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Abstract

The present paper introduces an up-to-date methodology to detect Early Warning Signals

of critical transitions, that manifest when distress stages in financial markets are about to

take place. As a first step, we demonstrate that a high-dimensional dynamical system can be

formulated in a simpler form but in an abstract phase space. Then we detect its approaching

towards a critical transition by means of a set of observable variables that exhibit some

particular statistical features. We name these variables the Leading Temporal Module. The

impactful change in the properties of this group reflects the transition of the system from

a normal to a distress state. Starting from these observations we develop an early warning

indicator for determining the proximity of a financial crisis. The proposed measure is model

free and the application to three different stock markets, together with the comparison with

alternative systemic risk measures, highlights the usefulness in signaling upcoming distress

phases. Computational results establish that the methodology we propose is effective and

it may constitute a relevant decision support mechanism for macro prudential policies.
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1 Introduction

In the aftermath of the 2008-09 global financial crisis, the effort in discovering the underlying

instabilities of economic systems has produced a vast theoretical and empirical literature on

Early Warning Signals (EWSs). The practical implementation of tools targeting systemic risk,

indeed, requires the identification of EWSs that could provide a ground for the activation of

macro-prudential policies as conveyed in the notes on Macroprudential policy frameworks, pro-

duced by the Financial Stability Board (FSB), the International Monetary Fund (IMF) and the

Bank for International Settlements (BIS) in February 2011 (see FSB (2011); IMF (2011); Rhu

et al. (2011)).

Several works have been tackling the development of EWSs that could provide to policymak-

ers and market participants warnings on an upcoming financial distress (for a review of the

main EWSs applied in economics and finance see Bisias et al. (2012)). Most of these meth-

ods, however, have some restrictions because they assume that their underlying models remain

valid even when sudden changes occur. To put it differently, they postulate precise functional

forms for modelling the motion of the relevant variables. Nevertheless, these assumptions are

too strong because sudden changes, such as financial crunches, might modify the qualitative

and quantitative characteristics of the underlying economic system. A crisis is, by definition, a

break in the law of motion describing the system, such that the rules governing the dynamic of

the variables prior to the crisis do not apply anymore during (and after) the catastrophic event.

Graph-theoretical tools are helpful in this circumstance to reveal how the character and the

progress of financial relationships induce distinguishable patterns of structural modifications in

the economic variables. The departures from a standard configuration due to a crisis could

indeed be examined by using topological methods revealing the reduced decomposability of the

underlying system (see Simon and Ando (1961); Ando and Fisher (1963); Simon (1996); Cour-

tois (2014)). The definition of a crisis as a ripple effect, in which a financial distress spreads

between financial institutions until it strikes the entire system, agrees with the definition pro-

vided by Simon (1996) of a non-decomposable system. The latter refers to a system in which

every part is virtually related with all other parts while, by contrast, a decomposable system

is one in which all (or most of) the relationships take place within the subsystems and little or

none among the subsystems.

A purely topological analysis is, however, a static descriptor of the interactions occurring at a
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certain time. Forecasting, however, needs a dynamic approach. In this work, a novel model-

free (network-based) method is presented to detect EWSs of financial crisis, merging static and

dynamic analysis. We theoretically establish that a set of stocks, that we name the Leading

Temporal Module (LTM), can serve as a general EWS, indicating an imminent financial crisis.

The dynamic of the LTM can be linked to the degree of decomposability of the Jacobian matrix

of an unobserved system describing the stock returns dynamics (see Simon and Ando (1961);

Ando and Fisher (1963); Simon (1996); Courtois (2014)). The alteration in the statistical fea-

tures of this group is indeed the empirical reflection of a reduced level of decomposability of

such a matrix. This means that, even without specifying a functional form for the variables

law of motion, we can detect a signal which mirrors a transition in the variables evolution in

different dynamical phases.

Specifically, we employ the theory of dynamical system and show that a high dimensional sys-

tem can be expressed, near critical transitions, in a very plain form but in an abstract (or

latent) phase space. Thus, because of this particular feature, during this special phase, unlike

during “business as usual” periods, we can detect the empirical signals of crisis approaching.

The existence of such abstract system near critical transition points (e.g. a market distress)

is guaranteed by the bifurcation theory and center manifold theory (see Arnold et al. (2013);

Guckenheimer and Holmes (2013)). Hence, independently of the system complexity and the

variables number, near transition phases we can describe the system in a simpler form. How-

ever, these variables are generally unobserved in the abstract phase space. Fortunately, if some

of these unobserved factors first cross the transition point, a set of states and observable vari-

ables will display some particular statistical features (see Chen et al. (2012)). This group of

variables represents the observable LTM in the original state space.

We shall establish that, when the system approaches a pre-crisis phase, the following generic

temporal and spatial properties hold and that, if all these three conditions are satisfied simulta-

neously, the group of stocks fulfilling the requirements is called LTM. The three aforementioned

statistical properties are:

• The presence of a group of stocks whose average Pearson’s Correlation Coefficient (PCC)

drastically increases in absolute value.

• The average PCC of stocks belonging to this group and any others stock in the system

drastically decreases in absolute value.
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• The average autocovariance (AC) of stocks in the group drastically increases in absolute

value.

The drastic change in the properties of the LTM will reflect a transition to the crisis state.

The statistical characteristics of the LTM mimic some behavioral attitudes of market partici-

pants, as positive feedbacks and herding behaviors that reverberate in the path of stock prices.

Indeed, the causes of various crashes in US and in other financial markets, e.g. in 1929, 1987,

2000 and 2008 could be traced back to herding behaviors and positive feedbacks in which the

dynamics of aggregate variables depend on individual expectations and vice-versa (see e.g. Lux

(1995, 1998); Anufriev et al. (2013); Hommes (2013)). On the one hand, in a financial envi-

ronment where a self-organization process introduces positive feedbacks (see Zhou and Sornette

(2003)) to the overall system, the future values of the stock price will depend on the present one,

empirically translating into an increased autocovariance of stock returns; on the other hand,

herding behavior effects (see Scheffer et al. (2009); Preis et al. (2011); Scheffer et al. (2012); Kefi

et al. (2014); Moon and Lu (2015) among others), that lead agents to act collectively without

a centralized direction, empirically drive an increase of the correlation (see Dakos et al. (2010))

of such returns. According to this view, financial crisis are specific features which stem from

the non linear interactions among investor decisions (see Sornette (2017)).

The present approach is general and knuckles to a wider category of complex systems (e.g.

ecosystems, climate systems, economic and financial system) characterized by sudden catas-

trophic shifts during the onset of a crisis phase (see e.g. Scheffer et al. (2001); Dakos et al.

(2008); Quax et al. (2013)). A similar technique has been adopted in Chen et al. (2012) who

proposed Dynamical Network Biomarkers (DNBs) to detect EWSs for the progression of com-

plex diseases using throughput data. Differently from Chen et al. (2012), who look at the

dispersion of the time series near a critical transition, in the detection of EWSs of financial

crisis, beside variables co-movement, we are also keen in quantifying the self-similarity of the

returns through the consideration of the autocovariance.

The three conditions discussed above represent a criterion for the proximity of a sudden change

in a financial system, and their combination is naturally expected as a strong signal or an in-

dicator for the pre-crisis state in financial markets. We thus define an aggregate indicator of

financial crises based on the mean absolute value of the autocovariance of the financial instru-

ments belonging to the LTMs and on the ratio between the correlations of stocks within the

LTM and the correlations of stocks outside the leading module.
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We apply this measure to predict abrupt transitions in financial markets such as systemic crises.

In particular we aim at inferring major distress events on aggregate indices, representing the

market as a whole, through the analysis of their constituents. In the construction of the early

warning indicator, we disregard about the weight that each component has, to be as much

agnostic as possible about how the constituents compound the aggregate system.

The rest of the paper is organized as follows: in Section 2 we revise the theoretical framework

introduced by Chen et al. (2012), then we propose and describe our indicator for monitoring

the proximity of a phase transition, demonstrating the utility of the empirical measures in sig-

naling the proximity of a phase transition. In Section 3 we introduce an algorithm to extract

the complex relationships from stocks’ time series. The method is applied to empirical data,

highlighting the goodness of the index via non parametric analysis of crisis episodes recognition,

by comparing our technique to other well-accepted risk measures. Finally, Section 4 concludes.

2 The theoretical framework

The behavior of financial markets is very complicated and, in principle, it could be described

by state equations in a high-dimensional space with several variables and parameters. Unfortu-

nately this is an almost impossible task and some aggregation methods are necessary. It is in

economics that the aggregation of variables has been mostly used as a technique to analyze the

dynamics of high dimensional systems (see Simon and Ando (1961)). This behavior has lead to

the practice of employing low dimensional systems to describe high dimensional environments

(see e.g Barunik and Kukacka (2015); Diks et al. (2015); Diks and Wang (2016)).

Starting from this common approach, we employ dynamical system theory to demonstrate that

a high dimensional system can be formulated in an abstract or latent phase space with a simpler

form and that, by detecting some particular empirical signals, we can infer its critical transition.

In other words, although the system’s variables are generally unobserved, if some of them first

cross the transition point, a set of state and observable variables will display some particular

statistical features. This group of variables corresponds to the observable LTM in the original

state space. In Section 2.1 we show the condition to detect the LTM in the original state space

relating its statistical properties to the scheme of the unobserved variables in the abstract phase

space.
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2.1 A general model in abstract phase space

We describe the theoretical background that allows us to define the LTM following Chen et al.

(2012), and derive a quantitative index as an EWS that announce the incoming of a transition

phase.

Suppose the dynamics of a stock market can be described by the following dynamical system:

Z (t+ 1) = f (Z (t) ;P ) + ε(t) (1)

where Z (t) = (z1 (t) , ..., zn (t)) is a n-dimensional state vector representing stocks, P = (p1, ..., ps)

is an s-dimensional parameter vector representing slowly changing factors (e.g. news on earnings

or profits, anticipated takeovers or mergers, etc.) and ε = (ε1, ..., εn) is a n-dimensional stochas-

tic component with εi Gaussian white noise with zero means and covariances κij=Cov (εi, εj).

In general, f : Rn × R
s → R

n is a nonlinear vector-valued function. In order to apply theo-

retical results on bifurcations of a general discrete-time dynamical model, we consider only the

deterministic skeleton of the system, i.e. we set ε(t) = 0 . Furthermore, let us assume that the

conditions below for Eq. (1) hold:

1. Z̄ is a fixed point of (1), that is Z̄ =f
(

Z̄;P
)

;

2. there exists a value Pc such that one or a complex conjugate pair of the eigenvalues of the

Jacobian matrix evaluated at the fixed point Z̄ is equal to 1 in modulus;

3. when P 6= Pc the eigenvalues of the Jacobian matrix of (1) are generally not 1 in modulus.

These conditions, along with other transversality conditions, imply that the system undergoes

a transition or a codimension-one bifurcation (see Chen et al. (2010)). The parameter Pc, at

which the transition for the equilibrium value Z̄ occurs, is called a bifurcation value (or a critical

transition value) where a sudden qualitative or topological change takes place. The bifurcation

is generic from a mathematical viewpoint, i.e., almost all bifurcations for a general system

satisfy these conditions.

Around the fixed point Z̄, it is possible to linearize the system described by Eq. (1) as:

Z (t+ 1) ≃ J(Z (t)− Z̄) (2)
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where J = J (P ) denotes the Jacobian matrix of (1). By defining X = Z− Z̄, it is possible to

shift the fixed point to the origin, and the system characterized by Eq. (2) can be re-written

as:

X (t+ 1) = JX (t)

where J is a full rank matrix that also depends on the vector P .

Since the Jacobian matrix J is of full rank, then there exists a full-rank matrix S satisfying:

J = SΛS−1

By defining Y = S−1X, and reintroducing the stochastic component ε, the linearized version of

the original system can be re-written as:

Y (t+∆t) ≃ ΛY (t) + ε (t) (3)

By fixing the value of parameter P before reaching Pc, either J or Λ are constant matrices of

full rank and we may end up with three cases: real and distinct eigenvalues, real and equal

eigenvalues and complex eigenvalues.

If the sum of the dimensions of the eigenspaces with real eigenvalues is n, then there exists

a non-singular matrix S satisfying Λ= S−1JS =diag (λ1, ..., λn) being λi the i-th eigenvalue of

the system (3). Without loss of generality, we may regard the first element |λ1| as being the

nearest to 1, i.e., the dominant eigenvalue, whose change leads to the state shift from the fixed

point. If matrix J does not have linearly independent eigenvectors, there exists a non-singular

matrix S making Λ2 block diagonal. We can always move the block with the largest eigenvalue

in modulus, which is also the nearest to 1, to the first position of Λ. Finally, in the case of

complex eigenvalues there exists a non-singular matrix S making Λ block diagonal where each

two dimensional block matrix has a pair of complex conjugated eigenvalues whose moduli are

less than 1. As before we move the block in which the eigenvalues have the largest modulus to

the first position of Λ. Therefore, irrespective of which case occurs, the first element of Λ is the

dominant eigenvalue, i.e. the one nearest to 1 in modulus, whose change actually leads to the

state shift from the fixed point. Furthermore, all the eigenvalues (or their moduli) of matrix Λ

are within [0, 1) and there is at least one dominant eigenvalue, approaching 1 in modulus when

parameter P → Pc.
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For simplicity, we shall show the statistical properties of the original variables Z considering

only the case of real and distinct eigenvalues, but the same conclusion applies for the other two

cases in a similar manner (see Chen et al. (2012)).

