MPRA

Munich Personal RePEc Archive

Estimating Gaussian Mixture

Autoregressive model with Sequential
Monte Carlo algorithm: A parallel GPU
implementation

Yin, Ming

University of Helsinki, Helsinki Center of Economic Research
(HECER)

December 2015

Online at https://mpra.ub.uni-muenchen.de/88111/
MPRA Paper No. 88111, posted 25 Jul 2018 16:28 UTC

Estimating Gaussian Mixture Autoregressive
model with Sequential Monte Carlo algorithm:
A parallel GPU implementation

Ming Yin
University of Helsinki

Abstract

In this paper, we propose using Bayesian sequential Monte Carlo
(SMC) algorithm to estimate the univariate Gaussian mixture autore-
gressive (GMAR) model. The prominent benefit of the Bayesian ap-
proach is that the stationarity restriction required by the GAMR model
can be straightforwardly imposed via prior distribution. In addition,
compared to MCMC (Markov Chain Monte Carlo) and other simula-
tion based algorithms, the SMC is robust to multimodal posteriors,
and capable of providing fast on-line estimation when new data is
available. Furthermore, it has a linear computational complexity and
is ready for parallelism. To demostrate the SMC, an empirical appli-
cation with US GDP growth data is considered. After estimation, we
conduct the Bayesian model selection to evaluate the empirical evi-
dence for different GMAR models. To facilitate the realization of this
compute-intensive estimation, we parallelize the SMC algorithm on a
nVidia CUDA compatible Graphical Process Unit (GPU) card.

Keywords: Nonlinear Time Series, Gaussian mixture autore-

gressive, Sequential Monte Carlo, Particle Filter, Bayesian Inference,
GPGPU, Parallel Computing.

JEL Classification: C11, C32, C52, C88

1 Introduction

Mixture autoregressive model is a recent development in nonlinear time se-
ries, it first appeared in Martin (1992) as multipredictor autoregressive time
series (MATS) model. Later, Le, Martin and Raftery (1996) introduced the
Gaussian mixture transition distribution (GMTD) model. Later, Le, Martin
and Raftery (1996) introduced the Gaussian mixture transition distribution
(GMTD) model. Wong and Li (2000, 2001) further generalized the GMTD
model to the mixture autoregressive (MAR, hereafter) model. Glasbey (2001)
also considered a first order mixture autoregressive model and applied it to
solar radiation data. Lanne and Saikkonen (2003), Gourieroux and Robert
(2006), Dueker, Sola and Spagnolo (2007) discussed similar models and their
applications. Recently, Kalliovirta, Meitz, and Saikkonen (2015) extended
the model of Glasbey (2001) to general p-th order, and by choosing mixing
weights of the MAR model based on Gaussian assumption, they formed the
Gaussian mixture autoregressive (GMAR, hereafter) model.

The MAR model provides a flexible and intuitive framework for conduct-
ing statistical inference. In particular, its attractiveness comes from three
aspects: first, the MAR allows the possibility to obtain a stationary pro-
cess by combining stationary AR processes with nonstationary AR processes.
Second, given past history, the conditional distribution of underlying time
series can be multimodal. Third, the MAR is capable of capturing the con-
ditional heteroscedasticity, which is common in many nonlinear time series.
These features make the MAR an ideal candidate for modeling nonlinear
time series. On the other hand, as a special form of the MAR model, the
GMAR model offering several appealing properties: it is defined in such a
way that guarantees the stationarity and ergodicity conditions. In addition,
for a p-th order model, the p + 1 dimensional stationary distribution can
be expressed explicitly by a mixture of Gaussian distributions with constant
mixing weights.

Our major motivation using Bayesian method stems from the formulation
of the GMAR model, which defines the mixing weights to follow a Gaussian
AR process and imposes stationarity restrictions in its definition. Therefore,
the Bayesian approach we propose here provides a natural treatment for the
GMAR model as the stationarity restrictions required by the GAMR model
can be straightforwardly imposed via prior distribution. In the statistics liter-

ature, mixture models can be estimated by various Bayesian approaches. The
Markov Chain Monte Carlo (MCMC) algorithm is one of the most commonly
used algorithms. In theory, it is able to provide a complete picture of the
posterior distribution, but the biggest challenge in practice comes from the
complexity of the posterior distribution 7,(6) , which tends to be highly mul-
timodal and asymmetric. Standard MCMC algorithms can be easily trapped
in local suboptimal modes or other subspace (see Celeux et al. (2000) and
Jasra et al. (2005)), and therefore do not converge in this scenario.

In this paper, we consider sequential Monte Carlo (SMC) algorithm as
an alternative solution to estimate the GMAR model. In contrary to afore-
mentioned algorithms, the SMC has several advantages: first, as a sequential
importance sampling based algorithm, it is robust to multimodal posteriors
and can be used in high dimension scenarios. In addition, the SMC is ca-
pable of producing fast on-line updating of the estimation when new data
is available. For general state space time series models, it can be used not
only for parameter (and state) estimation (filtering) but also for smoothing
and forecasting. Furthermore, compared to MCMC algorithms, SMC signifi-
cantly simplified the tuning process. Finally, the SMC admits a competitive
linear computational complexity of! O(N) at each time and the algorithm is
ready for parallelism.

To the best of our knowledge, the literature in nonlinear time series econo-
metrics using SMC to estimate mixture models is scarce. A close work is
Carvalho, Lopes, Polson and Taddy (2010) which develops a particle learn-
ing algorithm to estimate general Dirichlet process mixture models. However,
their framework is an auxiliary particle filter (APF, see Pitt and Shephard
(1999)) variation of the early work by MacEachern and Muller (1998).

The rest of this paper is organized as follows: in next section we briefly
review the MAR model and the GMAR model. In the third section, we
introduce the SMC algorithm in general and describe our estimation proce-
dures. The fourth section is dedicated to an empirical example where we
use SMC algorithm to estimate the GMAR model of US GDP growth rate.
We provide three technical appendices: the first one discusses the details of
resampling procedure and the second one discusses the general idea of paral-
lelization based on CUDA platform, the last appendix provides a flowchart
of our SMC algorithm.

LO(-) is the Bachmann—Landau notation for complexities. In particular, O(N) indicates
linear complexity.

2 Model

We consider an M-component mixture autoregressive model for the time
series of interest ;. The model can be described by the conditional density
of y; given its past information:

M 1 B
ful Fia) =) oma—0 (%) , (1)

where .%;_; denotes the o-algebra generated by {y;—;, 7 > 0}, and a,,; (m =
M

1,..., M) are positive time varying mixing weights that satisfy > a,,; =1

m=1
for all t. ¢ (-) denotes the probability density function of a standard nor-
mal random variable, and 02, (m = 1,..., M) is the variance of the mth

component of the mixture. The quantity s, in (1) is given by:

Hmt = Pmo + Z Prmyg,iYt—i » (m = 17 ceey M) (2)
i=1
where ¢,, o is a constant term and ¢, 1, - - , ©m,p are unknown autoregressive
coefficients. It is worth mentioning that if the mixture weights are assumed
to be time invariant (i.e., ¢ =), then (1) becomes the MAR model of
Wong and Li (2000).
From (1) and (2), it can be seen that the conditional expectation of y; is
the weighted average of fi,,:

yt!/t 1 Zamtumt—zamt<¢mo+z¢mzyt z)- (3)

Similarly, the conditional variance of 3; can be expressed as:

2
VC”" yt|/t 1 Zamtg +Z@mt(#mt Zantﬂnt> . (4)

This equals the weighted average of o2, plus an extra term. The extra term
equals 0 when fi+ = - -+ = 4. Therefore, the conditional variance in (4) is
the smallest in this case. Otherwise, the more p,,, differs from each other,

4

the larger is the conditional variance.

