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2.1. Sustainable Use of Renewable Resources *

1. Introduction

We consider here optimal use patterns for renewable resources. Many impor-
tant resources are in this category: obvious.ones are fisheries and forests.
Soils, clean water, landscapes, and the capacities of ecosystems to assimi-
late and degrade wastes are other less obvious examples.! All of these have

-the capacity to renew themselves, but in addition all can be overused to the

point where they are irreversibly damaged. Picking a time-path for the use of
such resources is clearly important: indeed, it seems to lie at the heart of any
concept of sustainable economic management.

We address the problem of optimal use of renewable resources under a
variety of assumptions both about the nature of the economy in which these
resources are embedded and about the objective of that economy. In this sec-
ond respect, we are particularly interested in investigating the consequences
of a definition of sustainability as a form of intertemporal optimality recent-
ly introduced by Chichilnisky [7], and comparing these consequences with
those arising from earlier definitions of intertemporal optimality. In terms
of the structure of the economy considered, we review the problem initially
in the context of a model where a renewable resource is the only good in
the economy, and then subsequently we extend the analysis to include the
accumulation of capital and the existence of a productive sector to which the
resource is an input.

Although we focus here on the technical economic issues of defining and
characterizing paths which are optimal, in various senses, in the presence of
renewable resources, one should not loose sight of the very real motivation
underlying these exercises: many of the earth’s most important biological and
ecological resources are renewable, so that in their management we confront

* This paper draws heavily on earlier research by one or more of the three authors, namely
Beltratti, Chichilnisky and Heal [1-3], Chichilnisky [7, 8], and in particular many of the results
here were presented in Heal [18].
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the fundamental choice which underlies this paper, namely their extinction,
or their preservation as viable species. In this context the recent discussion of
sustainability or sustainable management of the earth’s resources is closely
related to the issues of concern to us. (For a more comprehensive discussion
of issues relating to sustainability and its interpretation in economic terms,
see [18]. For a review of the basic theory of optimal intertemporal use of
resources, see [10, 11, 15].)

We assume, as in [19] and in earlier work by some or all of us [1-3] that
the renewable resource is valued not only as a source of consumption but also
as a source of utility in its own right: this means that the existing stock of
the resource is an argument of the utility function. The instantaneous utility
function is therefore u (c, s), where ¢ is consumption and s the remaining
stock of the resource. This is clearly the case for forests, which can be used
to generate a flow of consumption via timber, and whose stock is a source of
pleasure. Similarly, it is true for fisheries, for landscapes, and probably for
many more resources. Indeed, in so far as we are dealing with a living entity,
there is a moral argument, which we will not evaluate here, that we should
value the stock to attribute importance to its existence in its own right and not
Jjust instrumentally as a source of consumption.

2. The Utilitarian Case without Production

We begin by considering the simplest case, that of a conventional utilitarian
objective with no production: the resource is the only good in the economy. For
this framework we characterize the utilitarian optimum, and then extend these
results to other frameworks. The maximand is the discounted integral of util-
ities from consumption and from the existence of a stock, f5° u(c, s) e~%dt,
where d > 01is a discount rate. As the resource is renewable, its dynamics are
described by

5t =1(8t) — ¢t

Here r is the growth rate of the resource, assumed to depend only on its
current stock. More complex models are of course possible, in which several
such systems interact: a well-known example is the predator-prey system. In
general, r is a concave function which attains a maximum at a finite value of
s, and declines thereafter. This formulation has a long and classical history,
which is reviewed in [11]. In the field of population biology, r (s;) is often
taken to be quadratic, in which case an unexploited population (i.e., ¢; = 0V?)
grows logistically. Here we assume that 7 (0) = 0, that there exists a positive
stock level 5 at which r () = 0 Vs > 5, and that r (s) is strictly concave and
twice continuously differentiable for s € (0, 3). The overall problem can now
be specified as

o0
max /0 u(c, 8) e~ %t s.t. 8¢ = r(81) — ¢, S given. )
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The Hamiltonian in this case is
H = u(cs,s) e + Me % [r (s5) — ] -

Maximization with respect to consumption gives as usual the equality of the
marginal utility of consumption to the shadow price for positive consumption

levels:
uc (Ct, 8t) = A¢
and the rate of change of the shadow price is determined by

d —a0t\ __ —dt -at, ./
7 (Ate ) =— [us (ct,s.)e™ " + Ae™'r (st)] .
To simplify matters we shall take the utility function to be separable in ¢
and s: u (¢, ) = u (¢) + u (s), each taken to be strictly concave and twice

differentiable. In this case a solution to the problem (1) is characterized by
uf () = Mt
5p=r(st) — ¢t . V)
At — 6X¢ = —uh (8) — Mer' (8¢) '
In studying these equations, we first analyze their stationary solution, and

. then examine the dynamics of this system away from the stationary solution.

2.1. Stationary Solutions

At a stationary solution, by definition s is constant so that r (8t) = ¢:in
addition, the shadow price is constant so that

5u (cz) = iy (s) + uh (c) 7' (s0).

Hence:

PROPOSITION 1. 4 stationary solution to the utilitarian optimal use pattern

(2) satisfies
T (5¢) = ¢t
uh(st . 3
80 ) g
The first equation in (3) just tells us that a stationary solution must lie on
the curve on which consumption of the resource equals its renewal rate:
this is obviously a prerequisite for a stationary stock. The second gives us a
relationship between the slope of an indifference curve in the c—s plane and
the slope of the renewal function at a stationary solution: the indifference
curve cuts the renewal function from above. Such a configuration is shown in
Figure 1. This is just the result that the slope of an indifference curve should
equal the discount rate if r' (s) = 0 Vs, i.e,, if the resource is non-renewable

[17, 18].
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Green golden rule
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Figure 1. Dynamics of the utilitarian solution.

There is a straightforward intuitive interpretation to the second equation
in (3). Consider reducing consumption by an amount Ac and increasing the
stock by the same amount. The welfare loss is Acu]: there is a gain from
increasing the stock of Acuj), which continues for ever, so that we have to
compute its present value. But we also have to recognize that the increment
to the stock will grow at the rate r': hence the gain from the increase in stock
is the present value of an increment which compounds at rate r’. Hence the
total gain is

00 4
Ac/ ube e dt = uhAc/(r' - 6).
0

When gains and losses just balance out, we have
up+uy/(r' = 8) =0

which is just the second equation of (3). So (3) is a very natural and intuitive
characterization of optimality.

