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Abstract

Consider the problem of allocating k identical, indivisible objects
among n agents, where k is less than n. The planner’s objective is to
give the objects to the top k valuation agents at zero costs to the plan-
ner and the agents. Each agent knows her own valuation of the object
and whether it is among the top k. Modify the (k + 1)st-price sealed-
bid auction by introducing a small participation fee and the option
not to participate in it. This strikingly simple mechanism (modified
auction) implements the desired outcome in iteratively weakly undom-
inated strategies. Moreover, no pair of agents can profitably deviate
from the equilibrium by coordinating their strategies or bribing each
other.
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1 Introduction

I propose the following variant of the second-price (sealed-bid) auction to
solve King Solomon’s problem. First, the agents need not participate in the
auction if they do not want to. Second, they may have to pay a small par-
ticipation fee—a situation that arises if the number of actual participants
exceeds one (or the number of objects to be allocated, more generally). In
other words, I modify the second-price auction (Vickrey auction) by intro-
ducing an arbitrarily small entry fee and the option not to participate in
it. This strikingly simple, intuitively appealing mechanism (modified auc-
tion) solves the problem. Most likely, this mechanism, with entry fees, is
close to what ordinary people would think of when they learn the notion
“second-price auction,” hence the title.

When generalized to multiple units of an item, the problem is as follows:
k identical, indivisible objects are to be allocated among n agents, where
k < n. The objective of the “planner” (“auctioneer”) is to give the objects
at no cost to the k agents with the highest valuations. Each agent knows
not only her own valuation of the object but also whether she is among the
top k valuation agents.1

The (k+1)st-price auction (instead of the second-price auction) for k ob-
jects, similarly modified, solves this generalized problem (Proposition 1). In
other words, this two-stage mechanism implements the desired outcome by
iterative elimination of weakly dominated strategies (one round of elimina-
tion of weakly dominated strategies, followed by two rounds of elimination of
strictly dominated ones). In fact, only those top k valuation agents choose to
participate in the auction, eliminating the need to actually hold the auction.

The reasoning behind this conclusion is straightforward. In this auction,
it is a weakly dominant strategy for each agent to bid her true valuation.
The planner can set an entry fee low enough so that the top k valuation
agents can profitably obtain the object by paying the (k + 1)st price and
the entry fee. Then the other agents will not enter the auction, since they
can only expect to pay the entry fee without getting the object. While the
logic is simple, a careful argument specifying what information is available
to which agent is called for. I state as explicitly as possible the informational
assumptions on which each step of the argument is based.

Earlier contributions to King Solomon’s problem, such as Glazer and Ma
[2] and Moore [3], consider the case of k = 1 object and assume that each

1There are many situations of this sort, including those mentioned in Glazer and Ma
[2, footnote 1]. Consider a temporary loss of data, for example. A certain service (or
license) must be provided to eligible claimants before the data is recovered. The number
of eligible claimants is known, but the records concerning their identity have been lost.
An ineligible person has a very low valuation of the service because to her the service
comes with a later punishment.
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agent knows the other agents ’ valuations, too. Under this complete informa-
tion assumption, they construct multi-stage mechanisms that implement the
outcome in subgame-perfect equilibrium. Though those mechanisms consist
of more than two stages, they have an appealing feature that only one agent
moves at each stage.

More recently, assuming that each agent only knows her own valuation
as well as whether she is one of the top k valuation agents, several authors
have constructed ingenious mechanisms that implement the outcome in iter-
atively weakly undominated strategies. Perry and Reny [5] and Olszewski [4]
construct mechanisms for k = 1. Bag and Sabourian [1] extend Olszewski’s
mechanism [4] to any k (they have also investigated the complete informa-
tion setting). Qin and Yang [6]2 propose an alternative mechanism for any k.
Like mine, these mechanisms consist of two stages and lack the feature of
only one agent moving at each stage.

