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Abstract: Economic analysis assumes that consumer behavior can be rationalized by a

utility function. Previous research has shown that some consistency of choices with economic

rationality can be captured by permanent cognitive ability but has not examined how a tempo-

rary load in subjects’ working memory can affect economic rationality. In a controlled laboratory

experiment, we exogenously vary cognitive load by asking subjects to memorize a number while

they undertake an induced budget allocation task (Choi et al., 2007a,b). Using a number of ma-

nipulation checks, we verify that cognitive load has adverse effects on subjects’ performance in

reasoning tasks. However, we find no effect in any of the goodness-of-fit measures that measure

consistency of subjects’ choices with the Generalized Axiom of Revealed Preference (GARP),

despite having a sample size large enough to detect even small differences between treatments

with 80% power. We also find no effect on first-order stochastic dominance and risk preferences.

Our finding suggests that economic rationality can be attained even when subjects are placed

under temporary working memory load and despite the fact that the load has adverse effects in

reasoning tasks.
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1 Introduction

Lately, there has been a lot of attention given to decision making ability as the driving

force behind heterogeneity in choices. Choi et al. (2014) advance the view that the choices that

some people make may be different from the choices they would make if they had the skills or

knowledge to make better decisions. Thus, limited decision-making ability may produce sub-

optimal choices indicative of low decision-making quality. The role of intelligence or cognitive

ability has been the subject of many studies (see for example Brañas Garza and Smith, 2016;

Rustichini, 2015, and citations therein) and some of the stylized facts from this literature include

the notion that people of high cognitive ability are more risk-tolerant, more patient, and less

prone to anchoring effects than those with lower cognitive ability (see Deck and Jahedi, 2015,

and citations therein).

The dual-system approach view in decision making offers a mechanism that can explain

differences in decision making as a result of cognitive abilities. Under this approach, people

have two distinct kinds of reasoning widely known as ‘System 1’ and ‘System 2’ (Stanovich

and West, 2001). System 1 is considered the impulsive/intuitive system while system 2 is the

reasoning system. The two systems differ in terms of working memory capacity, consciousness

in reasoning, automaticity, speed etc. (Kahneman, 2011). Given that working memory capacity

is known to be highly correlated with reasoning ability (Kyllonen and Christal, 1990), one direct

implication of this fact is that System 2 functions should be related to measures of cognitive

ability while System 1 functions should be independent of such measures.

In the dual-system approach, behavior is determined by the interaction of the two systems:

System 1 will produce intuitive answers to problems as they arise while System 2, given enough

time to engage, could override or correct automatic judgments. Therefore, by simply observing

human behavior, it is hard to attribute decision making on either of the two systems. In order

to disentangle the effects of the two systems, the economics literature has adopted a technique

known as cognitive load manipulation, often used in the social psychology literature as well,

that allows researchers to exogenously impair subjects’ cognitive resources. Following this line of

research, our experimental treatment is designed to reduce availability of cognitive resources for

concurrent tasks by requiring subjects to memorize numbers of different lengths while they are

making choices. Imposing a burden on working memory has been shown to have adverse effects

on performance in a variety of tasks that involve logic or reasoning (see Deck and Jahedi, 2015,

and citations therein). Deck and Jahedi (2015), based on an extensive review of the literature

note that overall, increasing cognitive load leads to poorer reasoning and math performance,

more risk-aversion, and more impatient choices.

Specifically, Deck and Jahedi (2015) find in their experiment that higher cognitive load

reduces performance in math problems, leads to more risk-averse behavior, more impatience
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over money, and a higher likelihood to anchor, but they find no evidence of cognitive load

effects on impatience or unhealthy snack choice. Similarly, Benjamin et al. (2013) and Gerhardt

et al. (2016) find that a cognitive load manipulation increases risk aversion. Many other studies

that are reviewed in Deck and Jahedi (2015) are exploring cognitive load in relation to math

ability and logic, risk, intertemporal choice, food choice, generosity, strategic behavior etc.

By this account, our cognitive load manipulation (memorizing a number) is expected to

load the reasoning system (‘System 2’). Hence, any decision that subjects perform when under

cognitive load should be the outcome of ‘System 1’ which is the impulsive and intuitive system.

Our research question is whether ‘System 1’ can produce decisions that can be characterized

as of high decision-making quality in economic terms, or whether ‘System 2’ is necessary for

subjects to make high quality decisions. Following Choi et al. (2014) we define decision-making

quality in terms of whether observable behavior is consistent with the utility maximization

model.

Using the utility maximization model as the benchmark by which to judge decision-making

quality is quite natural for economic analysis and has strong theoretical and methodological

justifications (Choi et al., 2014). Economic analysis assumes that consumer behavior can be

rationalized by a utility function and this economic rationality assumption is by now well un-

derstood and described by the core axioms of revealed preference theory (Afriat, 1967; Varian,

1982). Revealed preference theory also provides the tools to test whether any given data set

violates those axioms and how severe such violations might be.