The GMAR model proposed by Kalliovirta, Meitz, and Saikkonen (2015)
is based on a particular choice of the time varying mixing weights o, ; (m =
1,...,M)in (1). To provide a formula for the mixing weights, we first define
an M-component auxiliary Gaussian AR(p) processes:

p
Ut = Pm,0 + Z OmiVmi—i + Omer, (m=1,..., M) (5)
i=1
where ¢; is a standard normal random variable which is independent of
{yi—;,j > 0}, and the autoregressive coefficients ¢, = (@m1, -, Pmyp) are
assumed to satisfy the stationarity condition:

p
om(z) =1= pmiz' #0 for|z<1. (m=1,..,M) (6)
i=1
We proceed by defining a normally distributed random vector v,,: = (U, -+, Umt—pt1)
with density (cf. (5)):

Ny (Vin,t|Um) = (27r)_q/Qth(l"m,p)_l/2

1
Xexp {_§ (Vm,t - ,umlp)/ F;jp (Vm,t - Mmlp)}) (7)

!/

where 9, = (@m0, Ym,02), and p,1, is the mean vector of v,,; (m =

P
1,..., M). Specifically, pi,, = 2% 0, (1) = 1= o, and 1, = (1,--- | 1)
i=1

om (1) px1-
The covariance matrix I'y,,, (m = 1,...,M) in (7) is a p x p Toeplitz
matrix with v,,0 = Cov(vpt, V) along the main diagonal and ~,,; =
Cov(Vpm ity Umi—i) (1 = 1,...,p — 1) on the diagonal above and below the
main diagonal.
Using (7), the time varying mixing weights a,,; in (1) can be expressed
as

am T (Yt—l |19m)
T : (8)

Z—:l CYnnp (thl ’ﬁn>

QOmt =

where y; 1 = (yi—1,* ,Yi—p)", and o, € (0,1) (m = 1,2,..., M) are un-
M
known time invariant mixing weights that satisfy > «,, = 1.

m=1
Equations (1), (5) and (8) define a GMAR(p, M) model. As shown
in Theorem 1 and its proof of Kalliovirta, Meitz and Saikkonen (2015),
Vi = (Y, - ,Y—pt1)" is an ergodic Markov chain on RP with a stationary
distribution characterized by the density:

f(y:]0) = Zamnp (yelIm) , (9)

where 0 = (Y1, , O, 1, apr_1).

The above equation states the fact that the stationary distribution of y;, is
a mixture of M multivariate normal distributions with time invariant mixing
weights «,,. Moreover, the stationary distribution of the (p + 1)-dimensional
random vector (y,y;) is also a Gaussian mixture with density

M
Fnyial0) = amnpir (e, ye1|0n) - (10)
m=1
Obviously, (9) and (10) are of the same parametric form, but (10) is (p+ 1)-
dimensional. Consequently, the marginal distributions of the elements of the
vector (y;,y;—1) belong to the same family.

Under the stationarity assumption in (6), the time invariant mixing weight
a,, can be interpreted as the unconditional probability of the random vec-
tor y; being generated from the mth component of the Gaussian mixture
described in (9). Likewise, «,, represents the unconditional probability of
y belng generated from the mth component of Gaussian mixture density

Z amny (y|9y,), where ny () is a normal density with mean p,, and vari-

Ance Vim,0-

To provider further intuition, we consider an alternative expression of the
GMAR model. Let P,_1(-) denote the conditional probability of an event
given past information .%;_;. For each time ¢, let s, = (s41,---,s¢.m) be an
unobserved M-dimensional random vector such that s; and ¢, are indepen-
dent conditional on .%;_;. The conditional probability (condition on .%#;_;)
that an element of the vector s; takes the value one while the other elements
equal zero is given by

Pt_1(8t71207"',Sum:l,"',St’M:O):Oémﬂg. (m:1,,M) (11)

Thus, the mixing weights o, , can be interpreted as the probabilities that
determine which of the M components generates the observation y;. As a
result, the GMAR model can be rewritten as:

M M P
Yr = Z Stam (Vmt + Omé€t) = Z St,m (gomo + Z Pm,iVmt—i + amet) . (12)
m=1 m=1 =1

It can be seen from (8), (11) and (12) that «,, in (8) also represents
the unconditional probability of y; being generated from the mth AR com-
ponent in (12), where the time varying mixing weight «,,; represents the
corresponding conditional probability o,,,;. In particular, a,,; depends on
the numerator of (8) which is a product of o, and n, (y¢—1|9,,). The latter
part of the product, n, (y;—1|9m), can be interpreted as the likelihood of the
mth AR component in (12). The larger the likelihood is, the more likely y;
is generated from the mth AR component of (12) . However, the conditional
probability o, is also affected by v, which is the weight of n, (y;—1]9;,) in
(9). In other words, o, can offset a large value of n, (y;—1|9,,) making o, ;
small.

3 Bayesian Inference of the GMAR model

3.1 Framework

The posterior distribution 7(6|y) is proportional to the product of the likeli-
hood function and the prior distribution:

m(0ly) o< m(6)f(y]6), (13)

where 6 is the vector containing unknown parameters (see the discussion
following (9)), 7(#) is the prior distribution of the parameters 6, and f(y|0)
is the likelihood function.

As discussed in Kalliovirta, Meitz, and Saikkonen (2015), the stationary
distribution of the GMAR process (9) is known under the assumption that

the autoregressive coefficients ¢, = (Pm1, -, Pmyp) (M =1,..., M) in (5)
satisfied the stationarity condition (6). To the best of our knowledge, the
GMAR model is the only mixture model that can admit the exact station-
ary distribution. As an advantage of Bayesian methods, such stationarity
restrictions can be straightforwardly imposed via prior distribution.

As long as the stationary condition (6) holds, we can make use of initial
values to construct the exact likelihood function. In particular, given ob-
served data yi1,- -+ ,yr, the likelihood function of the GMAR model takes the
following form:

f(ylo) = (Z O <YO|19m)) [Tz, (14)

where

L (9) _ i/[: o (9)(271‘0‘2)_1/261’]) . (yt - #m,t(ﬂm))2
t P m,t m 20_7271 ’
Notice that the time-varying mixing weight «,,(#) and the conditional ex-
pectation fiy, (Vy), (9, C 0) are both functions of the parameters (cf. (5)
and (8)).
The posterior distribution of the parameters 7(6|y) is obtained by com-
bining (14) and the prior distribution 7(6).

