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Abstract

This paper studies the relationship between a �rm�s market value and the mobility of scienti�c

and technical personnel in its sectoral and geographic proximity. I uncover distinct positive and

negative e¤ects of mobility on market value that operate through various channels. I document

a positive e¤ect of scienti�c labor mobility on market value through knowledge assets embedded

within technologically similar �rms: �rms having large stocks of external knowledge in their

disposal bene�t from increased mobility of scienti�c and technical personnel. On the other hand,

�rms that lack large external stocks of knowledge su¤er a negative e¤ect. The detrimental e¤ect

of mobility is larger for �rms in more competitive industries, supporting the hypothesis that

estimates capture the losses due to outbound knowledge and human capital. However, such

losses are not signi�cantly di¤erent for �rms with di¤erent levels of R&D intensity. The positive

and negative e¤ects of scienti�c labor mobility, on average, are of similar magnitudes, making

the average �rm "break even" in terms of its net impact. These results are consistent with

previous �ndings, and provide further insight into why innovative �rms cluster in industrial

districts.

Keywords: Scienti�c labor mobility; Market value; Knowledge �ows; R&D; Patents; Citations;

GMM.

JEL Classi�cation: O31, O32, O33, J62, L6, C23.

�A previous version of this study was circulated with the title "Intra-Industry Knowledge Spillovers and Scienti�c
Labor Mobility."
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1 Introduction

It has long been understood that the mobility of scienti�c and technical personnel is an important

conduit for knowledge �ows among innovating �rms (Arrow, 1��2; Almeida and Kogut, 1���� Singh

and Agrawal, 2011). The mobility of scienti�c and technical personnel breaks down traditional �rm

boundaries, as employees carry speci�c or general human capital generated within the �rm to other

�rms that may �nd its use pro�table, and enj�y part of the ensuing rents. As a result, the movement

of labor creates d�� culties for �rms in appropriating the returns to their R&D investments. On the

other hand, intellectual capital of �rms with related technologies or products become available to the

�rm simply by hiring former employees of a rival. Recent research on inventor mobility has shown

that mobile inventors tend to produce innovations of higher quality than non-movers (Palomeras

and Melero, 2010; Lenzi, 2013). Hence, knowledge �ows that occur via personnel mobility are likely

to be more valuable and critical than could otherwise occur, as scientists carry tacit, uncodi�able

knowledge that can only be transferred as embedded in their human capital (Polanyi, 1���� Nelson

and Winter, 1�9���

The evidence that links scienti�c1 labor mobility to knowledge �ows rests on the methodology

introduced by Ja¤e et al. (1��	�
 who trace knowledge �ows by studying the f��q�ncy of patent

citations between economic units. While this methodology is well-suited to study various causes

and aspects of knowledge �ows, it is naturally silent on the value of knowledge �ows that occur

as a result of the mobility of scienti�c personnel. Hence, little is known about the precise gains or

loses faced by a �rm due to increased labor mobility.

The current paper �lls this gap by studying the relationship between scienti�c labor mobility in

a �rm�s sectoral and geographic vicinity, and the �rm�s market value. The exercise is undertaken

for a large panel of U.S. manufacturing �rms, and documents both positive and negative e¤ects

of mobility on market value through various channels. I �nd that increased mobility of scienti�c

personnel contributes to market value for �rms that have access to large stocks of externally created

knowledge assets. The magnitude of this e¤ect is signi�cant: a percentage point increase in the

geographic (resp. sectoral) mobility rate increases market value by as much as 6.5% (resp. 3.1%)

for a �rm that has access to the mean external knowledge stock. On the other hand, a �rm

that lacks access to large stocks of external knowledge loses market value as a result of increased

1For �uidity, I often use the term "scienti�c" personnel instead of the more cumbersome "scienti�c and technical"
personnel. These refer to a number of speci�c �ob classi�cations which will be introduced in Section 4.1.
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scienti�c turnover. This could be interpreted as a loss due to outbound knowledge capital, looser

appropriability conditions, and the loss of valuable human capital. Seeking further explanation for

such losses, I �nd that they tend to be larger for �rms operating in more competitive industries,

which is in line with the interpretation attached to the estimates above. On average, the opposite

e¤ects of mobility are of similar magnitudes, and a �rm that faces the mean stock of external

knowledge approximately "breaks even" in terms of the net e¤ect of labor turnover. However, I

do not �nd any e¤ect of mobility that operates through a �rm�s own R&D enterprise: Firms with

larger R&D intensity do not su¤er or gain more due to increased mobility.

My estimates also reveal that a signi�cant portion of inter-�rm transfers of knowledge can be

explained by the mobility of scienti�c personnel. For instance, a one standard deviation increase in

the rate of scienti�c mobility creates knowledge �ows the value of which measure as much as 18%

of the total spillover e¤ect. The same percentage reaches levels as high as 43% if mobility increases

from its minimum sample value to its sample average.

My measure of scienti�c labor mobility is taken from the U.S. Current Population Survey, which

allows constructing mobility rates for speci�c ��� classi�cations at the industrial sector and state

level. Knowledge �ows due to personnel mobility are most likely to occur via hires from �rms

operating in the �rm�s own sectoral classi�cation. Many scholars have also noted that knowledge

�ows tend to be geographically localized (Ja¤e et al., 1���� Singh and Marx, 2013). Accordingly,

the study exploits the variation in scienti�c mobility in a �rm�s geographic, as well as sectoral

proximity. I address endogeneity concerns by adopting a GMM framework, and use additional

instruments to account for the endogeneity of the mobility rate. Aside from various personal

characteristics of the sample of scienti�c personnel (age, race, marital status, living situation) that

have bearing on their mobility patterns, I also use the cross-sectional and longitudinal variation in

the strictness of the enforcement of non-compete covenants (henceforth non-competes, or NCCs)

across U.S. States as an instrument for state-level mobility. For this purpose, I use the coding

of non-compete enforcement constructed by Garmaise (2011) and back-dated by Bird and Knopf

(2010) to introduce exogenous shifts in the rate of observed �ob changes2.

My analyses deal with the value of knowledge �ows that occur through the movement of scienti�c

labor. One may be tempted to consider such �ows as externalities, but this view is misleading.

Since the transfer of scientists and engineers is a market transaction, it is reasonable to expect the

resulting knowledge �ows to be priced, to the extent they can be predicted. Hence, knowledge �ows

2 I am grateful to Robert Bird and John Knopf for sharing their coding with me.
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that are considered in this paper are most likely not pure knowledge externalities. M��n (2005)

o¤ers evidence that spillovers due to employer changes are at least partially internalized by labor

markets. However, whether these �ows are fully priced by the market is not clear, and it isn�t

straightforward to attach an externality interpretation to the paper�s main results (on this point,

also see Griliches, ����� Z��ker et al., ����� Breschi and Lissoni, 2001).

The rest of the paper is structured as follows. Section 2 reviews the related strands of literature.

Section 3 introduces the market value e�uation and describes the paper�s main empirical model.

Section 4 introduces the main data sources and details data-related issues. Section 5 deals with

econometric inference and estimation and presents the paper�s results. Section 6 concludes.

2 Literature

That the transfers of knowledge are facilitated by the movement of engineers has long been un-

derstood by researchers. Arrow (�� 2) emphasizes the public good properties of knowledge, and

makes the aforementioned case for the mobility of engineers. Stephan (1�� ! mentions the then

lack of empirical work on the sources of inter-�rm knowledge spillovers, and suggests the mobility

of scientists within the industrial sector as a potentially important channel to be investigated in

future empirical work. Building on these ideas, many scholars performed empirical tests of the

claim that mobility of technical personnel facilitates knowledge �ows. Almeida and Kogut (����!"

studying the mobility of patent holders, show that inter-�rm movements of engineers in�uences the

local transfer of knowledge. Song et al. (2003) study the patenting activities of engineers in the

global semiconductor industry who moved from U.S. to non-U.S. �rms to show that both domestic

and international mobility of engineers are conducive to knowledge �ows. Z��ker and Darby (�##�!

argue that critical knowledge is transferred through the regional and national migration of "star"

scientists. Studying the movements of a sample of elite life scientists, Azoulay et al. (2011) show

that citations of scienti�c articles from the new to the old location signi�cantly increase after a

move. Lenzi (2010) provides evidence from Italian data that the mobility of inventors spurs cumu-

lative knowledge building. Singh and Agrawal (2011) demonstrate that �rms signi�cantly increase

the use of their new employees� prior inventions, which they interpret as evidence for "learning-

by-hiring". E$%&'g et al. (2013) study a matched employer-employee data for Danish �rms to show

that newcomers to the �rm contribute more to innovation than long-term employees. A contrary

result is produced by Stolpe (2002), who �nds the mobility of inventors in LCD technology to be
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unrelated to knowledge �ows. He argues that this is due to the largely codi�able, scienti�c knowl-

edge base of LCD technology. )*+, (2005) uses Norwegian data to test a model of human capital

accumulation to show that engineers pay for the knowledge they accumulate early in their lives,

indicating that knowledge externalities due to scienti�c mobility are (at least partially) internalized

by the scienti�c labor market.

A similar line of literature studies knowledge �ows that occur via mobility from multinational

corporations (MNCs) to local �rms. G-.g and Strobl (2005) use a survey of manufacturing �rms in

Ghana to show that domestic �rms whose owners has work experience in a multinational have higher

productivity compared to other domestic �rms. Balsvik (2011) shows that Norwegian workers that

move from a MNC to a domestic �rm contribute 20 to 25% more to the productivity of the host

�rm than workers without such experience. Poole (2013) demonstrates that worker mobility to

domestic Brazilian �rms from MNCs causes an increase in the wages of domestic workers, which

she interprets as an e¤ect due to knowledge spillovers.

Recruiting scientists from competitors is a wide-spread practice innovating �rms rely on to gain

access to rivals� innovations. Cassiman and Veugelers (2006) �nd that 42% of �rms in a sample

of Belgian manufacturing use hiring skilled personnel as a strategy to a/023.+ new technologies.

Hyde (2003) and Saxenian 456678 both emphasize Silicon Valley�s highly mobile labor market that

allows inter-�rm knowledge transfers. Hyde (2003) provides several interviews with Silicon Valley

scientists and CEOs that support this view. A particularly striking 0uote from the book is by

a Silicon Valley CEO: "We don�t do R&D, we do A&D, a/023.+ and develop". Saxenian 456678

argues that the enormous success of Silicon Valley compared to Massachusetts�s Route 128 lies in

the former�s tradition of loose employer-employee ties, open �rm boundaries, and laws that protect

employees� rights to move to rival �rms or form rival start-ups. Carr and Gorman (2001) argue

that �rms that pursue trade secret litigation against former employees su¤er serious reputational

harm, and face a decline in their stock prices. Hyde (2003) adds that this hurts the company�s

recruitment e¤orts, since high 0uality :ob candidates are not willing to work for a �rm that might

limit their future prospects.

On the theory front, Pakes and Nitzan 45683) study employment contracts with scientists in an

environment in which the scientist has the option to leave the employer with the knowledge of the

innovations created within the �rm. Kim and Marschke (2005) extend this model to incorporate

the employer�s patenting decision, and test its main implication that increased probability of mis-

appropriation by the scientist increases the employer�s propensity to patent innovations. Lewis and
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Yao (2006) study a model of contracting and matching between �rms and scientists to provide an

e;<=>=?@=um explanation for the mobility of scientists, and a rationale for open R&D environments.

Their main results are driven by the incompleteness of employment contracts.

The current study�s emphasis on the geographic, as well as the sectoral dimension of labor

mobility is inspired by the literature on the geography of spillovers, which has found physical

geography to be an important impediment to knowledge �ows3. Ja¤e et al. ABCCDE show that

citations to a patent are more likely to come from the same state and SMSA as the original patent,

which they interpret as evidence for the localized nature of knowledge �ows. Almeida and Kogut�s

ABCCCE study on the mobility of inventors reaches a similar conclusion. Singh and Marx (2013)

�nd that country and state borders limit knowledge �ows above and beyond physical distance.

