1186.3 −4545.5 3869.7 −246.3 1209.6 −3864.8 4763.6 

#6 (Pulp) 2015 1182.7 −4563.7 3956.6 −234.9 1665.3 −4588.7 4947.9 

#7 (Chem) 2012 −6977.4 −1331.1 −5592.9 578.5 −3691.9 4076.1 −1016.1 

#7 (Chem) 2013 −4994.4 2985.4 −12409.0 400.2 −2673.2 5058.3 1643.9 

#7 (Chem) 2014 −4960.4 1767.9 −12804.1 207.7 −2745.4 6742.7 1870.7 

#7 (Chem) 2015 −6929.2 665.5 −10912.3 −1517.5 −811.1 8627.7 −2981.5 

#8 (Pharma) 2012 23.2 25.3 44.6 −45.0 −37.1 13.1 22.2 

#8 (Pharma) 2013 39.2 42.9 29.8 −51.6 −42.8 20.1 40.7 

#8 (Pharma) 2014 15.1 3.4 32.7 −29.5 −76.8 34.6 50.7 

#8 (Pharma) 2015 25.6 8.4 10.0 −53.2 −36.4 18.7 78.2 

#9 (OilCoal) 2012 −1380.0 −48.6 −1320.1 166.9 −479.5 −441.9 743.1 

#9 (OilCoal) 2013 −924.7 −480.6 −2689.4 235.9 426.6 −891.3 2474.1 

#9 (OilCoal) 2014 −1511.8 −735.3 −2740.1 749.2 1198.3 1351.2 −1335.2 

#9 (OilCoal) 2015 −738.0 −224.7 2615.5 370.1 −862.5 1148.6 −3785.0 

#10 (Rubber) 2012 1.9 5.2 −3.7 0.3 −1.6 0.3 1.3 

#10 (Rubber) 2013 6.1 7.5 −7.1 0.5 0.5 0.2 4.4 

#10 (Rubber) 2014 7.9 7.7 −6.7 −0.1 −1.3 −0.2 8.5 

#10 (Rubber) 2015 6.9 7.2 −7.2 −0.4 −1.3 −1.9 10.4 

#11 (Glass) 2012 386.6 16.6 384.9 206.8 −292.0 −146.4 216.7 

#11 (Glass) 2013 86.1 −232.9 284.5 324.7 −549.7 −210.2 469.8 

#11 (Glass) 2014 −223.6 −188.4 124.5 344.6 −1021.0 −259.1 775.7 

#11 (Glass) 2015 −262.1 −19.0 42.8 172.4 −875.2 −588.3 1005.3 
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#12 (Iron) 2012 2320.8 1131.7 −4996.7 845.7 −30749.7 18973.7 17116.0 