There are some scattered evidence in the literature linking economic rationality with mea-

sures of cognitive ability which provide a rationale to examine the effect of a cognitive load

manipulation on economic rationality. Choi et al. (2014) find a positive correlation of a mea-

sure of consistency with economic rationality with the Cognitive Reflection Test (CRT) of

Frederick (2005) which is often considered a simple measure of cognitive ability. They also find

that the CRT captures some decision-making ability related to decision-making quality in their

experiment.

We revisit this issue but instead of relying on a correlational measure of cognitive ability such

as the CRT, we exogenously vary load on working memory which we expect to impair cognitive

abilities temporarily. The closest to our study are the experiments in Castillo et al. (2017) which

employ a sleepiness manipulation through circadian mismatch. Circadian mismatch has been

shown to be associated with impairment of cognitive abilities and is another way to temporarily

deplete cognitive resources. To accomplish their manipulation, they recruited only young men

and women who were validated morning- and evening-type individuals. Subjects were then

randomly assigned to a session at a preferred time of the day relative to their diurnal preference

(circadian matched) or at a non-preferred time (circadian mismatched) and were then asked
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to choose budget allocations using the Choi et al. (2007a,b) allocation task.1 To establish the

effectiveness of their manipulation, Castillo et al. (2017) first show that circadian matched and

mismatched subjects do not differ in many measures (including self-reported sleep measures)

before the experiment takes place. They then use the Karolinska sleepiness score to show that

mismatched subjects report being significantly more sleep deprived than circadian matched

subjects. Thus, they assume the existence of an adverse cognitive resource state due to sleep

restriction, even though its effects are not directly tested in the experiment. Castillo et al.

(2017) find that adherence to the generalized axiom of revealed preference (GARP) is identical

between mismatched and matched participants.

In our study, in order to explore consistency with economic rationality, we employ the Choi

et al. (2007a,b) induced budget allocation task. This particular allocation task allows elicitation

of many decisions per subject from a wide variety of budget lines. In addition, the shifts in

income and relative prices are such that budget lines cross frequently and so the variety of budget

lines produces data that can be used to test for consistency with revealed preference theory (Choi

et al., 2007a). Our cognitive load manipulation, a number memorizing task, is designed along

with several incentivized manipulation checks that undoubtedly show its effectiveness. We find

that subjects’ performance in demanding reasoning tasks is affected when under high cognitive

load but less so in tasks that require low or no reasoning at all. We employ several goodness-

of-fit measures to measure consistency with economic rationality given the trade-offs involved

with using one over another, and generally find that cognitive load does not affect economic

rationality; i.e., a null effect. We also show that our study was sufficiently powered to detect

even small effects, which gives us enough confidence to conclude that our null effect is genuine

and not the result of a small sample size. We also report a null effect with respect to first-order

stochastic dominance and risk preferences.

The next section describes our experimental design with particular emphasis on the cognitive

load manipulation and the induced budget line allocation task. Section 3 describes the various

goodness-of-fit measures we use in this study to measure consistency with economic rationality

according to revealed preference theory. In Section 4 we showcase the null effect of cognitive

load on economic rationality after first establishing the success of the treatment based on a

series of manipulation checks. We also complement our results with sample size calculations to

show that our null result is likely not a false negative.

1As explained in Section 2.2, in the budget allocation task subjects choose how to allocate points between
two accounts that have a 50% chance each of being binding. This is equivalent to asking subjects to make
lottery choices and, thus, the task can be used to infer risk preferences as well. This is something we address in
Section 4.5.
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2 Experimental design

In May 2017, we recruited 178 subjects from the undergraduate population of the Agri-

cultural University of Athens in Greece to participate in a computerized experiment at the

Laboratory of Behavioral and Experimental Economics Science (LaBEES-Athens). Subjects

were recruited using ORSEE (Greiner, 2015) and participated in 10 sessions of 14 to 25 sub-

jects. All sessions started at 10 am and concluded by 2 pm. Although subjects participated

in group sessions, there was no interaction at any point between subjects and group sessions

only served as a means to economize on resources. In fact, given that we timed every decision

stage of our experiment (response times are discussed in Section 2.4), we chose to run individ-

ual instances of zTree (Fischbacher, 2007) to avoid any time lags in communication between

computers and allow every participant to proceed at their own pace. Although subjects knew

from the very beginning that they could move through the screens at their own pace, they were

also told that they could leave the room only when all the subjects have made their decisions

for reasons related to collection of all data and the printing of the individual receipts. This was

also done to slow down the pace of subjects who just wanted to minimize their stay in the lab.2

Subjects were randomly split into two between-subjects treatments and each subject was only

exposed to one of them: 87 subjects experienced the high cognitive load treatment (HCL) and

91 subjects experienced the low cognitive load (LCL) treatment.

Upon arrival, subjects were given a consent form to sign and were randomly seated to one of

the PC private booths. The instructions were computerized, interactive and included thorough

examples for each type of task that would appear in the experiment (see Experimental Instruc-

tions section in the Electronic Supplementary Material). Subjects were specifically instructed to

raise their hand and ask any questions in private and that the experimenter (one of the authors)

would then share his answer with the group. Subjects received a show-up fee of e3 and a fee

of e4 for completing the experiment so that each subject would receive e7 with certainty upon

successful completion of the experiment, which lasted about an hour. They could also earn

additional money during the experiment (described momentarily), and so the average of total

payouts was e13.05 (S.D.=3.64, min=7, max=20.53).