Singh (2005) and Breschi and Lissoni (2FFCE highlight that physical geography may be acting as

a proxy for local scienti�c networks, in that the e¤ect of distance diminishes once the e¤ects of

collaboration networks are controlled for. Mobility and network accounts of knowledge �ows are

intimately linked, in that the movements of scientists across �rms and across space extend existing

social networks, and are likely to be limited by them AHe>>Ier and Fornahl, 2002). Agrawal et al.

(2006) investigate such an aspect of labor mobility by studying social ties that survive geographic

separation. They argue that connections that are conducive to knowledge �ows are resistant to

geographic separation, hence are likely to generate enduring links between the new and old �rm or

location of the moving scientist.

My results also provide further insight into why innovating �rms cluster in industrial districts.

The literature on agglomeration economies (Marshall, BCJFK Krugman, BCCBE puts special emphasis

on labor pooling and local knowledge spillovers as critical determinants of �rms� location choices.

It has been recognized that �rms locate near technically related rivals in order to gain access to

essential resources that may otherwise be elusive (Marshall, BCJFK Stuart and Sorenson, 2003).

Stuart and Sorenson (2003) argue that industries cluster since entrepreneurs cannot mobilize es-

sential resources without access to @e;<=@er social ties. Audretsch and Feldman (BCCLE �nd that

the propensity to cluster is linked more closely to local spillovers than to advantages in production.

Rosenthal and Strange (2001) use proxies for the common explanations of agglomeration, �nding

that the Ellison-Glaeser spatial concentration index (Ellison and Glaeser, BCCNE is best explained

by labor pooling motives at various geographic units. Ellison et al. (2010) �nd similar labor needs

3This is in contrast to early models that incorporated spillovers into economic analyses with the assumption that
knowledge exhibited properties of pure public goods, as in models of endogenous growth (Romer, 1O86; Lucas, 1O88).
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to be an important determinant of agglomeration, along with supplier relationships, spillovers, and

shared natural advantages. The current paper�s results build on these ideas, and have interesting

implications for the individual, �rm-level incentives to locate close to technically similar rivals.

First, the paper�s main result documents that the negative e¤ects of labor mobility are large, but

do not outweigh its bene�ts on average. In addition, the negative e¤ect does not depend on the

�rm�s own R&D intensity. These set of results Pointly have two implications. First, disincentives

for labor pooling are not strong enough to create disagglomeration economies, as long as the �rms

in QRSTtion are TRs ciently innovative as a collective. Second, disincentives are not stronger for

more innovative �rms. Hence, results provide �rm-level evidence for the labor pooling motivation

for industrial agglomeration4.

The current paper also draws from, and contributes to the literature on the measurement of

spillover e¤ects. The common methodology in this literature is to examine the e¤ects of suitably

aggregated stocks of external knowledge, termed "spillover pools", on a measure of performance

or value, over and above those of the �rm�s own knowledge assets. I draw from the works of Ja¤e

UVWX6) and Bloom et al. (2013) in introducing spillover pools in typical market value SQRations.

The preferred method is to build a weighted sum of external knowledge assets for each �rm, where

weights measure the technical proximity of the inventive activity of the �rm with each remaining

�rm in the sample. I follow this approach, and also build and use measures of geographic con-

cordance between the inventive activities of �rms as weights in a similar aggregation procedure.

This approach properly matches the units at which mobility rates are observed to the knowledge

base most likely to be transferred by such mobility. Key results of the paper rely on interactions

of the mobility rate with various other variables, including suitably constructed spillover pools.

Estimates reveal that a signi�cant portion of inter-�rm transfers of knowledge can be explained

by the mobility of scienti�c personnel. For instance, a one standard deviation increase in the rate

of scienti�c mobility creates knowledge �ows the value of which measure as much as 18% of total

4Obviously, I do not suggest that this is the primary reason for why agglomeration economies and industrial
clusters exist, but propose this as one explanation for why they are robust and widespread. Even if a �rm expects
net losses due to the highly mobile labor market in a district, it may still �nd it imperative to locate close to it, since
operation may be impossible without the spillovers discussed in this paper. This would be the case, for instance,
if close proximity to the region is essential to gain access to the "tools of the trade". To understand the evolution
of industrial districts, one must pay careful attention to the history and evolution of such districts, which tend to
support the view that they are formed by the dissipation of essential knowledge through social networks, mobility,
and spin-o¤s. In this regard, the evolution of high-tech districts such as Silicon Valley are not special cases, but
examples of how a newfound "craft" creates local comperative advantages, and tends to keep and accumulate these
advantages over time (Krugman, 1[[1). Historical accounts of how such crafts show similar patterns of knowledge
localization are abundant.
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spillovers, when spillover pools are held constant at the mean. The same percentage reaches levels

as high as 43% if mobility increases from its minimum sample value to its sample average.

The variation in the enforcement of non-compete covenants enters as an instrument in the

current paper�s analyses. There is a burgeoning literature suggesting that stricter enforcement of

NCCs signi�cantly restrain employee mobility. Gilson \]^^^_ argues that the initial condition for

the success of Silicon Valley compared to Route 128 is the ban of non-competes in California. Marx

et al. \`bb^_c using Michigan�s ]^gh change of statute as a natural experiment, �nd that stricter

non-compete enforcement reduces worker mobility, particularly for workers with �rm-speci�c skills

and in narrow technical �elds. Marx et al. (2012) uncover a brain drain from states that enforce

NCCs to states that do not. Marx (2011) �nds that employees that are subiect to non-competes

commonly take career detours, i.e., they work outside their main �eld of expertise. For a review of

the debate on NCC enforcement, and of the economic literature, see Marx and Fleming (2012).

3 Empirical Model

3.1 Market Value Equation

I start with a market value klmnoptu in the tradition of Griliches \]^g]). The market value of �rm

i at time t is assumed to take the form

Vit = qt

�
Ait +

X
q
qKit;q

��
(1)

where Vit is the market value of the �rm (the sum of the values of common stock, preferred stock,

and total debt net of assets), Ait is ordinary physical assets, and Kit;q; q = 1; ::: represent the �rm�s

various knowledge (more generally, intangible) assets. Parameter � allows for non-constant scale

e¤ects, and
�
q
	
measure the shadow value of knowledge assets relative to ordinary assets. From

(1), dividing both sides with Ait; taking logs, imposing constant returns to scale, and using the

linear approximation log (1 + x) �= x; we get

log

�
Vit
Ait

�
= log qt +

X
q
q
Kit;q

Ait
(2)

which can be interpreted as a regression speci�cation with year-speci�c intercepts (log qt), and

where the shadow values of intangibles
�
q
	
are cokv cients to be estimated. The variable on the

left hand side is the logarithm of Tobin�s q, the market value of the �rm relative to the replacement
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value of its physical assets, and qt is interpreted as the average value of Tobin�s q at year t. The

motivation behind (2) is to look for sources of deviation from wxyz{ibrium (q = 1) in the �rm�s

intangible knowledge assets5.

In estimating variants of wxy|}z~� (2), knowledge assets are usually proxied by the �rm�s stocks

of R&D, patents, and forward citations. I follow most of the literature in using the �rm�s R&D stock

as a measure of its knowledge assets, which turns exuation (2) into a regression with Tobin�s q as

the dependent variable and eRit = Rit=Ait, R&D stock divided by assets as an independent variable.

In addition, I follow Hall et al. (2005) in including eCit = Cit=Pit, the �rm�s forward citation stock

divided by its patent stock in the exuation, as this variable captures the overall xy|{z}y of the

�rm�s stock of innovations (Tra�tenberg, ����� Albert et al., ����� Harho¤ et al., ����� Giummo,

2003)6. All knowledge assets are used in stock form, calculated as perpetual inventories with 15%

depreciation7. For instance, Rit is computed recursively by Rit = rit + :85 � Rit�1; where rit

represents �rm i�s R&D expenditures during year t: The computation of Cit and Pit are similar.

Following Ja¤e �����) and Bloom et al. (2013), I alter the market value exuation by including

measures of externally created knowledge (spillover pools)8. The spillover pool that is available to

the �rm (SP hK;it) is calculated as a weighted sum of knowledge assets for a set of external �rms.

Superscript h indicates the level of aggregation at which the variable is de�ned and measured (sector

or geography), and subscript K the type of proxy for knowledge capital to be used in aggregation.

In line with the paper�s focus on sectoral and geographic mobility rates, two di¤erent aggregation

procedures are employed, in order to match spillover pools to the relevant rate of labor mobility.

These procedures will be detailed in the next subsection. At each aggregation level, I use three

di¤erent indicators for the knowledge stocks of external �rms, following conventional measures used

to represent the �rm�s own knowledge assets. These are R&D stocks (Rjt for �rm j 6= i), forward

citation stocks (Cjt) and the ratio of forward citation stock to patent stock ( eCjt). In addition to

5A thorough discussion of the foundations of Tobin�s q is outside the scope of the current paper, and the interested
reader is referred to Hayashi (1�82) and Wildasin (1�84). Hall (1��3) and Wernerfelt and Montgomery (1�88) discuss
various advantages of using market value compared to accounting measures of performance.

6A di¤erence between the e�uation used here and that of Hall et al (2005) is that I exclude the �rm�s propensity
to patent (Patent stock�R&D stock). This is because the coe¢ cient for this term is statistically indistinguishable
from zero in all speci�cations, which is consistent with the literature that precedes Hall et al (2005). They argue that
this term partially controls for the e¤ects of �rm size, for which I control for using a direct measure, i.e, sales.

7This follows the convention in most of the previous literature. There is little known about the true depreciation
rate of knowledge, and this has been a long lasting open �uestion. Hall (2007) makes an extensive e¤ort to estimate the
rate of obsolescence of R&D investments, and �nds estimates ranging from -6% to 40%, with implications of market
value analysis being consistent with rates as high as 20-40%. Accordingly, I stick to the conventional depreciation
rate of 15%, but test the robustness of my main results using various rates between 20-40% in unreported analysis.

8One way to motivate this is to assume that additional terms that are likely to a¤ect market value enter through
a a �rm-year speci�c component of the intercept, which may be parametrized accordingly.
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R&D stocks, the use of citations ad��st for the �����ty of the inventive activity of external �rms,

which is intended to better capture the value of knowledge assets that can bene�t remaining �rms.

Given previous �ndings on the relationship between scienti�c labor mobility and knowledge �ows

(Almeida and Kogut, 1���� Singh and Agrawal, 2011) we expect measures of scienti�c labor mobility

(M) to be instrumental in drawing value from the spillover pool. This motivates the inclusion of an

interaction of the spillover pool with a suitably matched measure of mobility (Mht � SP
h
K;it), where

the level of aggregation (h) is common for both variables. As the mobility rate is expected to add

or destroy value above and beyond that through external knowledge, I include a separate mobility

term to pick up such e¤ects. The main speci�cation to be estimated therefore becomes

log

�
Vit
Ait

�
� log qt + R eRit + C eCit (3)

+SSP
h
K;it + MSMht � SP

h
K;it + MMht

+x0it K + �i + "it

A Box-Cox test indicates that the logarithm of the mobility rate gives a better �t to data, hence

Mht denotes the logarithm of the mobility rate of scientists and engineers at the aggregation unit h

and year t. The sector classi�cation for mobility closely follows Hall et al. (2005), and is described

in Table 1. The time-speci�c intercept (log qt) is modelled using year dummies, and xit is a vector

of additional controls that will be introduced below. The error term uit = �i + "it is the usual

one-way error component speci�cation, where "it is an i.i.d. error with zero mean, and �i is the

unobserved permanent e¤ect for �rm i.