Since Λ is a full diagonal matrix, as in Chen et al. (2012) we have that the variance V (·), the

covariance C(·), the autocovariance AC(·) and the Pearson Correlation Coefficient PCC(·) of

the autoregressive process expressed in Eq. (3) read as:

V (yi(t)) =
κii

1− λ2
i

(4)

C (yi(t), yj(t)) =
κij

1− λiλj
(5)

AC (yi(t), yi(t− 1)) =
λiκii
1− λ2

i

(6)

PCC (yi(t), yj(t)) =
κij√
κiiκjj

√

(

1− λ2
i

)

(

1− λ2
j

)

1− λiλj
(7)

The dynamics of the original variables can be written as:

zi (t) = si1y1 (t) + ...+ sinyn (t) + z̄i

zj (t) = sj1y1 (t) + ...+ sjnyn (t) + z̄j (8)

Thus, the variance and covariance of the original variables are given by:

V (zi(t)) = s2i1V (y1(t)) +
∑n

k=2
s2ikV (yk(t)) +

∑n

k,m=1,k 6=m
siksimPCC (yk(t), ym(t)) (9)

C (zi(t), zj(t)) = si1sj1C (y1(t)) + ...+ sinsjnC (yn(t)) +
∑n

k,m=1,k 6=m
siksimPCC (yk(t), ym(t))

(10)

The correlation is given by:

PCC (zi(t), zj(t)) =
C (zi(t), zj(t))

√

V (zi(t))V (zj(t))
(11)
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while the autocovariance reads as:

AC (zi(t), zi(t− 1)) = s2i1λ1V (y1(t)) +
∑n

k=2
s2ikλkV (yk(t)) + ...

...+
∑n

k,m=1,k 6=m
siksim(λk + λm)PCC (yk(t), ym(t)) (12)

Eqs. (11) and (12) relate the empirical signals of the original system (1) with the value assumed

by the dominant eigenvalue of the latent system1 in (3). The temporal and spatial statistical

properties that signal a phase transition can thus be summarized as follows:

• If a variable zi is related to y1, that is, si1 6= 0, then the absolute value of the autocovari-

ance AC(zi(t), zi(t− 1)) increases greatly as λ1 → 1 otherwise it is bounded

• If variables zi and zj are related to y1, that is, si1 6= 0, sj1 6= 0 then |PCC (zi(t), zj(t))| → 1

as λ1 → 1

• If variables zi and zj are not related to y1, that is si1 = 0, sj1 = 0 then |PCC (zi(t), zj(t))| →

a with a ∈ (0, 1) as λ1 → 1

• If only variable zi is related to y1 but zj is not, that is si1 6= 0, sj1 = 0 then |PCC (zi(t), zj(t))| →

0 as λ1 → 1

As in Chen et al. (2012), also in our case, each of the conditions represents a criterion to identify

a phase transition, and their combination is naturally expected to be a stronger indicator for

the pre-crisis state in financial markets.

We can thus develop an early warning indicator for determining the proximity of a financial

crisis applying network concepts. Let Gt = (Nt, Et) represent a dynamical temporal graph with

the set of nodes Nt put in correspondence with the variables Zt of the original system denot-

ing financial instruments (stocks) and a set of edges Et representing the pairwise correlation

(PCC(zi(t), zt(t))) between each pair of instruments computed over a given moving window.

The financial instruments can be divided in two groups: the subset of nodes Nd
t ⊂ Nt belonging

to the LTM, and the remaining subset No
t = Nt\Nd

t out of the leading module. If a networked

1It is worth to notice that an increase of the variance, covariance and autocorrelation of the original system
could be due to both a proximity of a phase transition or a strong and unexpected exogenous shock in the
stochastic component of the autoregressive process in (3).
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system is approaching a transition point, the autocovariance of the financial instruments belong-

ing to Nd
t increases; the correlation coefficients between stocks in Nd

t increase as well; finally,

each correlation coefficient between a nodes in Nd
t and No

t reduces to 0.

Let < |ACd
t | > be the absolute mean value of the autocovariance of the nodes in Nd

t . Denote by

< |PCCd
t | > the mean of the absolute value of the correlation coefficients between every pairs

of nodes in Nd
t and < |PCCo

t | > the mean of the absolute value of the correlation coefficients

between the nodes in Nd
t and the nodes in No

t . Then, our indicator for monitoring the proximity

of a phase transition in financial markets can be defined as:

IAC
t =

< |ACd
t | >< |PCCd

t | >
< |PCCo

t | >
(13)

Since our early warning indicator is dynamic by definition, it may be the case that a LTM is

composed by a particular group of financial instruments that appears in a critical transition

period but disappears in other periods, leaving the place to other stocks and signaling the

upcoming of a new crisis. Therefore, the indicator IAC
t always encompasses the stocks that

potentially drive the system to a transition phase, but only when the indicator is sufficiently

high, we are really in proximity of a transition.

In Appendix A we explore a Lotka-Volterra model of stock dynamics that serves as an example

to demonstrate that the generated time series present the same statistical properties described

above for the observable LTM. In other words, we propose a small-scale and conventional model

to represent interdependencies among financial instruments by analyzing the dynamics of the

variables near and far from phase transition confirming the theoretical results at the ground of

our early warning indicator.

In the Appendix B we relate the dynamic of the LTM with the degree of decomposability of

the Jacobian matrix of the unobserved system (see Simon and Ando (1961); Ando and Fisher

(1963); Simon (1996); Courtois (2014)) showing how the degree of decomposability of J reduces

as long as the dominant eigenvalue approaches the critical point.

3 Empirical analysis

The index presented in Eq. (13) results from the mixture of three different components, each

of which has been proved to show a behavioral change near a critical transition. The index is

expected to increase sharply (i.e. reaches maximum) when the financial system approaches a
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critical transition that could eventually materialize in a systemic crisis. Therefore, IAC may

provide an early warning indicator to identify financial crises effectively.

To prove the efficacy of the indicator, we first describe the algorithm for finding the financial

instruments belonging to the LTM, then the indicator is tested on the returns computed on the

daily closure prices of three different stock markets (North America, Europe and Asia) during

the period 2005-2018. The datasets are very heterogeneous and made up by different number of

stocks from different geographical areas, and hit by different types of crises (e.g., the sub-prime

financial crisis and the European Sovereign debt crisis).

3.1 The algorithm

Following Li et al. (2013), the steps of the algorithm for detecting the LTM at each time t can

be summarized as:

• Log returns have been calculated from a M × T matrix containing the adjusted closure

price time series of M stocks for T reporting days.

• A rolling window2 of w working days has been applied at each time step t to extract the

sub-matrix of the returns necessary for computing the value of the indicator at t. Thus,

information embedded into IAC
t regards only the stock market movements taking place in

the time window3 [t− w; t].

• The resulting stocks are sorted in ascending order according to their autocovariance and

only the highest x-percent of them are selected for the clustering procedure4. In this way,

a group M1 of stocks with a high ACt at period t is obtained.

• The stocks are clustered based on the average correlation of their returns between periods

t − w and t. The optimal number of clusters has been found by maximizing the average

Silhouette value5.

2In Section 3.2 we have used various moving windows, ranging from one week to one month as a robustness
check. We are aware about the existence of a trade-off between the statistically significance of a signal and its
ability to timely intercept changes in the system’s behaviors due to the moving window length. In the paper we
have opted for a short moving window to endorse the forecasting power of the early warning indicator.

3It could happen that a stock has been dropped (or introduced) from the market in different periods. The
algorithm uses only the stocks which have the complete series of prices from t− w to t.

4In Section 3.2 we have let the threshold x vary from 100 to 40 percent as a robustness check.
5The Silhouette value is a measure of how similar a stock is to other stocks in its own cluster, when compared

to stocks in other clusters. A high Silhouette value signals that a stock is well-matched to its own cluster, while
it is poorly-matched to neighbor clusters.
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• For each clusterH, we have computed the within absolute average correlation (< |PCCH
t | >)

and the between absolute average correlation (< |PCC
M1\H
t | >) together with the abso-

lute average autocovariance value < |ACH
t | > such that we have an index

IAC,H
t =

< |ACH
t | >< |PCCH

t | >
< |PCC

M1\H
t | >

for each cluster.

• The LTM at time t is the subset of stocks that has the maximum value of IAC,H
t

IAC
t = max

{

IAC,H
t

}

Algorithm 1: Early Warning Indicator IAC

input : M × T matrix of stock prices P , a moving window w, a cut parameter x, the
maximum number of clusters C

output: 1× T vector denoting the Early Warning Signal IAC

R← ∆(log(P ))
M ←#stocks
for k ← 1 to T − w − 1 do

r ← R(:, k : k + w)
rs ← r(sort(autocov(r))
Ms ←M(sort(autocov(r))
rac ← rs(1 : x, :)
for i← 2 to C do

rclust ← cluster(rac, i)
sili ← Silhouette(rclust)

h← max(sili)
bestclust ← cluster(rac, h)
for c← 1 to h do

H ← intersect(Ms,members(h(c))
< |PCCH | >← mean(corr(rac(H)))
< |ACH | >← mean(autocov(rac(H))
< |PCCM1\H | >← mean(corr(rac(M1 \H))

IAC,H ← <|ACH |><|PCCH |>

<|PCCM1\H |>

t← k + w
IAC
t ← max(IAC,H)

The behavior of financial instruments belonging to the LTM characterizes the dynamic

features of the corresponding financial system, since the members of the LTM make the first

move from one state to another.
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3.2 Application to stock markets

We apply the previously described methodology to three stock markets. For each dataset we

consider the aggregate index and its constituents. The aggregate index dynamics is analyzed

starting from the micro-level which is represented by the interactive behavior of its components.

The first dataset we consider is the STOXX North America 600, a broad yet liquid subset of the

STOXX Global 1800 Index with a fixed number of 600 components from US and Canada. The

second dataset is the STOXX Europe 50 that gives a sketch of supersector leaders in Europe. It

provides a basis for several investment products such as Exchange Traded Funds, Futures and

Options, and structured products worldwide. The third dataset is the STOXX Asia/Pacific 600

with a fixed number of 600 components. All the data6 have a daily frequency and range from

2005 to 2018. Finally, we remark that in the analysis we have employed the adjusted closure

prices.

In order to test how our method proxies the effects of a distress, we employ standard approaches

from crisis signaling (see Appendix C for the main technicalities on non-parametric analysis and

forecasting accuracy evaluation). For an early warning model, two types of data are needed:

vulnerability indicators and crisis events. The vulnerability indicators we use are the indicator

IAC
t developed in this paper, the method proposed by Chen et al. (2012) and an indicator

resulting from the mix of both standard deviation and autocovariance, that is:

IAC,STD
t =

< |ACd
t | >< |STDd

t | >< |PCCd
t | >

< |PCCo
t | >

(14)

For crisis events we design two types of scenarios. In the first case, a crisis is a drop of at

least 3% of the aggregate index returns and the leading indicator L we aim at mimicking takes

value 1 from the dropping date to the whole previous month. In the second scenario a crisis is

represented by a -4% in the returns of the aggregate index and a value of 1 is assigned to L at

each day of the previous month but, differently from the previous case, the value 1 is assigned

gradually day by day so that we can also evaluate the predictive power of the measures in

anticipating a crisis event7. Additionally, we expound the results for the original signals and for

6The STOXX North America 600 represents the largest companies in the North America region. The STOXX
Europe 50 covers stocks from Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Ireland,
Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.
The STOXX Asia/Pacific 600 represents basically the largest companies in Australia, Hong Kong, Japan, New
Zealand and Singapore.

7In both cases the selected values represent extreme events that lie in the first percentile of the return
distributions, as Figure 30 in Appendix H shows.
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the smoothed ones, having applied the locally weighted regression fitting with a second order

polynomial (LOESS).

An additional check involves the comparison of our measure with three well known indicators

such as the Value at Risk (VaR) (see Jorion et al. (2007), Linsmeier and Pearson (2000)), the

Marginal Expected Shortfall (MES) (see Oliviero et al. (2013)) and the Absorption Ratio (AR)

(see Kritzman et al. (2010))8. The mathematical formulations of the three methods are reported

in Appendix D.

The VaR gauges the maximum loss over a specific time horizon at a given confidence level.

Besides, we do not assume that all past returns carry the same weight. Accordingly, we apply

an exponential weighted moving average (EWMA) method to assign different weights, and in

particular we consider exponentially decreasing weights (see Nieppola et al. (2009)). The MES

evaluates the expected return on the portfolio in the worst q% of cases. The MES is an alter-

native to the VaR, being more sensitive to the shape of the tail of the loss distribution. Finally,

the AR is defined as the fraction of covariation between asset returns induced by a prearranged

number of eigenvectors. The AR grasps how much markets are unified or tightly coupled. In

the latter case, markets become more fragile as negative shocks propagate faster and largely,

compared to a situation in which markets are loosely linked. A large AR value corresponds to

a high systemic risk level, being the sources of risk more unified.