2.2. Dynamic Behavior

What are the dynamics of this system outside of a stationary solution? These
are also shown in Figure 1. They are derived by noting the following facts:
1. beneath the curve r (s) = c, s is rising as consumption is less than the
growth of the resource.
2. above the curve r (5) = c, s is falling as consumption is greater than the
growth of the resource.
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3. on the curve r (s) = ¢, s is constant.
4. from (2), the rate of change of c is given by

uf (@é=u1 () [6 — ' ()] — u2(s).

The first term here is negative for small s and vice versa: the second is
negative and large for small s and negative and small for large s. Hence
c is rising for small s and vice versa: its rate of change is zero precisely
when the rate of change of the shadow price is zero, which is on a line
of positive slope containing the stationary solution.

5. by linearizing the system

u (c)é=ul(c)[6 — ' (s)] — u)(s) }

st=r(st)—ct

around the stationary solution, one can show that this solution is a saddle
point. The determinant of the matrix of the linearized system is

F ()8 — ()} — oy {ur" +
i

which is negative for any stationary stock in excess of the maximum
sustainable yield.
Hence the dynamics of paths satisfying the necessary conditions for opti-
mality are as shown in figure 1, and we can establish the following result:

PROPOSITION 2.2 For small values of the discount rate § or large values of
the derivatives ', v or u}, all optimal paths for the utilitarian problem (1)
tend to the stationary solution (3). They do so along a path satisfying the first
order conditions (2), and follow one of the two branches of the stable path in
Figure 1 leading to the stationary solution. Given any initial value of the stock
sq, there is a corresponding value of co which will place the system on one
of the stable branches leading to the stationary solution. The position of the
stationary solution depends on the discount rate, and moves to higher values
of the stationary stock as this decreases. As & — 0, the stationary solution
tends to a point satisfying uj [u} = r', which means in geometric terms that
an indifference curve of u (c, 8) is tangent to the curve c = r (s) given by the
graph of the renewal function.

This result characterizes optimal paths for the problem (1). It does not prove
the existence of such paths. The Appendix gives an argument which estab-
lishes that an optimal path exists for all of the problems whose solutions are
characterized in this paper.

Note that if the initial resource stock is low, the optimal policy requires that
~ consumption, stock and utility all rise monotonically over time. The point is
- that because the resource is renewable, both stocks and flows can be built up
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over time provided that consumption is less than the rate of regeneration, i.e.,
the system is inside the curve given by the graph of the renewal function r(s).
In practice, unfortunately, many renewable resources are being consumed at
a rate greatly in excess of their rates of regeneration: in terms of Figure 1, the
current consumption rate ¢; is much greater than r (s;). So taking advantage of
the regeneration possibilities of these resources would in many cases require
sharp limitation of current consumption. Fisheries are a widely-publicized
example: another is tropical hardwoods and tropical forests in general. Soil is
a more subtle example: there are processes which renew soil, so that even if it
suffers a certain amount of erosion or of depletion of its valuable components,
it can be replaced. But typically human use of soils is depleting them at rates
far in excess of their replenishment rates.

Proposition 2 gives conditions necessary for a path to be optimal from
problem (1). Given the concavity of u(c,s) and of r (s), one can invoke
standard arguments to show that these conditions are also sufficient (see, for
example, [22]).

3. Renewable Resources and the Green Golden Rule

We can use the renewable framework to ask the question: what configuration
of the economy gives the maximum sustainable utility level?® There is a
simple answer.

First, note that a sustainable utility level must be associated with a sus-
tainable configuration of the economy, i.e., with sustainable values of con-
sumption and of the stock. But these are precisely the values that satisfy the
equation

¢t =1(st)

for these are the values which are feasible and at which the stock and the
consumption levels are constant. Hence in Figure 1, we are looking for values
which lie on the curve ¢; = r (s¢). Of these values, we need the one which
lies on the highest indifference curve of the utility function u (c, s): this point
of tangency is shown in the figure. At this point, the slope of an indifference
curve equals that of the renewal function, so that the marginal rate of sub-
stitution between stock and flow equals the marginal rate of transformation
along the curve r(s). Hence:

PROPOSITION 3.* The maximum sustainable utility level (the green golden
rule) satisfies

u,Z (st) !

——— = -1 (8).
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which approaches the tangency of an indifference curve with the reproduc-
tion function, is optimal according to the criterion of maximizing sustainable
or long-run utility. In other words, this criterion of optimality only determines
the limiting behavior of the economy: it does not determine how the limit is
approached. This clearly is a weakness: of the many paths which approach
the green golden rule, some will accumulate far more utility than others. One
would like to know which of these is the best, or indeed whether there is such
a best. It transpires that in general there is not. We return to this later.

3.1. Ecological Stability

An interesting fact is that the green golden rule, and also for low enough
discount rates the utilitarian solution, require stocks of the resource which are
in excess of that giving the maximum sustainable yield, which is of course
the stock at which the maximum of r (s) occurs. This is important because
only resource stocks in excess of that giving the maximum sustainable yield
are stable under the natural population dynamics of the resource [21]: they
are ecologically stable. To see this, consider a fixed depletion rate d, so that
the resource dynamics is just

§=r(s)—d.

For d < max, r (s), there are two values of s which give stationary solutions
to this equation, as shown in Figure 2. Call the smaller s; and the larger s,.
Clearly for s > 87,8 < 0,fors; < s < 53,8 > 0,and fors < 81, § <0,
as shown in Figure 2. Only the stock to the right of the maximum sustainable
yield is stable under the natural population adjustment process: high discount
rates, and utilitarian optimal policies when the stock of the resource is not
an argument of the utility function, will give stationary stocks below the
maximum sustainable yield.

4. The Rawlsian Solution

Consider the initial stock level s; in Figure 1: the utilitarian optimum from
this is to follow the path that leads to the saddle point. In this case, as noted,
consumption, stock and utility are all increasing. So the generation which is
least well off, is the first generation. What is the Rawlsian solution in the
present model, with initial stock s;? It is easy to verify that this involves
setting ¢ = r(s;) for ever: this gives a constant utility level, and gives the
highest utility level for the first generation compatible with subsequent levels
being no lower. This remains true for any initial stock no greater than that
associated with the green golden rule: for larger initial stocks, the green gold-
en rule is a Rawlsian optimum. Formally,
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Consumpticn C

Utilitarian stationary
solution

Green golden rule

\

1, unstable, 55, stable.
Environmental stock s

Figure 2. The dynamics of the renewable resource under a constant depletion rate.

PROPOSITION 4. For an initial resource stock s\ less than or equal to that
associated with the green golden rule, the Rawlsian optimum involves setting
¢ = r(s1) for ever. For s) greater than the green golden rule stock, the green
golden rule is a Rawlsian optimum.