As pointed out in most of these papers [2, 3, 5], an auction itself does
not solve the problem, since it involves a transfer of money. It is interesting
to note that, given this fact, all the authors who deal with the incomplete
information settings propose a mechanism, of which a stage game is a mod-
ified version of the second-price auction.3 However, their modifications are
fairly sophisticated, not appearing as straightforward as mine. Perry and
Reny [5] use a second-price all-pay auction with the winner having an ex
post option to quit. Olszewski [4] uses the second-price auction modified
by adding an extra, non-constant (positive) payment from the planner. Qin
and Yang [6] use a second-price auction with entry fees, but the fees are
endogenously determined as an outcome of a game in which each agent has
to guess the other’s bid4 (for n = 2 and k = 1). Their mechanism loses the
advantage of the second-price auction that each agent need not guess others’
bids or valuations.

In Section 4, I compare my mechanism with Olszewski’s, which is one of
the simplest in the literature. Olszewski’s mechanism requires the planner
to subsidize the agents out of the equilibrium path.5 As a result, it is
vulnerable to collusion between agents that bribe each other to coordinate
their strategies. In fact, they can profitably deviate from the equilibrium
without even manipulating their bids (Proposition 2). Unlike Olszewski’s

2I would like to thank Takuma Wakayama for pointing out an earlier version of this
paper.

3Those dealing with the complete information settings [2, 3] also propose auction-like
mechanisms, though the bidding protocols are different from the second-price auction.

4 Qin and Yang assume that each agent knows the distribution of the other’s valuation
conditional on her own. I do not assume that the agents know the distributions.

5In contrast, if my mechanism fails at the first stage, what comes after the entry fees
are collected is just an ordinary second-price auction. So the mechanism is particularly
attractive as a compromise solution in situations where solution based on price is not too
problematic but has not been used (because of some sort of stigma), such as assignment
of parking spaces at some university campus.
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(and unlike the second-price auction), my mechanism is not vulnerable to
such collusion (Proposition 3).

2 Framework

We consider the problem Pk
n, a multi-unit generalization of King Solomon’s

problem: k identical, indivisible objects are to be allocated among n agents,
where k < n. The objective of the planner is to give the objects to the top
k valuation agents at zero monetary costs to the planner and the agents.
(This defines the choice function to be implemented.)

The framework is as follows: Let N = {1, . . . , n} be the set of agents.
Fix a certain number δ > 0, which is known to everyone (i.e., all agents and
the planner). Fix a set Q ⊂ R

n of possible profiles of valuations of the ob-
ject such that every profile (v1, . . . , vn) in Q contains at least k nonnegative
components. (The valuation by the planner is understood to be zero.) At
Stage 0, God (Nature) announces a pair (v,H), where v = (v1, . . . , vn) ∈ Q is
a profile of valuations and H = {i ∈ N : vi is among the top k valuations at v}
is the corresponding set of the k agents with the highest valuations (so
#H = k). While no one needs to know the set Q itself, everyone (includ-
ing the planner) knows the following condition imposed on Q: if i ∈ H and
j ∈ L := N \ H, then vi ≥ 0 and6

vi − vj > δ. (1)

This inequality, which says there is a gap of at least δ between the top k
valuations and the other valuations, will serve as a “word of wisdom” that
facilitates the construction of a successful mechanism. (Remark 1 discusses
a way to relax this assumption.) Every agent i observes (vi,H(i)), where
H(i) = 1 or 0, depending on i ∈ H or not.7 The planner does not observe
God’s announcement. Each agent i’s payoff of obtaining the object and
payment p ∈ R is vi + p. Each agent’s payoff of obtaining no object and
payment p is p. Finally, it is common knowledge that the agents and the
planner have the knowledge described here.

3 The Solution

The mechanism Mk
n consists of two stages, Stage 1 followed by Stage 2.

(We can regard it as a single-stage mechanism by considering its strategic

6This assumption is naturally satisfied if, for example, n = 3, k = 2 and either (i) Q =
U1 × U2 × U3 for some pairwise disjoint finite sets U1, U2, and U3 in R+ or (ii) for some
disjoint closed intervals U , V in R+ such that u ∈ U and u′

∈ V imply u > u′, we have
Q = (U × U × V ) ∪ (U × V × U) ∪ (V × U × U).