3.2 SMC estimation

In the Bayesian context, summary statistics (e.g. mean, variance, etc.) of the
posterior distribution serves as an estimate of the parameters. However, as
the posterior distribution (13) is analytically intractable, we estimate it using
the SMC algorithm. The summaries of the posterior distribution can be then
calculated by Monte Carlo methods. In this section we briefly discuss how
the SMC algorithm can be effectively implemented to estimate the posterior
distribution of the parameters of the GMAR model.

The SMC is an iterative algorithm that produces a sequence of particle
system. We define the collection of N duplets (6, w!) (i € N) in the space
of interest ©; x R as a particle system {0}, wi},.n, t € L={1,---,L}
(L < T). The variable 6! (i € N) refers to a particle and it is associated

with a corresponding weight denoted by w! (i € N). The particle system
{0;,w;}, . targets a given distribution 7, in such a way that

S wi(8) = En () (15)

almost surely as N — oo, for any m,—integrable function).

Since the target distributions considered in this paper are defined on the
common space O, = O, the target distribution 7, is the posterior density of
6 given data up to time ¢ (t € £): () = w(0|ys). In particular, let integers
7; (t € L) denote the dates of observations, such that o =0 <7 < -+ <
7, = T. Then, from (14), the kernel of the posterior can be expressed as

7(0lyn) o 7(0) T[St (0)(2702) H2ep (— (G — i (Or))) . (16)

202
n=1m=1 m

wheret € L={1,--- ,L} (L<T).

We now briefly discuss the SMC algorithm which uses a sequence of par-
ticle system {0, w;},_y to estimate the target distribution. We initialize the
algorithm by sampling N particles {6} },_y from the prior distribution ().
Then following Chopin (2004), we drive our particle system {6}, w;},_y to-
ward the target distribution 77 (0) by repeating three steps of Correction,
Resampling and Mutation defined below:

1. Correction: The correction step is used to add observations into the
particle system to update the importance weights that reflect the den-
sity of the particles in the current iteration. Due to the fact that for the
GMAR model, target distributions are defined on the common space
(©; = ©), the importance weights are given by w(0) = m(6)/m:—1(0).
In particular, from (14), the kernel of the weight function can be ex-
pressed as

Tt M i
~i i 1 Yn = Hmon .
woy = 1] Zam%—iqs(—ai) GeN) an)
n=r¢_1+1m=1 m m

A
m,n?

where w!(f) are unnormalized particle weights calculated using a
Opps M (i € N). These weights are then normalized as

7
N ~
21':1 wy

9

, (i€N). (18)

wy =

2. Resampling: The resampling step combines the normalized particle
weights (18) and particles {6;_, } _, ina collection {6;_;,wi},_ . Then,
the residual resampling method is applied to simulate {9@_1} . The

1eEN
residual resampling first removes particles with low weights, then repli-
cates particles with high weights multiple times and finally assigns the
same weights to all resampled particles. After resampling, the new

particle system {0};1, 1} approximates m;(6).
iEN

3. Mutation: The simulated particles {é§_1} are mutated according
1EN
to a random-walk Metropolis-Hasting kernel 6! ~ p(0;|y,, 2Cov(6;_1))
(i € N), where the p.d.f admits 7;(f) as an invariance density.

For more elaborate discussion of this algorithm we refer to Del Moral, Doucet
and Jasra (2006), which also provides the convergence results for the algo-
rithm. It is worth mentioning that in the aforementioned algorithm the
particles are mutated after the resampling step. This is for the concern of
accuracy of the particle approximation {6}, 1},_y of m(6), in terms of fore-
casting. Note that, the accuracy can be readily improved by increasing the
number of Markov Chain Monte Carlo (MCMC) iterations in the mutation
phase.

A practical issue of the algorithm is that the discrepancy between the
sequential importance distribution and the target distribution tends to in-
crease with ¢, which leads to a degeneracy of the particle system. Although,
resampling 7" times (i.e., ; = 1,--- , 7, = T') can keep the successive poste-
rior distributions as close to each other as possible, this approach is usually
not ideal as the resampling increases the variance of the estimates and re-
duce the number of distinct particles (see Chopin (2004) and Del Moral,
Doucet and Jasra (2012)). Therefore, we resample only when necessary for
preventing the degeneracy of the particles. More specifically, we adopt the
adaptive procedure of Durham and Geweke (2014) to produce 71,--- 7. In
particular, at each cycle t € L={1,--- L} (L < T), conditional on the
previous cycles, the posterior density 7(6|y,) in (16) is obtained by intro-
ducing one new data observation at a time into the system, until a specific
stopping criteria is met. We use the effective sample size (ESS, hereafter)
proposed by Liu and Chen(1998) to monitor the degeneracy of the particles.

10

—1
ESS @ [SX, (wi(6-,))°] € [1,N]. The smaller the ESS is, the higher

is the degeneracy, and we use N/2 as the stopping threshold (see Del Moral,
Doucet and Jasra (2012)). The convergence results presented in Del Moral,
Doucet and Jasra (2006) suggest that (15) holds almost surely for the particle
system generated by this adaptive algorithm.

Regarding the Mutation step, we use the random walk Metropolis-Hasting
algorithm. The covariance matrix of the proposal distribution is constructed
from the associated elements of the sample covariance matrix of the current
population of the particles Cov(#,_;,), wherer = 1,--- | R, and R is the max-
imum number of iteration. The covariance matrix is further multiplied by an
adaptive tuning parameter ¢, (0.1 < ¢ < 1), that used to keep the MH accep-
tance rate at 0.25 (see Lanne and Luoto (2015), Durham and Geweke (2014),
and Herbst and Schorfheide (2014)). In particular, c¢ is set to be ¢ + 0.01 if
the acceptance rate is greater than 0.25, and set to be ¢ — 0.01 otherwise.
This procedure is repeated independently for each particle 6! (i € N) until
the particles are clearly distinct. Following Durham and Geweke (2014), we
use relative numerical efficiency (RNE) as a measure of particle divergence
(also see Geweke(2005,276)). We use the autocovariance of the predictive
likelihood to calculate the RNE, and terminate the particle mutation when
the RNE value exceeds a certain threshold. We set the maximum number of
MCMC iteration in our algorithm at 200.

Below, is the summary of our SMC algorithm:

11

Algorithm 1 (pseudo-code): SMC for the GMAR model

1 Set number of particles«— N, mazimum number of iteration <— T

2 t<0

3 {68}, ~ N(Olpeo,08) //Initialize the particles

4 {witicy < 1/N //Initialize particle weights

5 while RNE condition not true

6 while ESS condition not true

7 t«t+1

8 {wit1 ey < {widicn - f(uelyi-1,0) //Updating weights
9 end (ESS)

10 {9;_1, 1}ieN «—{6;_,, wé}ieN //Resampling
11 {67} .cn ~ F(0,6,_1) //Propagate particles
12 {witien < f(yelyi1,0) //Weight particles
18 0! ~ p(0,]y:, 2Cov(0,_1)) //Mutation

1 end (RNE)

4 Empirical example

In this section, we estimate GMAR models for the U.S. Gross Domestic
Product (GDP) growth data using the SMC algorithm explained in previous
section. We first motivate the use of the GMAR model. Then we report
our posterior results for the GMAR models with different number of states
(M) and lags (p). Finally, we conduct Bayesian model selection to evaluate
empirical evidence for different GMAR models.