In the main text we only report the results regarding the STOXX North America 600 dataset

whereas we leave to the Appendices E.1-F the findings of the other two samples. The interpre-

tation of the results and the main intuition apply to all the datasets while minor differences are

described in Appendices E.1-F.

Since our early warning indicator is dynamic by definition, the group of stocks composing the

LTM can change in time. In fact, the LTM can be formed by a certain set of financial instru-

ments, near a particular critical transition phase, but such financial instruments can leave the

place to other stocks inside the LTM, signaling the upcoming of a new crisis whose drivers are

different from the ones leading to the previous turmoil. According to this view, how prices

collapse is not the most important issue: a crash may occur because the market has entered an

unstable phase and the subsequent turmoil may be fueled by any small disturbance. Figure 1

emphasizes how, near a crisis stage, the LTM appears from the cross correlation matrix (top left

8We are aware about the fact that newer and more refined measures of systemic risk exist nowadays; the
choice of using the VaR, the MES, and the AR, on the other hand, is due to their wide dissemination as market
standard risk measures.
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Figure 1: LTM and early warning indicators in different market phases. The correlation matrix among
stock returns together with the LTM is displayed for two different market phases, a distress (upper) and a
business as usual (central) phase. From the plot it clearly emerges the increased correlation among LTM stocks
during a financial crisis. Moreover the right panels show the percentage difference of the early warning indicators
when computed on the LTM stocks or on the other modules. This difference increases during distress stages
highlighting the importance of the LTM. The bottom panel reports the value of IAC , ISTD and IAC,STD in 2008
and 2014. As expected the early warning indicators are higher in 2008.

panel) while its occurrence is not strong during business as usual phases (central left panel). As

a consequence, our early warning indicators, namely IAC and IAC,STD, assume higher values

around the 2008 financial crisis if compared to a tranquil phase, as the top and central right

panels display. More precisely, we have computed the difference between the indexes of the

stocks belonging to the LTM and the ones belonging to the other modules. This comparison

highlights the increasing magnitude of the proposed indicators when dealing with a period of

financial distress. Finally, the bottom panels of Figure 1 report the cumulative sum of the

three indicators IAC , ISTD and IAC,STD in the two different dates and, as expected, we observe

evident higher values in 2008.
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Figure 2: Early warning indicators patterns and the STOXX North America 600 aggregate index
dynamic. The three panels represent the original early warning indicators (red) together with the smoothed
ones (black) and the STOXX North America 600 aggregate index (blue). The upper panel refers to the signal
produced by using both autocovariance and standard deviation I

AC,STD
t together with PCC. The central panel

encompasses our proposed indicator which, beside PCC, relies only on autocovariance IAC
t . The lower panel

refers to the original indicator proposed by Chen et al. (2012) which is indicated with ISTD
t . In particular the

label STD+AC refers to the mixed signal IAC,STD
t , AC denotes our early warning indicator IAC

t and finally STD
refers to the ISTD

t .

Figure 2 shows the signals produced by the three alternative methods. In particular the

red lines refer to the original indicators while the black lines are the correspondent smoothed

versions. We also plot, in blue, the STOXX North America 600 aggregate index to show how

the indicators behave in different market phases. We have also normalized the index and the

signals in a way that the maximum assumes value 1. This choice helps the comparison between

the different signals. Besides the fact the signals behave similarly, the smoothed early warning

indicators clearly indicate that our proposed technique, together with the mixed indicator,

better discriminates between crisis and business as usual days. Indeed, both indicators assume

low values in correspondence of tranquil phases while suddenly rise during crisis time. Instead

the method proposed in Chen et al. (2012) generates a signal less able to distinguish between

bad and good market times.

For a quantitative insight about the predictive power of the three methodologies, we report

in Figure 3 the ROC and the PR curves obtained for the different signals. In the left panels we

show the ROC curves while the right plots encompass the PR curves. The −4% crisis scenario

in the top-left plot produces curves closer to the left-hand border and to the top border of the

plotting space than those for the −3% (see the bottom-left subplot), thus indicating a more

informative signal. Moreover we observe that our indicator overcomes the index proposed by
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Figure 3: ROC and PR curves for the two different crisis scenarios. The left panels represent the ROC
produced by the indicators while the right plots encompass the PR curves. The upper panels refer to the −4%
crisis scenario while the bottom ones describe the results related to the −3% case. In each plot we report the
original signals and the smoothed ones (SM). In particular the label STD refers to ISTD

t , AC denotes our early
warning indicator IAC

t and finally STD+AC refers to the mixed signal IAC,STD
t .

Chen et al. (2012), while the mixed early warning indicator provides only a slight increase in

the performance. Generally speaking, we observe that smoothing the series has the effect of

moving the curves upward since noises are washed out.

All the previous results refer only to a particular moving windows w used for computing the

correlation between stock returns and, for the −4% crisis scenario also to a specific value of

the leading indicator L. Figure 4 instead provides a broader view about the consistency of the

results. We report the AUROC values for all the different moving windows w where we also

consider varying time steps for the leading indicator L. As we expected, all methods provide

better early warning signals near crisis periods, while the AUROC values decrease as long as

we want to anticipate a market crash with a wider time horizon. Moreover this picture also

provides evidence that our indicator together with the mixed signal outperforms the index of

Chen et al. (2012).

17



Figure 4: AUROC values for the two crisis scenarios and for different moving windows. Each plot
represents the AUROC obtained by varying the moving window w used to compute the correlation coefficients.
The background colors refer to the AUROC values related to the −4% crisis scenario in which, beside the different
windows, we also consider varying time steps for the leading indicator L. L takes value 1 gradually, day by day, up
to one month behind the crisis event. The front line represents the AUROC for the −3% case where we consider
the whole month for the leading indicator L. The upper panels represent the results related to the original early
warning indicators while the bottom ones encompass results obtained for the smoothed signals. The different
columns represent the results obtained for ISTD

t , IAC
t and I

AC,STD
t indicators respectively.

In particular, for the −4% crisis scenario, ISTD
t produces AUROC values in line with the

other two signals (near 80%) up to one week, but then it shows a decreasing performance while

both IAC
t and IAC,STD

t tend to remain higher, approximately near 70%, up to a working month.

Moreover, as previously observed, the smoothed signals increase the AUROC values around

90% near crisis events.

In order to check whether the previous outcomes are robust to changes in the value of the

parameter x (representing the percentage of stocks selected for the clustering procedure) we

show, in Figure 5, and report, in Table 1, the average AUROC values obtained by letting the

parameter x vary from 100% to 40%. Each bar in Figure 5 represents the AUROC obtained by

averaging the results of all the different moving windows (and of all the different values of the

leading indicator L for the −4% crisis scenario) for a particular x.

From all the plots it clearly emerges that our proposed technique produces, on average, the

highest AUROC values, outperforming the other two indices. The mixed signal comes second

while ISTD
t follows. Notice that, in all the settings, our method generates quite high AUROC

values, around 80%, meaning that it contains useful information to forecast crisis events. This
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Figure 5: Average AUROC for different settings of the parameter x defining the percentage of
stocks with the highest autocovariance (or standard deviation) used for the clustering procedure.
Each plot represents the average AUROC obtained by varying the parameter x used to select the financial
instruments with the highest autocovariance in the case of IAC

t or standard deviation for, ISTD
t . These stocks

are the ones used in the clustering procedure. The parameter x varies from 100% to 40%. For the mixed case we
select the intersection of the stocks extracted by the previous settings. The upper panels refer to the −4% crisis
scenario while the bottom ones describe the results for the −3% case. The left plots encompass results obtained
by employing the originals signals while the two plots on the right refer to the smoothed cases.

occurrence can be ascribed to the capability of the autocovariance in capturing the positive

feedbacks generated on the market during pre-crisis phases. Only in the −3% crisis scenario the

smoothed signals perform similarly. In Appendix G we also report the corresponding results

associated with the average AUPR values.

Additionally, we have computed the series of the VaR, MES and AR adopting the identical

moving window w used for IAC
t and we have performed the same non-parametric analysis either

in the −4% or in the −3% crisis scenarios. Afterwards, we have averaged the AUROC values

obtained and compared them with the ones produced by our indicator. We have repeated this

exercise for the raw VaR, MES and AR series as well as for the smoothed ones. Figure 6 reveals

that our methodology always generates superior performances in signaling a crisis.

3.2.1 Policy evaluations

The literature on EWSs evaluation has been attempting to conceive a loss-function, able to

determine the leak for a policymaker when considering a certain EWS, in a two-class setting

(i.e. tranquil vs. crisis), in which the loss commonly derives from false alarms and missed
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Table 1: Average AUROC for different setting of the parameter x defining the percentage of
stocks with the highest autocovariance (standard deviation) used for the clustering procedure.
The table represents the average AUROC obtained on changing the parameter employed to pick out the financial
instruments featuring the highest autocovariance associated with IAC

t or the largest standard deviation for ISTD
t .

The parameter x varies from 100% to 40%. For the mixed case we select the intersection of the stocks extracted
by the previous settings. The first three columns concern the −4% crisis scenario for I

AC,STD
t , IAC

t and ISTD
t

respectively. Columns from four to six regard the −4% crisis scenario and to the smoothed (SM) indicators.
Columns from seven to nine refer to the −3% scenario while the last three columns collect the AUROC values of
the smoothed (SM) indicators for the −3% crisis scenario.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.7480 0.7752 0.7045 0.7642 0.8002 0.7317 0.7324 0.7709 0.7395 0.7921 0.8375 0.7546
0.7580 0.7723 0.7027 0.7628 0.7961 0.7296 0.7427 0.7656 0.7392 0.7912 0.8303 0.7569
0.7488 0.7642 0.7033 0.7629 0.7984 0.7376 0.7377 0.7544 0.7330 0.7882 0.8327 0.7493
0.7637 0.7737 0.7031 0.7610 0.8002 0.7303 0.7498 0.7694 0.7331 0.7926 0.8427 0.7493
0.7542 0.7638 0.7041 0.7556 0.7967 0.7367 0.7470 0.7554 0.7364 0.7886 0.8292 0.7519
0.7552 0.7583 0.7008 0.7502 0.7899 0.7304 0.7422 0.7480 0.7286 0.7805 0.8179 0.7425
0.7683 0.7770 0.7101 0.7732 0.8041 0.7389 0.7565 0.7721 0.7338 0.7953 0.8517 0.7524
0.7546 0.7725 0.7006 0.7538 0.7947 0.7326 0.7334 0.7631 0.7278 0.7842 0.8292 0.7413
0.7626 0.7682 0.7016 0.7504 0.7936 0.7306 0.7492 0.7572 0.7319 0.7827 0.8213 0.7456
0.7489 0.7523 0.6957 0.7459 0.7826 0.7185 0.7386 0.7417 0.7225 0.7742 0.8161 0.7345
0.7550 0.7745 0.7052 0.7684 0.8021 0.7347 0.7382 0.7670 0.7300 0.7932 0.8439 0.7494
0.7586 0.7706 0.7034 0.7520 0.7946 0.7346 0.7444 0.7597 0.7316 0.7824 0.8229 0.7431
0.7464 0.7565 0.6983 0.7471 0.7894 0.7277 0.7392 0.7438 0.7274 0.7813 0.8158 0.7415
0.7446 0.7535 0.6970 0.7487 0.7864 0.7262 0.7329 0.7406 0.7237 0.7769 0.8118 0.7373
0.7524 0.7760 0.7044 0.7538 0.8018 0.7403 0.7304 0.7626 0.7258 0.7857 0.8356 0.7414
0.7504 0.7758 0.7065 0.7717 0.8034 0.7319 0.7348 0.7715 0.7431 0.7946 0.8480 0.7608
0.7499 0.7748 0.7041 0.7693 0.8000 0.7294 0.7356 0.7739 0.7447 0.7976 0.8414 0.7621
0.7564 0.7715 0.7015 0.7705 0.7961 0.7289 0.7466 0.7678 0.7413 0.7946 0.8304 0.7571

Figure 6: AUROC comparison. The bars represent the average AUROC obtained by the VaR methodology,
the MES and the AR along with the AUROC of our indicator IAC

t for both the −4% and −3% crisis scenarios
and for both the original signal and the smoothed (SM) one.

crises. To define the concepts of utility and relative utility as benchmark of classification

performance (see Sarlin (2013)), we account for type I errors as the quota of missed crises

with respect to the total crises frequency, i.e. T1 = FN/(FN + TP ), while type II errors are

the proportion of false alarms that are delivered with respect to the attendance of tranquil

periods, i.e. T2 = FP/(TN + FP ). Two further terms are also required: the policymakers’

relative predilection µ between the two types of errors, which allows us to assess the potential

unbalanced costs of errors, and the probabilities of crises P1 and calm periods P2 to esteem the
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potential size difference between the two classes. Accordingly, a loss function is defined as:

Lo(µ) = µT1P1 + (1− µ)T2P2. (15)

Further, based on this loss function, the absolute utility of the prediction model can be qualified

through the comparison with what would be the best conjecture of a policymaker:

Ua(µ) = min(µP1, (1− µ)P2)− L(µ). (16)

We also compute the relative usefulness, Ur, to contrast the absolute utility of the model to the

absolute usefulness of a model with perfect performance (Lo(µ) = 0). This exercise enables us

to investigate whether and to what extent our signals IAC
t is useful, which occurs when the loss

obtained adopting of the model is smaller than the loss of disregarding it.