5. Chichilnisky’s Criterion

Next, we ask how the Chichilnisky criterion [7, 8] alters matters when applied
to an analysis of the optimal management of renewable resources. Recall that
Chichilnisky’s criterion ranks paths according to the sum of two terms, one
an integral of utilities against a finite countably additive measure and one
a purely finitely additive measure defined on the utility stream of the path.
The former is just a generalization of the discounted integral of utilities
(generalized in the sense that the finite countably additive measure need
not be an exponential discount factor). The latter term can be interpreted as a
sustainable utility level: Chichilnisky shows that any ranking of intertemporal
paths which satisfies certain basic axioms must be representable in this way.
The problem now is to pick paths of consumption and resource accumulation
over time to:
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o0
max a /O (et s f (¢ dt + (1 — ) Jim u(es) | @
s.t. §¢ = r (s¢) — ct, So given.

where f (%) is a finite countably additive measure.

The change in optimal policy resulting from the change in the criterion of
optimality is quite dramatic. With the Chichilnisky criterion and the measure
f (t) given by an exponential discount factor, i.e., f (t) = e~ %, there is no
solution to the overall optimization problem.’ There is a solution only if f (t)
takes a different, non-exponential form, implying a non-constant discount
rate which tends asymptotically to zero. Chichilnisky’s criterion thus links
in an unexpected way with recent discussions of individual attitudes towards
the future: there is empirical evidence that individuals making intertemporal
choices act as if they have non-constant discount rates which decline over
time. Formally:

PROPOSITION 5.6 The problem (4) has no solution, i.e., there is no optimal
pattern of use of a renewable resource using the Chichilnisky criterion with

a constant discount rate.
Proof. Consider first the problem

o0
max / u (¢, St) e O%dt s.t. 3¢ =1 (8t) — ¢, 8o given.
0

The dynamics of the solution is shown in Figure 1, reproduced here as Fig-
ure 3.

It differs from the problem under consideration by the lack of the term
in limiting utility in the maximand. Suppose that the initial stock is sg in
Figure 3. Pick an initial value of c, say cg, below the path leading to the
saddle-point, and follow the path from cj satisfying the utilitarian necessary
conditions given above:

W (©)é = v (O[5 (3)] —uh(s),
$¢ = r(st) — ¢t

Denote by vg the 2-vector of initial conditions: v = (cg, o). Call this path
{©t,3:}(vo). Follow this path until it leads to the resource stock corresponding
the green golden rule, i.e., until the ¢’ such that on the path {¢;,3:}(vo),
3y = s*, and then at ¢ = ¢’ increase consumption to the level corresponding
to the green golden rule, i.e., set ¢; = r(s*) for all ¢ > ¢'. This is feasible
because ¢; < r(s;) along such a path. Such a path is shown in Figure 3.
Formally, this path is (ct, st) = {€, 3t} (vo) Vt < ¢’ where ¢’ is defined by
Sy = s*, andc; = r(s*), st = s*Vt>t.

Any such path will satisfy the necessary conditions for utilitarian optimality
up to time ¢’ and will lead to the green golden rule in finite time. It will
therefore attain a maximum of the term lim;—, oo u (c¢, 8¢) over feasible paths.
However, the utility integral which constitutes the first part of the maximand
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Utilitarian stationary
solution

da/dr=0
Green gokden rule

x
Vool
Co -
go

s Environrmental stock s

Figure 3. A sequence of consumption paths with initial stock so and initial consumption
level below that leading to the utilitarian stationary solution and converging to it. Once the
stock reaches s* consumption is set equal to (s*). The limit is a path which approaches the
utilitarian stationary solution and not the green golden rule.

can be improved by picking a slightly higher initial value ¢, for consumption,
again following the first order conditions for optimality and reaching the green
golden rule slightly later than ¢'. This does not detract from the second term in
the maximand. By this process it will be possible to increase the integral term
in the maximand without reducing the limiting term and thus to approximate
the independent maximization of both terms in the maximand: the discounted
utilitarian term, by staying long enough close to the stable manifold leading
to the utilitarian stationary solution, and the limit (purely finitely additive)
term by moving to the green golden rule very far into the future.

Although it is possible to approximate the maximization of both terms in
the maximand independently by postponing further and further the jump to
the green golden rule, there is no feasible path that actually achieves this
maximum. The supremum of the values of the maximand over feasible paths
is approximated arbitrarily closely by paths which reach the green golden
rule at later and later dates, but the limit of these paths never reaches the
green golden rule and so does not achieve the supremum. More formally,
consider the limit of paths (¢, s:) = {Ct,3:} (vo) V¢ < ¢ where ' is defined
by 3y = s*,and ¢; = r(s*),s; = s* V¢t > t' as ¢o approaches the stable
manifold of the utilitarian optimal solution. On this limiting path s; < s* Vt.
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Hence there is no solution to (4). o

Intuitively, the non-existence problem arises here because it is always possible
to postpone further into the future moving to the green golden rule, with no
cost in terms of limiting utility values but with a gain in terms of the integral
of utilities. This is possible because of the renewability of the resource. There
is no equivalent phenomenon for an exhaustible resource [18].

5.1. Declining Discount Rates
With the Chichilnisky criterion formulated as

o]
a/ u(ce, sp) e %dt + (1 — @) lim u(cy, st),
0 t-—>00

there is no solution to the problem of optimal management of a renewable
resource. In fact as noted the discount factor does not have to be an exponential
function of time. The criterion can be stated slightly differently, in a way which
is still consistent with Chichilnisky’s axioms and which is also consistent with
solving the renewable resource problem. This reformulation builds on a point
that we have noted before, namely that for the discounted utilitarian case, as

* the discount rate goes to zero, the stationary solution goes to the green golden

rule. We shall, therefore, consider a modified objective function
o
a/ w(ce, s A () dt + (1 — @) lim u(ct, 51),
0 . t—oo

where A (t) is the discount factor at time ¢, [;° A (£) dt is finite, the discount
rate g (t) at time ¢ is the proportional rate of change of the discount factor:

- B0

A(t)
and we assume that the discount rate goes to zero with ¢ in the limit:

Jim ¢(#)=0. )]
So the overall problem is now

00
maxa/ u(c, sp) A@)dt+ (1 — @) tl_i)rgou(ct,st)
s.t. & = r(st) — ¢, sp given,

where the discount factor A (t) satisfies the condition (5) that the discount
rate goes to zero in the limit. We will show that for this problem, there is a
solution:” in fact, it is the solution to the utilitarian problem of maximizing just
the first term in the above maximand, f5° u (ct, 8¢) A (£) dt. As before we take
the utility function to be separable in its arguments: u (c, s) = u (c) + u2 (s)-
Formaily,
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PROPOSITION 6.8 Consider the problem

maxa [ {un (0 +ua ()PA @) dt+ (1 = ) fim {u1 ) + w2 (5)),
O0<a<l, st § =r(s:)— ct, So given,

whereq(t) = —(A(t)/A(t)) andlimy_, g (t) = 0. A solution to this problem
is identical to the solution of “max [;°{u1 (¢) + uz (s)}A (t) dt subject to the
same constraint”. In words, the conditions characterizing a solution to the
utilitarian problem with the variable discount rate which goes to zero also
characterize a solution to the overall problem.