In total, subjects played 75 periods and in every period they went through one of the following

decision tasks: 1) an induced budget line allocation task, 2) an arithmetic (addition) task, 3)

an arithmetic (multiplication) task, and 4) a click-a-button task. The budget allocation task

was repeated for 60 consecutive periods (reasons for this number of repetitions are explained in

Section 2.2) and every other decision task was repeated for 5 consecutive periods (thus, 1 task

× 60 periods + 3 tasks × 5 periods = 75 periods). Subjects were not provided with any kind

2In principle, this could also have the reverse effect i.e., subjects trying to speed up in order not to keep
other subjects waiting. However, we believe this was not the case since subjects could not know the progress of
other subjects in the experiment.
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of feedback between periods for any of the tasks. Each subject was randomly exposed to one of

the possible orders of the tasks; however, the induced budget task was always placed either at

the very beginning of the experiment or at the very end. Figure 1 shows sample screen shots

illustrating the various decision tasks.

Subjects were specifically instructed to remove from their desks anything that could be used

to take notes (e.g., cellphones, paper, pen, pencil etc.). This was part of their instructions (see

Experimental Instructions - Screen 1 at the Electronic Supplementary Material) but they were

also reminded orally by the experimenter before the start of the experiment. In addition, two

research assistants and the experimenter supervised the lab to make sure that this would be

enforced during the experiment so that subjects could not cheat in any way at the memorization

task by, for example, typing the number they had to memorize in an intermediate screen. This

also affected the way we designed all other tasks in that we avoided having input boxes (which

subjects could use to temporarily type the number they had to memorize) and only included

buttons as input items. Shortcut keys for copy-paste (i.e., ctrl+c and ctrl+v) were disabled in

all computers during the experiment.

2.1 Cognitive load manipulation

To manipulate cognitive load, we implemented an incentivized number memorization task

(Benjamin et al., 2013; Deck and Jahedi, 2015).3 Specifically, in each period and just before the

main decision tasks described above, a number appeared for four seconds on the participant’s

computer screen (see Figure 1a and 1b for sample screen shots). Subjects were then asked to

keep this number in their memory and recall it after the main decision task (see Figure 1g for

a sample screen shot). If they recalled (typed) the number correctly within a time limit of ten

seconds, their memorization payoff for the period was e9.4 Otherwise it was e0. Subjects in the

HCL treatment were shown 8-digit numbers while subjects in the LCL treatment were shown

1-digit numbers to memorize. Numbers to memorize where drawn randomly in each period and

independently from other subjects.

3Benjamin et al. (2013) note that requiring participants to memorize a string of numbers while they are
engaged in the task of interest is a common cognitive load manipulation in the psychology literature (e.g.,
Hinson et al., 2003; Shiv and Fedorikhin, 1999). Furthermore, Deck et al. (2017) experimentally test the effects
of four commonly used techniques for manipulating cognitive capacity, namely a number memorization task, a
visual pattern task, an auditory recall task, and time pressure. They find that the number memorization and
auditory recall tasks are the most reliable techniques for inducing cognitive load among those considered in their
study.

4Subjects would see a counter counting down from 9 seconds but the counter took an extra second before
countdown actually started; hence actual count down time was 10 seconds. Similarly, in the memorization task
the counter would start counting down from 3 although the counter took an extra second before doing so, so
that the number to be memorized was always displayed for 4 seconds.
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Figure 1: Sample screen shots of various tasks

(a) Memorize number in the HCL treatment (b) Memorize number in the LCL treatment

(c) Induced budget allocation task (d) Multiplication task

(e) Addition task (f) Click-a-button task

(g) Recall number
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2.2 The induced budget line allocation task

We used the graphical representation of simple allocation choice tasks of Choi et al. (2007b)

where subjects are asked to select a bundle of commodities from a standard budget set. Subjects

saw a graphical representation of a budget line on the computer screen and made choices on

the budget line through a simple point-and-click action (see Figure 1c). In our implementation

of the interface in zTree, we also allowed subjects to make refined grid choices by using buttons

that could add/subtract very small amounts in the commodity space in an interactive way.

This particular interface allows elicitation of many decisions per subject from a wide variety

of budget lines which produces a very rich individual-level dataset. The shifts in income and

relative prices are such that budget lines cross frequently and the variety of budget lines produces

data that have been used in the literature to test if the Generalized Axiom of Revealed Preference

(GARP) holds (Choi et al., 2007a). If GARP holds, then an individual’s choices are consistent

with maximization of a well-behaved utility function.5 Choi et al. (2014) use this consistency of

choices with economic rationality as a measure of decision-making quality (economic rationality

defined by having a complete and transitive preference ordering).