3.2 Handling Sectors and Geography

I investigate scienti�c labor mobility at two di¤erent levels of aggregation, one at the level of

industrial sectors, and another at the level of physical geography, i.e., states. This necessitates

de�ning and computing spillover pools in a way that matches knowledge assets to the agents that

are most likely to carry them as they move across �rms. When interest lies on the mobility rate at

the sector level, SP hK;it is calculated as

SPSK;it = log
P
j2SEC(i); j 6=iwijKjt (4)
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where SEC(i) is the sector classi�cation of �rm i; and wij is a measure of the technical proximity

between �rms i and j. I restrict the summation to �rms operating in the same sectoral classi�cation

to match the units at which mobility rates and external knowledge are observed. To construct each

wij ; I follow Ja¤e ����6) and others in using the USPTO�s (3-digit) technology classi�cation system,

in the following way. First, each �rm (i) is assigned a vector Ti that contains the number of patents

it was granted and classi�ed in technology class k 2 f1; : : : ; �g in its kth element, where � is

the number of technology classes utilized. The technological proximity between �rms i and j is

calculated as the uncentered correlation between Ti and Tj : That is,

wij =
TiT

0
j

kTik kTjk
(5)

Note that wij ������ one if the distributions of patents across technology classes perfectly coincide

for the two �rms, and it ������ zero if the two �rms never patent in the same USPTO technology

class.

For the study of geographic labor mobility, �rms are matched to geographic information using

the rich detail of information contained in USPTO patent records. Firm activity often spans

various states, and most �rms in the sample patent under di¤erent assignee names and di¤erent

locations. Each USPTO patent contains the state in which the patent application is �led. This

allows observing the distribution of a the number of patents of the �rm across US states. This

information is used for two purposes. First, in order to match �rms to data on geographic mobility,

I assign each �rm in the sample to the state in which its patents are most often classi�ed�. Second,

I use it to de�ne and compute spillover pools in a way that is compatible with the geography of

�rm activity. For this purpose, I construct an index of geographical concordance using the overlap

of �rms� patenting activities across states. This is computed in similar vein to the technological

proximity metric, using the spread of each �rm�s patents across U.S. states. For each �rm, a 51-

vector (Gi for �rm i) is constructed that contains the number of patents of the �rm in state s in

its sth element. Geographic concordance of �rms i and j are then calculated as the uncentered

correlation between Gi and Gj ,

gij =
GiG

0
j

kGik kGjk
(6)

�An alternative to assigning a single state to each �rm is to take weighted averages of state-level mobility rates
for each �rm, using the proportion of the �rm�s patents in each state as weights. I do not report results based on this
method since the resulting �rm-speci�c "mobility" variable does not have an obvious interpretation. This alternative
"assignment" method does not change the main results of the paper.
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and the corresponding spillover pool is computed as

SPGK;it = log
P

j 6=i gijwijKjt (7)

Note that the technological proximity metric (wij) is incorporated into the computation of (7)

as well, since the technical similarity between the two �rms is important for generating spillovers

beyond geography. Similar measures of geographic concordance are also used by Lychagin et al.

(2010) and Bloom et al. (2013).

To summarize, two di¤erent aggregation procedures are used, and three knowledge indicators

in each aggregation. Table 2 summarizes all six spillover variables, and Table 3 provides the names

and description of all variables that are used in the paper.

4 Data Sources and Key Variables

The main data sources of the study are the NBER patents and citations data �le (Hall et al,

2001) and the Current Population Survey (CPS). These are supplemented with a coding of the

extent of non-compete enforcement across U.S. states constructed by Garmaise (2011) and Bird

and Knopf (2010). Finally, I use the information on concentration indices across 4-digit SIC industry

classi�cations made available by the Census Bureau�s Economic Census.

4.1 Mobility of Scientists and Engineers

My source for the rate of scienti�c labor mobility is the Current Population Survey�s Annual

Demographic Files (March Supplement). The CPS March Supplement o¤ers an annual, nationally

representative sample of U.S. residents that consists of between 144,678 (in � ¡ £ and 181,488

¤� ¡0) individual ¥¦§¨tionnaires. To construct mobility rates at various aggregations, I make use of

information on the number of employers the respondent worked for in the year preceding the survey,

the possible answers to which are f0; 1; 2; 3+g. I compute the fraction of scienti�c and technical

personnel that changed employers during the year in ¥¦§stion, aggregated at sectoral classi�cations

(similar to the ones used in Hall et al., 2005), and across U.S. states. My sample of scienti�c

and technical personnel follows the ©ª« classi�cations used by Kim and Marschke (2005), and

are restricted to (Standard Occupation Codes in parentheses) engineers ¤¬®¬¯ £° mathematical

and computer scientists (064-068), natural scientists (06 ®083), clinical laboratory technologists
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and technicians (203), engineering and related technologists and technicians (213-216), science

technicians (223-225), and computer programmers ±²²³´µ

Annual samples in the March Supplement contain between 2087 (in ¶³··´ and 3181 (in 1³³¸´

scienti�c personnel (55,754 total responders), representing between ²µ³ to 5.4 million such occu-

pations, depending on the year. Between 225 and 427 sampled scientists changed ¹obs during the

year in º»¼stion. The mobility rate of scienti�c personnel moves between ³½ (in ¶³³¾´ and 14.4%

(in ¶³³¸´ over the sample period, which is lower than the mobility rate of the entire population

(between 13.1% in ¶³83 and 17% in ¶³·³´. This is likely to result from higher specialization and

¹¿À-speci�c knowledge of scientists and technicians.

The distribution of the sample of technical personnel into sectors and states is expectably

uneven. For a few number of sector-year pairs, the number of individuals in the CPS sample that

fall under the ¹¿À classi�cation used in the paper turn out to be º»ÁÂ¼ low. This is especially true for

electrical machinery, and to some extent for the oil sector, for which the annual number of scienti�c

personnel fr¼º»ently fall below 15. This produces a mobility rate that is unreliable, and is often

¼º»ÃÄ to zero, since none of the few scientists in the sample have changed ¹obs. An additional 13

sector-year pairs produce a zero scienti�c mobility rate. These sector-year pairs are removed from

the sample for the analyses on sectoral mobility. A similar situation exists for 41 state-year pairs,

which are removed from the sample used for geographic analyses. Since the CPS is a representative

sample of the entire U.S. residents, such cases indicate sectors and states that do not employ too

many scienti�c personnel, nor are heavily represented in the sample of patenting �rms. Thus, any

sample selection bias due to these removals is likely to be negligible.

The CPS is useful in being a representative sample of scientists and engineers in the U.S.

Admittedly, however, the CPS sample gives an aggregate and noisy indicator of scienti�c labor

mobility. For instance, since my analyses focus on scienti�c personnel, the sample does not allow

reliable aggregation at the level of �ner industry classi�cations or �ner geographic de�nitions, nor

it allows an analysis of mobility rates for each sector at each state. For each of these levels of

detail, the sample of scientists in the CPS becomes obstructively thin. An alternative to using the

CPS measure is to study USPTO patent records and track mobile inventors as they patent under

di¤erent ÃÅ liations (Singh and Agrawal, 2011; among others). However, inventors patent under

di¤erent ÃÅ liations due to many reasons other than a change of employer. Laforgia and Lissoni

(200³´ �nd that only about 12% of inventors that have two or more ÃÅ liations in patent records

can be classi�ed as mobile, most m»ÄÂÁÆÃÅ liation cases representing start-up ventures, mergers,
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ÇÈÉÊËÌËÍËÎns, contract research, or consulting. Another limitation of inventor records is that one

can only observe technical personnel who has at least two patents (and patent under subÌÏÉÊent

employers). The sample of such inventors is likely to be a non-random sample of all scienti�c

personnel, introducing serious selection e¤ects. The CPS sample of scientists, on the other hand,

is representative of all scientists in the U.S. The current study complements the literature that

uses USPTO inventor records by using an alternative data source on scienti�c mobility, as well as

attempting to adress the provate value of scienti�c turnover.

Mobility is clearly pro-cyclical at the aggregate level. This is not surprising, but this will ÐÏÉÊËÐÏ

some additional robustness tests to ensure that the cyclical nature of the data is not driving the

main results.

4.2 Patents, Citations, and Firm Data

Patent and citation counts are taken from the NBER patent and citation database compiled by

Hall et al. (2001), and �rm variables come from the Compustat data �le compiled by the same

researchers. The NBER patent database consists of all patents granted by the USPTO between

the years ÑÒÓÔ and 2002, and all citations received by these patents up to 2002. The Compustat

data �le consists of all manufacturing �rms that are publicly traded in the U.S. The authors also

match assignee names used by the USPTO to the CUSIP �rm identi�ers listed by Compustat for

over 700,000 patents. For further details, see Hall et al. (2001) and Ja¤e and TraÕÍÏnberg (2002).

Market value of the �rm is the sum of common stock, preferred stock, and total debt net of

assets. Recall that R&D, patent and citation stocks are computed as perpetual inventories with

15% annual depreciation. When computing stocks, I do not extrapolate the missing initial values to

minus in�nity, since stock variables are constructed beginning ÑÒÓÖ× while the �rst year to be used

in computations is ÑÒÖÓØ Hence, the e¤ect of the missing initial condition is likely to be negligible.

This approach is preferred since it avoids the additional noise due to imposing aggregate growth

rates for the variables in ÉÊÏÌtion on individual �rms. Finally, citations are naturally truncated,

as they will keep coming long after data collection. I correct citation counts for truncation using

the correction weights given in Hall et al. (2001), which are obtained by estimating the citation

lag distribution for the six main technology classes.
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4.3 Competition

In order to obtain a measure of competition, I use measures of industry concentration in each

U.S. manufacturing industry from the Economic Census of the U.S. Census Bureau. The census

provides information on the Her�ndahl-Hirschman index (HHI) and the 4-�rm (CR4) and 20-�rm

(CR20) concentration ratios at the 4-digit SIC level. Concentration information for the paper�s

sample period is available in �ve year intervals, at ÙÚÛÛÜ ÙÚÝ2 and ÙÚÝÛ. Remaining years in the

dataset are assigned the concentration ratio in the earliest preceding survey year. The operations

of some of the �rms in Compustat span several 4-digit SIC classi�cations, and some operate in

more than one 3-digit SIC class. For these �rms, Compustat reports a primary SIC code that ends

with one or two zeros, e¤ectively indicating a classi�cation of �rm activity at the three or 2-digit

SIC level. 40 �rms in the �nal sample can be assigned a 2-digit SIC code, and 354 �rms a 3-digit

code. For these �rms, I re-construct the HHI index at the 2 or 3 digit classi�cation using the

information on the corresponding 4-digit classi�cation available in the Economic Census. Simple

algebraic manipulation shows that the HHI concentration index in a 2-digit industry classi�cation

(HHI2d) can be recovered from concentration indices of its 4-digit components (HHIk;4d), if one

has information on total sales in each 4-digit SIC category, as

HHI2d =

�Xn(2d)

k=1
Sk

��2Xn(2d)

k=1
S2k �HHIk;4d (8)

where n(2d) represents the number of 4-digit classi�cations in the relevant 2-digit category, and

Sk and HHIk;4d are total sales (value of shipments) and industry concentration in the 4-digit

classi�cation k = 1; :::; n(2d): The index at the necessary 3-digit classes are computed similarly.

The only available option for obtaining CR4 and CS20 at higher aggregation levels than the 4-digit

SIC is to take averages, or weighted averages of the index values for relevant sub-classes. Since the

construction of the HHI is more reliable than taking averages, reported results use HHI. Finally, an

index of competition is obtained by the logarithm of one minus the concentration index. Results

that deal with competition are robust to alternative concentration measures.