Proof. Consider first the problem max o f°{u (¢) + u2 (s)}A () dt s.t.
$; = r(s¢) — ¢, sp given. We shall show that any solution to this problem
approaches and attains the green golden rule asymptotically, which is the
configuration of the economy which gives the maximum of the term (1 —
@) lim;_, o u (ct, 8t)- Hence this solution solves the overall problem. The
Hamiltonian for the integral problem is now

H={u1(©)+u(}AE) + MA@ [r(se) — 1]
and maximization with respect to consumption gives as before
uy(cr) = A

The rate of change of the shadow price ); is determined by

d
T (MA®) = = [uz (s) A @) + MA @)1 (51)] -
The rate of change of the shadow price is, therefore,
XA () + MA @) = —u) (s) A(R) — MA@ T (s1). (6)

As A (t) depends on time, this equation is not autonomous, i.e., time appears
explicitly as a variable. For such an equation, we cannot use the phase portraits
and associated linearization techniques used before, because the rates of
change of ¢ and s depend not only on the point in the c—s plane but also on

the date. Rearranging and noting that A'(t)/ A (t) = ¢ (t), we have

At + Mg (£) = —ub (1) — ) (ce) ' (s0) -

Butin the limit g = 0, so in the limit this equation is autonomous: this equation
and the stock growth equation form what has recently been called in dynam-
ical systems theory an asymptotically autonomous system [4]. According to
proposition 1.2 of [4], the asymptotic phase portrait of this non-autonomous
system

M

At + Aeq (Y = —dh (s1) — ] (co) ™' (54)
st=r(st)—ct
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is the same as that of the autonomous system

Xe = —uj (s1) — ] ()™ () } @®)

sg=r(s)—ct

which differs only in that the non-autonomous term ¢(t) has been set equal to
zero.? The pair of Equations (8) is an autonomous system and the asymptotic
stability properties of original system (7) will be the same as those of the
associated limiting autonomous system (8). This latter system can be analyzed
by the standard techniques used before. At a stationary solution of (8), A; = 0
and ¢; = 7 (s¢), so that

—Z2=—r" and c;=r(ss)

which is just the definition of the green golden rule. Furthermore, by the argu-
ments used above we can establish that the green golden rule is a saddlepoint
of the system (8), as shown in Figure 3. So the optimal path for the problem

“maximize /0 oo{ul (o) +ua (s)}A(t)dt

subject to §; = r (s¢) — ¢t, So given”

is for any given initial stock s to select an initial consumption level ¢o such
that (co, so) is on the stable path of the saddle point configuration which
approaches the Green Golden Rule asymptotically. But this path also leads
to the maximum possible value of the term lim;_,o {11 () + u2(s)}, and
therefore leads to a solution to the overall maximization problem. a

Figure 4 shows the behavior of an optimal path in this case. Intuitively, one
can see what drives this result. The non-existence of an optimal path with a
constant discount rate arose from a conflict between the long-run behavior
of the path that maximizes the integral of discounted utilities, and that of the
path that maximizes the long-run utility level. When the discount rate goes
to zero in the limit, that conflict is resolved. In fact, one can show that it is
resolved only in this case, as stated by the following proposition.

PROPOSITION 7.19 Consider the problem
o
max a /0 {u; () +u2 (8)}A @) dt + (1 — o) tl_ij:leo{ul (c) + u2(s)},
0<a<l, st s =r(s)— ct S given,

where q(t) = —(A(t)/ A(t)). This problem has a solution only if lim; .0 g (2)
= 0. In this case, the solution is characterized by the conditions which char-
acterize the solution to “max [ {u1 (¢) +u2 (8)} A (t) dt subject to the same
constraint”,
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5o Enviroamental stock s

Figure 4. Asymptotic dynamics of the utilitarian solution for the case in which the discount
rate falls to zero.

Proof. The “if” part of this was proven in the previous proposition, Propo-
sition 6. The “only if” part can be proven by an extension of the arguments
in Proposition 5, which established the non-existence of solutions in the case
of a constant discount rate. To apply the arguments there, assume contrary to

the proposition that lim inf;_, ., ¢ (¢) = § > 0, and then apply the arguments
of Proposition 5. O

Existence of a solution to this problem is established in the Appendix.

5.2. Examples

To complete this discussion, we review some examples of discount factors

which satisfy the condition that the limiting discount rate goes to zero. The
most obvious is

A =e*®  with lim §(@t) =0.
t—o0
Another example!! is
A@R)=t"% a>1.
Taking the starting date to be t = 1,' we have
1

o0
Tt = ——
1 a-—1

and
-

A
Z—T—)O as

5.3. Empirical Evidence on D

Proposition 7 has substantial
mality with a criterion sensiti
with non-renewable resource:
behavior of the discount rate:
utilities symmetrically in the ¢
sense, the treatment of presen
sistent with the presence of tt
positive weight on the very loi
There is a growing body of
like this in evaluating the futu
more comprehensive discussio
which people apply to future -
futurity of the project. Overre
they use discount rates which :
region of 15% or more. For pi
discount rates are closer to st
extends the implied discount r.
years and down to of the order
framework for intertemporal of
future generates an implication
personal behavior that hitherto
This empirically-identified t
sciences which find that humar
linear, and are inversely proport
is an example of the Weber-Fec
that human response to a chang
pre-existing stimulus. In symbc
gl—r- = _I{_ or r=K
ds s
where r is a response, s a stim
to apply to human responses to
We noted that the empirical res
something similar is happening
of an event: a given change i1
leads to a smaller response in te
the event already is in the future
applied to responses to distance :




a for the case in which the discount

previous proposition, Propo-
n extension of the arguments
stence of solutions in the case
:nts there, assume contrary to
ind then apply the arguments

(]

ished in the Appendix.