7 The implementability result of Bag and Sabourian [1] is valid under this assumption,
though they make a stronger assumption that each i observes (vi, H).
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form representation. However, our solution concept—iterated elimination of
dominated strategies—seems more appealing if the mechanism is presented
in an extensive form.) I describe Stage 2 first.

Stage 2 is the (k + 1)st-price sealed-bid auction for k objects, except
that the planner collects the participation fee δ > 0 from each agent. There
are at least k + 1 agents participating in the auction and each participating
agent i bids bi ∈ R. Thus, any bid bi (including those not corresponding to
any profile in Q) is allowed at this stage. Rearrange the named bids (bi, i)
according to the dictionary order—first in terms of the value bi (highest bid
first), second in terms of the agent name i (lowest number first). (We need
not worry about how ties are broken; we will see below that the k highest
bidders are uniquely determined in equilibrium, because of inequality (1).)
Let bk+1 be the (k+1)st bid (i.e., the first component of the (k+1)st named
bid according to the above order) by the participating agents. The following
is what agent i receives, as well as her payoff ui: footnote (a) if bi is among
the k highest bids (i.e., (bi, i) is among the first k named bids according to
the dictionary order), then i gets the object but pays the (k + 1)st bid and
the participation fee, implying ui = vi − bk+1 − δ; (b) otherwise, i pays the
participation fee, implying ui = −δ.

Stage 1 is a simultaneous-move game form8 in which the agents say
either “auction” (which means that she is willing to move on to Stage 2
and participate in the auction) or “no (auction).” If at least k + 1 agents
say “auction,” then (only) these agents move on to Stage 2; the others get
nothing. If less than k + 1 agents say “auction,” then they get the object;
the others get nothing. (If no agent says “auction,” then no agent gets
anything.)

After playing Stage 1, each agent may (partially) observe the result of the
first-stage game. Let Mi be an arbitrary set of messages that i may receive
at the end of Stage 1.9 Agent i’s strategy is defined as a function si mapping
each observation (vi, H(i)) into (mi, Bi), where mi ∈ {“auction”, “no”} is
a first-stage action and Bi: Mi → R is a function assigning a second-stage
action (bid) bi that i will play if she participates in the auction.

Given a mechanism, we say that two strategies si and s′i are equivalent
for i if for all s−i := (sj)j 6=i, the outcomes corresponding to (si, s−i) and
to (s′i, s−i) both give the same assignment (whether she gets the object and
how much she needs to pay) to i. For example, given Mk

n, all strategies
of the form (“no”, Bi) are equivalent for i, giving nothing to i. Let s∗i be
the strategy obtained by setting mi equal to “auction” if i ∈ H and “no” if

8This stage can be sequential.
9I do not make a specific assumption about what information (messages) is available

to each agent after Stage 1. This could be any of the following: (i) nothing, (ii) her
own choice of “auction” or “no,” (iii) whether the number of agents saying “auction” is
at least k + 1, (iv) the number of agents saying “auction”, (v) the set of agents saying
“auction.” We will see that the equilibrium strategy does not use any of these messages.
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i ∈ L, and letting Bi(·) ≡ vi.

Proposition 1 The mechanism Mk
n solves the problem Pk

n; that is, it im-
plements the choice function by iterative elimination of weakly dominated
strategies (one round of elimination of weakly dominated strategies, followed
by two rounds of elimination of strictly dominated ones). For each agent i,
the remaining strategies and s∗i are all equivalent.

Proof. First, we begin with an analysis of Stage 2. Since the fees δ are
independent of the agents’ action, the well-known result for the (k + 1)st-
price auction implies that it is a weakly dominant strategy for each agent to
bid her true valuation.10 Each agent i thus eliminates in this first round all
the strategies (“auction”, Bi) such that Bi assigns a bid bi 6= vi to a message
that does not exclude the possibility that the auction is held.