4.4 Final Samples

Firms that have no patents at any point between ÙÚÛÞ and ÙÚÚ3 are removed from the sample,

as well as sector-year or state-year pairs for which the sample of scientists and engineers in the

CPS data are very low or no mobility is observed (section 4.1). One year of observations per
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�rm is sacri�ced in order to control for the pre-sample value, a lag of the dependent variable, and

industry growth. After these removals, cleaning large outliers, deleting observations outside the

desired time frame, and removing �rms that appear only for a single year in the data, I am left

with an unbalanced panel of 12802 observations (1280 �rms) for the sectoral mobility sample, and

11442 observations (12ßà �rms) for the geographic mobility sample, spanning a 17 year interval

from 1àáá to âàà3. The average number of years a �rm appears in the former (resp. latter) sample

data is 10 (resp. àãä3), with a standard deviation of 5.2 (resp. 4.2) years. Samples for the study

of competition are further reduced to 12283 and 11002, respectively, due to missing values for the

Her�ndahl-Hirschman concentration index. Table 4 reports sample statistics for the main variables.

Sample correlations between key variables are reported in Tables 5 and 6. All current dollar values

are de�ated using the GNP de�ator. All "external" variables are computed by using the total

sample of �rms in Compustat, not åæst those that are in the �nal sample.

5 Estimation and Results

5.1 Econometric Issues

An important issue in the estimation of (3) is the presence of permanent �rm e¤ects that are

correlated with independent variables. In general, controlling for permanent e¤ects proves to be a

çèé cult task in estimating variants of these êëæìíèons, and the literature often resorts to pooled OLS

without any attempt to account for them. There are numerous problems related to the presence of

permanent �rm e¤ects, and methods that remove them. First, I have right hand side variables that

are very persistent, both by their nature and also by construction. Thus, any method that directly

eliminates permanent e¤ects removes too much variation10. Second, R&D expenditures (therefore

R&D stocks) are prone to measurement error for various reasons (Grilliches and Hausman, âàîïðñ

an important one being underreporting by �rms. Any method that controls for �xed e¤ects by

di¤erencing (�rst di¤erencing, or di¤erencing from means) is bound to exacerbate the bias due to

measurement error. Third, most of the variation in the data set is in the cross section11. Due to these

reasons, standard �xed e¤ects methods tend to be uninformative. Standard GMM methods that

10 In addition, Tobin�s q is persistent in the long run as well. See Salinger (1ò84), who uses Tobin�s ó as a measure
of long term monopoly power.
11Hall and Vopel (1òò7) make a case against controlling for unobserved �rm e¤ects by arguing that "most of the

reasons why there exist permanent di¤erences across �rms in the market value eóuation can be attributed to R&D
andôor market share (ed., one of their controls that is not the focus of the current paper), and we would like to
measure these di¤erences rather than simply di¤erencing them away".
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rely on di¤erencing also produce unreliable results for similar reasons (Mairesse and Hall, õöö÷øù

Due to the persistence of right hand side variables, usual instruments tend to be weakly correlated

with the endogenous variables in the �rst-di¤erenced úûüýþÿen (Blundell and Bond, 2000).

To deal with these issues, I use a GMM-IV estimator in the tradition of Arellano and Bover

(õöö5) and Blundell and Bond (õöö1� 2000). This method is particularly useful when one needs

to control for individual e¤ects in the presence of measurement error and persistent right hand

side variables. It imposes weak restrictions on the permanent e¤ects (i.e., mean stationarity)

and makes use of the resulting moment conditions that allow the use of lagged di¤erences as

instruments for the úûüýþÿon in levels. Blundell and Bond (2000) argue that these additional

instruments are particularly attractive under autoregressive errors, and report highly favorable

Monte Carlo simulations, especially in cases where the standard �rst-di¤erenced úûüýþÿe� performs

poorly12. The validity of the Arellano and Bover (õöö�ø instruments critically rests on the lack of

serial correlation in residuals. For this reason, I study regressions that condition on the immediate

past by including a lagged dependent variable. The inclusion of the lagged dependent variable

introduces well-known complications, and additional instruments need to be used to account for

the endogeneity of the lagged dependent variable to obtain consistent estimates.

By instrumenting �rm level variables, I also control for the potential endogeneity of the �rm�s

own knowledge assets. It is easy to argue that R&D stock is endogenous in úûüýþÿe� (3), since

successful �rms will adjüst the intensity of their R&D e¤orts accordingly. Thus, market value

causes R&D as well. Citation stocks (citation stock�patent stock in the regression eûuation) are

less prone to such reverse causality since these capture the output of R&D activity, which has a

large component that isn�t in direct control of the �rm, as indicated by the value distribution of

patents and that of citations received.

5.2 Instruments for Mobility

There are numerous reasons to suspect the presence of reverse causality from market value to

mobility, rendering the mobility term endogenous in úûüation (3). For instance, market value can

directly cause labor mobility through increased layo¤s during times of declining �rm performance.

More importantly, when �rms in a given sector are doing collectively better, the average market

12For recent applications of this method in a similar framework, see Blundell, Gri¢ th and Van Reenen (1999) and
O�Mahony and Vecchi (2009) for an application of the system GMM estimator. The latter deals with the measurement
of spillover e¤ects in a production function framework. Also see Hahn (1999) for a discussion on the e¢ ciency gains
resulting from this method.
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value of �rms can cause higher mobility due to increased on-th���ob search. In order to achieve

the causal relationship in the direction I seek, additional instruments are employed for the sectoral

and geographic mobility rates, in addition to the GMM procedure described above. For sectoral

mobility rates, I follow Kim and Marschke (2005) in using the logarithms of the fraction of male and

white scientists and the average age of scientists as instruments for the mobility rate. Additionally,

I use the fraction of scientists in the sector that are married, and the fraction that do not live alone

as instruments.

For the geographic mobility variable, I also use the cross-sectional and longitudinal variation in

the extent of non-compete enforcement across and within U.S. states as an instrument, in addition

to the personal characteristics (gender, race, age, marital status and living situation) of the sample

of scientists at the state level. Garmaise (2011) constructs an index that measures the strictness of

NCC enforcement in each state (and DC) for each year between ���	 and 2004. To construct the

index, Garmaise uses a set of 12 q
��tions taken from Malsberger (2004), and assigns 1 point to

the state if the aspect of NCC enforcement addressed by the q
��tion exceeds a given threshold13.

Bird and Knopf (2010) use the same methodology to extend the Garmaise index to cover the period

�������4. The index takes integer values between 0 and 12. Two states (California and North

Dakota) whose legal codes ban the enforcement of these contracts are assigned the lowest score of 0,

while the highest enforcement score over the sample period ���� to ���� is 7 (Missouri, Tennessee,

DC, and Florida after �����. The variation in enforcement stems from the di¤erences in the scope

of enforcement, i.e., conditions under which state statute and courts uphold the contract, and the

index re�ects this variation. Various changes in enforcement are observed during the sample period,

most signi�cant ones of which occurred in Michigan (0 to 5 in ����� and Louisiana (1 to 4 in ������

There are minor disagreements between the Bird and Knopf (2010) and Garmaise (2011) codings,

but using alternative codings do not alter the results presented in the current paper. Reported

results use the former (Bird and Knopf) coding in cases of disagreement.

The validity of these instruments are easy to demonstrate. A regression of Mht on the set of

instruments reveal that they are signi�cant individually and collectively, with F -statistic above 100

for both the sectoral and geographic mobility rates, and ����tly explain around 10% of the variation

in sectoral labor mobility. A similar exercise is also undertaken using the original respondents as

units, where "having changed employer" is a dichotomous binary variable. These analysis con�rm

the same result, with F -statistics above 300. The strictness of non-compete enforcement reduces

13See Garmaise (2011) Appendix for the list of �uestions and corresponding thresholds.
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mobility. Older and married scienti�c personnel, and those living with someone are less mobile,

while males and whites change employers more fr�����tly. The validity of instruments will be

demonstrated by the Sargan test of overidentifying restrictions. Results are also robust to using

subsets of instruments in each regression.

5.3 Alternative Explanations and Confounders

Drawing from the literature on the sources of knowledge �ows, a central interest of the paper is

the value of knowledge �ows that occur via scienti�c labor mobility. On the other hand, labor

mobility can a¤ect market value through various additional mechanisms. First, the loss of a crit-

ical scientist doesn�t only represent loss of knowledge, but also of human capital. Second, under

loose employer-employee ties, employees may be less inclined to invest in �rm-speci�c skills, un-

derstanding that their careers are only weakly tied to their current employer (Fallick et al., 2006).

Since controlling for direct measures of human capital or employee investment is elusive, the cur-

rent paper does not make an attempt to disentangle the separate e¤ects through each of these

channels, but report a �oint estimate of all. On the other hand, increased labor mobility can have

additional bene�ts for the �rm as the costs of searching for and �nding talent will be lower, and

critical vacancies can be �lled sooner. My estimates are likely to partially re�ect the �uality of the

labor force in �uestion, as the prospect of mobility may attract more talented personnel from other

sectoral (Marx, 2011) or geographic markets (Marx et al., 2012). To address these possibilities, I

estimate additional speci�cations that include the rate of aggregate labor mobility (mobility rate

of all employed, excluding scientists and engineers) in the relevant labor market as an additional

regressor. The estimated negative e¤ects of mobility, on the other hand, include the ����t e¤ects of

misappropriation, outbound human capital, and other e¤ects of loose employer-employee ties.

In addition, mobility can a¤ect market value by altering the productivity of the �rm�s own R&D

capital. As internal R&D capital gets larger, so would the detrimental e¤ects of misappropriation

due to mobility. On the other hand, the �rm�s R&D capital presumably increases the �rm�s

absorptive capacity (Cohen and Levinthal, ��� ). I investigate the overall e¤ects of mobility due

to such channels by estimating additional regressions that include an interaction of mobility with

internal R&D stoc!"#$$ets ( eRit). The choice of eRit as opposed to directly using R&D stock or

annual R&D expenditures owes to the speci�cation of the market value ���%&���$ (2) and (3) in

which eRit is the proper measure of internal R&D capital.
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5.4 Additional Issues

E')*+,-. (3) is motivated by resorting to the argument that external knowledge assets create value

for �rms, and scienti�c mobility is expected to be instrumental in drawing value from external

knowledge. A strict interpretation of the market value e'uation, however, reveals a set of underlying

assumptions that are not completely realistic: that inventors observe external knowledge assets and

the mobility rate in relevant labor markets, and price the �rm�s assets accordingly. My defense

against this is two-fold. First, di¤erences over time and across markets in the rate of scienti�c

mobility may re�ect observable knowledge-di¤using attributes of sectoral and geographic labor

markets in ')/stion. Therefore, the potential for knowledge �ows, and channels by which they

occur can be treated as an important intangible asset for the �rm. For instance, mobility may act

as insurance against lagging behind competitors and signal a competitive technological position for

the future to potential investors. Second, mobility does not create a one-time transfer of knowledge,

but creates long-lasting links between the source and the target (Agrawal et al., 2003), which renders

its e¤ects to some extent observable.

Another important problem is how one should interpret signi�cant co/0 cients for the spillover

and mobility terms. A signi�cant coe0 cient for the interaction term, or the mobility term can

result from potential co-movements within an industry, or patterns of change in technological

opportunities in the same industry over time. To account for these possibilities, I include the total

sales within the 4-digit SIC class, which controls for demand e¤ects and for changes in various

industrial conditions. Permanent industry e¤ects are controlled by dummies for sectors. I also

include the logarithm of the �rm�s own sales to account for possible size e¤ects. Also, the co/0 cient

of the interaction term in (3) may be positive if either component picks up the e¤ects of aggregate

or industrial economic conditions (Grilliches, 233456 Recall that labor mobility is pro-cyclical, and

the sizes of spillover pools may also correlate with business cycles. In order to address these issues,

I check the robustness of co/0 cients to the inclusion of the growth rate in the industry (current

or lagged), and GDP growth rate in the U.S. during the year in ')/stion. Results also hold when

these terms are interacted with labor mobility and spillover pools to further test whether they will

pick up the variation formerly explained by mobility terms (See Appendix).