Table 2 provides the findings by applying the method developed in Sarlin (2013) to our early

warning indicator. For an illustrative purpose, we report the outcomes for the −3% crisis

scenario, averaged along different moving windows. In accordance with the literature, the

evaluated performance indicates that the signal is beyond the best-guess of a policymaker and

hence provides an overall positive usefulness. However, as expected (cf. Sarlin (2013)), the

IAC
t provides a higher utility only for policymakers more concerned with missing crises than

issuing false alarms. Moreover we observe that, in general, the optimal thresholds decrease with

increases in preferences µ, implying more signals with larger µ. This reflects the fact that, when

the harm of a missing crises is larger, it is optimal to signal more.

Table 2: Policy Analysis. We report, for different measures of preference (µ), the absolute usefulness (Abs.
Usef.), the relative usefulness (Rel. Usef.) and the optimal threshold (Thresh.) for different moving windows
(MW), 10 days, 15 days and 20 days. Results refer to the −3% crisis scenario.

µ Abs. Usef. MW-10d Rel. Usef. MW-10d Thresh. MW-10d Abs. Usef. MW-15d Rel. Usef. MW-15d Thresh. MW-15d Abs. Usef. MW-20d Rel. Usef. MW-20d Thresh. MW-20d
0.0000 -0.0000 NaN 0.4159 0.0000 NaN 0.4626 0.0000 NaN 0.3893
0.1000 0.0002 0.0100 0.3570 0.0004 0.0214 0.3162 0.0002 0.0138 0.3893
0.2000 0.0018 0.0523 0.0728 0.0017 0.0505 0.1314 0.0008 0.0231 0.2357
0.3000 0.0054 0.1049 0.0558 0.0047 0.0924 0.0828 0.0039 0.0760 0.0527
0.4000 0.0096 0.1411 0.0507 0.0093 0.1358 0.0697 0.0086 0.1257 0.0423
0.5000 0.0146 0.1714 0.0406 0.0148 0.1739 0.0607 0.0146 0.1710 0.0350
0.6000 0.0209 0.2044 0.0311 0.0213 0.2087 0.0528 0.0223 0.2173 0.0287
0.7000 0.0300 0.2522 0.0222 0.0299 0.2508 0.0349 0.0316 0.2648 0.0227
0.8000 0.0443 0.3257 0.0109 0.0440 0.3231 0.0148 0.0444 0.3252 0.0096
0.9000 0.0165 0.1984 0.0043 0.0178 0.2144 0.0051 0.0158 0.1907 0.0037
1.0000 0.0000 NaN 0.0010 0.0000 NaN 0.0010 0.0000 NaN 0.0010

Moreover, with the aim of providing an exploitable tool to policymakers, our indicator

is discretized to obtain thresholds indicating a tranquil or a crisis period. To overcome the

problem on having a continuous variable difficult to interpret, a Hidden Markov Model (HMM)

is proposed on top of the indicator previously described for signaling a possible distress period.
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A HMM hypothesizes that an observation at a certain time t is engender by some process,

whose state St is not observable. Moreover, the nature of the underlying process satisfies the

Markov properties. Both properties imply that the joint distribution of a string of states and

observations can be factorized as:

P (S1:T , Y1:T ) = P (S1)P (Y1|S1)

T
∏

t=2

P (St|St−1)P (St|Yt) (17)

To define a probability distribution over sequences of observations, we need to specify a prob-

ability distribution P (S1) over the initial state, the state transition matrix K × K defining

P (St|St−1) and the output model P (Yt|St). HMMs usually assume that the state transition

matrices and the output models are time invariant (except for the initial state). If the observ-

able variables are discrete, the output can be entirely precised by a K×L emission matrix. We

remark that, for the transition matrices estimation from the observed sequence of emissions, we

adopt the Baum-Welch algorithm (see Durbin et al. (1998); Eddy (1998)).

For each time period we have multiplied the signal IAC
t for 10000 to get results in basis points;

these values are then rounded to the closest integer number. This measure can be seen as

the time emanation of the HMM. Then we have assumed that such emissions are caused by

an underlying synchronization categorical variable, with Em unobserved states. We let Em

be equal to three hidden levels, portraying them as signaling low, medium and high levels of

financial distress. From an econometric perspective, hidden levels represent regime switching

states. Using a HMM, at each time point, the most likely level of distress, among the three

possible states, are achievable. Figure 7 shows the course of the estimated levels.

The HMM estimated states show an enhancement in the level of distress, starting in the second

half of 2007 and that came to a peak in the summer of 2009. The financial crisis moved the

level of distress from an initial low degree, then to a medium and finally to a huge level in 2009.

However, it reverted to a medium state in the subsequent few years, until the 2011 European

Sovereign debt crisis took place. Moreover, at the end of the sample it seems that the system

stabilizes at a low level of distress, apart from isolated events as the turmoil after the devalua-

tion of the Chinese Renmimbi in the summer of 2015.
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Figure 7: Discretization of the signal IAC
t obtained through a Hidden Markov Model. The figure

presents the three states obtained by the discretization of the original signal IAC
t . The blue bars, ranging from

the lightest to the darkest, represent the low (cyan), medium (light blue) and high (dark blue) level of the system’s
distress while the red line denotes the STOXX North America 600 aggregate index.

4 Conclusions

The present work has considered a novel model-free method for detecting EWSs of financial

crises starting from a complex system perspective applied to financial markets, according to

which crisis represent innermost properties of the system. By analyzing the demeanor of a

group of stocks, the Leading Temporal Module, we have proposed an aggregated early warning

indicator to predict financial downturns. The method is general and counts on the occurrence of

some peculiar statistical features displayed by the LTM at the crossing of the transition point.

These characteristics are: an increase in the autocovariance, a boost in the correlation between

the members of the LTM and a decrease of the correlation between the stocks in that group

and the rest of the financial instruments.

To test the usefulness and the broad validity of the approach we have exploited data covering

various geographical area and crisis episodes. We have considered North America, Europe,

and Asia-Pacific stock market indices for the period 2005-2018 such that either major global

financial crisis events or different local triggers have been mapped.

We have investigated the aggregate indices’ dynamics by starting from the micro-level embodied

by the interactive behavior of their components. By adopting a non-parametric approach, we

have shown either the capability of our indicator to detect systemic crisis or its superiority in

terms of forecasting performances with respect to well accepted measures of systemic risk. This

supports the goodness of our early warning indicator for macro-prudential monitoring and risk
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assessment.

The broad generality of the proposed approach opens room for its applicability to different

environments, e.g. other financial markets, OTC markets, real micro-series like consumption

and investment streams. More interestingly, this methodology could be potentially applied to

real-time data sets to identify and timely forecast major breakdowns, and thus helping policy-

makers in making more informed policy decisions.
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A A stylized model of stock interactions

The stock market can be perceived as an ecosystem where traders compete for resources, that is

the values of the companies being traded, or as a collection of stocks competing for the investors’

wealth. Traders drop in and out of the market and may occasionally switch between their trading

strategies; additionally stocks may disappear from market indices and new stocks can replace

them. The mathematical relationships which describe the connections between companies or

stocks can be compared to those describing the extinction (or survival) mechanism of biological

species in natural ecosystems, as in a Lotka-Volterra model. Indeed, Thompson (2011) considers

the financial system as akin to an ecological network while May et al. (2008) and Haldane and

May (2011) draw analogies between the dynamic of ecological systems and financial networks.

The latter adopts the notion of financial ecosystem, in which evolutionary forces have often been

survival of the biggest rather than the fittest. We recall that several contributions adopt the

same Lotka-Volterra framework to investigate financial markets dynamics (see e.g. Samuelson

(1971); Farmer (2000); Solomon and Richmond (2001); Lee et al. (2005)).

The equations that constitute the model are:

zi(t+ 1) = bizi(t) +
∑4

j=1
Qijzj(t)zi(t) + ǫi (18)

where the stock9 prices are denoted by zi and bi represents the maximum rate of change of each

stock which is also subject to a noise term ǫi, referring to short-term fluctuations in the rate of

change of the stock price.

The interactions between stocks are encompassed in the matrix Q, for which we consider the

following specification:

Q =



















−.1 .02 −.1 −.1

.02 −.1 −.1 −.1

−.1 −.1 −.1 .02

−.1 −.1 .02 −.1



















Each entry describes the strength and the direction of the interaction between stocks. In par-

ticular, negative coefficients signal stocks suppressing each other while positive terms refer to

enhancement. Economically, we can interpret negative interactions as being originated by the

9We adopted a model with only 4 stocks as a minimal model to design stocks interactions. The results also
apply to a larger set of stocks.
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substitutability of stocks and positive interactions as the results of the complementarity between

pairs of financial instruments.

The simulations of the model are useful to identify sharp transitions from a dynamical regime to

another, as it is often observed in complex systems, such as ecosystems, engineering networks,

social organizations and financial markets (see Sornette (2003); Davis and Karim (2008); Schef-

fer et al. (2012); Dakos et al. (2012)). Such regime shifts are frequently arising from external

shocks. However, it might be the case that a slight perturbation can lead to a substantial

transition to a new and permanent state (see Lorenzoni and Werning (2013)).

In the analysis, we let b3 and b4 vary from 0.5 to 1.5 and show how the statistical properties of

the simulated time series change as long as these parameters assume different values. Specif-

ically, while far from transition, time series exhibit relatively low autocovariance and also low

correlation, near the transition point the fluctuations exhibit higher volatility and autocovari-

ance and the correlation between the stocks also becomes stronger. Concurrently, we evaluate

how the dominant eigenvalue varies while approaching the transition point. Figure 8 shows,

in red, the values of the average autocovariance (top panel) and the average correlation (top

bottom panel), while in blue we depict the absolute values of dominant eigenvalue. Notice that

|λ1| reaches 1 when b3 and b4 approach 0.95. Near this value both the autocovariance and the

average correlation approach their maximum value highlighting the transition.

Figure 8: Empirical signals and leading eigenvalue dynamics for different bifurcation parameters.
The model simulations illustrate generic indicators of phase transition (red lines) along with the absolute value
of the dominant eigenvalue (blue). The average autocovariance is reported in the top panel while the average
correlation values are shown in bottom panel.
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B Leading temporal module and matrix decomposability

The appearance of a set of variables that drives the system to a transition phase can be linked

to the degree of decomposability10 of the Jacobian matrix (see Simon and Ando (1961); Ando

and Fisher (1963); Simon (1996); Courtois (2014)) of the unobserved underlying system. The

modification in the properties of this group is indeed the empirical reflection of a reduced level

of decomposability of the matrix. The decomposability (see Simon and Ando (1961); Ando and

Fisher (1963); Simon (1996); Fisher and Ando (1962)) of the Jacobian matrix J in Eq. (3) is

intimately connected to the emergence of a transition phase and, accordingly, related to the

empirical signals that lead to the arising of the LTM. In what follows, how the decomposability

degree of J reduces as long as the dominant eigenvalue approaches the critical point is shown.

To do so, the eigenvectors S(Pc) of the Jacobian matrix J(Pc) at the critical point Pc are

approximated as functions of the eigenvectors S of J far from the transition state. Following

Wilkinson (1965), we use the eigenvectors S of J as a base to express the set of eigenvectors

S(Pc) of J(Pc).

As in Courtois (2014), we have that:

si,k(Pc) =
∑

x

βx,ksi,x (19)

where β is the eigenvectors matrix of S−1J(Pc)S. In particular, the dominant eigenvector S1(Pc)

can be written as:

si,1(Pc) = β1,1si,1 +
∑

x=2

βx,1si,x (20)

Courtois (2014) proved that the modulus of βk,1, k 6= 1, expresses the degree of indecomposabil-

ity of J and that it decreases as the degree of indecomposability increases. Thus, from Equation

(21) it follows that:

si,1(Pc)

si,1
= β1,1 +

∑

x=2 βx,1si,x
si,1

(21)

meaning that the empirical signals produced by the observable variables are the immediate

reflection of the manifestation of a critical transition of the system in the abstract phase space,

i.e. |si,1(Pc)| > |si,1| which holds if
∣

∣

∣
β1,1 +

∑
x=2

βx,1si,x
si,1

∣

∣

∣
> 1.