#12 (Iron) 2013 9120.6 3733.1 −24630.3 −6619.2 −2235.1 4174.6 34697.5 

#12 (Iron) 2014 12629.4 3127.6 −23914.8 −8605.8 −3381.9 1093.5 44310.8 

#12 (Iron) 2015 5153.8 3823.6 −14793.9 −4794.0 −7001.7 −16578.8 44498.7 

#13 (Nonferrous) 2012 354.0 391.0 131.5 −56.7 −790.7 374.0 305.0 

#13 (Nonferrous) 2013 463.5 555.7 −755.2 −33.6 −1194.5 866.0 1025.1 

#13 (Nonferrous) 2014 1408.8 930.3 −801.4 −160.0 −1261.5 1113.9 1587.5 

#13 (Nonferrous) 2015 995.5 733.1 −988.7 56.5 −951.1 764.8 1380.9 

#14 (MetalProd) 2012 98.9 114.0 −83.4 −10.4 18.7 1.0 59.0 

#14 (MetalProd) 2013 −533.0 −1246.1 568.8 −23.3 3.6 55.8 108.3 

#14 (MetalProd) 2014 279.7 355.0 −295.3 −2.4 −105.9 167.4 160.9 

#14 (MetalProd) 2015 −727.2 104.8 −999.6 −31.0 −54.6 91.0 162.1 

#15 (Machinery) 2012 −343.5 401.4 −701.7 34.2 −425.6 90.1 258.1 

#15 (Machinery) 2013 −95.0 103.3 −404.0 −18.5 −400.1 −5.8 630.1 

#15 (Machinery) 2014 −142.1 −46.9 −435.7 −58.5 −482.3 33.4 848.0 

#15 (Machinery) 2015 −189.1 −13.4 −661.0 −66.8 −309.7 −82.7 944.4 

#16 (ElecApp) 2012 128.0 577.6 −534.7 136.6 −225.2 1076.6 −903.0 

#16 (ElecApp) 2013 22.1 1199.7 −2417.1 −175.5 658.8 −269.2 1025.4 

#16 (ElecApp) 2014 836.6 1669.2 −2528.7 −149.5 405.8 822.8 617.0 

#16 (ElecApp) 2015 994.9 1839.2 −2620.3 129.5 913.2 3378.5 −2645.1 

#17 (Transport) 2012 −204.7 −51.3 −231.5 −29.8 73.0 −20.6 55.4 

#17 (Transport) 2013 −50.3 −20.1 −313.2 −75.3 121.0 −115.1 352.4 

#17 (Transport) 2014 −18.7 −5.0 −445.2 −72.6 114.4 −165.6 555.2 

#17 (Transport) 2015 −11.0 −11.6 −573.3 −63.7 222.7 −264.9 679.8 

#18 (PrecInst) 2012 8.2 6.5 21.0 −9.4 −13.9 −30.9 34.8 

#18 (PrecInst) 2013 6.4 9.4 37.2 −32.8 −24.9 −62.9 80.4 

#18 (PrecInst) 2014 34.6 11.8 66.2 −45.1 −25.3 −64.1 91.0 

#18 (PrecInst) 2015 50.7 22.4 69.3 −51.7 −8.3 −90.3 109.3 

#19 (Other) 2012 −29.8 21.0 −67.2 −7.5 −38.4 46.3 16.0 

#19 (Other) 2013 −68.0 1.3 −153.7 −15.8 −32.1 75.8 56.6 

#19 (Other) 2014 −124.5 4.4 −210.4 −22.8 −222.5 224.0 102.7 

#19 (Other) 2015 −313.8 −26.4 −319.3 −44.1 −196.8 113.1 159.7 

Total 2012 −5465.1 1415.7 −12920.9 1781.4 −37353.8 23561.5 18051.0 

Total 2013 4536.6 2222.5 −39128.2 −6286.2 −4734.8 6228.8 46234.6 
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Total 2014 9380.0 3059.1 −41173.6 −8098.1 −6923.8 7725.7 54790.8 

Total 2015 −802.1 2922.5 −26036.3 −6350.5 −8495.6 −7912.3 45070.1 
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Table 6. Average values of relative contribution ratios 

Sector |△CO2Int|
Denom  

|△EneInt|
Denom  

|△COGSR|
Denom  

|△TATR|
Denom  

|△AtER|
Denom  

|△Equity|
Denom  

#4 (Foods) 0.241 0.223 0.231 0.043 0.135 0.126 

 (0.141) (0.127) (0.147) (0.035) (0.107) (0.096) 
#5 (Textiles) 0.202 0.175 0.260 0.031 0.161 0.170 

 (0.116) (0.157) (0.137) (0.027) (0.132) (0.144) 
#6 (Pulp) 0.202 0.201 0.214 0.039 0.155 0.189 

 (0.132) (0.164) (0.131) (0.034) (0.139) (0.158) 
#7 (Chem) 0.178 0.200 0.279 0.052 0.144 0.147 

 (0.133) (0.131) (0.146) (0.047) (0.126) (0.135) 
#8 (Pharma) 0.184 0.156 0.246 0.137 0.148 0.128 

 (0.120) (0.111) (0.136) (0.091) (0.095) (0.111) 
#9 (OilCoal) 0.186 0.076 0.336 0.053 0.096 0.254 

 (0.149) (0.062) (0.096) (0.033) (0.069) (0.153) 
#10 (Rubber) 0.260 0.209 0.292 0.044 0.093 0.101 

 (0.108) (0.148) (0.085) (0.036) (0.051) (0.141) 
#11 (Glass) 0.206 0.199 0.213 0.092 0.154 0.135 

 (0.139) (0.133) (0.138) (0.082) (0.120) (0.097) 
#12 (Iron) 0.197 0.150 0.205 0.060 0.211 0.177 

 (0.154) (0.158) (0.150) (0.050) (0.139) (0.160) 
#13 (Nonferrous) 0.222 0.181 0.244 0.020 0.146 0.187 

 (0.095) (0.133) (0.154) (0.024) (0.130) (0.126) 
#14 (MetalProd) 0.212 0.192 0.239 0.047 0.141 0.168 