In the induced budget line allocation task, subjects were asked to choose an allocation

of points (constrained to lie on the budget line) between the ‘Orange account’ and the ‘Brown

account’ (corresponding to the horizontal and vertical axis, respectively) with the understanding

that one of the accounts would be randomly selected at the end of the experiment and that

each account was equally likely. Each task started with the computer selecting a budget line

randomly from the set of budget lines that intersect with at least one of the axis at 50 or more

points and the other axis at 30 or more points. No intercept could exceed 100 points. The

budget lines selected were independent between periods and between subjects (the full set of

budget lines shown to each subject and their respective choices can be found in the Electronic

Supplementary Material). The pointer was set by default to the origin, if subject had not yet

made a choice. Although a timer was implemented for consistency with the other tasks, subjects

were not forced out of the task if they had not made a choice. The exchange rate between points

and Euros was set to 1 point = e0.15.

The number of periods in the induced budget line allocation task was determined based on

Bronars’s (1987) power measure of revealed preference tests. Bronars (1987) adopted Becker’s

(1962) notion of irrational behavior where the representative consumer is assumed to choose

5 Varian (1988) shows that if we only observe demand for a subset of goods (as in a typical laboratory
experiment), then GARP is no longer necessary. Therefore, testing a data set for consistency with GARP
characterizes utility maximization only when the demand for all available goods is observed. Otherwise, the
utility maximization hypothesis imposes no restrictions on observable data. However, a theorem in van Bruggen
and Heufer (2017) shows that consistency of the observed data with GARP is still a necessary and sufficient
condition for utility maximization over all observed and unobserved goods, if unobserved prices and expenditure
remain constant (a condition which is naturally satisfied in the lab, as we can plausibly assume that the world
outside the lab remains constant during an experiment).
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consumption bundles randomly from her budget hyperplane. We randomly generated consump-

tion data for 50,000 hypothetical subjects who randomize uniformly among all allocations on

each budget line and repeated this procedure over 10 to 60 budgets tasks with a step of 10.

We then calculated Afriat’s Critical Cost Efficiency index (CCEI) which measures the amount

by which each budget constraint must be relaxed in order to remove all violations of GARP

(Afriat, 1972; Varian, 1993, 1990) (see also section 3.1 for a detailed description of this index).

Varian (1993) proposes a 95% efficiency level as the critical level for “sentimental reasons [sic]”.

Table 1 shows that increasing the number of budget tasks from 10 to 60 significantly reduces

the chance that random behavior will pass the GARP test. With 60 budget tasks, only 2 out

of 50,000 hypothetical subjects have a CCEI larger than 0.95. The number of repetitions is

an important detail in our design because under cognitive load, there might be a tendency for

subjects towards random choice. Therefore, we wanted to make sure that by design, there is

a very low chance of random behavior passing as consistent with GARP. Given the trade-off

involved with adversely affecting the duration of any given session when increasing the number

of periods, we opted to repeat the induced budget allocation task for 60 periods.

Table 1: Number of budget tasks and Afriat’s Critical Cost Efficiency index (CCEI) for randomly
generated consumption data for 50,000 simulated subjects

N of budget
tasks

Average CCEI min CCEI max CCEI % of Simulated subjects
with CCEI≥0.95

10 0.957 0.655 1 65.59
20 0.891 0.600 1 17.51
30 0.848 0.581 0.999 3.01
40 0.819 0.589 0.992 0.39
50 0.797 0.579 0.977 0.06
60 0.780 0.579 0.963 0.004

2.3 Arithmetic and click-a-button tasks

The arithmetic and click-a-button tasks were used as manipulation checks in order to identify

whether the number memorization task actually manipulates cognitive load. The tasks were

meant to differ in terms of task difficulty in order to assess the severity of the manipulation on

decision making.

In the multiplication arithmetic task, subjects had to multiply a one-digit integer m1 ∼

U{5, . . . , 9} and a two-digit integer m2 ∼ U{13, . . . , 19}. In the addition arithmetic task, sub-

jects had to add a one-digit integer a1 ∼ U{1, . . . , 9} and a two-digit integer a2 ∼ U{11, . . . , 99}.6

6The addition and multiplication tasks were taken verbatim from Deck and Jahedi (2015).
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Subjects had to indicate their answer by clicking the right choice from a list of randomly deter-

mined 16 possible choices that were shown in two columns in an ordered manner; i.e., from low

values to high values (see Figures 1d and 1e). The correct answer was set randomly to one of

the buttons.

In the click-a-button task, subjects simply had to click a button. The arithmetic and click-

a-button tasks were set with a time limit of 11 seconds after which subjects would be forced

out if they had not made a decision.7 If subjects performed any of the tasks described above

correctly, their payoff for the period was e7. Otherwise it was zero.

The tasks varied in terms of difficulty in the following manner: multiplication ≫ addition

≫ click-a-button. Our intention with this manipulation check was to see whether memorizing

a large number affects ability to perform difficult tasks (like multiplication and addition) but

not ability to perform simple tasks (like clicking a button). We would expect that performance

in the multiplication task, a much harder task than addition, would be more adversely affected

under cognitive load.

2.4 Response times

Although interest around response times (RT) and their relevance for economic analysis has

been increasing lately (see for example discussions in Clithero, 2018; Spiliopoulos and Ortmann,

2018), response times have not been recorded and analyzed in previous studies that involved

cognitive load manipulations (e.g., Benjamin et al., 2013; Deck and Jahedi, 2015). However,

RT have been given prompt attention in more recent studies (Gerhardt et al., 2016).