Employing the Lotka-Volterra model for stock interactions presented in Section A, we demon-

10A decomposable matrix is a square matrix such that a rearrangement of its rows and columns generates a
set of square submatrices on the principal diagonal and zeros elsewhere.
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strate how the values of βx,k are related to the phase transition of the system. Figures 9 shows

the decomposability degree
∑

x=2 βx,1 on the upper panel while β1,1 is reported in the bottom

panel. The blue line represents the absolute value of the dominant eigenvalue and it reaches 1

when b3 and b4 approach 0.95. Near the transition value, the decomposability of the Jacobian

matrix reduces, i.e. the number of square submatrices on the principal diagonal increases, and

the first entry of βx,1 peaks signaling a stronger relationships between the empirical signals

and the theoretical model. To analyze the conduct of the early warning indicator IAC as long

Figure 9: Decomposability signals and dominant eigenvalue dynamics for different parameter values.
The simulations illustrate the generic decomposability indicators (red lines) along with the absolute value of the
leading eigenvalue (blue). The values of

∑
x=2

βx,1 are reported in the top panel while the values of β1,1 are
shown in the bottom panel.

as S and Λ2 vary, we generate synthetic data from the following data generating process that

reproduces the model of Section 2:

Z (t) = SY (t)

Y (t+ 1) = ΛY (t) + ε (t)

We have created different configurations of S and Λ2 by changing the features of the Jacobian

matrix J and then by computing its eigenvalues Λ and eigenvectors S. The Jacobian takes the

following form:

J = J∗ + δĴ

where J∗ is diagonal and Ĵ encompasses the values outside the main diagonal. In this way,

tuning the parameter δ we can let the degree of decomposability of J to assume different levels.
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We study how the algorithm reacts to these changes. For this purpose, we have produced two

series of synthetic datasets considering n = 20 stocks, whose price pattern has been simulated

for t = 100 periods. The variance of ε has been set to 0.5 but, in the first series we have assumed

δ = 0.01 while in the second we have set δ = 0.1. The first value of δ implies a quasi-diagonal

matrix, i.e. a system far from the transition, in which each stock is governed by its own dynamic.

Differently, the second value of δ populates the off-diagonal part of J with elements of higher

value, which implies that variables are no longer independent and that diffusion processes like

herding behaviors dominate the dynamic of the system. This second case postulates a system

near the transition phase.

Figure 10 shows the average dynamic of Y and Z as long as P → Pc. This result has been

obtained by simulating the dataset 100000 times and initializing, at each time step, J∗ and Ĵ

with different randomly and uniformly distributed values. It is worth to notice that a low value

of δ, which implies a quasi-diagonal Jacobian, produces a dominant eigenvalue (reported in the

tag of the upper left panel) that is lower than the case in which J becomes more indecomposable

(bottom left panel). The reduced decomposability of J translates in a structure approaching the

transition (the value of |λ1| approaches to 1). Secondly, it is worth noticing how IAC changes

when δ varies as well. When the system approaches the transition point, IAC takes a higher

value. Figure 11 reports the histogram produced from the different simulations. In Figure 11

we can better observe how the values of IAC increase as long as δ increases, thus as long as

the system approaches a critical point. The distribution of IAC becomes more skewed and also

the average value of IAC , depicted by the dashed red line, grows. This confirms our previously

illustrated intuition about the connection between the decomposability of the Jacobian, near

and far from the transition point, and the statistical characteristics of the originated time series

captured by the indicator IAC .

Additionally we inspect how, empirically, the decomposability degree is related with the early

warning indicator we have proposed. Since we have no knowledge about the functional form of

the equations describing the evolution of the stock markets, we can not compute the Jacobian

matrix of such system. Therefore, we are forced to link the number of blocks of the correlation

matrix of the empirical returns (used as a proxy of the decomposability) with the value of the

LTM. Our aim is to show that the LTM anticipates stages of low demposability of the correlation

matrix that are, in turn, linked to periods of financial distress and high systemic risk. We

proceed as follow: we first compute the correlation matrix between stock returns considering
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Figure 10: Synthetic data dynamics. Average dynamic of Y and Z far and near the transition point. In
particular, the upper panels highlights a system far from the transition (as also indicated by the value assumed
by |λ1|) while the lower panels show the system dynamics near the transition point. The left panels depict the
series of Y while the right ones concerns the series of Z. In the sub-plots titles we have also inserted the average
values of |λ1| and IAC . Notice that the more indecomposable the Jacobian matrix is (the higher the value of δ),
the closer to the transition point the system is, and the higher the value assumed by IAC .

Figure 11: Histogram of IAC for different values of δ: the left panel regards the distribution of IAC

obtained for δ = 0.01 while the right panel shows the distribution of IAC for δ = 0.1. Near the transition phase,
the distribution of IAC becomes more skewed and the average value of IAC (red dashed line) increases.

the same moving windows adopted for the extraction of the LTM; secondly, we set to zero the

values of the correlations associated with a p-value less than 0.01; thirdly the symmetric reverse

Cuthill-McKee ordering is applied to the correlation matrix. In so doing, we have its nonzero
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elements closer to the diagonal and we obtain a block diagonal correlation matrix that reveals

the number of connected components of the graph. Finally, the number of blocks is computed

and a cross-correlation analysis between the LTM values and the reciprocal of the number of

blocks is performed. Since a lower number of blocks indicates a higher indecomposability, and

accordingly a higher likelihood of a systemic crisis, we expect its reciprocal to be positively

related to the LTM values. Moreover we await the LTM anticipates the path of the number of

blocks. The cross-correlation is thus performed to test these hypotheses. The cross-correlation

function (ccf) of the two series is the product-moment correlation as function of the lag between

the series:

ccfnb,ltm (k) =
cnb,ltm (k)

√

cnb,nb (0) cltm,ltm (0)

where nb and ltm represent the reciprocal of the number of blocks and the leading temporal

module respectively and c (k) is the cross-covariance function (ccvf) defined as

cnb,ltm (k) =
1

N

N−k
∑

t=1

(

nbt − nb
) (

ltmt+k − ltm
)

; k = 0, 1, ..., (N − 1)

cnb,ltm (k) =
1

N

N
∑

t=1−k

(

nbt − bn
) (

ltmt+k − tlm
)

; k = −1, ...,− (N − 1)

where variables with upper bars indicate the average value. Figure 12 shows the cross-correlation

Figure 12: Cross correlation values. The three panels embody the cross-correlation values for 22 different
time lags and leads for the STOXX North America 600 (left), the STOXX Europe 50 (central) and the STOXX
Asia/Pacific 600 (right). The confidence bounds are ±0.036, ±0.033 and ±0.035, respectively.

values for 22 different time lags and leads for the STOXX North America 600, the STOXX

Europe 50 and the STOXX Asia/Pacific 600. The results are obtained by averaging the series

obtained for the different moving windows. To emphasize the dynamics of the module size and

to minimize noises, we have applied an average over a three-months moving window11. From

11Qualitatively, the results remain the same even without applying the moving average.
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Figure 12 we can observe that the hypotheses are fulfilled for the STOXX North America 600

and, to a less extent, for the STOXX Europe 50. Indeed, for both the samples a positive cross-

correlation peaks with a lag of one week, indicating that an above average value of the LTM

is likely to lead a below average value of the number of blocks in the correlation matrix about

one week later. For the STOXX Asia/Pacific 600, on the other hand, a negative correlation

between the series exists, although results are not statistically significant.
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C Non-parametric analysis

Early warning models are concerned with differentiating between vulnerable (i.e., pre-crisis and

crisis periods) and tranquil phases, which forms a standard classification problem. Generally

speaking, we are aiming for a model that separates vulnerable and tranquil classes and dis-

criminates between them by estimating the probability of being in a vulnerable state. For

backtesting, however, the time-series dimension needs to be taken into account when evaluating

the predictive power. We conduct recursive real-time out-of-sample tests to assess the perfor-

mance. This implies deriving a new model at each day using only information available up

to that time point. By using information in a realistic manner, we test whether our measure

has an ex-ante meaning for predicting crisis events. Following a standard evaluation framework

for early-warning models, we aim at mimicking an ideal leading indicator L ∈ {0, 1} that is a

binary variable which takes value one during vulnerable periods and zero otherwise. We need a

continuous measure indicating membership in a vulnerable state p ∈ [0, 1], which is then turned

into a binary prediction B that assume value one if p exceeds a specified threshold τ ∈ [0, 1] and

zero otherwise. The correspondence between the prediction B and the ideal leading indicator

L can be summarized into a contingency matrix, as described in Table 3.

To assess the predictive power of our indicator we calculate some standard measures from

Table 3: Contingency matrix.

classification and machine learning literature, namely the area under the receiver operating

characteristic (ROC) curve (AUROC) and the area under precision-recall (PR) curve (AUPR).

ROC curves plot the false positive rate (FPR) against the true positive rate (TPR). To be more

explicit:

FPR =
FP

FP + TN
and TPR =

TP

TP + FN
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The PR curves plot precision (P) versus the recall (R), or, more explicitly:

P =
TP

TP + FP
and R =

TP

TP + FN

Precision is directly influenced by class (im)balance because of the false positive measure,

whereas TPR only depends on positives. This is a drawback of ROC curves. PR curves are

thus better to highlight the differences between models for highly imbalanced data sets where

the cardinality of crisis events is much lower with respect to the number of tranquil periods.
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D Value at Risk, Marginal Expected Shortfall and Absorption

Ratio measures

An additional check involves the contrast between our measure and three well known indicator of

risk, such as the Value at Risk (VaR) (see Jorion et al. (2007), Linsmeier and Pearson (2000)) the

Marginal Expected Shortfall (MES) (see Oliviero et al. (2013)) and the Absorption Ratio (AR)

(see Kritzman et al. (2010)). The VaR quantifies the maximum amount of loss over a certain

time horizon and at a given confidence level. Assuming that profits and losses follow a normal

distribution, the VaR can be computed by multiplying the z-score, at a certain confidence level,

by the standard deviation of the returns. Moreover, all past returns are not assumed to carry the

same weight. Accordingly, we apply an exponential weighted moving average (EWMA) method

to assign different weights, and in particular we consider exponentially decreasing weights. The

most recent returns have higher weights because they influence “today’s” returns more heavily

than returns further in the past (see Nieppola et al. (2009)). The formula for the EWMA

variance over an estimation window of size w is:

σ2
t =

1

c

w
∑

i=1

τ i−1y2t−1 (22)

where c s a normalizing constant, τ is the smoothing parameter set to 0.8 and y represents the

STOXX indices. The VaR measure at the 0.95 confidence levels is:

V aRt = −σtN−1(0.05) (23)

where N−1 is the inverse of a standardized Normal distribution.

Marginal Expected shortfall (MES) evaluates the expected return on a portfolio in the worst

q% of cases. The MES is an alternative to the VaR for it is more sensitive to the shape of the

tail of the loss distribution. The MES estimates the risk of an investment in a conservative way,

giving more emphasis on the less profitable outcomes. The mathematical formulation is:

MESq
t =

1

q

∫ q

0

V aRy,tdy (24)
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Finally, the AR represents the fraction of the total variance of a set of asset returns explained

or absorbed by a fixed number of eigenvectors.

ARt =

∑

σ2
Ei,t

∑

σ2
Aj,t

(25)

where σ2
Ei,t

is the variance of the i-th eigenvalues computed on the covariance matrix of returns

of a given window w and σ2
Aj,t

is the variance of the j-th asset. The AR aims at capturing how

markets are unified or tightly coupled. When markets are tightly coupled, they become more

fragile since negative shocks propagate more quickly and widely than when markets are loosely

linked. A high value for the AR signals a high level of systemic risk, implying the sources of

risk are more unified. Instead, a low AR indicates less systemic risk since the sources of risk are

more disparate. Therefore, a high value of systemic risk is an indication of market fragility in

the sense that a shock is more likely to quickly propagate when the sources of risk are tightly

coupled.
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E Empirical analysis: results on further datasets

In the next two subsection we shall show the application of our algorithm to two further datasets,

namely the STOXX Europe 50 and the STOXX Asia/Pacific 600 indexes. As proceeded in the

main text, we investigate whether the application of the technique we propose may provide

information on the detection of EWSs.

E.1 Results on STOXX Europe 50

In order to disclose the LTM from the analysis of the STOXX Europe 50 dataset, Figure 13

emphasizes how, near a crisis stage, the LTM appears from the cross correlation matrix (top

left panel) while its occurrence is not strong during business as usual phases (central left panel).

As a consequence, our early warning indicators, namely IAC and IAC,STD, assume higher value

around the 2008 financial crisis if compared to a tranquil phase, as the top and central right

panels display. More precisely, we have computed the difference among the indexes of the

stocks belonging to the LTM and the ones belonging to the other modules. This highlights the

increasing magnitude of the proposed indicators when a period of financial distress takes place.

Finally, the bottom panels of Figure 13 report the cumulative sum of the three indicators IAC ,

ISTD and IAC,STD in the two different dates and higher values are observed in 2008.

Figure 14 shows the signals produced by the three alternative indicators that we consider. In

particular, the red line refers to the original signals while the black lines are the correspondent

smoothed versions. The series are plotted against the STOXX Europe 50 Index (in blue) to

portray how the signals behave during different market phases. This analysis allows us to catch

the most relevant market episodes of distress by comparing the dynamics of the indicators with

the course of the market index.