 (0.138) (0.147) (0.172) (0.064) (0.142) (0.174) 
#15 (Machinery) 0.204 0.198 0.274 0.054 0.143 0.127 

 (0.139) (0.146) (0.174) (0.044) (0.115) (0.121) 
#16 (ElecApp) 0.208 0.186 0.250 0.056 0.125 0.175 

 (0.150) (0.129) (0.153) (0.075) (0.108) (0.160) 
#17 (Transport) 0.186 0.219 0.266 0.037 0.105 0.188 

 (0.100) (0.153) (0.128) (0.032) (0.079) (0.148) 
#18 (PrecInst) 0.307 0.107 0.168 0.105 0.090 0.224 

 (0.210) (0.099) (0.102) (0.068) (0.053) (0.137) 
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#19 (Other) 0.235 0.183 0.289 0.049 0.115 0.129 

 (0.118) (0.161) (0.192) (0.067) (0.089) (0.120) 
Total 0.206 0.191 0.255 0.055 0.138 0.155 

 (0.137) (0.138) (0.153) (0.060) (0.116) (0.138) 
 

Notes: Values with and without parentheses are average values and standard deviations, respectively. See Figure 3. 
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Table 7. Correlation matrix of results of LMDI, as of 2015 (16 sectors) 
Variables 

(Results of LMDI) 
△CO2 

(−802.1 kt) 
△CO2Int 

(2922.5 kt) 
△EneInt 

(−26036.3 kt) 
△COGSR 

(−6350.5 kt) 
△TATR 

(−8495.6 kt) 
△AtER 

(−7912.3 kt) 
△Equity 

(45070.1 kt) △CO2 (−802.1 kt) (1.000) -- -- -- -- -- -- △CO2Int (2922.5 kt) 0.226 (1.000) -- -- -- -- -- △EneInt (−26036.3 kt) −0.011 −0.734*** (1.000) -- -- -- -- △COGSR (−6350.5 kt) −0.344 −0.561** 0.885*** (1.000) -- -- -- △TATR (−8495.6 kt) −0.431* −0.712*** 0.782*** 0.891*** (1.000) -- -- △AtER (−7912.3 kt) −0.846*** −0.234 0.321 0.696*** 0.708*** (1.000) -- △Equity (45070.1 kt) 0.662*** 0.489** −0.680*** −0.923*** −0.887*** −0.911*** (1.000) 
 

Notes: This table shows a correlation matrix of the results of LMDI for the 16 sectors, as of 2015. ***, **, and * show statistically significant levels of 1%, 

5%, and 10%, respectively. 
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Figure 1. The flow of material and cash in a firm 

Notes: This figure shows a simple model of material (a straight line) and cash (a dotted line) flows in 

a manufacturing firm. From the left, raw materials are purchased from suppliers, causing MC, and 

they are then made into waste and product, causing EC&SC. Waste (upper) is processed, causing 

WMC. Meanwhile, the positive product (lower) is then managed for SGA and sold to customers in the 

markets, causing sales. CO2/Scope 1+2 emissions are generated by energy use, which causes EC in 

the manufacturing costs (EC&SC).  
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Figure 2. Results of LMDI in the entire sample 

Note: See Table 5.  

  



47 

 

 

Figure 3. Average values of relative contribution ratios in each sector 

Note: See Table 6.  
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Figure 4. △CO2Int vs. △EneInt, △COGSR, △TATR, and △AtER 

Notes: This figure shows scatter plots between △CO2Int on the horizontal axis and △EneInt, △COGSR, △TATR, and △AtER on the vertical axis, using the results of LMDI as of 2015 for the 16 

sectors. r denotes the correlation coefficient and *** and ** show statistically significant levels of 1% 

and 5%, respectively (see Table 7). #6 (Pulp), #7 (Chem), #9 (OilCoal), #12 (Iron), and #16 (ElecApp) 

denote characteristic sectorial numbers (see Table 1). 
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Figure 5. △EneInt vs. △CO2Int, △COGSR, △TATR, and △AtER 

Notes: This figure shows scatter plots between △EneInt on the horizontal axis and △CO2Int, △COGSR, △TATR, and △AtER on the vertical axis, using the results of LMDI as of 2015 for the 16 

sectors. r denotes the correlation coefficient and *** shows a statistically significant level of 1% (see 

Table 7). #6 (Pulp), #7 (Chem), #9 (OilCoal), #12 (Iron), and #16 (ElecApp) denote characteristic 

sectorial numbers (see Table 1). 

 

 