Response times are particularly useful if one adopts the dual-system approach view in de-

cision making (Stanovich and West, 2001). Since the two systems differ in terms of working

memory capacity, consciousness in reasoning, automaticity, speed etc., response times could

serve as an indicator of which system is dominating as well as an indicator of the difficulty of a

task (Gerhardt et al., 2016).

Given that the cognitive load manipulation (memorizing a number) is expected to load the

reasoning system (‘System 2’), any decision that the subjects perform when under cognitive

load should be the outcome of ‘System 1’. If subjects really need to use ‘System 2’ to make a

reasoning type decision, then they would need to really try hard to engage this system, which

would be reflected in their response time. That said, we should be cautious when interpreting

results from RT data in our paper because the treatment used in our study (having to type

a long vs a short number) is naturally related to decision times. Furthermore, it is possible

that response times could only be a remote proxy of what subjects would actually think when

making decisions. For example, subjects may take longer time to decide because they could

7Subjects would see a counter counting down from 10 seconds but the counter took an extra second before
countdown initiation so that actual count down time was 11 seconds.
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be worried that making faster decisions would induce them to forget the number they were

supposed to memorize. Similarly, taking more time to recall and report a number may pose

little harm in terms of forgetting the number from not rushing and avoiding mistakes. All in

all, while decision times may contribute in supporting intuitive explanations of the results, they

should always be taken with a grain of salt.

To achieve a high precision in recorded times, each computer run an individual session of

zTree/zLeaf for each subject, which factored out any latency due to network/computer commu-

nication.

2.5 Measured cognitive ability

The cognitive load manipulation allowed us to vary the working-memory (WM) load of

subjects while they completed other decision tasks. Working memory capacity has been shown

to be strongly correlated with general cognitive ability (Colom et al., 2004; Gray et al., 2003).

Therefore, before we apply the cognitive load manipulation, we first measured the cognitive

ability of all subjects using the Raven’s Standard Progressive Matrices (RSPM) test which is

used to assess mental ability associated with abstract reasoning and is considered a nonverbal

estimate of fluid intelligence (Gray and Thompson, 2004). The original RSPM test consists of 60

items and requires considerable time to complete. In this study, we used an abbreviated 9-item

form of the RSPM test (Bilker et al., 2012) consisting of items 10, 16, 21, 30, 34, 44, 50, 52, 57

from the original 60-item Raven’s test. Subjects were not provided with any feedback regarding

their performance in the RSPM test. The RSPM test allows us to sum correct responses and

form a measure of cognitive ability that we can use to assess the effect of WM capacity on

behavioral tasks’ performance.

2.6 Payoffs and payments

Participants were paid for one randomly drawn period (out of 75 periods) and for only one of

the (randomly determined) tasks of this randomly selected period (i.e., either the memorization

task or the decision task; depending on the period that was randomly drawn, the decision

task could be either the induced budget line task or the addition task or the multiplication

task or the click-a-button task). This was clearly explained beforehand in the instructions (see

Experimental Instructions - Screen 2 in the Electronic Supplementary Material).

Similar to Deck and Jahedi (2015), we set the payoff associated with memorization (e9)

higher than the payoff for the multiplication task (e7), the addition task (e7) and the click-a-

button task (e7), so that participants (even the ones with limited working memory capacity)

would devote their main attention to memorization. This increased the likelihood that the

cognitive load manipulation would be effective. Since the induced budget allocation task did
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not involve certain payoffs, we calculated the expected payoff for the maximum induced budget

line (i.e., cutting both axes at 100 points) and then calculated the expected payoff for a subject

that either allocates everything to one account or splits points between the two accounts. Given

an exchange rate of 1 point = e0.15, this expected payoff amounts to e7.50, which is very close

to the payoff of the other decision tasks.

Subjects received feedback about the randomly selected period and task only after they

made all their decisions. Monetary payouts were paid via bank transfer to subject’s preferred

bank account.8

3 Goodness-of-fit measures for rationality

We measure economic rationality in terms of whether our experimentally generated data

can be rationalized by a utility function. We know by revealed preference theory (Afriat, 1967;

Varian, 1982) that individual’s choices can be rationalized by a utility function, if and only if

the data satisfy the Generalized Axiom of Revealed Preference (GARP). GARP posits that if

allocation x
i is revealed preferred to x

j, then x
j is not strictly directly revealed preferred to x

i

or that if pi
x
i ≥ p

i
x
j then it cannot be that pj

x
j > p

j
x
i (Varian, 1982, p. 947).

The problem with empirically testing GARP is that the test is exact; i.e., data can either

satisfy GARP or not. The test allows no errors in measurement or choice so that a single choice

is enough to render a large choice set incompatible with rationality. Instead, goodness-of-fit

(GOF) measures or indexes allow us to quantify the extent of such violations. Some of the more

recently developed indexes have been constructed in order to address shortcomings of previously

developed GOF measures. We briefly summarize some of these measures (starting from older

measures and moving to more recently developed ones) and describe how we went about it with

our data.