The predictive performance of the three methodologies is tested through the ROC and the

PR curves obtained for the different indicators, and reported in Figure 15. In the left panels

we show the ROC curves while the right plots regard the PR curves. Broadly speaking, the

performance of our indicator for the STOXX Europe 50 index exhibits a superior performance

and a more informative signal with respect to the index proposed in Chen et al. (2012).

Figure 16 provides a broader view about the consistency of the results. The figure reports the

AUROC values for all the different moving windows w where we also consider varying time steps

for the leading indicator L. As expected, all the methods provide better EWSs in proximity of
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Figure 13: LTM and early warning indicators in different market phases. The correlation matrix among
stock returns together with the LTM is displayed for two different market phases, a distress (upper) and a business
as usual (central) phase. From the plot clearly emerges the increased correlation among LTM stocks during a
financial crisis. Moreover, the right panels show the percentage difference of the early warning indicators when
computed on the LTM stocks or on the other modules. This difference increases during distress stages highlighting
the importance of the LTM. The bottom panel reports the value of IAC , ISTD and IAC,STD in 2008 and 2014.
As expected the early warning indicators are higher in 2008.

crisis periods, while the AUROC decrease as long as we want to anticipate a market crash with

a wider time horizon. Moreover, this picture provides evidence that our method, together with

the mixed signal, outperforms the indicator of Chen et al. (2012). Finally, the figure reveals

that the AUROC of the smoothed index IAC
t is, on average, the highest and that, for the −4%

crisis scenario, it takes values around the 90% up to 10 days forward and around 75% up to 20

days forward.

The robustness of the previous findings is checked with respect to changes in the value of the

parameter x. In Figure 17 and in Table 4 we show the average AUROC values obtained by

letting the parameter x vary from 100% to 40%. Each bar represents the AUROC obtained by
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Figure 14: Early warning indicators patterns and the STOXX Europe 50 aggregate index dynamics.
The three panels represent the original early warning indicators (red), their smoothed version (black) and the
STOXX Europe 50 aggregate index (blue). The upper panel refers to the indicator produced by using either
the autocovariance or the standard deviation I

AC,STD
t together with the PCC. The central panel encompasses

our indicator IAC
t which, beside PCC, takes into account only the autocovariance. The lower panel refers to the

original index ISTD
t proposed by Chen et al. (2012).

averaging the results of all the different moving windows (and of all the different values of the

leading indicator L for the −4% crisis scenario) for a particular x.

From all the plots, it clearly emerges that our proposed technique and the mixed signal IAC,STD
t

produce similar results and, depending on x and the type of scenarios, the former can be slightly

better than the latter, but both overcome the indicator ISTD
t .

As a further check, we have compared the AUROC generated by IAC
t with the ones derived

from the other risk measures, i.e. VaR, MES and AR. Figure 18 reveals that our methodology

generate superior performances in crisis signaling, with the only exception of the VaR in the

−4% crisis scenario where the two methodologies perform equally.

E.2 Policy evaluations

Following the general line of the main text, in Table 5 we report the results obtained by applying

the method developed by Sarlin (2013) to the indicator IAC
t .

We report the results for the −3% crisis scenario, averaged along different moving windows.

Results are in line with the discussion of the main text about the outcomes obtained for the

United States and Canada.

Finally, the estimated distress levels obtained by the application of the HMM are presented in
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Figure 15: ROC and PR curves for the two crisis scenarios. The left panels represent the ROC curves
while the right plots encompass the PR curves. The upper panels refer to the −4% crisis scenario while the
bottom ones describe the results related to the −3% case. In each plot we report the results obtained using
either the original signals or the smoothed ones (SM). In particular, the label STD refers to ISTD

t , AC denotes
our early warning indicator IAC

t and finally STD+AC refers to the mixed signal IAC,STD
t .

Figure 19. The estimation shows an increase in the level of distress, reaching a peak with the

2009 global financial crisis. The degree of distress reverts to a medium state in the subsequent

few years while it takes another peak in correspondence to the 2011 European Sovereign debt

crisis.
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Figure 16: AUROC values for the two crisis scenarios and for different moving windows. Each plot
represents the AUROC obtained by varying the moving window w used to compute the correlation coefficients.
The background colors refer to the AUROC values related to the −4% crisis scenario in which, beside the different
windows, we also consider varying time steps for the leading indicator L. L takes value 1 gradually, day by day,
up to one month behind. The front line represents the AUROC for the −3% case where we consider the whole
month for the leading indicator L. The upper panels represent the original indicators while the bottom ones
encompass the results obtained for the smoothed indicators. The different columns represent the results obtained
for, ISTD

t , IAC
t and I

AC,STD
t respectively.

Figure 17: Average AUROC for different values of the parameter x defining the percentage of stocks
with the highest autocovariance (standard deviation) used for the clustering procedure. Each plot
represents the average AUROC obtained by varying the parameter x used to select the financial instruments with
the highest autocovariance in the case of IAC

t or standard deviation for ISTD
t . The parameter x varies from 100%

to 40%. The upper panels refer to the −4% crisis scenario while the bottom ones describe the results related
to the −3% case. The left plots encompass the results obtained by employing the original signals while the two
plots on the right refer to the smoothed case.
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Table 4: Average AUROC for different setting of the percentage of stocks with the highest auto-
covariance (standard deviation) used for the clustering procedure. The table represents the average
AUROC obtained by modifying the parameter x used to select the financial instruments with the highest auto-
covariance for IAC

t , or standard deviation for ISTD
t . The parameter x varies from 100% to 40%. The first three

columns refer to the −4% crisis scenario for IAC,STD
t , IAC

t and ISTD
t respectively. Columns from four to six refer

to the −4% crisis scenario and to the smoothed (SM) indicators. Columns from seven to nine refer to the −3%
scenario and the last three columns encompass the AUROC values of the smoothed (SM) indicators for the −3%
crisis scenario.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.6631 0.6776 0.6514 0.7386 0.7527 0.7232 0.6784 0.6868 0.6181 0.8467 0.8300 0.7199
0.6630 0.6717 0.6419 0.7376 0.7512 0.7179 0.6820 0.6831 0.6121 0.8448 0.8227 0.7034
0.6631 0.6566 0.6262 0.7285 0.7319 0.6837 0.6875 0.6738 0.5974 0.8447 0.8180 0.6678
0.6935 0.6878 0.6450 0.7183 0.7444 0.6836 0.7153 0.6926 0.6365 0.8546 0.8375 0.7658
0.6580 0.6727 0.6515 0.7302 0.7463 0.7274 0.6701 0.6816 0.6116 0.8445 0.8277 0.7213
0.6605 0.6522 0.6239 0.7242 0.7330 0.6846 0.6862 0.6723 0.5906 0.8425 0.8149 0.6538
0.6582 0.6382 0.6093 0.7148 0.7139 0.6579 0.6799 0.6543 0.5641 0.8387 0.8016 0.6086
0.6648 0.6809 0.6487 0.7164 0.7432 0.6991 0.6847 0.6891 0.6263 0.8475 0.8328 0.7492
0.6530 0.6569 0.6445 0.7234 0.7368 0.7168 0.6738 0.6777 0.6007 0.8424 0.8249 0.6945
0.6523 0.6431 0.6272 0.7157 0.7240 0.6860 0.6824 0.6711 0.5915 0.8411 0.8148 0.6538
0.6512 0.6242 0.5996 0.7030 0.6899 0.6354 0.6756 0.6453 0.5518 0.8362 0.7887 0.5855
0.6566 0.6626 0.6466 0.7089 0.7267 0.6968 0.6805 0.6830 0.6183 0.8455 0.8310 0.7222
0.6526 0.6453 0.6266 0.7165 0.7235 0.6936 0.6751 0.6709 0.5875 0.8359 0.8109 0.6564
0.6526 0.6356 0.6137 0.7082 0.7058 0.6534 0.6797 0.6588 0.5722 0.8373 0.7997 0.6128
0.6514 0.6280 0.6037 0.7056 0.6973 0.6380 0.6773 0.6490 0.5557 0.8379 0.7924 0.5897
0.6545 0.6626 0.6434 0.7126 0.7273 0.6973 0.6773 0.6823 0.6071 0.8379 0.8155 0.6896
0.6973 0.6900 0.6491 0.7306 0.7493 0.6999 0.7167 0.6966 0.6289 0.8596 0.8467 0.7703
0.6681 0.6852 0.6525 0.7455 0.7560 0.7288 0.6823 0.6951 0.6270 0.8540 0.8419 0.7461
0.6660 0.6827 0.6502 0.7444 0.7563 0.7286 0.6817 0.6940 0.6196 0.8511 0.8367 0.7261
0.6668 0.6736 0.6386 0.7418 0.7517 0.7155 0.6886 0.6869 0.6129 0.8495 0.8294 0.7074

Figure 18: AUROC comparison. The bars represent the average AUROC obtained by the VaR methodology,
the MES and the AR along with the AUROC obtained with our indicator IAC

t for the −4% and −3% crisis
scenarios, and for the original and the smoothed (SM) indicators.

F Results on STOXX Asia/Pacific 600

The application of our EWS is tested also on the STOXX Asia/Pacific 600 market index,

following the same analysis that has been carried on before. Accordingly, we start by showing

the arising of the LTM in Figure 20 on the occasion of particular market event, as a financial

crisis. In fact, the LTM appears from the cross correlation matrix (top left panel) while its

occurrence is not strong during business as usual phases (central left panel). As a consequence,

IAC and IAC,STD assume higher value around the 2008 financial crisis if compared to a tranquil

phase, as the top and central right panels display. More precisely, we have computed the
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Table 5: Policy Analysis. We report, for different measures of preference (µ), the absolute usefulness (Abs.
Usef.), the relative usefulness (Rel. Usef.) and the optimal threshold (Thresh.) for different moving windows
(MW), 10 days, 15 days and 20 days. Results apply to the −3% crisis scenario.

µ Abs. Usef. MW-10d Rel. Usef. MW-10d Thresh. MW-10d Abs. Usef. MW-15d Rel. Usef. MW-15d Thresh. MW-15d Abs. Usef. MW-20d Rel. Usef. MW-20d Thresh. MW-20d
0.0000 -0.0001 NaN 0.6932 -0.0002 NaN 0.7681 0.0000 NaN 0.3173
0.1000 0.0000 0.0011 0.6598 -0.0001 -0.0044 0.7681 0.0001 0.0054 0.3102
0.2000 0.0003 0.0072 0.4050 -0.0001 -0.0012 0.7368 0.0004 0.0082 0.2256
0.3000 0.0015 0.0202 0.2586 0.0002 0.0025 0.5155 0.0009 0.0126 0.1480
0.4000 0.0038 0.0390 0.1748 0.0024 0.0250 0.1135 0.0020 0.0206 0.0915
0.5000 0.0077 0.0635 0.1408 0.0061 0.0504 0.0973 0.0057 0.0471 0.0410
0.6000 0.0139 0.0964 0.0890 0.0121 0.0836 0.0675 0.0129 0.0888 0.0270
0.7000 0.0279 0.1653 0.0481 0.0282 0.1667 0.0271 0.0292 0.1726 0.0138
0.8000 0.0265 0.1748 0.0155 0.0260 0.1713 0.0113 0.0275 0.1811 0.0057
0.9000 0.0022 0.0296 0.0056 0.0020 0.0269 0.0036 0.0019 0.0255 0.0022
1.0000 0.0000 NaN 0.0010 0.0000 NaN 0.0010 0.0000 NaN 0.0010

Figure 19: Discretization of the signal IAC
t obtained through a Hidden Markov Model. The figure

presents the three states obtained by the discretization of the original signal IAC
t . The blue bars, ranging from the

lightest to the darkest, represent the low (cyan), medium (light blue) and high (dark blue) level of the system’s
distress while the red line denotes the STOXX Europe 50 index.

difference between the indexes of the stocks belonging to the LTM and the ones belonging to

the other modules. This highlights the increasing magnitude of the proposed indicators when

dealing with a period of financial distress. Finally, the bottom panels of Figure 20 accounts for

the cumulative sum of the three indicators IAC , ISTD and IAC,STD in the two different dates,

and in 2008 we appraise higher values. The dynamics of the EWSs are reported in Figure

21, which displays ISTD
t , IAC,STD

t and IAC
t along with the course of the market index STOXX

Asia/Pacific 600 Index (blue). In particular the red lines refers to the raw indicators while the

black lines are the corresponding smoothed versions.

The prediction performance of our EWS is shown in Figure 22 which portrays the ROC (left

panels) and the PR (right panels) curves resulting from the different signals. As for the other

datasets, in the −4% crisis scenario all the methodologies produce curves closer to the left-hand

border and to the top border of the plotting space with respect to the −3% case. Again, it is

plain that our method outperforms the index of Chen et al. (2012). Figure 23 shows the AUROC
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Figure 20: LTM and early warning indicators in different market phases. The stock returns correlation
matrix and the LTM are displayed for a distress (upper panels) phase and a business as usual (central panels)
phase. From the plots, it clearly emerges the increased correlation among LTM stocks during a financial crisis.
Moreover the right panels show the percentage difference of the early warning indicators when computed on the
LTM stocks or on the other modules. This difference increases during distress stages, highlighting the importance
of the LTM. The bottom panel reports the value of IAC , ISTD and IAC,STD in 2008 and 2014. As expected, the
early warning indicators assume higher values in 2008.

values for all the different moving windows w where varying time steps for the leading indicator

L are also considered. Here, differently from the other two datasets, the indicators perform

worse. Nonetheless, the methodology of Chen et al. (2012) generates the lowest AUROC values

even if, similarly to the other two indicators, for the −4% crisis scenario, it takes values around

80% up to a week prior to the crisis. Moreover IAC,STD
t results to be the best indicator by

producing AUROC values near 60% up to 20 days.