:xamples of discount factors
scount rate goes to zero. The

Sustainable Use of Renewable Resources 63

and

—A—-————Cf—m as t— o0
ATt '

5.3. Empirical Evidence on Declining Discount Rates

Proposition 7 has substantial implications. It says that when we seek opti-
mality with a criterion sensitive to the present and the long-run future, then
with non-renewable resources existence of a solution is tied to the limiting
behavior of the discount rate: in the limit, we have to treat present and future
utilities symmetrically in the evaluation of the integral of utilities. In a certain
sense, the treatment of present and future in the integral has to be made con-
sistent with the presence of the term lim;,o0 {1 (¢) + u2(s)} which places
positive weight on the very long run.

There is a growing body of empirical evidence that people actually behave
like this in evaluating the future (see, for example, [20]; see also [18] for a
more comprehensive discussion). The evidence suggests that the discount rate
which people apply to future projects depends upon, and declines with, the
futurity of the project. Over relatively short periods up to perhaps five years,

. they use discount rates which are higher even than commercial rates — in the

region of 15% or more. For projects extending about ten years, the implied
discount rates are closer to standard rates — perhaps 10%. As the horizon
extends the implied discount rates drops, to in the region of 5% for 30 to 50
years and down to of the order of 2% for 100 years. It is of great interest that a
framework for intertemporal optimization that is sensitive to both present and
future generates an implication for discounting that may rationalize a form of
personal behavior that hitherto has been found irrational.

This empirically-identified behavior is consistent with results from natural
sciences which find that human responses to a change in a stimulus are non-
linear, and are inversely proportional to the existing level of the stimulus. This
is an example of the Weber~Fechner law, which is formalized in the statement
that human response to a change in a stimulus is inversely proportional to the
pre-existing stimulus. In symbols,

dr K

5 s or r=Klogs,
where r is a response, s a stimulus and K a constant. This has been found
to apply to human responses to the intensity of both light and sound signals.
We noted that the empirical results on discounting cited above suggest that
something similar is happening in human responses to changes in the futurity
of an event: a given change in futurity (e.g., postponement by one year)
leads to a smaller response in terms of the decrease in weighting, the further
the event already is in the future. In this case, the Weber-Fechner law can be
applied to responses to distance in time, as well as to sound and light intensity,
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with the result that the discount rate is inversely proportional to distance into
the future. Recalling that the discount factor is A (¢) and the discount rate
g(t) = —A () /A (t), we can formalize this as
__ldA_E _ Klogt _ 4K
q(t)-Adt—-t or A{t)=e =t

for K apositive constant. Such a discount factor can meet all of the conditions
we required above: the discount rate g goes to zero in the limit, the discount
factor A (t) goes to zero and the integral [°A()dt = [° eKo8tdt =
I ¥ dt converges for K positive, as it always is. In fact, this interpretation
gives rise to the second example of a non-constant discount rate considered
in the previous section. A discount factor A (t) = e{18? has an interesting
interpretation: the replacement of ¢ by logt implies that we are measuring
time differently, i.e. by equal proportional increments rather than by equal
absolute increments.

5.4. Time Consistency

An issue which is raised by the previous propositions is that of time consis-
tency. Consider a solution to an intertemporal optimization problem which is
computed today and is to be carried out over some future period of time start-
ing today. Suppose that the agent formulating it — an individual or a society —
may at a future date recompute an optimal plan, using the same objective and
the same constraints as initially but with initial conditions and starting date
corresponding to those obtaining when the recomputation is done. Then we
say that the initial solution is time consistent if this leads the agent to continue
with the implementation of the initial solution. Another way of saying this is
that a plan is time consistent if the passage of time alone gives no reason to
change it. The important point is that the solution to the problem of optimal
management of the renewable resource with a time-varying discount rate,

stated in Proposition 7, is not time-consistent. A formal definition of time
consistency is:13

DEFINITION 8. Let (c}, s} )t=0,00 be the solution to the problem

maxa/ooo{ul @ +u()}A@)dt+ (1 —a) tglgo{ul (¢) + uz ()},
0<acx<l, st s =r(s)—c,s0 given.

Let (&, 5¢)1=T00 be the solution to the problem of optimizing from T on, given
that the path (c}, s)¢=0,00 has been followed up to date T, i.e., (¢, 8t)t=T,00
solves
©0 H
maxa/T {u1©+u2 (A (¢ - T)dt + (1 — ) Jim {1 (0) +u2 ()},
0<a<1,st s =r(s)—c, sk given.
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Then the original problem solved at ¢t = 0 is time consistent if and only if
(G, 8t)i=T00 = (€}, 8} )t=T,c0 i.€., if the original solution restricted to the
period [T oo] is also a solution to the problem with initial time T and initial
stock s7., for any T'.

It is shown in [14] that the solutions to dynamic optimization problems are
in general time consistent only if the discount factor is exponential. The fol-
lowing result is an illustration of this fact.

PROPOSITION 9.4 The solution to the problem of optimal management of a
renewable resource with a discount rate falling asymptotically to zero is not
time consistent, i.e., the solution to

max o / {819 +uw (@A @ dt + (1 - a) Jim {u1 © +u (s)},

O0<a<l,sts=r(s)—ct so gzven, q(t) = A(t), lim; 00 g () =
is not time consistent.

Proof. Consider the first order condition for a solution to this problem
which are glven in (7) and repeated here with the substitution A = u}:

uf (co) é +uj (c) g (8) = —uj (s¢) — uj (ce) T’ (5¢) } ©)
St =T1(st) —¢Ct
Let (Ct, 3t)t=0,00 D€ a solution computed at date ¢t = 0. The rate of change of
consumption on this atadate T' > 0 will be given by (9). Now let (Ct, 3t);=1 00
be a solution to the problem with starting date T,0 < T < T, and initial
conditions at T given by (Cy,3v). When the problem is solved again with
starting date T, the value of A (¢) at calendar time Y is A (0), the initial
value of the discount factor. Hence on this path the value of A (¢) at date T is
A (T — Y), while it is A (T') on the initial path. Hence g (T') will differ, and
the two paths will have different rates of change of consumption for all dates
in excess of Y. This establishes that if the optimum is recomputed at any date
T > 0, then the initial plan will no longer be followed. o

These are interesting and surprising results: to ensure the existence of an
optimal path which balances present and future “correctly” according to
Chichilnisky’s axioms, we have to accept paths which are not time consis-
tent. Of course, the empirical evidence cited above implies that individual
behavior must also be inconsistent, so society in this case is only replicat-
ing what individuals apparently do. Traditionally, welfare economists have
always regarded time consistency as a very desirable property of intertempo-
ral choice. More recently, this presumption has been questioned: philosophers
and psychologists have noted that the same person at different stages of her
or his life can reasonably be thought of as dlfferent people with different
perspectives on life and different experiences.!® The implications of working
with inconsistent choices clearly need further research.
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6. Capital and Renewable Resources

Now we consider the most challenging, and perhaps most realistic and reward-
ing, of all cases: an economy in which a resource which is renewable and so
has its own dynamics can be used together with produced capital goods as an
input to the production of an output. The output in turn can as usual in growth
models be reinvested in capital formation or consumed. The stock of the
resource is also a source of utility to the population. So capital accumulation
occurs according to

k=F(k,0)—c
and the resource stock evolves according to
s§=r(s)—o,

where k is the current capital stock, o the rate of use of the resource in
production, and F (k, o) the production function. As before r (s) is a growth
function for the renewable resource, indicating the rate of growth of this when
the stock is s.