Next, we consider Stage 1. The agents know that in Stage 2 they will bid
their valuations, namely, bj = vj for all j, though each agent i observes her
own valuation vi only. Each agent i knows whether i ∈ H (i.e., H(i) = 1)
or i ∈ L (i.e., H(i) = 0).

Consider agents i ∈ H first. We show that in this second round i elimi-
nates all the strategies (“no”, Bi). If at least k other agents say “auction,”
then by saying “auction,” i can participate in the auction, which is held. In
this case, i knows that she will be among the k highest bidders. Her payoff
from the auction is ui = vi − bk+1 − δ, which depends on bk+1 yet to be
known. She can, however, deduce from (1) that the last value is positive,
since she knows that i ∈ H and j ∈ L for vj = bj = bk+1 (the (k + 1)st
bidder’s valuation is the (k + 1)st highest at best, so she cannot be in H by
definition). Since saying “no” means a zero payoff, she chooses “auction.”
If less than k other agents say “auction,” then the auction is not held in any
case. By saying “auction,” she gets the object with a payoff of vi ≥ 0 (since
i ∈ H). So “auction” is a best response.

Consider agents i ∈ L next. We show that in this third round, i elimi-
nates all the remaining strategies (“auction”, Bi). Since i can deduce that
the agents j ∈ H will choose “auction” and bid bj = vj , she knows that if she
says “auction,” the auction is held and she gets the payoff of ui = −δ < 0
(she cannot win the object because she will not be among the k highest
bidders). She therefore says “no” and obtains nothing.

At this point in the elimination process, the remaining strategies si =
(mi, Bi) are such that mi is “auction” if i ∈ H and “no” if i ∈ L and that
Bi assigns vi to each message not excluding the possibility that the auction
is held and i participates in it. Clearly, s∗i is equivalent to any remaining

10The conclusion, say for bi, can be derived by fixing the bids of the other participating
agents and then comparing i’s payoffs for bidding her true valuation (bi = vi) and for
bidding something else, for each case: (a) bidding bi = vi is among the k highest bids,
and (b) otherwise.
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strategy for i. Since only those agents in H say “auction” and there are
exactly k such agents, the auction will not be held. So each agent in H gets
the object and each agent in L gets nothing.

Recall the assumption that the agents and the planner—while they do
not necessarily know the set Q of possible profiles of valuations—know that
the elements in Q satisfy certain conditions such as inequality (1). Note that
this limited knowledge about Q is required only for solving Stage 1. The
conclusion for Stage 2 can be obtained without this knowledge (any δ ∈ R

will do, implying (1) is irrelevant). (For constructing Stage 2, of course, the
planner must know δ.)

Remark 1 What if the planner does not know the value of δ in (1) but
the agents know it? We come close to solving the problem by modifying
Stage 1 as follows: Each agent i announces a nonnegative entry fee δi that
she would be willing to pay if the auction is held. Like Bag and Sabourian
[1, page 47], set an entry fee δ′ equal to the smallest positive δi announced by
the agents if at least one agent announces a positive δi; set δ′ = 0 otherwise.
If at least k+1 agents announce a positive δi, then (only) these agents move
on to Stage 2, where the participation fee δ is replaced by δ′; the others
get nothing. If less than k + 1 agents announce a positive δi, then they get
the object; the others get nothing. In the second round of the elimination
process, i ∈ H can eliminate all the strategies involving δi = 0, since they
are weakly dominated by a strategy involving δi = δ/2, for example. In the
third round, i ∈ L can eliminate all the strategies involving δi > 0 as above.
A problem with this argument is that no strategy for i ∈ H survives: any
strategy is weakly dominated by a strategy involving smaller δi > 0. To
summarize, we can solve the problem, but the solution concept requires a
modification. ‖

4 Discussion

It would be of some interest to compare the mechanism Mk
n with those in the

literature [5, 4, 1, 6] dealing with the incomplete information environments.
Of those mechanisms, I focus on Olszewski’s [4] since it is simpler than Perry
and Reny’s [5]. Also, Bag and Sabourian’s mechanism [1] for the incomplete
information setting is an extension of Olszewski’s, not an alternative to
it. Qin and Yang’s mechanism performs just like mine, if we ignore the
complexity of making guesses.