3.1 Afriat’s Critical Cost Efficiency index (CCEI)

Afriat’s Critical Cost Efficiency index (CCEI) measures the amount by which each budget

constraint (such as the solid lines in Figure 2) must be relaxed (i.e., shifted to the dashed

lines in Figure 2) in order to remove all violations of GARP (Afriat, 1972; Varian, 1993, 1990).

More formally, for 0 ≤ e ≤ 1 define the directly revealed preference relation x
jRd(e)xi ⇔

epj
x
j ≥ p

j
x
i. We can relax the directly revealed preference relation by defining the transitive

8Money was paid via the ‘Pay a friend’ service of the bank ‘Eurobank’ which allows transferring money to
subject’s preferred bank account without knowing subject’s account number, only by using an email address or
a mobile phone number. All transactions were ordered in the same day of the sessions and every transaction
was completed within a maximum of one business day. All transactions went through. The service is similar to
the Zelle service operated by the Wells Fargo bank in the United States.
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closure of Rd(e) as R(e). Afriat’s CCEI, e∗, is the largest value of e such that the relation R(e)

satisfies GARP. In Andreoni et al. (2013) this version of Varian’s (1993) GARP is refered to as

L-GARP(e) (where ‘L’ is for ‘Lower’) and is defined as: xjR(e)xk ⇔ epk
x
k ≤ p

k
x
j for e ≤ 1.

If e∗ = 1, there is no violation of GARP while the larger the deviation from 1, the more a set of

data fails to satisfy GARP. Researchers often follow Varian’s (1993) suggestion to use the 95%

efficiency level as the critical level.

To illustrate the formulation of Afriat’s CCEI, consider Figure 2 where a simple revealed

preference violation is depicted for the bundles x
1 and x

2. Bundle x
1 is chosen at prices p

1

when x
2 is feasible so that we can infer that x1Rd

x
2. In addition, bundle x2 is chosen at prices

p
2 when x

1 is feasible so that we can infer that x
2Rd

x
1. Therefore, the choices depicted in

Figure 2 violate revealed preference axioms. The left figure depicts a more severe violation than

the right figure. We can remove this violation by moving the budget line from B to A or from

D to C. Afriat’s CCEI is related to the smallest shift we have to make to remove the violation,

so in this case CCEI will be equal to OA/OB. Note that OA/OB will be closer to 1 in the right

figure than in the left figure which indicates a less severe violation.

Technically, Afriat’s CCEI requires the computation of the transitive closure and there have

been two approaches used in the literature for this. One of the approaches uses Warshall’s

(1962) algorithm as described in Varian (1982, 1996). The other approach computes the matrix

power of the direct revealed preference matrix (also described in Varian, 1996). In this paper,

we used both approaches and find that the computed CCEI is largely the same with the use of

either method (the correlation coefficient between the two indexes is 0.97).9

9We used the codes from Dean and Martin (2016) for the application of the Warshall (1962) algorithm to
our data and the codes from Burghart et al. (2013) for the power matrix approach.
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Figure 2: A simple revealed preference violation
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Notes: Bundle x
1 is directly revealed preferred to bundle x

2 and vice versa. The left graph

indicates a more severe violation than the right graph.

3.2 The Houtman—Maks Index (HMI)

The Houtman and Maks (1985) index follows a different approach and measures the maximal

number of observations in the observed sample consistent with rational choice. An advantage

is that, if desired, the researcher can restrict the analysis to choices that are consistent with

economic rationality.

Older attempts to calculate the HMI have cited computational intensity as the biggest

drawback of the method (e.g., Choi et al., 2007a). More recently, Heufer and Hjertstrand

(2015) introduced simple and efficient algorithms for computing the HMI: Gross and Kaiser’s

(1996) combinatorial algorithm and an algorithm based on solving a mixed-integer programming

problem. As noted in Gross and Kaiser (1996), their algorithm sometimes fails to provide a

maximal subset and only provides a lower bound. We confirm that this is sometimes the case

with our data and so we based the HMI calculation on solving the mixed-integer programming

problem as set up in Heufer and Hjertstrand (2015).10

3.3 The Money Pump Index (MPI)

A drawback of the HMI is that the method flags observations that violate revealed preference,

even if they only violate it by a small amount. An alternative is the MPI which measures the

severity of a violation in terms of a money metric (Echenique et al., 2011). This measure received

10More specifically, we further analyzed the retained choices from the two algorithms using Afriat’s CCEI
and found that for the mixed integer programming algorithm, all retained choices satisfy GARP while for the
Gross and Kaiser (1996) algorithm, retained choices for 5 out of 178 subjects do not satisfy GARP.
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its name from the idea that a consumer who violates GARP could be potentially exploited as a

‘money pump’. This is because an arbitrager that knows the choices of a subject that violates

GARP could follow the opposite purchasing strategy and resell the goods to the subject at a

profit. Therefore, MPI is the amount of money that could be extracted from the consumer,

expressed as a percentage of expenditure.

To illustrate the MPI, consider Figure 2 depicting a revealed preference violation. Assume

a subject buys bundle x
1 at prices p

1 and bundle x
2 at prices p

2. An arbitrager would buy

bundle x
1 at prices p

2 and bundle x
2 at prices p

1 and then resell bundle x
1 at prices p

1

and bundle x
2 at prices p

2 to the subject. The arbitrager would then make a profit mp =

x
1(p1 − p

2) + x
2(p2 − p

1) = p
1(x1 − x

2) + p
2(x2 − x

1). The left graph in Figure 2 depicts a

higher money pump cost than the right figure (mpleft > mpright), rendering the violation more

severe.