As before, we shall consider the optimum according to the utilitarian cri-
terion, then characterize the green golden rule, and finally draw on the results
of these two cases to characterize optimality according to Chichilnisky’s
criterion.

7. The Utilitarian Optimum

The utilitarian optimum in this framework is the solution to

o -
=0t .
max u (cg, 5¢) e~ % dt subject to
/0 (¢, 5¢) ! } . (10)

k=F(k,0)—candéi=r(s)—o
We proceed in the by-now standard manner, constructing the Hamiltonian
H=u(c,s)e ® + e % {F(k,0) — c} + pe~ % {r(s) — o}

and deriving the following conditions which are necessary for a solution to
(10):

ue = A, (11)
A, = p, (12)
A= 0\ = —)\Fj, (13)
fir=dp = ~us — prs, (14)

where 7, is the derivative of r with respect to the stock s.

7.1. Stationary Solutions
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7.1. Stationary Solutions

A little algebra shows that the system (11) to (14), together with the two
underlying differential equations in (10), admits the following stationary
solution:

§ = Fy (k,0), (15)

o =1(s), (16)

¢ = F(k,0), (17)
U (&8 _ p(ko) (6 —ra). (18)
uc(c,s)

This system of four equations suffices to determine the stationary values of
the variables k, s, o and c.

It is important to understand fully the structure of stationary states in this
model, and in particular the trade-off between consumption ¢ and the resource
stock s across alternative stationary states.

First, consider this relationship across stationary states for a given value of
the capital stock k: in this case we can write

v c=F(k,0(s)),
and so we have
d
5§k fxed O (19)

As F, is always positive, this has the sign of 5, which is initially positive
and then switches to negative: hence we have a single-peaked relationship
between ¢ and s for fixed k across stationary states. The c—s relationship
across stationary states for a fixed value of k replicates the shape of the
growth function r (s) and so has a maximum for the same value of s.

In general, however, k is not fixed across stationary states, but depends
on ¢ via Equation (15). Taking account of this dependence and treating (15)
as an implicit function, we obtain the total derivative of ¢ with respect to s
across stationary states:

de F ko

Fi Ts ( JFkk + F,,) , 20)
which, maintaining the assumption that Fi, > 0, also has the sign of r; and
again inherits the shape of  (s). Note that for a given value of s: |(dc/ds)| >
|(8c/Bs)k fixea| and that the two are equal only if the cross derivative Fy,, is
zero. The various curves relating ¢ and s across stationary solutions are shown
in Figure 5: for Fj,, > 0 the curve corresponding to & fully adjusted to s both
rises and falls more sharply than the others, and crosses each of these twice,
from below while increasing and from above while decreasing, as shown. A

stationary solution with a capital stock k£ must lie on the intersection of the
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Fully-adjusted relationship
between ¢ and 5 across
stationary states.

Relationships between

¢ and s across statiopary

states for fixed k, in- N

. ith k.
creasing wi {}‘\‘ A

A utilitarian stationary solution

-

Indifference curve

Figure 5. A utilitarian stationary solution occurs where the fully-adjusted c—s relationship
crosses the same relationship for the fixed value of k corresponding to the stationary solution.

curve corresponding to a capital stock fixed at k with the curve representing
the fully-adjusted relationship. At this point, ¢, s and k are all fully adjusted
to each other. (In the case of Fj, = 0 the curves relating c and s for & fixed
and fully adjusted are identical, so that in the case of a separable production
function the dynamics are simpler, although qualitatively similar.)

The stationary first order condition (18) relates most closely to the curve
connecting ¢ and s for a fixed value of k (the only relevant curve for Fi, = 0),
and would indicate a tangency between this curve and an indifference curve
if the discount rate § were equal to zero. For positive 4, the case we are
considering now, the stationary solution lies at the point where the c—s curve
for the fixed value of k associated with the stationary solution crosses the c—s
curve along which & varies with s. At this point, an indifference curve crosses
the fixed-k c—s curve from above: this is shown in Figure 5. Note that as we
vary the discount rate 4, the capital stock associated with a stationary solution
will alter via Equation (15), so that in particular lowering the discount rate
will lead to a stationary solution on a fixed-k c—s curve corresponding to a
larger value of k£ and therefore outside the curve corresponding to the initial
lower discount rate.

7.2. Dynamics of the Utilit
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7.2. Dynamics of the Utilitarian Solution
The four differential equations governing a utilitarian solution are
k= F(k,0) — c(st, M)
§= T‘(S) -0 (/J.t, }\t, kt)
A — 8\ = —\Fy
b —op=—us— prs
The matrix of the linearized system is

6 = FoAget - e "
7 Ts s ~ 3
—AFy + FkaA%‘ﬁ“ 0 o+ EI};%%— —%‘:
0 %‘l — Ugs — UTs "%’:ﬁ d—rs

To establish clear general results on the signs of the eigenvalues of this
matrix, we have to make simplifying assumptions. If F;, is large, so that the
marginal productivity of the resource drops rapidly as more of'it is employed,
then the eigenvalues of the above matrix are : 7, § — 5, 1/(2uec) (Qued =

\/ u2,02 + 4ug A Fy. There are two negative roots in this case, asr; < 0 ata

"stationary solution. In this case the utilitarian stationary solution is locally a

saddle point.

PROPOSITION 10.1 4 sufficient condition for the utilitarian stationary
solution to be locally a saddle point is that F 4, is large, so that the marginal
productivity of the resource diminishes rapidly in production.

There are other cases in which the stationary solution is locally a saddle
point, involving additive separability of the utility function.!” Existence of a
solution to the utilitarian problem is established in the Appendix.