A �nal caveat for the methodology that I use is that coe0 cients of spillover terms are likely

include the e¤ects of positive spillovers as well as negative competitive e¤ects. These co/0 cients

re�ect the combination of both, and they will at best be lower bounds for the true spillover e¤ect.
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Bloom et al (2013) attempt to identify these two e¤ects, using the Ja¤e 78:;<) technological prox-

imity metric along with a measure of product market closeness between any two �rms. They �nd

that both e¤ects are present, but the negative e¤ect due to product market competition tends to

be much lower than positive spillover e¤ects.

Table A1 in the Appendix walks the reader through a speci�cation search, by reporting relevant

regression results at each step towards the �nal speci�cation. These analyses demonstrate the need

for each of the decisions made, and illustrate the robustness of the paper�s main results to alternative

estimation strategies.

5.5 Results

Table 7 reports estimates for the main speci�cation in e=uation (3). Columns 1 through 3 study

scienti�c mobility at the sectoral level, while columns 4 through 6 turn to geographic labor mobility.

Each column uses one of the six spillover measures that were previously introduced. All regressions

include a full set of year dummies, and dummies for industry sectors. Columns 4 through 6

additionally employ state dummies. All estimates are from two-step GMM14.

In all regressions, the spillover pools, the interaction between mobility and the spillover pool,

and the separate mobility term are statistically signi�cant at all reasonable levels of signi�cance.

The estimated co>? cient of the interaction term has a positive sign, while the mobility term alone

has a negative sign in all speci�cations. This is consistent with the expected e¤ects of labor

mobility on �rm performance, and the trade-o¤s discussed in the Introduction can be observed

in regression results. The positive sign of the interaction term indicates that �rms with a high

amount of externally created knowledge in their disposal bene�t from increased labor turnover,

while the negative sign of the mobility term shows that there is an adverse e¤ect of mobility to

�rms that lack large external knowledge stocks. The latter adverse e¤ect is likely to stem from looser

appropriability conditions in a highly mobile scienti�c labor market and the resulting outbound

intellectual and human capital. Note that this is true holding key industry characteristics constant,

and with the presence of year and sector dummies15.

14OLS estimates for all speci�cations are available upon re@uest from the author.
15The coeA cients of either mobility term do not change considerably with the inclusion of industry characteristics

and sectorBstate dummies, indicating that these coeA cients are not a¤ected by sector and year e¤ects. Results are
also robust to the use of industry dummies at the 4-digit SIC level instead of sector dummies. In OLS regressions,
I also observe that further controlling for dummies for each sector-year pair reduces the (negative) coeA cient of the
separate mobility term, while not a¤ecting the interaction term signi�cantly. These interaction dummies are not used
in main results since they make the inversion of the second stage GMM instrument matrix problematic.
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The elasticity of Tobin�s q with respect to mobility is given by (note that the mobility term is

already in logs)
@ log qit
@Mht

= bMSSP
h
K;it| {z }

+

+ bM|{z}
�

CDF

which can be used to calculate marginal e¤ects of the mobility rate for di¤erent values of SP hK;it: It

is instructive to look at the composition of the elasticity CD) into its positive (from the interaction

term) and negative (from the separate mobility term) components. I interpret the former as the

increase in market value due to the spillovers that occur through labor mobility, while the latter

represents losses endured due to increased mobility. Evaluated at the mean spillover pool, the

former ranges from 0:101 (column 1) to 0:314 (column 6). These are the contributions of the

interaction term alone on the elasticity above. The contribution of the standalone mobility term

on CDF ranges from �0:196 (column 1) to �0:754 (column 5). To put more substance into these

numbers, note that the mean sectoral (resp. geographic) mobility rate over the entire sample is

0:101 (resp. 0:116). Thus, if one wants to convert the elasticity values above to the e¤ects of a

percentage point increase in the mobility rate (i.e., the e¤ects of one additional Gob change for

every 100 scientist), they need to be multiplied by (0:101)�1 for the sectoral rate, and by (0:116)�1

for the geographic rate, to get the aforementioned value at mean mobility. This implies that the

positive impact of a percentage point increase in the mobility rate on market value ranges from

1:98% to 6:51%, with the corresponding negative impacts having magnitudes �1:94% and �6:79%.

The positive and negative portions of CDF are very close to one another for sectoral mobility, and

net e¤ects remain between 0:04% (column 1) and 0:16% (column 2). For the geographic rates (and

matching spillover pools) the wedge between the two are larger, but net e¤ects remain much smaller

than the magnitudes of each, which is between �0:27% (column 5) and �0:48% (column 6). It

appears that the impact of labor mobility through spillovers is substantial, but is countered by a

negative e¤ect of similar magnitude. Net e¤ects remain small, if not negligible. The e¤ects implied

by geographic mobility (and the relevant spillover pools) are larger than the corresponding e¤ects

for sectoral mobility. Geographic mobility rates also give negative net e¤ects that are larger in

magnitude. These marginal e¤ects for all six speci�cations from Table 7 are summarized at Table

8.

To get a more complete picture, one can look at marginal e¤ects at di¤erent HIJKtiles of the

spillover pools. For instance, a �rm that has access to the spillover pool at the third HILMNJle

enGOys net returns as high as 1:01% of market value, due to the aforementioned increase in labor
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mobility. The same return from sectoral mobility range between 0:12% and 0:53%, while geographic

aggregation produces net e¤ects in between 0:66% and 1:01%: At the 90th percentile of the spillover

pool, net e¤ects measure as high as 1:55% (column 6, geographic mobility) of market value. Net

e¤ects due to geographic mobility, again, are larger than those due to sectoral mobility.

Finally, using estimated coPQ cients in Table 7, it is also possible to compute the fraction of the

overall spillover e¤ect
�
bSSP hK;it + bMSMht � SP

h
K;it

�
that occurs due to scienti�c mobility. Holding

spillover pools constant at the mean, a one standard deviation increase in the rate of scienti�c

mobility creates spillovers that measure as much as 17:6% (column 1) of the total spillover e¤ect.

This minimum value for this percentage is 13:6% (column 5). This percentage reaches levels as high

as 42:7% (column 4) if the mobility rate increases from its minimum sample value to its sample

average.

The negative e¤ect of mobility reported in Table 7 deserves further scrutiny. Table R investi-

gates the potential sources of this negative e¤ect, and provides some additional robustness checks.

I have interpreted the negative e¤ect of the standalone mobility terms in Table 7 as the loss of

critical knowledge and human capital via scienti�c mobility. If this interpretation is correct, then

one would also expect losing critical knowledge assets and human capital to a close competitor to be

more harmful than it is to a non-rival company. Hence, holding positive spillover e¤ects constant,

we expect the detrimental e¤ect to be larger in industries with more head-to-head competition.

Columns 1 (sectoral mobility) and 4 (geographic mobility) in Table R test this prediction by includ-

ing the interaction of scienti�c mobility with a measure of competition at the relevant SIC class

for each �rm. I measure competition by (the logarithm of) one minus the Her�ndahl-Hirschman

index of concentration. As expected, the interaction term has a negative and signi�cant coPQ cient

in both speci�cations. Hence, the negative e¤ect of scienti�c mobility is more pronounced for �rms

operating in more competitive environments, supporting the hypothesis that my estimates capture

the e¤ects of misappropriation and the loss of critical resources.

The results of the paper rely on measures of mobility computed for speci�c STU classi�cations,

representing the sample of scienti�c and technical personnel in the Current Population Survey.

While results are robust to controlling for industrial and aggregate economic �uctuations (Table

A1), it is still possible that the scienti�c mobility rate acts as a proxy for the aggregate rate of

mobility in the relevant sector or state. In order to make sure that estimates are due to the

mobility of scienti�c personnel, columns 2 and 5 include (the logarithm of) the aggregate rate of

employer-to-employer mobility in the relevant sector-year or the state-year. Aggregate mobility
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also controls for the potential bene�ts of a mobile labor market, such as lower costs and delays for

�lling vacancies, and the overall VWXYZ[y of the relevant labor force. This rate is computed for all

employed personnel in the CPS sample, excluding the sample of scientists and engineers. The sign

of the aggregate mobility rate is negative and statistically insigni�cant in both speci�cations, and

does not alter the co\] cient of either mobility term signi�cantly.

Furthermore, it is possible to expect scienti�c mobility to create or destroy �rm value by op-

erating through the �rm�s own R&D e¤ort, for two reasons. First, the larger the �rm�s own R&D

capital, the larger the potential for loss due to looser appropriability conditions as scienti�c labor

markets become more mobile. Second, the �rm�s R&D stock may increase the �rm�s ability to

internalize and use external knowledge (Cohen and Levinthal, ^__`ab Thus, the potential e¤ect

of an interaction of mobility with a measure of internal R&D capital is theoretically ambiguous.

The net e¤ect of such a variable is investigated in columns 3 and 6 of Table _c by including the

interaction of scienti�c mobility with eRit (R&D stockdfggets). In general, I �nd that estimation

with additional terms including the �rm�s endogenous internal assets tend to be complicated, and

it is hZ] cult to keep the parameters of diagnostic tests within acceptable limits. Note that a maior

hZ] culty in the estimation of (3) is the instrumentation of R&D stocks (Appendix), hence it is not

surprising that further parameters including an interaction with this variable creates additional

hZ] culties. For this reason, I seek the e¤ect of a mobility � eRit�1 interaction, with the R&D

variable lagged for one year. Even with this speci�cation, estimation proves hZ] cult, and I can

l\i\ct serial correlation in residuals only at the 7 or 8% signi�cance (p = 0:075 in column 3 and

0:061 in column 6). The co\] cient of this interaction term is positive but it is insigni�cant at

all reasonable levels of statistical signi�cance. It may be the case that the bene�cial (absorptive

capacity) and detrimental (larger loss potential) e¤ects for �rms with larger R&D intensities are

present, but cancel each other out. Nevertheless, it is clear that �rms with larger R&D intensity

do not bene�t or lose more due to an increase in the rate of scienti�c mobility.

6 Conclusion

This paper studied the relationship between scienti�c labor mobility and market value, producing,

for the �rst time, estimates of the net value of the mobility of scienti�c personnel, as well as the

resulting knowledge �ows. I document distinct positive and negative e¤ects of scienti�c mobility

on market value, and discuss the implications of each. The private value of knowledge transfers
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that occur through labor mobility is statistically and economically signi�cant. According to my

estimates, private gains due to knowledge �ows associated with one mno movement per 100 scientists

are between about 2% and 6.5% of the �rm�s market value, depending on the speci�cation used.

Another pstution of interest is the net private returns, or losses to innovative �rms that operate in

industries with highly mobile labor markets. It has been considered puzzling that highly innovative

�rms choose to locate in close proximity to their rivals, facilitating the transfer of their scienti�c

labor force to competitors. I �nd negative e¤ects of mobility that are likely to represent such losses,

which are of similar magnitudes to the positive e¤ects of knowledge �ows. Hence, my results suggest

that on average, �rms tend to "break even" if the labor market they hire from becomes more mobile.

While the negative e¤ect of mobility is higher for �rms in more competitive industries, �rms with

larger internal R&D do not su¤er or gain more due to labor mobility, compared to others. These

results highlight individual, �rm-level incentives for operating in a highly mobile labor market, and

provide �rm-level evidence for the labor pooling motivation for industrial agglomeration. In terms

of its policy implications, the evidence is supportive of legal remedies that facilitate the mobility

of employees, as previous evidence has repeatedly suggested.

I have taken care to exclude alternative explanations for the main results of the paper. Most

importantly, my main results and arguments remain valid when potential e¤ects of industrial and

aggregate economic conditions are accounted for, and the rate of scienti�c labor mobility rate is

instrumented. This suggests that estimated cotv cients and elasticities are, to a large extent, due

to the mobility of engineers and scientists in the �rm�s immediate sectoral environment, rather

than being artifacts of external economic conditions, such as recessions and booms, or industrial

expansion and decline.