I consider the classical case of Solomon’s problem in this section: n = 2,
k = 1, v1 > 0, v2 > 0, and for i ∈ H (the higher-valuation agent) and j ∈ L
(the lower-valuation agent), vi − vj > δ > 0.11 Note that the planner can

11Olszewski constructs another mechanism that solves the problem for δ = 0 (the case
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use arbitrarily small δ (because if δ > 0 satisfies the inequality, then so does
any positive δ′ ≤ δ).

Olszewski’s mechanism works as follows: In Stage 1, the two agents say
“hers” (corresponding to “auction” in this paper) or “mine” (“no (auction)”)
simultaneously. If both say “hers,” then they move on to Stage 2. If only
one says “hers,” then the agent who says “mine” gets the object. If both say
“mine,” then both get nothing. Stage 2 is a modified second-price auction
(modified such that each agent pays the entrance fee δ but receives the
other’s bid): if bi > bj , then ui = vi − δ and uj = bi − δ.

Table 1 compares the payoffs for the two mechanisms, assuming bi > bj

and i is the row player.

“hers” “mine” “auction” “no”
“hers” vi − δ, bi − δ 0, vj “auction” vi − bj − δ,−δ vi, 0
“mine” vi, 0 0, 0 “no” 0, vj 0, 0

Table 1: Payoffs for Olszewski’s mechanism (left) and mine (right).

It is a weakly dominant strategy for each i to play bi = vi in Stage 2.
The other strategies are eliminated in the first round of elimination of weakly
dominated strategies. Olszewski’s mechanism requires another round: “hers”
is a weakly (but not strictly) dominated strategy for the higher-valuation
agent and “mine” is one for the lower-valuation agent (if i ∈ H and j ∈ L,
then vj < ui = uj = vi − δ < vi). My mechanism requires two more rounds.
But those strategies to be eliminated in the second and the third rounds are
strictly dominated.

Olszewski’s mechanism relies on the availability of transfer from the plan-
ner out of the equilibrium path.12 The reliance on subsidies from outside
means that the agents are less likely to find an outsider (planner) who is
willing to adopt this mechanism. In contrast, the total amount received by
the agents in Stage 2 of my mechanism is negative ((−bj−δ)−δ = −bj−2δ =
−vj − 2δ < 0).

I next consider the possibility (not described by the mechanisms) that
the agents could bribe each other to coordinate their strategies. Let ui(s) be
i’s payoff from a mechanism, where s = (si, sj , s−ij) and s−ij = (sk)k/∈{i,j}.
We say that a strategy profile s = (si) is stable against bribery involving two
agents if the following condition is violated: there are two agents i, j, their

where the higher valuation and the lower valuation can be arbitrarily close). My mech-
anism fails to solve such a problem: if δ = 0, the lower valuation agent’s strategy “no”
is weakly dominated in the second round of elimination if she has a positive valuation.
Hence the usual second-price auction (no participation fees) will be held.

12 The total amount received by the agents in Stage 2 is −δ + (bi − δ) = bi − 2δ. If we
require this value to be non-positive, even if we assume bi = vi, we have vi ≤ 2δ < 2vi−2vj ,
implying the inequality vi > 2vj , not likely in many situations.
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strategies s′i, s′j , and a bribe t ∈ R such that u′
i := ui(s

′
i, s

′
j , s−ij)+ t > ui(s)

and u′
j := uj(s

′
i, s

′
j , s−ij) − t > uj(s).

Proposition 2 Suppose that the total amount received by the agents in
Stage 2 of Olszewski’s mechanism is positive, assuming i ∈ H bids bi = vi.
Then its equilibrium is not stable against bribery involving two agents, even
if the agents bid their true valuations in Stage 2.