8. The Green Golden Rule with Production and Renewable Resources

Across stationary states, the relationship between consumption and the resource
stock satisfies the equation

c=F(k,r(s)),

so that at the green golden rule we seek to maximize the sustainable utility
level with respect to the inputs of capital k and the resource stock s:

mal,cxu (F(kyr(s)),8).

8

Maximization with respect to the resource stock gives

— = —F,rs, (2 1)
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which is precisely the condition (18) characterizing the stationary solution to
the utilitarian conditions for the case in which the discount rate ¢ is equal to
zero. So, as before, the utilitarian solution with a zero discount rate meets the
first order conditions for maximization of sustainable utility with respect to
the resource stock. Of course, in general the utilitarian problem may have no
solution when the discount rate is zero. Note that the condition (21) is quite
intuitive and in keeping with earlier results. It requires that an indifference
curve be tangent to the curve relating c to s across stationary states for k
fixed at the level k£ defined below: in other words, it again requires equality of
marginal rates of transformation and substitution between stocks and flows.

The capital stock & in the maximand here is independent of s. How is the
capital stock chosen? In a utilitarian solution the discount rate plays a role in
this through the equality of the marginal product of capital with the discount
rate (15): at the green golden rule there is no equivalent relationship.

We close the system in the present case by supposing that the production
technology ultimately displays satiation with respect to the capital input alone:
for each level of the resource input o there is a level of capital stock at which
the marginal product of capital is zero. Precisely,

k(o) = mink : %1;:— (k,0) =0. (22)
We assume that k (o) exists for all & > 0, is finite, continuous and non-
decreasing in 0. Essentially assumption (22) says that there is a limit to the
extent to which capital can be substituted for resources: as we apply more
and more capital to a fixed input of resources output reaches a maximum
above which it cannot be increased for that level of resource input. In the
case in which the resource is an energy source, this assumption was shown by
Berry et al. [5] to be implied by the second law of thermodynamics: this issue
is also discussed by Dasgupta and Heal [11]. In general, this seems a very
mild and reasonable assumption. Given this assumption, the maximization of
stationary utility with respect to the capital stock at a given resource input,

max u (F (k, 7 (s)), )
requires that we pick the capital stock at which satiation occurs at this resource
input, i.e., k = k (r (s)). Note that
Ok (r (s)) _ ok (o) .
s ~ 8o %

so that k is increasing and then decreasing in s across stationary states: the
derivative has the sign of r;. In this case, the green golden rule is the solution
to the following problem:

max u (F (E(r ), r (s)) ,s) ,

where at each value of the resource stock s the input and the resource and
the capital stock are adjusted so that the resource stock is stationary and
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the capital stock maximizes output for that stationary resource input. The
relationship between consumption and the resource stock across stationary
states when at each resource stock the capital stock is adjusted to the level
k (r (s)) has the following slope:
k
Z—g— = Fkg—; rs + Fgrg

and by the definition of & the first term on the right is zero, so that the slope of
the curve relating c and s when the capital stock is given by k is the same as
the slope when the capital stock is fixed. This curve is thus the outer envelope
of the curves for fixed values of the capital stock.

The total derivative of the utility level with respect to the stock of the
resource is now

du
ds
By assumption (22) and the definition of k, F;, = 0 here: hence equating
this to zero for a maximum sustainable utility level gives the earlier expres-

sion (21). The green golden rule is characterized by a tangency between an
indifference curve and the outer envelope of all curves relating c to s across

ok
- Uchb—; 'rs + UCFO-'I‘S + us.

- stationary states for fixed capital stocks.

PROPOSITION 11.13 In an economy with capital accumulation and renew-
able resources, under the assumption (22) of satiation of the production
Sfunction with respect to capital, the green golden rule satisfies the first order
condition us[u, = —F,rs which defines a tangency between an indifference
curve and the outer envelope of c—s curves for fixed values of k. It has a
capital stock of k(o (s*)), where s* is the green golden rule value of the
resource stock and k denotes the capital stock at which the marginal product
of capital first becomes zero for a resource input of o (s*).

What if production does not display satiation with respect to the capital stock?
In this case there is no maximum to the output which can be obtained from
a given resource flow and so from a given resource stock. Unless we assume
satiation of preferences with respect to consumption, the green golden rule is
not well defined.!®

9. Optimality for the Chichilnisky Criterion

Now we seek to solve the problem

o —5t T
maxa fo ulense™dt+(1—a) lmuns) |
st.k= F(kt,dt)—ct &St =T(8)—0’t,8t > 0 Vi
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In the case of satiation of the production process with respect to capi-
tal, as captured by assumption (22), the situation resembles that with the
Chichilnisky criterion with renewable resources above: there is no solution
unless the discount rate declines to zero. Formally:

PROPOSITION 12.2° Assume that condition (22) is satisfied. Then problem
(23) has no solution.

Proof. The structure of the proof is the same as that used above. The integral
term is maximized by the utilitarian solution, which requires an asymptotic
approach to the utilitarian stationary state. The limit term is maximized on any
path which asymptotes to the green golden rule. Given any fraction 8 € [0, 1]
we can find a path which attains the fraction § of the payoff to the utilitarian
optimum and then approaches the green golden rule. This is true for any value
of B < 1, but not true for 8 = 1. Hence any path can be dominated by another
corresponding to a higher value of 3. m]

We now consider instead optimization with respect to Chichilnisky’s criterion
with a discount rate which declines to zero over time:

PROPOSITION 13.2! Consider the problem
oo
maxa/ uy (¢, ) A(t)dt+ (1 — @) lim ui(¢,8),0<a< 1,
0 t—o0
st k= F (ki,01) — ¢t & $¢ = r(st) — ¢t, Sp given.

where q(t) = —(A(t)/A(t)) and limy_,00 g(£) = 0. Any solution to this
problem is also a solution to the problem of maximizing [;° uy (c, s) A (t) dt
subject to the same constraint. In words, solving the utilitarian problem with
the variable discount rate which goes to zero solves the overall problem.
Proof. The proof is a straightforward adaptation of the proof of Proposi-
tion 6, and is omitted. 0

As before, the existence of a solution is established in the Appendix.

What does the Chichilnisky-optimal path look like in this case? It is similar
in general terms to the set of paths shown in Figure 4, except that the graph
of the growth function r (s) is replaced by the outer envelope of the curves
relating ¢ and s for fixed values of k. The optimal path moves towards the
green golden rule, which is a point of tangency between an indifference curve
and the outer envelope of the curves relating c and s for fixed values of k. This
point is the limit of utilitarian stationary solutions as the associated discount
rate goes to zero.