4.1 Background

One well-known characteristics of the U.S. business cycle is the asymmetry
of real output across different business cycles. Nelson and Plosser (1982),
Cochrane (1988) have documented the stylized fact of the U.S. economy that
the output growth is positively autocorrelated over short horizons and has

12

weak and possible insignificant negative autocorrelation over long horizons.
Cogley and Nason (1995) investigated the difficulties of using real business
cycle (RBC) models to replicate this recognized pattern and suggested that
standard RBC models have weak propagation mechanism and must rely on
exogenous sources of dynamics.

Among the extensive literature, Hamilton (1989) is a distinguished ex-
ample. In his seminal paper, Hamilton used a two-regime Markov-switching
autoregressive (MSAR, hereafter) model to study the U.S. real GNP growth,
and successfully captured the asymmetry in the business cycle and the esti-
mated shifts between the two phases accord well with the National Bureau of
Economic Research (NBER) chronology of U.S. business cycle. Hamilton’s
paper also stimulated the applications of Markov-switching class models in
describing the dynamics of many macroeconomic time series (See Hamilton
(2008)). Similar evidence obtained in Kim et al. (2005), and Camacho and
Perez-Quiros (2007), inter alia, further confirmed that the output growth
dynamics might be better captured by shifts between business cycle states
rather than by the traditional linear autoregressive models.

Despite its popularity, there are two major drawbacks in the Hamilton’s
model. On the one hand, it assumes that the Markov state variable governing
the switch of the regime is strictly exogenous, and thus independent of the
regression disturbance at all leads and lags. This exogenous assumption is
not generally realistic as the aggregate output may simultaneously affect the
current state of the business cycle. On the other hand, Hamilton’s model is
limited to the case of two regimes, even it can capture the short and steep pat-
tern of recessions relative to expansions, it ignores another important feature
of the business cycle which has been documented during the sample period:
Typically, recessions were entailed with high growth recovery phases that
bring output back to its per-recession level. Sichel (1994) and Boldin (1996)
extended Hamilton’s model to a three-regime Markov-switching model, and
applied it to capture a high growth recovery state. In line with these stud-
ies, Kim and Murray (2002) and Kim and Piger (2000) suggest dividing the
business cycle into three phases: recession, high growth and normal growth.

Inasmuch as these limitations of the MSAR model have been discovered,
we propose to use the GMAR model to study the US GDP data. One obvious
reason for this choice is that the GMAR can be viewed as a time inhomo-
geneous MSAR model?, which has endogenously determined state variables.

2See discussion in section 2.4 of Kalliovirta, Meitz, and Saikkonen (2015).

13

In the following parts of this section, we discuss empirical evidence that lend
support of using the GMAR model as a novel alternative model for the U.S.
GDP growth dynamics.

4.2 Estimation results

We estimate GMAR models with different number of states (M € {2,3})
and lags (p € {2,---,5}). Figure 2 depicts the data® used in this empir-
ical analysis, which consists of the quarterly U.S. GDP growth series from
1947:Q1 to 2015:Q1.

To present our empirical results, we start by checking the plots of the
marginal parameter posterior distributions. We first look at the GMAR
model with three states and two lags (M = 3,p = 2). Figures 3 to 8 plot
the scatter plot and histogram of simulated logoy, logosy, logos, respectively.
We observe two distinguish modes in both figures. Figure 9 to 14 provide
the scatterplot of (logoy,logos), (logoy,logos), (logos, logos) and their joint
histogram respectively. As a common pattern of these joint histograms, there
are at least four identifiable modes, two of them are quite obvious, whereas
the rest are not very clear. This observation is not surprising, because accord-
ing to Celeux, Hurn and Robert (2000), an M-component mixture model may
have up to M! possible (local) submodes*. We also observe similar bimodal-
ity pattern in the two-state, two-lag (M = 2, p = 2) GMAR model. Figures
16 to 19 display the histograms of logo, and logos. Figures 20, 21 provide
the scatterplot of (logoy,logos) and their joint histogram, where we see only
two distinguished modes, with almost no outlier. However, the observed bi-
modality in parameter ¢ warrant further examination as we notice all other
parameters in these models are unimodally distributed (see Figure 15 and
Figure 22). A potential issue here is the so-called label switching problem,
which is common in Bayesian estimation of mixture model. Tt arises when
sample from the unconstrained posterior distribution, since the label of the
mixture component is switching over time, it is therefore unknown that the
sampled parameter corresponds to which of the labeled subspace. Ignore this
label switching problem may result the unconstrained posterior distribution
to be sensitive to the permutation of the components of the mixture model.

To examine if the posterior distribution of o; (¢ € {1,---, M}) is invariant

3 Data are obtained from: https://research.stlouisfed.org/fred2/series/GDP/
4 For instance, when M = 3 there will be 3! = 6 local submodals.

14

to label switching, also to identify different states of the US GDP within the
sample period, following Frithwirth-Schnatte (2001), we consider to impose
a labeling constraint to the unconstrained posterior distribution. There are
two major criteria for the selection of this labeling constraint: first, it should
serve the purpose of identify different states of the economy. To this extend,
constraints like o; < --- < o are excluded as it can not be used to distin-
guish recessions from expansions. Second, as discussed in Friihwirth-Schnatte
(2001), the labeling constraint should take the geometry (for example, the
multimodality pattern) of the interested marginal parameter posterior dis-
tribution into account. In our case, as shown above, only parameters o;,
(i € {1,---, M}) exhibiting bimodality. If we use oy < --- < o) as our con-
straint, we are actually introduce a bimodal bias toward those unimodally
distributed parameters.

In particular, we opt to impose constraint p; < pug--- < pup; on the
unconstrained posterior distribution, where p,, is the unconditional mean
of state m, m € (1,---,M). We then permute all particles according to
this constraint, and calculate the SMC estimates. Table 1 reports the esti-
mates of four different GMAR models. As a general observation, for three-lag
GMAR models®, the estimate of the first two autoregressive components are
all positive and significantly different from zero, whereas the estimates for
the third autoregressive component are all negative and very close to zero.
This finding verifies the well known asymmetry of real output across different
business cycles (see Nelson and Plosser (1982), and Cochrane (1988)). Since
similar asymmetry is not observed in two-lag GMAR models, we believe that
lag length of three is the threshold of capturing this important feature of
the US economy. Table 1 also reveals another interesting finding: for three-
state GMAR models, after imposing the labeling constraint, we identify three
states with completely different unconditional means. We label the state with
negative mean as the recession state, and the state with small positive mean
(around 1) and bigger positive mean (around 3) as the normal and the fast
growth state, respectively. This finding conforms with the results reported
in Sichel (1994) and Boldin (1996), and reinforce the argument by Kim and
Piger (2000) and Kim and Murray (2002) that suggest to divide the business
cycle into three phases: recession, fast growth and normal growth.