My estimates are obtained using a large panel of U.S. manufacturing �rms that spans a large

variety of 4-digit SIC classi�cations. One would expect the impact of labor mobility to be higher

for high-tech and R&D intensive industries, and industries that are at earlier stages of their life

cycle. Gaining insight about these additional hypotheses wtpsxwe more detailed data on scientist

turnover, and are exciting avenues of research in this area.

Acknowledgement: TBA.

7 Appendix

- Table A1 here -
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Table A1 progressively reports estimates from various methods, in order to illustrate the prob-

lems in estimating (3) and how each of these problems are dealt with. I present these results also

to illustrate the performance of the various methods used, their e¤ect on model parameters, and

the robustness of the paper�s main results to various empirical choices made. All regressions use

the sectoral mobility rate and SPSCITE;it as a measure for the spillover pool, but the progression

of estimates is similar for other speci�cations. Columns 1 through 3 in Table 6 treat the mobility

rate as exogenous, while columns 4 through 8 treat it as an endogenous variable. I explore di¤erent

GMM speci�cations that instrument �rm level variables with appropriate lags of either levels or

di¤erences of regressors. In particular, columns 3 through 8 use the Arellano and Bover yz{{|}

suggestion of instrumenting the levels ~�����on by lags of di¤erences of endogenous regressors. In

all speci�cations I assume external and industry-level variables to be exogenous. Indicators of the

�rm�s internal knowledge assets treated as endogenous in all columns. All estimates use two-step

GMM.

Column 1 uses lagged levels dated t�2 through t�8 of �rm level variables as instruments for the

levels e�uation. An important feature of these estimates (and also those in the main text) is that

the coe� cient of the R&D term is lower than its estimates from the literature that estimate similar

speci�cations for U.S. data (for a review of the pre-z{{{ literature and estimated co~� cients, see

Hall, z{{{} by an order of multiple magnitudes. There is a similar situation for the co~� cient of

citation stoc�����~�t stock ratio. However, the Sargan test statistic strongly r~�ects the validity

of these instruments (�2(165) = 231:88; p = 0:00). In particular, no subset of lagged levels proves

to be a valid instrument set for the R&D term. The implied correlation between lagged levels and

residuals suggest that permanent �rm e¤ects are present, and that they are not fully accounted for.

On a side note, the mobility terms have comparable signs and magnitudes with t-statistics similar

to those in the paper�s main results.

Column 2 reports results from an extended system-GMM estimation that estimates a stacked

system of e�uations including both the levels e�uation and the ~������n in �rst di¤erences, with

the instrumentation methodology described above. This method results in somewhat di¤erent

estimates for the co~� cients of key variables, but the set of instruments are strongly re�~�ted by

the Sargan test (�2(292) = 389:98; p = 0:00). This is mainly due to the fact that �nding valid

instruments for the di¤erenced R&D term proves to be elusive.

Column 3 uses lagged di¤erences (dated t � 2 through t � 8) of the main �rm level variables

as instruments in the levels e�uation. I observe that lagged di¤erences dated t� 1 are never valid
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instruments, while the validity of di¤erences dated t � 2 is also ���ected in some speci�cations.

These observations are consistent with the presence of measurement error.

To �ustify the use of lagged di¤erences as instruments in the levels e�uation, Arellano and Bover

����5) make the stationarity assumption

E (xit�i) = wi 6= 0 for t = 1; 2; :::; T (10)

where xit denotes a generic regressor. That is, regressors are allowed to be correlated with perma-

nent e¤ects, but their covariance is assumed to be constant over time. Then, (10) implies the set

of moment conditions

E [�xit�i] = wi � wi = 0 (11)

which suggests the instrumentation discussed above. Note that (10) can also be expressed as

a restriction on the initial condition alone. For an extended discussion on this assumption, see

Arellano and Bover ������� and Arellano (2003).

These additional instruments are not ���ected by the Sargan test statistic (�2(166) = 154:97;

p = 0:418). Therefore, this methodology is adopted as the preferred estimator for the rest of

paper. The lack of correlation between lagged di¤erences and residuals, along with the apparent

correlation between lagged levels and residuals indicates that �xed e¤ects are indeed present and

are not accounted for in the previous speci�cations. On the other hand, it should be noted that the

m1 and m2 test statistics (Arellano and Bond, ����) suggest that there is still autocorrelation in

the residuals, which can arise due to the presence of permanent �rm e¤ects. Thus, further attention

to the serial correlation properties of errors is called for. This point will be discussed in further

detail below.

To deal with the potential endogeneity of the mobility term, column 4 instruments the mobility

term in addition to the �rm level variables. Additional instruments used are the logarithm of the

average age of scientists working in the industry sector, and the logarithms of the fraction of males,

and the fraction of those that are married and do not live alone. These additional instruments

prove to be valid (�2(154) = 165:60; p = 0:247). Interestingly, this method gives coe� cients for the

mobility and interaction terms that are higher in magnitude than previous estimates, con�rming

the suspicion that there exists positive reverse causality from market value to mobility.

A potentially important problem with the regressions in columns 1 through 4 is that the er-

ror term is serially correlated, as indicated by the m1 and m2 test statistics of Arellano and Bond
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����1). These are tests for the lack of �rst and second order serial correlation in the �rst-di¤erenced

residuals, respectively. If model residuals are not serially correlated, we would expect to see strong

evidence for negative �rst order serial correlation (cov (�uit;�uit�1) = �var (uit�1)), but no ev-

idence for second order serial correlation in the �rst-di¤erenced residuals (cov (�uit;�uit�2) = 0

if E (uituit�� ) = 0 for all � > 0). Note that serially correlated residuals in panel data can arise if

there are permanent e¤ects that are not fully accounted for. Hence, this issue needs to be addressed

in order to achieve consistent estimates.

To account for the serial correlation in the residuals, column 5 introduces a pre-sample value

of the dependent variable as an additional regressor. While the pre-sample value of log q is highly

signi�cant, this makes little di¤erence in the test statistics m1 and m2. Column 6 includes a lagged

dependent variable for the same purpose, which is instrumented by its lagged di¤erences dated t�2

and t� 3. The set of instruments are still ����tly valid (�2(179) = 199:31; p = 0:142), while residuals

do not show any sign of serial correlation. First-di¤erenced residuals exhibit strong negative serial

correlation. As opposed to the estimates in columns 1-5, no evidence is found for second order

serial correlation in the �rst-di¤erenced residuals, indicating that all permanent e¤ects have been

properly accounted for. The signs and signi�cance of main co�� cients of interest remain robust to

the inclusion of log qi;t�1.

As previously argued, main results of the paper can be driven by aggregate or industrial eco-

nomic conditions if either the mobility rate or spillover pools pick up e¤ects due to business cycles,

or industrial expansion or decline. In addition to the controls previously described to control for

such e¤ects (section 5.4), columns 7 and 8 provide additional robustness tests on the speci�cation

in column 6. Column 7 includes the aggregate GDP growth rate in United States during the rele-

vant year, while column 8 includes terms that interact GDP growth with mobility and the spillover

pool. The aim is to see whether these additional interactions will pick up the variation previously

explained by mobility-spillover interactions. Results in column 6 remain robust to the inclusion

of these terms, but the magnitudes of the co�� cients of both mobility terms are smaller. Similar

observations apply when the industrial growth rate is used in interaction terms instead of GDP

growth.

Finally, the speci�cation in column 7 of Table A1 is used in all main regressions reported in the

paper.
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Table 1 

Sector classifications for the mobility variable 

Sector  1 Paper and Printing 

 2 Chemicals (excluding Drugs) 

 3 Rubber 

 4 Wood and Miscellaneous Manufacturing 

 5 Primary Metal 

 6 Fabricated Metal 

 7 Machinery 

 8 Electrical Machinery 

 9 Autos 

 10 Air & Boat 

 11 Textiles and Leather 

 12 Drugs 

 13 Food 

 14 Computers and Instruments 

 15 Oil 
   

 

 

 

Table 2 

Summary of external knowledge assets (spillover pools) used 

  Sectoral Aggregation:  

Uses technological proximity 

Geographic Aggregation: 

Uses geographic and technological proximity 

R&D Stock 

 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝑆𝑆  = � 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ 𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖 ∈𝐒𝐒𝐒𝐒𝐒𝐒(𝑖𝑖),𝑖𝑖≠𝑖𝑖  𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝐺𝐺  = � 𝑔𝑔𝑖𝑖𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ 𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖≠𝑖𝑖  

Citation Stock 

 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝑆𝑆  = � 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖𝑡𝑡𝑖𝑖 ∈𝐒𝐒𝐒𝐒𝐒𝐒(𝑖𝑖),𝑖𝑖≠𝑖𝑖  𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝐺𝐺  = � 𝑔𝑔𝑖𝑖𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖𝑡𝑡𝑖𝑖≠𝑖𝑖  

Citation St./ 

Patent St. 

 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝑆𝑆  = � 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ �𝐶𝐶𝑆𝑆�𝑖𝑖𝑡𝑡𝑖𝑖 ∈𝐒𝐒𝐒𝐒𝐒𝐒(𝑖𝑖),𝑖𝑖≠𝑖𝑖  𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝐺𝐺  = � 𝑔𝑔𝑖𝑖𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖𝑖𝑖 ∙ �𝐶𝐶𝑆𝑆�𝑖𝑖𝑡𝑡𝑖𝑖≠𝑖𝑖  

 



 

 

 

 

 

Table 3 

Variable names and definitions 𝑉𝑉𝑖𝑖𝑡𝑡  Market value (of firm 𝑖𝑖 at year 𝑡𝑡) 𝐾𝐾𝑖𝑖𝑡𝑡  Knowledge assets, generic 𝑀𝑀𝑖𝑖𝑡𝑡  Ordinary physical assets 𝑞𝑞𝑖𝑖𝑡𝑡  Tobin’s 𝑄𝑄 𝜎𝜎 Returns to assets  𝛾𝛾 Shadow value of knowledge assets relative to ordinary assets 
  𝑅𝑅𝑖𝑖𝑡𝑡  R&D stock 𝑟𝑟𝑖𝑖𝑡𝑡  R&D expenditures (flow) 𝑆𝑆𝑖𝑖𝑡𝑡  Patent stock 𝐶𝐶𝑖𝑖𝑡𝑡  Citation stock 𝑅𝑅�𝑖𝑖𝑡𝑡  R&D stock/Assets �̃�𝐶𝑖𝑖𝑡𝑡  Citation stock/Patent stock 
  𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡ℎ  Spillover pool available to firm 𝑖𝑖 at year 𝑡𝑡, at aggregation level ℎ 

 
All use technological proximity, along with geographic concordance 

metrics or sector restrictions:  𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝑆𝑆  External R&D stock, within sector 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝑆𝑆  External citation stock, within sector 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝑆𝑆  External citation yield, within sector 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝐺𝐺  External R&D stock, agg. w.r.t. tech. and geog. proximity 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝐺𝐺  External citation stock, agg. w.r.t. tech. and geog. proximity 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝐺𝐺  External citation yield, agg. w.r.t. tech. and geog. proximity 𝑀𝑀ℎ𝑡𝑡  Logarithm of the scientific mobility rate (sector or state ℎ at year 𝑡𝑡) 
  

 



Table 4 

Sample Statistics 

     

 

Mean Median St. Dev. Min Max 

Market Value 1303.68 146.64 4756.07 0.16 120756.52 

Net Capital 1262.25 120.84 4904.05 0.39 106569.91 

Tobin's q 1.553 1.086 1.547 0.002 14.942 

R&D Stock 189.74 12.88 998.01 0 25763.63 

Patent Stock 84.49 7.6 289.41 0 5849.16 

Citation Stock 1012.39 86.67 4246.46 0 140330.78 

R&D/Assets 0.26 0.121 0.533 0 16.617 

Citation Stock/Patent Stock 11.716 9.484 11.115 0 174.4 

Sectoral Mobility  0.101 0.102 0.041 0.021 0.381 

Geographic Mobility  0.116 0.111 0.041 0.019 0.364 

Aggregate Mobility (Sectoral) 0.118 0.118 0.031 0.042 0.278 

Aggregate Mobility (Geographical) 0.148 0.146 0.027 0.088 0.240 

      

Spillover Pools (in logs) 

     Sector 

(Tech. Proximity) R&D Stock 7.011 7.397 2.022 -1.614 10.789 

 

Citation Stock 8.842 9.062 1.846 1.373 12.685 

 

Citation St./Patent St. 4.391 4.425 1.312 -3.073 7.090 

Geography 

(Tech and Geog. 