A practical difficulty in the computation of the MPI is that given multiple violations of

revealed preference, there will be a money pump cost associated with each violation. To sum-

marize multiple money pump costs in a single metric, Echenique et al. (2011) proposed the use of

the mean and median money pump costs as an aggregate MPI. Given the computational burden

involved in computing these aggregate money pump costs, Echenique et al. (2011) suggested

to instead compute approximations of the mean and median MPIs. However, these approxi-

mations focus on violations of revealed preference axioms that involve only a small number of

observations (in Echenique et al. (2011) they report mean/median MPI for cyclic sequences of

allocations of length up to 4).

Smeulders et al. (2013) proposed to measure the maximum and minimum MPIs for the most

severe and the least severe violations, respectively, as easy-to-apply alternatives. The advantage

is that max and min MPIs can be computed efficiently even for large datasets (i.e., defined over

all violations). In this paper, we use the Smeulders et al. (2013) approach and calculated the

min/max MPI for all possible violations.

3.4 The Minimum Cost Index (MCI)

The MCI, similar to MPI, is a money metric index which represents the minimum cost of

breaking all revealed preference cycles in a data set (Dean and Martin, 2016) where ‘A revealed

preference cycle is broken if a revealed preference relation is removed from that cycle and the

cost of removing a revealed preference relation is measured by the monetary difference between

the chosen and non-chosen bundle that generated the relation’. The index combines features

from the HMI and the MPI since it takes into account both the number and severity of revealed

preference violations. In order to compare the MCI across subjects, there are two normalizations

that can be applied; i.e., cost can be divided either by the cost to remove all relations from a
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data set (the sum of all relations) or by each subject’s total budget. We use both normalizations

in our paper.

4 Results

Before we analyze our data for the estimation of treatment effects, we will first try to establish

whether the effect from our experiment can be interpreted as causal. Typically, experimentalists

use statistical tests (often called balance tests) to test for equality of various covariates between

treatments. A failure to reject the null is interpreted as a good balance of observable character-

istics between treatments and a success of the randomization process. Briz et al. (2017) provide

a discussion over the literature that points to the pitfalls of statistical tests, often called balance

tests, to test for differences between observable characteristics (e.g., Deaton and Cartwright,

2016; Ho et al., 2007; Moher et al., 2010; Mutz and Pemantle, 2015). Following Deaton and

Cartwright’s (2016) advice, we report instead the normalized difference in means (Imbens and

Rubin, 2016; Imbens and Wooldridge, 2009).

Table 2 reports the descriptive statistics for a few observable characteristics of our subjects.

As evident, the means are very close between the two groups while the median values are

identical. Table 2 also reports a normalized difference measure |x̄1 − x̄2|/
√

(s2
1
+ s2

2
)/2 where

x̄j and s2j (j = 1, 2) are the group means and variances, respectively. The normalized difference

measure is a scale-free measure of differences in means scaled by the square root of the average

of the two group variances. Cochran and Rubin’s (1973) rule of thumb is that the normalized

difference should be less than 0.25 and Imbens and Rubin (2016) devote a full chapter to show

that regression methods tend to be sensitive to the specification when normalized differences

are large. As evident, the observable characteristics in our data pass this rule of thumb.

Table 2: Means of observable characteristics per treatment

HCL LCL Normalized difference
Gender: Males 34.48% 31.87% 0.055
Household size 4.11 (1.04) [4] 4.30 (1.06) [4] 0.020
Age 21.33 (1.17) [21] 21.31 (1.35) [21] 0.173
Reference income 3.98 (1.49) [4] 4.23 (1.47) [4] 0.198
Raven test score 7.61 (1.43) [8] 7.32 (1.50) [8] 0.117
Raven test past experience 27.59% 32.97% 0.171

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Standard deviation in parentheses.
Median value in brackets. Reference income was measured on a scale from 1=‘Household’s economic position
is very bad’ to 7=‘Household’s economic position is very good’ relative to the average national household
income at e12,300.
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4.1 Difficulty of the memorization task

We now turn into exploring if the variation in the difficulty of the memorization task was

significantly different between treatments. The top panel in Table 3 shows the frequency of

correctly recalling the number in the memorization task (success rate) at the end of each period

by treatment. The table shows the success rate after each task and when combined over all

tasks. When comparing between treatments, it is obvious that the success rate in the HCL

treatment was significantly lower. In fact, a χ2 test rejects the null for all rows in the top

panel of Table 3 (p-value < 0.001) indicating that memorizing and correctly recalling an 8-digit

number was significantly more difficult than memorizing and correctly recalling a 1-digit number.

However, the difficulty of recalling the number varied depending on the intermediate task that

was performed. For example, correct recall was as low as 8.97% after the multiplication task

and was as high as 36.72% after the induced budget line task in the HCL treatment. Success

rates improved for the addition task and further improved for the click-a-button task, suggesting

the progressive difficulty of the tasks as we move from the click-a-button task to the addition

task and then to the multiplication task. A χ2 test indicates that differences in success rate

between tasks are statistically significant as well (p-value < 0.001) for both the HCL and LCL

treatments.