To further examine the effects of the labeling constraint on the geometry

5Similar result can also be found in the estimates of GMAR models with more than
three lags.

15

of marginal posterior distribution of o, we consider a GMAR(3,3) model and
plot the corresponding histograms of o in Figure 23. The first row displays
the histograms of the unconstrained posterior distributions of o, where we can
see bimodality in both regimes. The second row displays the histograms of o
after imposing the labeling constraint. Surprisingly, the labeling constraint
almost completely removes the bimodality of o in the recession (left column)
and fast growth (right column) regimes. The resulting unique mode of o
in the recession regime is about 0.5, smaller than 1.2, which is the unique
mode of the fast growth regime. Intuitively, this implies that the economy
in the recession regime is less volatile than in the fast growth regime. It also
suggests that possible regime switching has no effect on the uncertainty level
of these two regimes. Meanwhile, for the identified normal growth regime,
the bi-modes of o have been reshaped by the labeling constraint to be more
asymmetric: the dominating mode is around 0.5, and the dominated mode
is around 1.2. We tend to interpret 0.5, the dominating mode, as the general
uncertainty level of this regime, and ascribe the increase in the second mode
to the uncertainty entailed with possible regime switching.

We have the impression, among the four candidate models presented in
Table 1, the GMAR(3,3) apparently is the most appropriate model. Tt does
not only capture the asymmetry of output across different business cycles,
but also identify three distinguish states of the US GDP growth. To formally
evaluate evidence for GMAR models with different specifications, we adopt
Bayesian model selection framework.

4.3 Model selection

The Bayesian model selection is based on the marginal likelihoods of data
given GMAR models with different states and lags. Thanks to the power-
lessness of the SMC algorithm, we obtain these nontrivial model likelihoods
as by-products of our estimation. Table 2 lists log marginal likelihoods of
data given different GMAR models. For computational reason, these quanti-
ties are calculated from the unconstrained® parameter posterior distribution.
The bigger the model likelihood is, the better the model fits the data. As we
noted, in general, GMAR models with more states and longer lags tend to
perform better.

68 According to Bayesian theory, the inclusion of the identification constraint does not
change the model likelihoods.

16

To offer direct comparison, Table 3 combines the results of log Bayesian
Factor (2inK) for different GMAR(p, M) models, where p € (2,---,5),
M € (2,3). These quantities are calculated” from the log marginal likeli-
hoods presented in Table 2. For simplicity, we use the notation G(p, M) in
Table 3 to represent the GMAR model with p lags and M states. The first
column of Table 3 lists GMAR models with different lags and number of
regimes. Each of these models is used as the benchmark model to compare
with alternative models listed in the first row of Table 3. The resulting log
Bayesian Factors may take different signs, where the positive sign indicates
the benchmark GMAR model (in the column) is supported against the al-
ternative GMAR model (in the row), and the negative sign indicates there
is evidence against the benchmark model. The numerical value indicates
the strength of evidence. We use the Kass and Raftery (1995) scale as the
interpretation of the strength of the evidence, Table 4 provides the scale.

Based on the results reported in Table 3, we find: given lag length, three-
state GMAR models always outperform two-state alternatives. On the other
hand, given number of states, the model likelihood is increasing with the lag.
In particular, evidence confirms that lag length of three is a threshold for the
GMAR model: when the lag is below this threshold, the model likelihood is
very low. Otherwise, the performance of the GMAR model is dramatically
improved. This substantial improvement in model likelihoods implies that
the asymmetry pattern of the US GDP across different economic states is
too important to be ignored. Therefore, while using the GMAR model to
study the US GDP data, we need to include at least three lags to capture
this pattern.

Last but not least, from Table 2 and Table 3, we notice that the model
likelihood is keep increasing with the number of states and the lag length.
This monotonicity proves that the GMAR model has the ability to extract
information from more states and lags. However, after a certain threshold
(number of states and lags), the marginal improvement in model evidence is
decreasing®. It is therefore not always optimal to assume more states and
longer lags for the GMAR model. Owing to the fact that, including more
states and lags entails the estimation of more parameters. For the quarterly

"The log Bayesian Factor is calculated as two times the difference between the log
marginal likelihood of the benchmark model and the log marginal likelihood of the alter-
native model.

8 According to Kass and Raftery Scale, after the threshold (M = 3,p = 5), the evidence
improvement from using more complex specification is becoming ignoble.

17

US GDP data of concern, given less than three hundred observations, in-
cluding too many (eg, more than three) states and too long (eg, more than
five) lags may lead to overfitting the model (see Hamilton (2015)). Moreover,
formal economic justification of using more (than three) regimes still deserve
further investigation.

5 Conclusion

In this paper, we investigated using SMC algorithm to estimate the GMAR
model proposed by Kalliovirta, Meitz, and Saikkonen (2015). After pre-
senting our SMC estimation procedure, we considered an empirical example
regarding the GMAR model of the US GDP growth data. To examine the po-
tential label switching problem discussed in Frithwirth-Schnatte (2001), also
to efficiently identify different states of the US GDP within the sample pe-
riod, after estimation, we imposed a labeling constraint to the unconstrained
posterior distribution. We also conducted Bayesian model selection based on
the marginal likelihoods of data given different specifications of the GMAR
model to evaluate their appropriateness.

The contribution of this paper is fourfold: first, we estimate the GMAR
model using SMC algorithm, which has several attractive properties: It is
robust to multimodal posteriors; It has a linear computational complexity
O(N) and ready for parallelism; It is capable of providing fast on-line esti-
mation when new data is available. Second, to identify different states of the
US GDP growth, following Frithwirth-Schnatte (2001), we imposed a labeling
constraint to the unconstrained parameter posterior distribution. This con-
straint also helps us to recognize the bimodality in the posterior distribution
of o; (1 € {1,---,M}). Third, we calculate marginal likelihood of data for
different GMAR models as by-products of our SMC estimation, and conduct
Bayesian model selection based on these model likelihoods. Comparing to
information based criteria (like AIC, or BIC), Bayesian model selection pro-
vides a unified and easy-to-use framework for direct comparison of GMAR
models with different setting. Fourth, we implement our SMC algorithm on
the nVidia CUDA GPU parallel computing platform, which further facili-
tates the realization of the compute-intensive algorithm. The inexpensive
parallel strategy discussed in this paper also provides guideline for future
computation-based researches.