Proximity) R&D Stock 7.052 7.294 1.611 -1.674 10.457 

 

Citation Stock 8.744 9.001 1.481 -2.416 11.849 

 

Citation St./Patent St. 3.745 3.934 1.337 -8.819 12.092 

Sales 1749.82 220.37 6893.08 0.33 164933.14 

Industry Sales 21457.75 4868.13 71771.53 50.49 752738.16 

Industry Growth 0.03 0.028 0.209 -0.839 8.627 

I (R&D Expenditures=0) (flow) 0.204 0 0.403 0 1 

Competition (1 - HHI) 0.94 0.96 0.06 0.73 0.99 

      

Instruments (Geographic Aggregates) 

     
NCC Enforcement 3.74 4 2.12 0 7 

Age 37.92 37.93 1.57 28.42 43.79 

Male 0.78 0.79 0.06 0.42 0.95 

White 0.90 0.91 0.06 0.27 1 

Married 0.69 0.69 0.07 0.30 0.93 

Not alone 0.68 0.68 0.07 0.30 0.93 

      
CPS Sample 

     From individual survey data,  

sample of scientists and engineers.  

     
Mobility 0.11 0 0.32 0 1 

Age 38.05 36 11.49 14 90 

Male 0.78 1 0.42 0 1 

White 0.9 1 0.3 0 1 

Married 0.7 1 0.46 0 1 

Not alone 0.69 1 0.46 0 1 

NOTES:  All dollar values are in millions of 1992 dollars, deflated using the GNP deflator.  All logarithms are natural 

logs. Sample size: 12802 for the sectoral, and 11442 for the geographic mobility samples. Sample period: 1977-

1993. Only geographic aggregates of main instruments are reported to save space. 

 



 

 

Table 5 

Sample correlations between key variables 

Variables Abbr. 𝑅𝑅� �̃�𝐶 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷𝐺𝐺  𝑀𝑀𝑆𝑆𝑡𝑡  𝑀𝑀𝐺𝐺𝑡𝑡  𝑀𝑀𝑀𝑀𝑆𝑆𝑡𝑡  𝑀𝑀𝑀𝑀𝐺𝐺𝑡𝑡  Comp logS logIS IG 

log (q) log (q) 0,272 0,287 0,094 0,043 0,037 -0,089 0,065 -0,012 -0,153 -0,085 0,114 

R&D/Assets 𝑅𝑅� . 0,259 0,178 0,044 0,004 -0,120 0,032 -0,098 -0,204 -0,055 0,065 

Citation Stock/Patent Stock �̃�𝐶 

 

. 0,167 0,038 0,014 -0,065 0,044 -0,021 -0,073 -0,066 0,080 

Spillover Pool: Geog. R&D 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷𝐺𝐺  

  

. -0,036 -0,098 -0,212 -0,099 -0,135 0,265 0,168 0,022 

Scientific Mobility (Sector) 𝑀𝑀𝑆𝑆𝑡𝑡  
   

. 0,121 0,424 0,162 0,071 -0,073 -0,087 0,038 

Scientific Mobility (State) 𝑀𝑀𝐺𝐺𝑡𝑡  
    

. 0,149 0,469 -0,036 0,003 0,021 0,016 

Aggregate Mobility (Sector) 𝑀𝑀𝑀𝑀𝑆𝑆𝑡𝑡  
     

. 0,278 0,157 -0,023 -0,150 0,045 

Aggregate Mobility (State) 𝑀𝑀𝑀𝑀𝐺𝐺𝑡𝑡  
      

. -0,046 0,020 0,044 0,040 

Competition: log (1-HHI) Comp 

      

 . -0,074 -0,243 -0,023 

log (Sales) logS 

      

  . 0,475 -0,042 

log (Industry Sales) logIS 

      

   . -0,008 

Industry Growth IG 

      

    . 

 

 

      

    

 
NOTE: Only one spillover pool measure in included, external R&D stocks aggregated using geographical and technological proximity (𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷𝐺𝐺 ). 

 

 

 

 

Table 6 

Sample correlations between measures for the spillover pool 

 Technological Aggregates (within sector)  Technological and Geographic Aggregates 

 R&D Stock Citation Stock 

Citation St./ 

Patent St.  R&D Stock Citation Stock 

Citation St./ 

Patent St. 

Technological Aggregates 

(within sector) 

       

R&D Stock . 0.975 0.759  0,582 0,579 0,489 

Citation Stock  . 0.817  0,577 0,592 0,509 

Citation St./Patent St.   .  0,469 0,493 0,527 
        

Tech. and Geographic Aggregates        

R&D Stock     . 0,972 0,881 

Citation Stock      . 0,919 

Citation St./Patent St.       . 
        

 



 

Table 7 

GMM regressions  

Dependent variable: log (𝑽𝑽𝒊𝒊𝒊𝒊/𝑨𝑨𝒊𝒊𝒊𝒊) 
 

Sectoral Mobility of Scientific Personnel 
 

Geographic Mobility of Scientific Personnel 

Spillover pools are aggregated within sector, 

using technological proximity 

Spillover pools are aggregated using 

technological and geographic proximity 

 
(1)  

SP = 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷 ,𝑖𝑖𝑡𝑡𝑆𝑆  

(2)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝑆𝑆  

(3)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝑆𝑆  
 

(4)  

SP = 𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷 ,𝑖𝑖𝑡𝑡𝐺𝐺  

(5)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝐺𝐺  

(6)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝐺𝐺  
        

R&D / Assets 0.04040        

(9.83)        

0.04016        

(9.80)        

0.04059        

(9.97)        

 0.04326 

(8.59) 

0.04493 

(8.69) 

0.04382 

(8.20) 

Citations / Patents -0.00161        

(-2.26)        

-0.00153        

(-2.16)        

-0.00157        

(-2.18)        

 -0.00076 

(-1.04) 

-0.00058 

(-0.81) 

-0.00064 

(-0.90) 

Spillover Pool 0.06068        

(2.94)        

0.07903        

(3.11)        

0.17275        

(3.83)        

 0.15200 

(3.63) 

0.19546 

(3.64) 

0.22194 

(4.09) 

Scientific Mobility  

× Spillover Pool 

0.02849        

(3.32)        

0.03428        

(3.26)        

0.07154        

(3.85)        

 0.06550 

(3.43) 

0.08269 

(3.65) 

0.09473 

(4.13) 

Scientific Mobility -0.19580        

(-3.27)        

-0.28686        

(-3.24)        

-0.30977        

(-3.85)        

 -0.49921 

(-3.45) 

-0.75380 

(-3.66) 

-0.40784 

(-4.18) 

log (Sales) -0.00171        

(-0.83)        

-0.00281        

(-1.37)        

-0.00351        

(-1.74)        

 -0.00228 

(-0.91) 

-0.00290 

(-1.61) 

-0.00244 

(-0.99) 

log (Industry Sales) -0.00744        

(-3.06)        

-0.00790        

(-3.26)        

-0.00823        

(-3.39)        

 -0.00529 

(-1.84) 

-0.00495 

(-1.71) 

-0.00503 

(-1.74) 

Industry Sales Growth 0.07370        

(4.24)        

0.07183        

(4.18)        

0.07069        

(4.11)        

 0.05433 

(2.74) 

0.05496 

(2.77) 

0.05315 

(2.62) 

log (q) | t - 1 0.84676        

(65.4)        

0.84870        

(65.3)        

0.85045        

(64.9)        

 0.85745 

(65.27) 

0.85930 

(65.74) 

0.85859 

(66.32) 

GDP Growth -0.05984        

(-1.10)        

-0.14815        

(-1.84)        

-0.16383        

(-2.35)        

 -0.26098 

(-2.39) 

-0.48159 

(-2.99) 

-0.16832 

(-2.41) 

Sargan 185.01 (165) 

(p = 0.136) 

186.17 (165) 

(p = 0.124) 

181.94 (165) 

(p = 0.174) 

 151.00 (134) 

(p = 0.150) 

152.04 (134) 

(p = 0.136) 

154.50 (134) 

(p = 0.109) 

Arellano-Bond (𝑚𝑚1) -2.38  

(p = 0.018) 

-2.46  

(p = 0.010) 

-2.55  

(p = 0.011) 

 -2.50 

(p = 0.012) 

-2.51 

(p = 0.012) 

-2.49 

(p = 0.013) 

Arellano-Bond (𝑚𝑚2) -0.079  

(p = 0.484) 

-0.80  

(p = 0.424) 

-0.801  

(p = 0.423) 

 -0.725 

(p = 0.468) 

-0.619 

(p = 0.536) 

-0.465 

(p = 0.642) 

        

Sample size 12802 12802 12802  11442 11442 11442 

 

NOTES:   

 

(1) Standard errors are robust to arbitrary forms of heteroscedasticity, t-statistics are in parentheses. 

(2) All columns include year dummies, dummies for sectors, and a dummy for having zero R&D expenditures (flow) that year 

(coefficients not reported). Columns 4 through 6 additionally include state dummies. 

(3) Instruments used for firm-level variables are combinations of lagged differences dated t – 2 through t – 10;  

(4) Instruments for the mobility rate (in all columns) are the logarithm of the average age of scientists in the industry sector, 

logarithms of the fraction of scientists that are male, and the fraction of those that are married and do not live alone. Columns 4 

through 6 additionally use the coding for NCC enforcement by Garmaise (2011) and Bird and Knopf (2010) as an instrument.   

(5) Instruments for log 𝑞𝑞𝑖𝑖,𝑡𝑡−1  (in all columns) are lagged differences of log𝑞𝑞𝑖𝑖𝑡𝑡 , dated t – 3 and t – 4; 

(6) Degrees of freedom for the Sargan test of overidentifying restrictions is given in parenthesis. 

 

 



 

 

Table 8 

Labor mobility, additional calculations (using estimates in Table 7) 

 

Sectoral Mobility of Scientific Personnel 
 

Geographic Mobility of Scientific Personnel 

Spillover pools are aggregated within sector, 

using technological proximity 

Spillover pools are aggregated using 

technological and geographic proximity 

 

(A) Percentage change in market value as a result of a percentage point increase in the mobility rate  

 SP =𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝑆𝑆  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝑆𝑆  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝑆𝑆   SP =𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝐺𝐺  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝐺𝐺  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝐺𝐺  

Positive effect (interaction term) 1.978 % 3.001 % 3.110 %  4.161 % 6.514 % 3.196 % 

Negative effect (mobility term) -1.939 % -2.840 % -3.067 %  -4.497 % -6.791 % -3.674 % 

Net effect 0.039 % 0.161 % 0.043 %  -0.336 % -0.277 % -0.478 % 

        

 

(B) Percentage of the overall spillover effect, as mobility rate changes… 

 SP =𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝑆𝑆  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝑆𝑆  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝑆𝑆   SP =𝑆𝑆𝑆𝑆𝑅𝑅&𝐷𝐷,𝑖𝑖𝑡𝑡𝐺𝐺  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑖𝑖𝑡𝑡𝐺𝐺  SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆,𝑖𝑖𝑡𝑡𝐺𝐺  

…by one standard deviation 17,66 % 16,54 % 15,91 %  13,81 % 13,59 % 13,70 % 

…from minimum to mean 40,77 % 38,87 % 37,78 %  42,73 % 42,28 % 42,50 % 

        

NOTE: Positive and negative effects may not add to the net effect exactly, due to rounding. 