Figure 24 and Table 6 show the average AUROC values obtained by letting the parameter x

vary from 100% to 40% as a robustness check. Each bar represents the AUROC obtained by

averaging the results of all the different moving windows (and of all the different values of the
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Figure 21: Early warning indicators patterns and the STOXX Asia/Pacific 600 aggregate index
dynamic. The three panels represent the original early warning signals (red), the corresponding smoothed
version (black) and the STOXX Asia/Pacific 600 aggregate index (blue). The upper panel relates to the signal
produced by using autocovariance and standard deviation I

AC,STD
t , together with the PCC. The central panel

encompasses the indicator IAC
t while the lower panel refers to the signal ISTD

t proposed by Chen et al. (2012).

leading indicator L for the −4% crisis scenario) for a particular value of x. We observe that the

mixed signal IAC,STD
t produces, on average, the best results but in few cases the ISTD

t index

seems to outperform the others. Finally, we have compared the AUROC generated by IAC
t with

the ones resulting from the alternative risk measures, that is VaR, MES and AR. Figure 25

reveals that our methodology produces superior performances in crisis signaling except for the

VaR in the −4% crisis scenario, where the two methodologies equally perform.
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Figure 22: ROC and PR curves for the two different crisis scenarios. The left panels depict the ROC
curves while the right plots highlight the PR curves. The upper panels refer to the −4% crisis scenario while
the bottom ones describe the results related to the −3% case. In each plot we report the results of both the
original indicators and the smoothed ones (SM). In particular, the label STD refers to ISTD

t , AC denotes our
early warning indicator IAC

t and finally STD+AC refers to the mixed signal IAC,STD
t .

F.1 Policy evaluations

Finally, in Table 7 we report the results obtained by applying the method developed in Sarlin

(2013) to the signal IAC
t . Furthermore, the estimated distress levels obtained by the application

of the HMM are presented in Figure 26.

As for the previous cases, also Asian financial markets have been hardly hit by the 2009 global

financial crisis and, indirectly, by the 2011 European Sovereign debt crisis. Moreover, the

figure also displays a high level of financial distress near 2013 due to the turmoil in some Asian

emerging economies that has lead foreign investors to leave countries such as Indonesia, Malaysia

and Thailand. Finally the Chinese currency devaluation has caused another peak of distress in

2015.
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Figure 23: AUROC for the two different crisis scenarios and for different moving windows. Each plot
represents the AUROC obtained by varying the moving window w used to compute the correlation coefficients.
The background colors refer to the AUROC values related to the −4% crisis scenario in which, beside the different
windows, we also consider varying time steps for the leading indicator L. L takes value 1 gradually, day by day,
up to one month behind. The front line represents the AUROC for the −3% case where we consider the whole
month for the leading indicator L. The upper panels represent the original series while the bottom ones encompass
results obtained for the smoothed variables. The different columns represent the results obtained for ISTD

t , IAC
t

and I
AC,STD
t respectively.

Figure 24: Average AUROC for different setting of the parameter x defining the percentage of
stocks with the highest autocovariance (standard deviation) used for the clustering procedure.
Each plot represents the average AUROC obtained on varying the parameter x used to choose the financial
instruments with the highest autocovariance for IAC

t or standard deviation for ISTD
t . The parameter x ranges

from 100% to 40%. The upper panels refer to the −4% crisis scenario while the bottom ones describe the results
in the −3% case. The left plots show the results obtained by employing the originals signals while the two plots
on the right refer to the smoothed cases.
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Tabel 6: Average AUROC for different setting of the percentage of stocks with the highest auto-
covariance (standard deviation) used for the clustering procedure. The table represents the average
AUROC obtained by varying the parameter used to select the financial instruments with the highest autocovari-
ance in the case of IAC

t or standard deviation for ISTD
t . The parameter x varies from 100% to 40%. The first

three columns deal with the −4% crisis scenario for IAC,STD
t , IAC

t and ISTD
t respectively. Columns from four to

six refer to the −4% crisis scenario and to the smoothed (SM) indicators. Columns from seven to nine refer to
the −3% scenario and the last three columns report the AUROC values for the −4% crisis scenario and to the
smoothed (SM) indicators.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.6490 0.6462 0.6248 0.6807 0.6832 0.6696 0.7126 0.7060 0.6923 0.8087 0.8037 0.8013
0.6434 0.6386 0.6222 0.6772 0.6787 0.6658 0.7125 0.7059 0.6958 0.8063 0.8018 0.7934
0.6399 0.6370 0.6119 0.6772 0.6803 0.6574 0.7126 0.7107 0.6920 0.8073 0.8051 0.7899
0.6576 0.6515 0.6412 0.6959 0.6940 0.7014 0.7139 0.7092 0.6992 0.8064 0.8004 0.8056
0.6409 0.6450 0.6282 0.6865 0.6876 0.6799 0.7016 0.7078 0.6907 0.8043 0.7973 0.7969
0.6368 0.6397 0.6146 0.6784 0.6808 0.6593 0.7023 0.7094 0.6901 0.8066 0.8040 0.7904
0.6348 0.6359 0.6073 0.6766 0.6801 0.6596 0.7021 0.7083 0.6859 0.8127 0.8088 0.7969
0.6571 0.6527 0.6387 0.6968 0.6977 0.6992 0.7166 0.7124 0.6988 0.8042 0.7980 0.8001
0.6397 0.6435 0.6212 0.6804 0.6824 0.6746 0.7017 0.7069 0.6920 0.8020 0.7969 0.7950
0.6381 0.6423 0.6154 0.6762 0.6786 0.6611 0.7039 0.7036 0.6879 0.7988 0.7957 0.7892
0.6430 0.6393 0.6093 0.6787 0.6803 0.6591 0.7057 0.7011 0.6775 0.8029 0.7992 0.7854
0.6524 0.6485 0.6359 0.6902 0.6912 0.6957 0.7166 0.7107 0.7034 0.8020 0.7954 0.7986
0.6409 0.6471 0.6184 0.6776 0.6808 0.6642 0.6973 0.7051 0.6868 0.7982 0.7944 0.7773
0.6437 0.6410 0.6101 0.6792 0.6812 0.6560 0.7109 0.7093 0.6881 0.8097 0.8058 0.7904
0.6294 0.6342 0.6047 0.6784 0.6816 0.6622 0.7010 0.7068 0.6833 0.8072 0.8068 0.7912
0.6537 0.6506 0.6299 0.6879 0.6904 0.6843 0.7179 0.7133 0.6973 0.7998 0.7948 0.7924
0.6479 0.6485 0.6345 0.6910 0.6920 0.6891 0.7157 0.7141 0.7004 0.8121 0.8050 0.8150
0.6483 0.6481 0.6297 0.6853 0.6870 0.6775 0.7121 0.7102 0.6937 0.8108 0.8056 0.8066
0.6468 0.6425 0.6209 0.6785 0.6829 0.6658 0.7149 0.7094 0.6926 0.8086 0.8040 0.7977
0.6372 0.6407 0.6207 0.6780 0.6816 0.6642 0.7039 0.7092 0.6971 0.8066 0.8013 0.8000

Figure 25: AUROC comparison. The bar represent the average AUROC obtained by the VaR methodology,
the MES and the AR along with the AUROC obtained with our indicator IAC

t for the −4% and −3% crisis
scenarios, and for either the original indicators or the smoothed ones.

Table 7: Policy Analysis. We report, for different measures of preference µ, the absolute usefulness (Abs.
Usef.), the relative usefulness (Rel. Usef.) and the optimal threshold (Thresh.) for different moving windows
(MW), 10 days, 15 days and 20 days. Results refer to the −3% crisis scenario.

µ Abs. Usef. MW-10d Rel. Usef. MW-10d Thresh. MW-10d Abs. Usef. MW-15d Rel. Usef. MW-15d Thresh. MW-15d Abs. Usef. MW-20d Rel. Usef. MW-20d Thresh. MW-20d
0.0000 -0.0001 NaN 0.4825 -0.0001 NaN 0.5256 -0.0000 NaN 0.5490
0.1000 -0.0000 -0.0028 0.4344 0.0001 0.0042 0.5219 0.0001 0.0042 0.5407
0.2000 0.0002 0.0055 0.2966 0.0003 0.0094 0.4327 0.0002 0.0065 0.4451
0.3000 0.0008 0.0157 0.0983 0.0009 0.0181 0.2742 0.0008 0.0159 0.2222
0.4000 0.0023 0.0338 0.0508 0.0023 0.0326 0.1751 0.0023 0.0322 0.0961
0.5000 0.0058 0.0671 0.0306 0.0050 0.0573 0.1047 0.0047 0.0537 0.0636
0.6000 0.0130 0.1245 0.0193 0.0111 0.1065 0.0597 0.0095 0.0905 0.0372
0.7000 0.0253 0.2079 0.0142 0.0231 0.1893 0.0412 0.0216 0.1768 0.0238
0.8000 0.0426 0.3064 0.0114 0.0419 0.3006 0.0288 0.0423 0.3031 0.0165
0.9000 0.0068 0.0818 0.0028 0.0063 0.0768 0.0051 0.0066 0.0804 0.0035
1.0000 0.0000 NaN 0.0010 0.0000 NaN 0.0010 0.0000 NaN 0.0010
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Figure 26: Discretization of the signal IAC
t obtained through a Hidden Markov Model. The figure

presents the three states obtained by the discretization of the original indicator IAC
t . The blue bars, ranging

from the lightest to the darkest, represent the low (cyan), medium (light blue) and high (dark blue) level of the
system distress while the red line represents the aggregate STOXX Asia/Pacific 600 aggregate index.

G AUPR results

In this Section we show the results of the robustness check as regards the AUPR values. The

figures highlight how the findings modify to changes in the value of the parameter x representing

the percentage of stocks selected for the clustering procedure. In Figures 27, 28 and 29 we

present the average AUPR values obtained by letting the parameter x vary from 100% to 40%.

Each bar represents the AUROC obtained by averaging the results of all the different moving

windows (and of all the different values of the leading indicator L for the −4% crisis scenario)

for a particular x. The corresponding values are reported in Tables 8-10.

Generally speaking, for AUPR, the mixed signal IAC,STD
t produces the best performance in

all the three datasets, while our index IAC
t follows with few exceptions, as in the case of the

STOXX Europe 50 and the −4% crisis scenario where the ISTD
t comes second.
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Figure 27: Average AUPR for different setting of the parameter x defining the percentage of stocks
with the highest autocovariance (standard deviation) for the STOXX North America 600. Each
plot represents the average AUPR obtained on varying the parameter x from 100% to 40% to select the financial
instruments with the highest autocovariance in the case of IAC

t or standard deviation for ISTD
t . The upper panels

refer to the −4% crisis scenario while the bottom ones describe the results for the −3% case. The left plots detail
the results obtained by employing the original indicators while the two plots on the right refers to the smoothed
cases.