18

Appendix A: Residual resampling scheme

Algorithm (pseudo-code): Residual resampling

1 Calculate the integer part: Int <— S| N. X w;]
2 Calculate the Residual < N — Int

3 Calculate the modified weights: Wy <—
forj<—1:N
fori <« 1: Int(j)
index(i) < j
1 1+1

N. x w; — Int
Residual

end
end
10 Calculate the Cumsum of weights: ¥ < cumsum(wy)
11 while t < N

© S N3 D LA

12 draw A ~ U (0, 1]

13 je

1 while X(7) < A
15 je g+l
16 end

17 index(i) < j

18 141+ 1

16 end

19

Appendix B: Parallel considerations

Parallel computing is a computation strategy in which numerous calcu-
lations are carried out simultaneously, operating on the principle that large
problems can often be divided into smaller ones, and then solved concur-
rently. In high-performance computing industry, parallel computing has been
employed for many years and already become the dominant paradigm. In
order to facilitate the realization of the compute-intensive GMAR estima-
tion, in light of the general-purpose computing on graphics processing units
(GPGPU) philosophy, we tailor our SMC algorithm and parallelize it on a
consume level nVidia CUDA compatible Graphical Process Unit (GPU) card.
In this section, we briefly discuss our parallel implementation of the SMC al-
gorithm on the nVidia CUDA platform. In addition, we provide a technical
appendix describing the details of parallelization at pseudo code level.

In the past decade, the highly parallel graphics processing unit (GPU) has
rapidly gained maturity as a powerful engine for computationally demanding
applications, and the General Purpose Computing on Graphics Processing
Units (GPGPU?) based parallelism is becoming popular. Unlike other par-
allel computing strategies that require expensive, dedicated hardware, GPUs
are very common in today’s hardware. GPGPU compatible GPUs can be
found in almost every new computer (laptops, PCs, workstations, even clus-
ters). Powerful yet easy to access, GPGPU is potentially the most cost
effective high performance computing platform.

CUDA!'9 also known as the Compute Unified Device Architecture, is a
parallel GPGPU computing platform developed by nVidia. It is designed
jointly at software and hardware levels to enable the use of the GPU in
general-purpose. At hardware level, any GPU card equipped with the nVidia
CUDA compatible chips can be used for general-purpose computation. Most
of these cards are capable for conducting billions of floating point'! opera-
tions per second, some high performance computation dedicated cards even
have supercomputer level performance'?. At software level, the CUDA pro-
vides application programming interface (APIs) that gives programmer direct

9GPGPU is a computation solution to use the graphics processing unit (GPU) to per-
form computation.

Yhttp: / /www.nvidia.com/object/cuda_home_new.html

1 Floating point is a formulaic representation used in computing that approzimates a
real number so as to support a trade-off between range and precision.

12For example, the nVidia GeForce Titan Black, one of the GPU cards we used to

20

access to the GPU’s virtual instruction set and parallel computational ele-
ments. This interface makes the CUDA an ideal abstraction for programmers
to achieve parallel speed-up from parallel data operations without taking care
of too much details. Typically, CUDA GPUs can execute our algorithms from
10 to 50 times faster than standard CPUs.

Although the CUDA platform is both powerful and promising, the GPU
programming differs significantly from traditional CPU programming. It re-
quires the architecture to be exploited by algorithms. In practice, transplant
existing codes to GPU platform for acceleration is more demanding than
simply move from one CPU platform to another. Significant changes must
be made to the code, not only on algorithms but also on data structures. To
achieve a high performance parallel computing on the CUDA GPU platform,
we need to consider both the hardware and the software aspects.

With respect to the hardware, modern computers have a typical het-
erogeneous architecture which consists of one or more multicore CPUs and
GPUs. Under this architecture, instead of being standalone device, GPUs
must operate in conjunction with a CPU based host through a PCI express
bus®. Since CPUs are optimized for instruction intensive tasks and GPUs
are designed for data intensive operations. Their complementary attributions
enable the best performance by using both of them.

conduct the estimation, has 5.1 TFLOPS (Tera floating-point operations per second) for
single-precision calculation, and 1.8 TFLOPS for double-precision calculation. 1 TFLOPS
= 10'2 FLPOS.

13In terms of GPU programming, we refer the CPU as the ‘host’ and the GPU as the
‘device’.

21

CPU CPU
memory memory
CPU]] CPU
LHT/QPI
i{}ywopl HWQR%}%
PC
Express
N———
1/0O Hub GPU
|
GPU
memory

Figure 1: Illustration of the heterogeneous (CPU/GPU) architecture.

According to Flynn’s Taxonomy, a widely used classification of computer
architecture, GPU belongs to the Single Instruction Multiple Data (SIMD)
parallel architecture. It means there are multiple cores (thread processors),
all of them independently execute the same instruction stream at any time.
The CUDA using a similar Single instruction, multiple thread (SIMT) ar-
chitecture, where multi-threading is simulated by GPU processors. These
processors, say a number n of them, are capable to execute many more than
n tasks. This is achieved as each processor has multiple 'threads’, which
execute in lock-step, and are analogous to SIMD ’lanes’.

With respect to the software, GPGPU is especially well-suited for algo-
rithms exhibiting two properties: data parallel'* and throughput intensive
The former means that a processor can execute the operation on different
data elements simultaneously. It focuses on mapping data elements to paral-
lel threads and operate at the same time. The later means that the algorithm
is designed to process massive data elements, so there should be plenty of
them to operate on in parallel. Taking advantage of these two properties,
GPUs achieve extreme performance by incorporating thousands of relatively
simple processing units to operate on many data elements simultaneously.

14In general, there are two fundamental types of parallelism model, task-based parallelism
and data-based parallelism. Task-based parallelism focuses on distributing instructions
across multiple cores and mainly implemented in CPU and operating system.

22

Appendix C: Flow chart of the SMC algorithm

EInitialize particles {65}, ~ N(6|uo, 05)}

/

Import particles

/

> Updating particles wﬁl x wgi) - wy(6)
t=t+1
ESS< &
no ort="T
yes)

Resampling particles

Mutating particle;

s 0F ~ f(6:|6;-1)

/ Export particles /

End }

Table 1: SMC Estimates (labeling constraint: pu; < -+ < s)
GMAR(2,2) GMAR(3,2) GMAR(2,3) GMAR(3,3)

o1 0.7324 0.5515 0.9614 1.3817
op 1.1110 1.1691 0.9026 0.7580
03 0.9962 1.1987
a 0.4880 0.4904 0.2468 0.2109
Q9 0.5120 0.5096 0.3971 0.4060
Qs 0.3562 0.3831
1 1.3805 1.3489 -1.1175 -1.6580
1 1.7416 1.7298 1.4947 1.4337
13 3.4533 3.4731
1,0 0.6795 0.7115 0.4193 0.2006
2,0 0.7373 0.8254 0.7408 0.7031
030 1.0215 0.8392
o1,1 0.2842 0.2703 0.3256 0.3719
1,2 0.2222 0.3258 0.0549 0.0806
V13 -0.1227 -0.0407
2,1 0.4223 0.4497 0.3279 0.3443
2,2 0.1529 0.1692 0.1688 0.2726
©2.3 -0.0973 -0.1101
©3.1 0.3954 0.4555
03,2 0.1036 0.1601
P33 -0.0711

Table 1: SMC estimates for four different GMAR models. In particular, let
GMAR(p, M) denote the GMAR model with p lags and M regimes. These
estimates are calculated by Monte Carlo approximation. To identify different
states, following Frihwirth-Schnatte (2001), we impose a labeling constraint on
tm, m € (1,--- , M), such that 1 < po--- < upr. All particles then permuted

according to this constraint.