 

 

 

 



Table 9 

GMM regressions 

Dependent variable: log (𝑽𝑽𝒊𝒊𝒊𝒊/𝑨𝑨𝒊𝒊𝒊𝒊) 
 

Sectoral Mobility of Scientific Personnel 
 

Geographic Mobility of Scientific Personnel 

Spillover pools are aggregated within sector, 

using technological proximity 

Spillover pools are aggregated using technological 

and geographic proximity 

 
(1)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝑆𝑆  

(2)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝑆𝑆  

(3)  

SP = 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝑆𝑆  
 

(4)  

SP =𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝐺𝐺  

(5)  

SP =𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝐺𝐺  

(6)  

SP =𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ,𝑖𝑖𝑡𝑡𝐺𝐺  

        

R&D / Assets 0.03845 

(9.59) 

0.03676 

(9.10) 

0.05593 

(6.19) 

 0.04199 

(8.14) 

0.04243 

(8.26) 

0.06931  

(2.73) 

Citations / Patents -0.00189 

(-2.59) 

-0.00199 

(-2.64) 

-0.00174  

(-2.23) 

 -0.00096 

(-1.00) 

-0.00097 

(-1.01) 

-0.00116  

(-1.41) 

Spillover Pool 0.09777 

(3.45) 

0.09614 

(2.67) 

0.13377 

(3.78)  
0.12004 

(2.23) 

0.12591 

(2.33) 

0.13211  

(2.26) 

     Scientific Mobility  

 × Spillover Pool 

0.04241 

(3.64) 

0.04163 

(4.23) 

0.05784  

(3.95)  

0.05163 

(2.25) 

0.05427 

(2.36) 

0.05476  

(2.23) 

     Scientific Mobility  

 × Competition  

-0.05688 

(-2.40) 

-0.06485 

(-2.64) 

-0.07450  

(-2.90)  
-0.09691 

(-3.54) 

-0.09674 

(-3.51) 

-0.07811  

(-2.62) 

     Scientific Mobility  

 × (R&D / Assets) 

  0.00646  

(1.55)  
  0.01026  

(-1.01) 

Scientific Mobility -0.35630 

(-3.64) 

-0.34816 

(-3.44) 

-0.49249 

(-3.99)  
-0.47367 

(-2.27) 

-0.49568 

(-2.37) 

-0.50402  

(-2.25) 

Aggregate Mobility  -0.04031 

(-1.59) 

-0.02964  

(-1.10)  
 -0.04210 

(-1.24) 

-0.03087  

(-0.81) 

log (Sales) -0.00422 

(2.00) 

-0.00361 

(-1.71) 

-0.00249  

(-1.15) 

 -0.00215 

(-0.82) 

-0.00201 

(-0.76) 

-0.00303  

(-1.09) 

log (Industry Sales) -0.00722 

(-2.84) 

-0.00750 

(-2.94) 

-0.00787  

(-2.94) 

 -0.00521 

(-1.72) 

-0.00538 

(-1.77) 

-0.00660  

(-2.01) 

Industry Sales Growth -0.14592 

(-2.08) 

0.07149 

(3.96) 

0.07906  

(4.11) 

 0.06068 

(3.08) 

0.06011 

(3.04) 

0.07155  

(3.25) 

log (q) | t - 1 0.85021 

(62.87) 

0.84253 

(65.05) 

0.83310 

(63.95) 

 0.84060 

(63.26) 

0.84160 

(62.07) 

0.83479 

(55.87) 

GDP Growth -0.19292 

(-2.17) 

-0.22240 

(-2.21) 

-0.34124  

(-2.81) 

 -0.24576 

(-1.51) 

-0.28903 

(-1.77) 

-0.28734  

(-1.63) 

Sargan 182.32 (164) 

(p = 0.156) 

184.94 (165) 

(p = 0.137) 

179.03 (164) 

(p = 0.200) 

 144.55 (131) 

(p = 0.197) 

144.66 (131) 

(p = 0.196) 

135.01 (121) 

(p = 0.181) 

Arellano-Bond (𝑚𝑚1) -2.22  

(p = 0.026) 

-2.26  

(p = 0.024) 

-1.78  

(p = 0.075) 

 -2.37 

(p = 0.018) 

-2.38 

(p = 0.017) 

-1.87 

(p = 0.061) 

Arellano-Bond (𝑚𝑚2) -1.200  

(p = 0.230) 

-0.608  

(p = 0.543) 

-0.128  

(p = 0.898) 

 -0.228 

(p = 0.820) 

-0.248 

(p = 0.804) 

-0.002 

(p = 0.998) 
        

Sample size 12283 12283 11052  11002 11002 9809 

 

NOTES:   

(1) Standard errors are robust to arbitrary forms of heteroscedasticity, t-statistics are in parentheses. 

(2) All columns include year dummies, dummies for sectors, and a dummy for having zero R&D expenditures (flow) that year 

(coefficients not reported). Columns 4 through 6 additionally include state dummies. 

(3) Instruments used for firm-level variables are combinations of lagged differences dated t – 2 through t – 10;  

(4) Instruments for the mobility rate (in all columns) are the logarithm of the average age of scientists in the industry sector, logarithms 

of the fraction of scientists that are male, and the fraction of those that are married and do not live alone. Columns 4 through 6 

additionally use the coding for NCC enforcement by Garmaise (2011) and Bird and Knopf (2010) as an instrument.   

(5) Instruments for log 𝑞𝑞𝑖𝑖,𝑡𝑡−1 (in all columns) are lagged differences of log𝑞𝑞𝑖𝑖𝑡𝑡 , dated t – 3 and t – 4; 

(6) Degrees of freedom for the Sargan test of overidentifying restrictions is given in parenthesis. 

 



Table A1 

GMM regressions – Specification search 

Dependent variable: log (q).  

Mobility: Sectoral Mobility. Spillover pool: 𝑺𝑺𝑺𝑺𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺,𝒊𝒊𝒊𝒊𝑺𝑺  

 

(1) 

GMM  

Levels 

(2) 

SYSTEM 

GMM 

(3) 

GMM 

Levels 

(4) 

GMM  

Levels 

(5) 

GMM  

Levels 

(6) 

GMM  

Levels 

(7) 

GMM  

Levels 

(8) 

GMM  

Levels 

R&D / Assets 
0.05426        

(5.03)        

0.03473 

(9.07)                

0.03565        

(4.92)        

0.03909        

(5.42)        

0.02419        

(2.75)        

0.03418        

(9.03)        

0.04016        

(9.80)        

0.03888        

(9.49)        

Citations / Patents 
0.00437        

(4.10)       

0.00333        

(4.73)        

0.00193        

(1.28)        

0.00162        

(1.08)        

-0.00251        

(-1.48)        

-0.00015        

(-0.26)        

-0.00153        

(-2.16)        

-0.00154        

(-2.18)        

Spillover Pool 
-0.03720        

(-1.27)        

-0.00961        

(-0.63)        

0.04089        

(1.90)        

0.09037        

(2.79)        

0.07410        

(2.23)        

0.09735        

(4.12)        

0.07903        

(3.11)        

0.08360        

(3.12)        

Sectoral Mobility  

 × Spillover Pool 

0.02621        

(3.60)        

0.01430        

(4.47)        

0.02413 

(3.85)                

0.04583 

(3.82)                

0.04739        

(3.66)        

0.04218 

(4.34)                

0.03428        

(3.26)        

0.03225        

(2.96)        

Sectoral Mobility 
-0.17210        

(-2.89)        

-0.09883        

(-3.68)        

-0.17624 

(-3.36)                

-0.35793        

(-3.50)        

-0.37400 

(-3.40)                

-0.35142        

(-4.28)        

-0.28686        

(-3.24)        

-0.28568        

(-2.77)        
         

log (Sales) 
0.02190        

(1.94)        

-0.01182        

(-1.74)        

-0.01114 

(-1.31)                

-0.01280        

(-1.52)        

-0.00207        

(-0.29)        

-0.00275        

(-1.37)        

-0.00281        

(-1.37)        

-0.00279        

(-1.37)        

log (Industry Sales) 
0.05175        

(3.12)        

-0.02466 

(-2.88)                

-0.02385 

(-2.26)                

-0.02664        

(-2.52)        

-0.03008 

(-3.24)                

-0.00769        

(-3.24)        

-0.00790        

(-3.26)        

-0.00798        

(-3.30)        

Industry Sales Growth 
0.25878        

(6.25)        

0.16487        

(8.01)        

0.21040 

(5.63)                

0.21756        

(5.83)        

0.18442        

(5.06)        

0.07260        

(4.31)        

0.07183        

(4.18)        

0.06973        

(4.14)        

         

log (q) | pre-sample 
 

 
   

0.40576        

(23.4)        
   

log (q) | t - 1 
 

 
    

0.84871        

(73.0)        

0.84870        

(65.3)        

0.85095        

(65.4)        

GDP Growth 
 

 
     

-0.14815 

(-1.84)                

-0.13475        

(-1.61)        

     Sectoral Mobility × GDP Gr. 
 

 
      

0.00591        

(1.28)        

     Spillover Pool × GDP Gr. 
 

 
      

-0.00312        

(-4.80)        
         

Sargan 
231.88 (165) 

(p = 0.000) 

389.98 (292) 

(p = 0.000) 

154.97 (152) 

(p = 0.418) 

165.60 (154) 

(p = 0.247) 

150.58 (140) 

(p = 0.256) 

199.32 (179) 

(p = 0.142) 

186.17 (165) 

(p=0.124) 

184.95 (165) 

(p = 0.137) 

Arellano-Bond (𝑚𝑚1) 
17.11  

(p = 0.000) 

-5.01  

(p = 0.000) 

20.06  

(p = 0.000) 

20.05  

(p = 0.000) 

18.92 

(p = 0.000) 

-2.74 

(p = 0.006) 

-2.46 

(p = 0.014) 

-2.50 

(p = 0.013) 

Arellano-Bond (𝑚𝑚2) 
15.47  

(p = 0.000)  

-4.38  

(p = 0.000)  

18.04  

(p = 0.000) 

18.04  

(p = 0.000) 

17.15 

(p = 0.000) 

-1.10 

(p = 0.271) 

-0.80 

(p = 0.424) 

-0.97 

(p = 0.334) 

Sample size 12802 12802 12802 12802 12802 12802 12802 12802 

 



 

NOTES:   

 

(1) All equations include a complete set of year dummies, except columns 7 and 8, where one dummy is suppressed to avoid perfect multicollinearity.  All 

columns include dummies for industry sectors, and a dummy for having zero R&D expenditures that year (coefficients not reported). Standard errors are 

robust to arbitrary form of heteroscedasticity, t-statistics are in parenthesis. 

(2) Instruments used for firm-level variables are,   

 Column 1: lagged levels dated t – 2 through t – 8;  

 Column 2: lagged levels dated t – 3 through t – 8 in the equation for differences, and lagged differences of the same dates in the levels equation. 

 Columns 3-8: combinations lagged differences dated t – 2 through t – 10. 

(3) Instruments for the mobility rate (in columns 4-8) are the logarithm of the average age of scientists in the industry sector, logarithms of the fraction of 

scientists that are male, and the fraction of those that are married and do not live alone.  

(4) Instruments for log𝑞𝑞𝑖𝑖 ,𝑡𝑡−1 (in columns 6-8) are lagged differences of log 𝑞𝑞𝑖𝑖𝑡𝑡 , dated t – 3 and t – 4;  

(5) Degrees of freedom for the Sargan test of overidentifying restrictions is given in parenthesis. 
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