Proof. Consider the strategies such that both agents say “hers” and bid
their valuations. The total amount subsidized is bi − 2δ = vi − 2δ > 0
by assumption. Find an ǫ > 0 such that bi − 2δ − ǫ > 0. Consider a
bribe δ + ǫ from j ∈ L to i ∈ H. Since bi > bj , the resulting payoffs are:
u′

i = vi − δ + δ + ǫ = vi + ǫ > vi; u′
j = bi − δ − δ − ǫ = bi − 2δ − ǫ > 0.

Note that if the agents are not restricted to bidding their true valua-
tions, they can achieve arbitrarily large payoffs,13 though the availability of
subsidies then becomes questionable.

In contrast, my mechanism works better against bribes. I present the
result for a more general case of n agents and k objects; it includes the
classical case.

Proposition 3 Suppose that each individual has a positive valuation and is
prohibited from submitting a negative bid: vi > 0 and bi ≥ 0 for each i. Then
the equilibrium of the mechanism Mk

n is stable against bribery involving two
agents.

Proof. Let s be an equilibrium and suppose it not stable. Then there are
agents i, j, strategies s′i, s′j , and a bribe t such that u′

i := ui(s
′
i, s

′
j , s−ij)+t >

ui(s) and u′
j := uj(s

′
i, s

′
j , s−ij) − t > uj(s). We have

u′
i + u′

j = ui(s
′
i, s

′
j , s−ij) + uj(s

′
i, s

′
j , s−ij) > ui(s) + uj(s). (2)

Suppose i, j ∈ H. Then ui(s) + uj(s) = vi + vj . Inequality (2) cannot
be satisfied since ui(s

′) ≤ vi and uj(s
′) ≤ vj for any s′.

Suppose i, j ∈ L. If both says “no,” they cannot meet inequality (2).
So, suppose that i says “auction,” in which case she is worse off (regardless
of whether she gets the object), unless she receives a sufficiently large bribe
t > 0. Then j, who pays the bribe, is worse off (whether she participates in
the auction), violating u′

j > uj(s).
It follows that i ∈ H and j ∈ L without loss of generality.
(i) Suppose i says “auction” and j says “no.” Then u′

i = vi + t > ui(s) =
vi implies u′

j = 0 − t < 0 = uj(s), a contradiction.
(ii) Suppose i says “no” and j says “auction.” Then u′

i = 0+ t > ui(s) =
vi implies u′

j = vj − t < vj − vi < −δ < 0 = uj(s), a contradiction.
13For any ūi > 0 and ūj > 0, fix a small bj , find a bribe t ∈ R such that u′

i = vi−δ+ t >

ûi, and find a bi such that u′
j = bi − δ − t > ûj .
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(iii) Suppose i says “no” and j says “no.” Then u′
i + u′

j = 0 and ui(s) +
uj(s) = vi, violating (2).

(iv) Suppose i says “auction” and j says “auction.” If j gets the object,
(2) implies that u′

i + u′
j = vj − bk+1 − 2δ > vi, where bk+1 is the (k + 1)st

highest bid. Then −bk+1 − 2δ > vi − vj > δ, implying −bk+1 > 3δ > 0,
contradicting the assumption that bids are nonnegative. The case where i
gets the object is easier.
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A Appendices (Not to be Published)

A.1 Remark on Qin and Yang [6]: More on footnote 4

Qin and Yang [6] also use a second-price auction with entry fees. Their
mechanism is more complex than mine in that entry fees are endogenously
determined by a game in which each agent has to guess (in the classical
case of n = 2 and k = 1) the other’s bid. This increased complexity is
partly because they only assume δ ≥ 0 in inequality (1), while I focus on
the case of δ > 0. They assume that each agent has beliefs about the other
agents’ valuations conditional on her own—which is very close to assuming
a distribution function over the set Q of possible profiles. While one could
relax their assumption of expected utility maximization, one cannot discard
the use of distribution functions, since one needs it to delete suboptimal
guesses (a strategy has to specify an optimal guess even when an agent does
not enter an auction). In contrast, I do not assume that the agents know
the distribution, not even the set Q of possible profiles.