24

Table 2: log marginal likelihoods of data given model

M=2 M=3 M=4 M-=5
-362.7964 -362.5500 -361.7417 -361.6124
-353.6275 -353.3204 -351.7975 -351.9863
-340.9917 -349.7407 -348.2111 -348.5294
-347.8468 -347.3192 -346.9334 -347.0751

VTR
I
IV

Table 2: log marginal likelihoods of data given different GMAR models.
The bigger the log marginal likelihood is, the better the model is.

25

9¢

Table 3: log Bayesian Factor (2inK)

G22) G(3,2) G432 G62) G23) GB.3) G643 G653
G(2,2) 0 -18.3378 -25.6094 -29.8992 -0.4928 -18.9520 -26.1114 -30.9544
G(3,2) 18.3378 0 -7.2716 -11.5614 17.8450 -0.6142 -7.7736 -12.6166
G(4,2) 25.6094 7.2716 0 -4.2808 25.1166 6.6574 -0.5020 -5.3450
G(5,2) 29.8992 11.5614 4.2898 0 29.4064 10.9472 3.7878 -1.0552
G(2,3) 0.4928 -17.8450 -25.1166 -29.4064 0 -18.4592 -25.6186 -30.4616
G(3,3) 18.9520 0.6142 -6.6574 -10.9472 18.4592 0 -7.1594 -12.0024
G(4,3) 26.1114 7.7736 0.5020 -3.7878 25.6186 7.1594 0 -4.8430
G(5,3) 30.9544 12.6166 5.3450 1.0552 30.4616 12.0024 4.8430 0

Table 3: log Bayesian Factors (2InK) for different GMAR models, where the notation
G(p, M) represents a GMAR model with p lags and M regimes. The first column of
this table lists different GMAR models used as the benchmark models to compare with
alternative GMAR models listed in the first row. These log Bayesian Factors are calculated
as two times the difference of the log marginal likelihood of the benchmark model and the log
marginal likelihood of the alternative model. The resulting values may take different signs,
where the positive sign indicates the benchmark GMAR model (in the column) is supported
against the alternative GMAR model (in the row), and the negative sign indicates there is
evidence against the benchmark.

Table 4: Kass and Raftery (1995) Scale of Bayesian Factor

Bayesian Factor (2inK) Strength of evidence
0to 2 not worth more than a bare mention
2to06 positive
6 to 10 strong
>10 very strong

27

References

1]

2]

3]

4]

5]

6]

7]

8]

9]

[10]

Boldin, M. (1992). Using Switching Models to Study Business Cycle
Asymmetries: Overview of Methodology and Applications. Federal Re-
serve Bank of New York Research Paper, 1992-11.

Boldin, Michael. (1996). A Check on the Robustness of Hamilton’s
Markov Switching Model Approach to the Economic Analysis of the

Business Cycle, Studies in Nonlinear Dynamics & Econometrics. 1(1),
1-14.

Camacho, M., & Perez, Q. G. (2007). Jump-and-Rest Effect of U.S.
Business Cycles. Studies in Nonlinear Dynamics & Econometrics. De
Gruyter. 11(4), 1-39.

Carvalho, C. M. Johannes, M. Lopes, H. F., & Polson, N. (2010). Particle
learning and smoothing. Statistical Science 25, 88-106. 710-730.

Celeux, G. Hurn, M., & Robert, C.P. (2000). Computational and Infer-
ential Difficulties with Mixture Posterior Distributions. Journal of the
American Statistical Association, 95(451), 957-970.

Chopin, N. (2004). Central limit theorem for sequential Monte Carlo and
its application to Bayesian inference. The Annals of Statistics, 32(6),
2385-2411.

Chopin, N. Lelievre,T., & Stoltz, G. (2012). Free energy methods for
Bayesian statistics: Efficient exploration of univariate Gaussian mixture
posteriors. Statistics and Computing, 22(4), 897-916.

Cogley, T., & Nason, J. M. (1995). Output Dynamics in Real-Business-
Cycle Models. American Economic Review, American Economic . 85(3),
492-511.

Del Moral, P., A. Doucet, & A. Jasra (2008). On adaptive resam-
pling procedures for sequential Monte Carlo methods. Unpublished
manuscript, Insitut National de Recherche en Informatique et en Au-
tomatique, Bordeaux, France.

Doucet, A., N. de Freitas., & N. Gordon (2001). Sequential Monte Carlo
Methods in Practice. New York, NY: Springer-Verlag.

28

[11] Dueker, M. J. Sola, M., & Spagnolo, F. (2007). Contemporaneous thresh-
old autoregressive models: estimation, testing and forecasting. Journal
of Econometrics, 141, 517-547.

|12] Durham,G. & Geweke, J. (2014). Adaptive sequential posterior simu-
lators for massively parallel computing environments. Bayesian model
comparison, 1-44.

|13] Fruhwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation
of classical and dynamic switching and mixture models. Journal of the
American Statistical Association, 96, 194-209.

[14] Geweke, J. (1989). Bayesian inference in econometric models using
Monte Carlo integration. Econometrica, 57, 1317-1339.

|15] Geweke, J. (2007). Interpretation and inference in mixture models: Sim-
ple MCMC works. Computational Statistics and Data Analysis, 51(7),
3529 - 3550.

[16] Gordon, N. J. Salmond, D. J., & Smith, A. F. M. (1993). Novel approach
to nonlinear /non-Gaussian Bayesian state estimation. IEEE Proceedings
F on Radar and Signal Processing, 140(2), 107-113.

[17] Gourieroux, C., & Robert, C. Y. (2006). Stochastic unit root models.
Econometric Theory, 22, 1052-1090.

[18] Hamilton, J., (1989). A New Approach to Economic Analysis of Non-
stationary Time Series. Econometrica, 57, 357-384.

|19] Herbst, E., & F. Schorfheide. (2014). Sequential Monte Carlo sampling
for DSGE models. Journal of Applied Econometrics, 29, 1073—-1098.

[20] Kass, R., & Raftery, A. (1995). Bayes Factors. Journal of the American
Statistical Association, 90(430), 773-795.

[21] Kalliovirta, L., & Meitz, M and Saikkonen, P. (2015). A Gaussian mix-
ture autoregressive model for univariate time series. Journal of Time
Series Analysis, 36(2), 247-266.

[22] Kim, C.-J., & C. J. Murray (2002). Permanent and transitory compo-
nents of recessions. Empirical Economics 27,(2), 163-183.

29

[23]

[24]

[25]

|26]

27]

28]

[29]

[30]

[31]

[32]

[33]

Kim, C. J., Morley, J., & J. Piger. (2005). Nonlinearity and the Perma-
nent Effects of Recessions, Journal of Applied Econometrics 20, 291-309.