10. Conclusions
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10. Conclusions

A review of optimal patterns of use of renewable resources has suggested
interesting conclusions. The green golden rule is an attractive configuration:
it gives the highest sustainable utility level. Utilitarian solutions with a pos-
itive discount rate will accumulate a smaller stock of the resource than that
associated with the green golden rule, although the difference goes to zero as
the discount rate used in the utilitarian formulation gets smaller. Of course, for
a zero discount rate, there is typically no utilitarian optimum. Investigation of
Chichilnisky’s criterion in some measure bridges the gap between these two
concepts of optimality: a solution exists if and only if the discount rate in the
integral term of Chichilnisky’s maximand declines asymptotically to zero, in
which case maximization of the integral term alone — the sum of discounted
utilities — leads one to the green golden rule. This result remains true even
with the inclusion of production: matters are more complex in that case, but
not qualitatively different. Interestingly, there is empirical evidence that peo-
ple display declining discount rates in their behavior towards the future. Such
behavior is quite consistent with behavior patterns found in other aspects of
human choice and summarized as the Weber-Fechner law.

11. Appendix

In this appendix we establish conditions sufficient for the existence of solu-
tions to the various intertemporal optimization problems considered in Propo-
sitions 2, 6, 7, 10 and 13 of the text. We use an approach and a set of results
developed initially by Chichilnisky [6] and applied by Chichilnisky and Gru-
enwald [9]. This is a very direct and intuitive approach: we show that the set
of feasible solutions to the constraints is a compact set, and that the objective
function is a continuous function, and invoke the standard result that a con-
tinuous function on a compact set attains a maximum. The delicate step here
is to find a topology in which we have compactness and continuity under rea-
sonable assumptions about the problem: for this we use weighted L, spaces,
as introduced in Chichilnisky [6].

We consider the utilitarian optimality problem analyzed in Section 7, as
this is the most complex of the problem in the paper. Earlier problems in
the paper are special cases of this, so that the existence of a solution to this
implies the existence of solutions to the earlier problems. The optimization
problem is:

max/ u (ct, 5¢) e~ % dt subject to }

k=F(k,o)—cands=r(s)—0
We make the following assumptions:

24)
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1. u(c,8) is concave, increasing and differentiable. It satisfies the
Caratheodory condition, namely it is continuous with respect to ¢ and
s for almost all ¢ and measurable with respect to ¢ for all values of ¢ and

8.
2.7(0)=0,33> 0s.t.7(s) = 0Vs > 3, maxs 7 (s) < b < o0, and 7 (s)
is concave for s € [0, 3].
3. For any 03b; (0) < o0 s.t. F (k,0) < by (0).
4. 3b3 < 00 8.t |§] < bs.
5. 3bs < 00 5.t. |k| < bs.

The first two conditions are conventional. The third implies that bounded
resource availability implies bounded output: it is a form of the assumption
made by Dasgupta and Heal [10] that the resource is essential to production.
It is a restatement of assumption (22) in the text. The final two assumptions
imply that it is not possible for either the resource stock or the capital stock
to change infinitely rapidly. These seem to be very reasonable assumptions.
However, we shall in the end not require them: we shall prove the existence
of an optimal path under these assumptions, and then note that a path which
is optimal without these assumptions is still feasible and optimal with them.

PROPOSITION 14. Under assumptions (1) to (5) above, the utilitarian opti-
mization problem (24) has a solution.

Proof. Under the above assumptions, the set of feasible time paths of the
resource stock s and consumption ¢ are uniformly bounded above. (Note that
s is bounded by (2), and ¢ by (3) and (5).) They are non-negative and so
bounded below. Hence the paths of s and c are integrable against some finite
measure and so are elements of a weighted L; space. Denote by P the set of
feasible paths s; and ¢;, 0 < £ < 00: as a subset of L), P is closed and norm

bounded, so that by the Banach—Alaoglu theorem it is weak-* compact. By

Lebesgue’s bounded convergence theorem, it is also compact in the norm of
L.

The objective U = f(;"’ u(ce, s¢) e~ %dt maps P to the real line R. To com-
plete the proof we need to show that U is continuous in the norm of L;. This
follows immediately from the characterization of L, continuity given in [6]:

LEMMA 15 (Chichilnisky). Let W = [ u(cs, t) dv (t) for a finite measure
v (t), with u(cs, t) satisfying the Caratheodory condition. Then W defines a
norm-continuous function from Ly to R for some coordinate system of Ly, if
and only if |[u(ct, t)| < a(t) + ble|?, where a(t) > 0, f[ra(®)dv(t) < oo
andb > 0.

In the case of our objective the role of u (¢;, £) is played by u (c;, 5¢) e~ An
extension of Chichilnisky’s lemma to functions u defined on R? is straight-
forward. As u is defined only on R2, concavity implies that Chichilnisky’s
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inequality is satisfied for p = 1. This completes the proof of existence of an
optimum. )

‘We have now proven the existence of an optimal path for the most complex of
the optimization problems discussed in the paper: existence of an optimum for
the simpler problems can be deduced from this. Our proof used assumptions
(4) and (5) above, which bound respectively § and &, the rates of change of
the resource and capital stocks. These assumptions were not made in the body
of the paper. However, note from the characterization results in the paper that
solutions to the problems without bounds on the rates of change of stocks
do in fact have bounded rates of change of the stocks of the resource and
of capital. Hence for sufficiently large bounds, the imposition of bounds on
the rates of change of stocks cannot change the solutions to the optimization
problems. It follows that we have also established the existence of solutions
for the unbounded optimization problems.

Notes

1. See[12] for a detailed listing of many more examples.

2. This proposition, which was first proved in [18], is a strengthening of results in [3].

3. Elsewhere we have called this the green golden rule [3].

4. This result, and the associated concept of the green golden rule, were introduced in 1]

and [3].

We are grateful to Kenn Judd for this observation.

This result was introduced in [18].

We are grateful to Harl Ryder for suggesting this result and outlining the intuition behind

it.

8. This result was first proven in [18].

9. This equality is not always true: it requires locally uniform convergence of the non-
autonomous system to the autonomous system. For details, see [4].

10. This result was first proven in [18].

11. Due to Harl Ryder.

12. This discount factor is infinite when ¢ = 0: hence the need to start from ¢ = 1.

13. Further discussions of time consistency can be found in [14].

14. This result was first proven in [18].

15. For a further discussion, see [13] and references therein.

16. This result was first proven in [18].

17. See [18] for details.

18. This result was first proven in [18].

19. See [18] for details.

20. This result was first proven in [18].

21. This result was first proven in [18].
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