Table 8: Average AUPR for different setting of the percentage of stocks with the highest autoco-
variance (standard deviation) for the STOXX North America 600. The table represents the average
AUPR obtained by varying the parameter used to select the financial instruments that possess the highest au-
tocovariance for IAC

t or standard deviation for ISTD
t . The parameter x varies from 100% to 40%. The first

three columns refer to the −4% crisis scenario for I
AC,STD
t , IAC

t and ISTD
t respectively. Columns from four to

six refer to the −4% crisis scenario and to the smoothed indicators. Columns from seven to nine apply to the
−3% scenario and the last three columns are devoted to the AUPR values for the −4% crisis scenario and to the
smoothed indicators.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.0508 0.0458 0.0289 0.0692 0.0688 0.0531 0.5028 0.4916 0.3567 0.5149 0.6422 0.3698
0.0509 0.0438 0.0290 0.0688 0.0678 0.0528 0.5044 0.4818 0.3596 0.5190 0.6388 0.3811
0.0512 0.0433 0.0297 0.0693 0.0673 0.0543 0.5017 0.4736 0.3510 0.5217 0.6372 0.3727
0.0501 0.0447 0.0291 0.0696 0.0690 0.0522 0.4988 0.4875 0.3498 0.5162 0.6421 0.3632
0.0515 0.0427 0.0304 0.0701 0.0677 0.0581 0.5087 0.4788 0.3556 0.5299 0.6358 0.3821
0.0490 0.0403 0.0281 0.0691 0.0656 0.0561 0.4987 0.4657 0.3500 0.5294 0.6265 0.3868
0.0512 0.0485 0.0264 0.0704 0.0700 0.0528 0.5088 0.5009 0.3500 0.5324 0.6508 0.3715
0.0503 0.0444 0.0299 0.0695 0.0682 0.0563 0.4936 0.4765 0.3479 0.5139 0.6342 0.3652
0.0509 0.0422 0.0299 0.0705 0.0677 0.0578 0.4975 0.4709 0.3463 0.5237 0.6283 0.3712
0.0485 0.0391 0.0286 0.0693 0.0639 0.0597 0.5039 0.4660 0.3599 0.5367 0.6300 0.4034
0.0514 0.0467 0.0297 0.0693 0.0694 0.0525 0.5016 0.4928 0.3457 0.5240 0.6435 0.3625
0.0496 0.0421 0.0302 0.0705 0.0678 0.0582 0.4909 0.4643 0.3511 0.5178 0.6303 0.3746
0.0481 0.0392 0.0285 0.0698 0.0668 0.0585 0.4906 0.4535 0.3470 0.5221 0.6263 0.3765
0.0487 0.0402 0.0288 0.0699 0.0652 0.0603 0.4985 0.4615 0.3587 0.5336 0.6237 0.4012
0.0506 0.0454 0.0298 0.0708 0.0700 0.0542 0.4900 0.4734 0.3468 0.5143 0.6386 0.3646
0.0510 0.0480 0.0292 0.0695 0.0699 0.0532 0.5037 0.4975 0.3556 0.5122 0.6519 0.3660
0.0508 0.0459 0.0295 0.0695 0.0692 0.0533 0.5106 0.5011 0.3604 0.5208 0.6455 0.3713
0.0487 0.0428 0.0278 0.0680 0.0669 0.0498 0.5041 0.4833 0.3545 0.5159 0.6389 0.3649
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Figure 28: Average AUPR for different setting of the parameter x defining the percentage of
stocks with the highest autocovariance (standard deviation) for the STOXX Europe 50. Each plot
represents the average AUPR obtained by varying the parameter x, from 100% to 40%, used to select the financial
instruments with the highest autocovariance for IAC

t or standard deviation for ISTD
t . The upper panels refer to

the −4% crisis scenario while the bottom ones describe the results related to the −3% case. The left plots gather
the results obtained by employing the original indicators while the two plots on the right refers to the smoothed
cases.

Table 9: Average AUPR for different setting of the percentage of stocks with the highest auto-
covariance (standard deviation) for the STOXX Europe 50. The table represents the average AUPR
obtained by varying the parameter used to select the financial instruments with the highest autocovariance for
IAC
t or standard deviation for ISTD

t . The parameter x varies from 100% to 40%. The first three columns refer
to the −4% crisis scenario for IAC,STD

t , IAC
t and ISTD

t respectively. Columns from four to six refer to the −4%
crisis scenario and to the smoothed indicators. Columns from seven to nine refer to the −3% scenario and the
last three columns encompass the AUPR values for the −4% crisis scenario and to the smoothed indicators.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.0338 0.0265 0.0295 0.0471 0.0469 0.0431 0.4825 0.4261 0.3641 0.6581 0.6291 0.5175
0.0334 0.0257 0.0288 0.0473 0.0468 0.0430 0.4794 0.4182 0.3600 0.6557 0.6172 0.5018
0.0330 0.0245 0.0282 0.0466 0.0463 0.0417 0.4799 0.4119 0.3510 0.6565 0.6181 0.4835
0.0329 0.0269 0.0266 0.0477 0.0473 0.0405 0.4886 0.4397 0.3652 0.6697 0.6386 0.5412
0.0331 0.0258 0.0294 0.0464 0.0452 0.0434 0.4769 0.4186 0.3585 0.6567 0.6274 0.5223
0.0324 0.0238 0.0281 0.0458 0.0456 0.0421 0.4765 0.4081 0.3468 0.6534 0.6177 0.4794
0.0319 0.0223 0.0270 0.0454 0.0443 0.0406 0.4674 0.3875 0.3310 0.6512 0.6048 0.4578
0.0326 0.0260 0.0284 0.0468 0.0459 0.0422 0.4848 0.4305 0.3627 0.6595 0.6303 0.5386
0.0326 0.0252 0.0291 0.0457 0.0445 0.0431 0.4753 0.4139 0.3511 0.6524 0.6218 0.5054
0.0321 0.0237 0.0280 0.0457 0.0450 0.0419 0.4715 0.4038 0.3467 0.6508 0.6183 0.4809
0.0311 0.0215 0.0266 0.0438 0.0415 0.0395 0.4621 0.3775 0.3219 0.6442 0.5882 0.4509
0.0337 0.0275 0.0297 0.0468 0.0467 0.0430 0.4839 0.4256 0.3621 0.6582 0.6322 0.5253
0.0326 0.0244 0.0281 0.0456 0.0446 0.0420 0.4740 0.4097 0.3429 0.6466 0.6141 0.4834
0.0319 0.0232 0.0275 0.0449 0.0441 0.0410 0.4709 0.3980 0.3344 0.6447 0.6054 0.4647
0.0318 0.0227 0.0271 0.0444 0.0430 0.0399 0.4658 0.3860 0.3234 0.6472 0.5956 0.4543
0.0334 0.0273 0.0290 0.0466 0.0467 0.0432 0.4833 0.4229 0.3581 0.6483 0.6182 0.5078
0.0345 0.0289 0.0266 0.0486 0.0489 0.0406 0.4952 0.4503 0.3636 0.6794 0.6573 0.5445
0.0351 0.0284 0.0292 0.0479 0.0478 0.0437 0.4871 0.4398 0.3689 0.6667 0.6421 0.5361
0.0355 0.0288 0.0295 0.0481 0.0483 0.0437 0.4866 0.4362 0.3630 0.6644 0.6351 0.5169
0.0350 0.0277 0.0286 0.0478 0.0472 0.0420 0.4852 0.4269 0.3598 0.6622 0.6229 0.4969
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Figure 29: Average AUPR for different setting of the parameter x defining the percentage of stocks
with the highest autocovariance (standard deviation) for the STOXX Asia/Pacific 600. Each plot
represents the average AUPRC obtained by varying the parameter x used to select the financial instruments with
the highest autocovariance for IAC

t or standard deviation for ISTD
t from 100% to 40%. The upper panels refer

to the −4% crisis scenario while the bottom ones describe the results related to the −3% case. The left plots
encompass results obtained by employing the original indicators while the two plots on the right refers to the
smoothed cases.
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Table 10: Average AUPR for different setting of the percentage of stocks with the highest autoco-
variance (standard deviation) for the STOXX Asia/Pacific 600. The table represents the average AUPR
obtained by varying the parameter used to select the financial instruments with the highest autocovariance for
IAC
t or standard deviation for ISTD

t . The parameter x varies from 100% to 40%. The first three columns refer
to the −4% crisis scenario for IAC,STD

t , IAC
t and ISTD

t respectively. Columns from four to six refer to the −4%
crisis scenario and to the smoothed indicators. Columns from seven to nine refer to the −3% scenario and the
last three columns report the AUPR values for the −4% crisis scenario and to the smoothed indicators.

4% Std + Ac 4% Ac 4% Std 4%-SM Std + Ac 4%-SM Ac 4%-SM Std 3% Std + Ac 3% Ac 3% Std 3%-SM Std + Ac 3%-SM Ac 3%-SM Std
0.0167 0.0149 0.0129 0.0222 0.0220 0.0216 0.4379 0.4010 0.3470 0.5948 0.6001 0.5600
0.0168 0.0155 0.0127 0.0225 0.0218 0.0214 0.4403 0.4027 0.3494 0.5891 0.5944 0.5493
0.0167 0.0146 0.0127 0.0221 0.0219 0.0206 0.4317 0.3966 0.3353 0.5832 0.5939 0.5383
0.0176 0.0149 0.0145 0.0232 0.0224 0.0242 0.4612 0.4137 0.3799 0.6101 0.6060 0.5957
0.0162 0.0144 0.0119 0.0223 0.0220 0.0214 0.4492 0.4053 0.3504 0.5927 0.5969 0.5537
0.0170 0.0151 0.0128 0.0220 0.0218 0.0203 0.4388 0.4018 0.3351 0.5862 0.5949 0.5369
0.0160 0.0141 0.0120 0.0219 0.0219 0.0206 0.4333 0.3929 0.3287 0.5857 0.5933 0.5381
0.0175 0.0156 0.0133 0.0227 0.0220 0.0215 0.4540 0.4078 0.3704 0.5988 0.6011 0.5730
0.0165 0.0148 0.0133 0.0223 0.0218 0.0221 0.4384 0.3997 0.3412 0.5904 0.5975 0.5549
0.0167 0.0143 0.0123 0.0223 0.0216 0.0213 0.4302 0.3918 0.3326 0.5824 0.5903 0.5429
0.0169 0.0145 0.0129 0.0219 0.0218 0.0213 0.4187 0.3810 0.3131 0.5776 0.5869 0.5222
0.0172 0.0147 0.0135 0.0223 0.0218 0.0215 0.4575 0.4129 0.3725 0.6014 0.6033 0.5727
0.0174 0.0152 0.0142 0.0223 0.0216 0.0222 0.4388 0.4005 0.3411 0.5816 0.5904 0.5319
0.0159 0.0140 0.0120 0.0215 0.0215 0.0207 0.4252 0.3893 0.3291 0.5832 0.5919 0.5311
0.0160 0.0140 0.0119 0.0219 0.0217 0.0210 0.4241 0.3877 0.3199 0.5787 0.5918 0.5284
0.0166 0.0144 0.0131 0.0221 0.0214 0.0214 0.4530 0.4083 0.3662 0.5924 0.5990 0.5635
0.0181 0.0159 0.0151 0.0231 0.0225 0.0227 0.4725 0.4291 0.3880 0.6093 0.6080 0.5915
0.0180 0.0158 0.0137 0.0228 0.0225 0.0228 0.4536 0.4158 0.3541 0.6049 0.6083 0.5669
0.0175 0.0154 0.0133 0.0224 0.0219 0.0219 0.4445 0.4047 0.3492 0.5961 0.6013 0.5550
0.0169 0.0152 0.0127 0.0222 0.0219 0.0211 0.4418 0.4057 0.3469 0.5886 0.5934 0.5559
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H Additional results

The efficacy of our crisis indicator is tested by mean of non parametric analysis and, in order to

proceed in this sense, we need the definition of certain thresholds to characterize crisis events.

We select two thresholds to indicate a financial distress period, namely a drop of at least 3% of

the aggregate index returns and a drop of a 4% respectively. In both cases the selected values

represent extreme events that lie in the first percentile of the returns distribution as Figure 30

shows. These thresholds have been used as a reference point for crisis occurrence along the

empirical analysis.

In order to infer the possible crisis events we analyze the behavior of the indices’ constituents.

Our approach has disregarded the weight that the components have in the construction of the

aggregate index. This is so to exclude the trivial case in which the constituents with the highest

weights play the major role in determining the dynamics of our EWS. As a confirm, we have

computed the average weight of the stocks in the LTM. We have then calculated the distribution

of the averaged values across all the settings for ISTD
t , IAC

t and IAC,STD
t .

Figures 31-33 show the distributions of the stocks’ weight inside the LTM for the STOXX

North America 600, STOXX Europe 50 and STOXX Asia/Pacific 600 respectively, along with

their mean values. From the figures, it clearly emerges how the LTM is not related to the weights

that stocks carry on in the indices construction. On average, a LTM encompasses stocks that

have a 0.1% weight for the STOXX North America 600 index and for the STOXX Asia/Pacific

600 index while the average for the STOXX Europe 50 index is higher (around 1.5%) due to

the lower number of stocks composing this index. Moreover, from all the figures we notice that

the weights distribution is more skewed than a Gaussian distribution. This finding applies to

all the three financial markets.

58



Figure 30: Returns distributions and first percentile indicating crisis thresholds. The three panels
represent the return distributions of the aggregate indices while the dashed red lines indicate the first percentile
of the distributions. This threshold has been used as a reference point for crisis occurrence along the empirical
analysis. In particular the left panel refers to the STOXX Europe 50, the central panel to the STOXX North
America 600 and the right panel to the STOXX Asia/Pacific 600.

Figure 31: Weights distributions of the stocks inside the LTM in STOXX North America 600. The
left panel represents the case of ISTD

t , the central panel encompasses the distribution of the stocks’ weights into
IAC
t and the right panel refers to I

AC,STD
t . As the picture suggests, the LTM represents a fraction of shares that

have on average a weight of 0.1% on the entire STOXX North America 600 index.
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Figure 32: Weights distribution of the stocks inside the LTM for the STOXX Europe 50 Index. The
left panel represents the case of ISTD

t , the central panel encompasses the distribution of the stocks’ weights into
IAC
t and the right panel refers to I

AC,STD
t . The LTM includes stocks that have on average a weight of 1.5%

within the STOXX Europe 50 Index.

Figure 33: Weights distribution of the stocks inside the LTM for the STOXX Asia/Pacific 600. The
left panel represents the case of ISTD

t , the central panel encompasses the distribution of the stocks’ weights into
IAC
t and the right panel refers to I

AC,STD
t . The LTM groups stocks that have on average a weights of 0.1%

within the STOXX Asia/Pacific 600 Index.
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