Kim, C.-J., Piger, J., & R. Startz. (2008). Estimation of markov regime-
switching regressions with endogenous switching. Journal of Economet-
rics 143, (2), 263-273.

Lanne, M., & J. Luoto. (2015). Estimation of DSGE Models under Dif-
fuse Priors and Data-Driven Identification Constraints, CREATES Re-
search Paper 2015-37.

Lanne, M., & Saikkonen, P. (2003). Modeling the U.S. short-term in-
terest rate by mixture autoregressive processes. Journal of Financial
Econometrics, 1, 96-125.

Liu J.S., & Chen R (1998). Sequential Monte Carlo Methods for
Dynamic Systems. Journal of the American Statistical Association,
93(443), 1032-1044.

Martin, V. L. (1992). Threshold time series models as multimodal dis-
tribution jump process. Journal of Time Series Analysis, 13(1), 79-94.

Morozov, S., & Mathur. S. (2011). Massively Parallel Computation Us-
ing Graphics Processors with Application to Optimal Experimentation
in Dynamic Control. Computational Economics, 1 —32.

Morton, K. D., Torrione, P. A.; & Collins, L.M. (2011). Variational
Bayesian Learning for Mixture Autoregressive Models With Uncertain-
Order. IEEE Transactions on Signal Processing, 59(6), 2614 - 2627.

Nelson, C., & Plosser, C. (1982). Trends and random walks in macroe-
conmic time series: Some evidence and implications. Journal of Mone-
tary Economics. 10(2). 139-162.

Pitt, M., & Shephard, N. (1999). Filtering via Simulation: Auxiliary
Particle Filters. Journal of the American Statistical Association, 94,
590-599.

Rubin, D. (1988). Using the SIR algorithm to simulate posterior distri-
butions. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D.
V. Lindley and A. F. M. Smith, eds.) 395-402. Oxford University Press.

30

[34] Sichel, D. E. (1994). Inventories and the three phases of the business
cycle. Journal of Business and Economic Statistics, 12 (3), 269-277.

[35] Venkataramana, K., & Sekhar, C.C. (2009). Bayesian mixture of AR
models for time series clustering. Advances in Pattern Recognition, 2009.
ICAPR ’09. 35-38

[36] Wong, C. S., & W. K. Li. (2000). On a mixture autoregressive model.
Journal of the Royal Statistical Society: Series B, 62, 95-115.

[37] Wong, C. S., & W. K. Li. (2001). On a mixture autoregressive condi-
tional heteroscedastic model. Journal of the American Statistical Asso-
ciation, 96, 982-995.

31

US Gross Domestic Product (1947:Q1 to 2015:Q1)

N1

00 05 10 15 20

95

50 55 60 65 70 75 80 85 90

45

Years

Figure 2 : US GDP growth (1947:Q1 to 2015:Q1)

32

M =3):

Three regimes (

, (M=3)

Simulated logo

onpea Lobog

1000 1500 2000 2500 3000 3500 4000 4500 5000

500

Number of particles

Figure 3: Simulated logo

=3)

Histogram of simulated Ioga—1 ™M

90

80

70

60

o o
o <

Aouanbai4

30 -

20 -

10

logo value

Figure 4: Histogram of simulated logo,

logo, value

1

Frequency

Simulated Iogo2 (M=3)
T

00

90

80

70

60

50

40

30

20

10

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of particles

Figure 5: Simulated logos

Histogram of simulated Iogcf2 (M=3)

ATTTTEE I T ioay

-2 -1 0 1 2 3
logoy value

Figure 6: Histogram of simulated logos

Simulated Iogo3 (M=3)
T T

3 T

logos value

2 F . . —
3+ i
-4 1 1 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of particles
Figure 7: Simulated logos
Histogram of simulated Ioga3 (M=3)
90 T T T

80

70

60

a1
o

Frequency
ey
o

30

20

10

-3 -2 -1 0 1 2
logos value

Figure 8: Histogram of simulated logos

logo,

Frequency
N w B W [=2]
o o o o o

-
o

Iogo1 and Iogcf2 (M=3)

logos

Figure 9: Simulated logo;, and logos

Histogram of simulated Ioga1 and Ioga2 (M=3)

-1
2 -2
logoy value -3

37

logo, value

Figure 10: Histogram of simulated logo; and logos

Iogo2 and Iogcf3 (M=3)
3 T T

logoy

logos

Figure 11: Simulated logos and logos

Histogram of simulated Ioga2 and Ioga3 (M=3)

50

Frequency
[w
o o

0

logay value 3 logey value

Figure 12: Histogram of simulated logos and logos

Iogo1 and Iogcf3 (M=3)

3 T T

logo,

4 ! ! ! ! ! !
-4 -3 -2 -1 0 1 2
logos

Figure 13: Simulated logo; and logos

Histogram of simulated Ioga1 and Ioga3 (M=3)

50

Frequency
[w
o o

-2
logos value 3

41

logo, value

Figure 14: Histogram of simulated logo; and logos

100
50 L lh
0 |

100
50 t “
O |

400

200 .
0 L |

¢11
200
O L |

400

200 .
0 L |

¢21
200
100 ‘
0 L |

a3

0 0.5 1
912

2 0 2
92

2 0 2

400

200 .
0 L |

¢31
200
100 ‘
0 L |

logo value

Two regimes (M = 2):

0.8

Simulated logo, (M=2)
T T T

1
500 1000 1500 2000 2500 3000 3500 4000
Number of particles

Figure 16: Simulated logo,

Histogram of simulated Iogol (M=2)

4500 5000

50

45 -

40

35

Frequency
N w
(6] o

N
o

15

10

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
logo, value

Figure 17: Histogram of simulated logo,

0.6

logo, value

Simulated Ioga2 (M=2)
T T

0.8

40

35

30

25

Frequency
N
o

=
ol

10

500 1000 1500 2000 2500 3000 3500 4000
Number of particles

Figure 18: Simulated logoy

Histogram of simulated Ioga2 (M=2)

4500 5000

-0.8 -0.6 -0.4 -0.2 0 0.2
logo, value

Figure 19: Histogram of simulated logo,

0.4 0.6

Ioga1 and Ioga2 (M=2)
T T T

0.8

0.6 [

0.2 [

logo,

-0.2

-0.6 [

-0.8 [

-1.2

20

15

Frequency
]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
logo,

Figure 20: Simulated logo; and logo,

Histogram of simulated Ioga1 and |Og(72 (M=2)

logos value 1 A

46

logoy value

Figure 21: Histogram of simulated logo; and logos

a, @,
100 100
50 50
0 0! ‘
0 0.5 1 0 0.5 1
910 2T 915
100 100 100
50 50 50
0° 0" 0
-2 0 2 -1 0 1 -1 0
920 b 92,
100 100 100
50 50 50
0" 0° 0
-2 0 2 -1 0 1 -1 0

Figure 22: Histograms of simulated other (than o) parameters (M

600

400

200

600

400

200

800 800
600 600
400 400
200 200
0 0
0 0 4 0
1500 600
1000 400
500 200
0 0
0 0 4 0