A.2 Sufficient information for calculating the choice func-
tion: More on footnote 7

Bag and Sabourian [1], who also deal with the multi-unit case, assume that
each agent knows her own valuation and the identity of the top k valuation
agents. That is, they assume that each i observes (vi,H), instead of just
(vi,H(i)). Each agent thus has “sufficient information for calculating the
choice function” (defined below). One might therefore suspect that their
implementability result depends on the assumption that some agents have
such information. (One could say that for the purpose of computing the
choice function, their setting is in effect that of “complete information.”)

It turns out that the informational assumption of Bag and Sabourian [1]
can be relaxed. Their implementability result is still valid even when their
assumption is relaxed to the assumption that each i observes (vi, H(i)).
(This relaxed assumption seems more faithful to the assumption of Perry
and Reny, who write “[the highest value agent] may be the only one who
knows who the highest value agent is” [5, page 282].) Their result does not
depend on the assumption that some agents have sufficient information for
calculating the choice function.

Remark 2 The informational setting of the paper is essentially the same
as the incomplete information settings of the previous papers [5, 4, 1]. It is
incomplete relative to the complete information settings of earlier papers [2,
3], in which the agents know other agents’ valuations. The reader should
note that the word is used in this relative, model-dependent sense. From
the point of view of calculating the choice function, the agents here have
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“more than complete information” since they know who the high valuation
agents are (her own valuation is “extra” information).

The notion of “complete information” in the literature is defined with
reference to the model. For example, let f be a dictatorial social choice
function for which agent 1 is the dictator. Nature announces the agents’
preferences at Stage 0. Each agent observes her preference as well as the
preference of agent 1. This is usually called an “incomplete information”
setting. However, for the purpose of computing f , we could say that each
agent has enough (“more than complete”) information for calculating f . ‖

Let me give a precise notion of sufficient information with reference to
the function to be implemented. Let f : E → X be a choice function, where
E is a set of environments and X is a set of allocations. Let µi: E → Θi be
a function that specifies the information observable to i. (In the framework
above, let Nk be the collection of k-agent subsets of N . Then E ⊂ Q × Nk,
X = Nk, f((v,H)) = H where outputs are the sets of agents receiving the
objects, and µi((v,H)) = (vi,H(i)).) An agent i has sufficient information
for calculating f if there exists a function fi: Θi → X such that fi ◦ µi(e) =
f(e) for all e ∈ E. (In the framework of this paper, no agent has such
information. On the other hand, if µi is redefined by µi((v,H)) = (vi,H)
as in Bag and Sabourian [1], then i has such information.)

A.3 More Discussion: Deleted from Section 4

Which mechanism is easier to understand? Different people would have
different answers, but my view is that my mechanism is easier. It is just the
second-price auction with constant participation fees in which participation
is voluntary. On the other hand, whatever labels one may use, interpretation
of the first-stage actions of Olszewski’s mechanism seems to require sufficient
understanding of the mechanism. Since people tend to associate no payment
with getting no object in an auction, for example, the additional payment
of bi to the lower-valuation agent j can be particularly confusing. If the
planner avoids using the label “auction” in order not to confuse them, then
even those who have studied the workings of the second-price sealed-bid
auction would fail to see the connection. In any case, this is a kind of
question that should be answered by empirical methods like opinion surveys
and experiments.

Both Olszewski’s and my mechanisms are naturally presented as a two-
stage mechanism. In both mechanisms, Stage 2 will not be reached in equi-
librium. I do not say that the number of stages gives a good measure of
simplicity, but what is clear is that this measure does not tell which mech-
anism is simpler. Stage 2 provides a “threat” if it successfully induces the
agents to bid their true valuations. For this stage to work as expected, it
should be as straightforward as possible. We are thus back to the “Which is
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easier?” question above.
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