The second panel in Table 3 breaks down the percentage of successful recalls based on the

count of numbers people correctly typed (for example, if a subject was required to memorize

‘37082109’ but then typed ‘69082109’, then this subject would have correctly typed six out of

eight numbers). This might be important because a high count of correctly typed numbers is

an indication that subjects put effort in the recall task, even though they did not get the entire

set of numbers correctly. Table 3 shows that 72.51% of the times subjects correctly recalled 4

or more digits while 11.49% of the times subjects typed 3 digits or less correctly. Only, 16% of

the times did subjects not submit a number at all. Overall, this is an indication that subjects

treated the recall task seriously and did not give up because of the difficulty of the task.

The third panel in Table 3 shows how long it took subjects to recall (type in) the number

they had memorized, irrespective of whether they gave a correct answer or not. Recorded

times reflect the difficulty of the number memorization task. It took around 7 seconds to type

and submit an answer in the HCL treatment and only about 2.3 secs in the LCL treatment.

All differences are statistically significant between treatments according to Kruskal-Wallis tests

(p-value < 0.001). There is also significant variation between tasks. It took significantly longer

for subjects to recall the number after the multiplication task than after the induced budget

line task. Response times between tasks are also statistically significantly different according to

Kruskal-Wallis tests for both the HCL and LCL treatments (p-value < 0.001).

The bottom panel in Table 3 shows the recall response times only for the subsample of
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Table 3: Success rate and mean [median] decision time (in secs) in the recall task

HCL LCL

Success rate

Combined over all tasks 33.64% 97.67%

After. . .

Budget line 36.72% 98.37%
Multiplication 8.97% 89.23%
Addition 20.69% 96.92%
Click-a-button 34.25% 98.46%

Success rate

All 8 digits 33.64% -
7 digits 8.89% -
6 digits 11.42% -
5 digits 10.19% -
4 digits 8.37% -

3 digits or less 11.49% -
Did not submit

a number
16.00% -

Decision time

Combined over all tasks 7.07 [6.80] 2.31 [2.17]

After . . .

Budget line 6.96 [6.64] 2.16 [2.06]
Multiplication 7.71 [7.81] 3.15 [2.84]
Addition 7.68 [7.55] 2.87 [2.62]
Click-a-button 7.21 [7.03] 2.67 [2.44]

Decision time for correct recall

Combined over all tasks 6.21 [6.06] 2.26 [2.17]

After . . .

Budget line 6.18 [6.03] 2.13 [2.05]
Multiplication 6.95 [6.72] 2.98 [2.76]
Addition 6.72 [6.58] 2.81 [2.61]
Click-a-button 6.17 [6.00] 2.61 [2.43]

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Differences between treatments
(HCL vs. LCL) are statistically significant (p-value < 0.001) for all rows of the table based on a χ2 test
(for the top panel) and a Kruskal-Wallis test (for the medium and bottom panels). Differences between
tasks are statistically significant (p-value < 0.001) based on a χ2 test (for the top panel; column-wise) and
a Kruskal-Wallis test (separately for the medium and bottom panel; column-wise).
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subjects that correctly recalled the number. The picture is similar to what was discussed above,

with response times reflecting the difficulty of the tasks in the sense that subjects spent a longer

time to recall the number after a task that was intended to be more difficult. One interesting

observation when we compare the bottom panel to the penultimate panel is that when subjects

in the HCL treatment correctly recalled the number, it took them less time to do so, suggesting

that spending more time trying to recall the number signified being less certain about the

correct answer. In contrast, the differences are not significant under the LCL treatment when

we compare the medium and bottom panels. This is probably because most of the subjects

were able to correctly recall the 1-digit number most of the time.11

Next, in order to explore the differences in the success rate and recall time after the various

decision tasks while taking into account control variables, we estimate various econometric

models. Given the binary nature of the success/failure to recall the number, we estimate a logit

model for the success/failure of recalling the memorized number. To condition response times

on a set of independent variables, we have to consider that subjects’ responses were censored

from above due to the time limit of the recall task, so we estimate a censored regression model

with an upper limit of 10. All models are estimated with clustered standard errors to take into

account the multiple responses given by the same subject and to allow for correlation between

responses; i.e., it relaxes the independence assumption and requires only that the observations

be independent across the clusters.12 Table 4 exhibits the results from a logit regression where

success/failure is the dependent variable (model (1)) and results from two censored regression

models where response time is the dependent variable. In model (2), we consider response times

irrespective of whether subjects correctly recalled the number, while in model (3) we restrict the

model to the subsample of response times with a correct recall of the number. All regressions

control for the set of observable characteristics shown in Table 2. We also tried fitting models

with interaction terms between the treatment variable and the task dummies but none of the

interaction effects were statistically significant.

Results in Table 4 largely confirm our discussion above. The HCL treatment leads to a

statistically significant lower success rate in correctly recalling the number. The difficulty of

the 8-digit memorizing task is also reflected in the fact that subjects take more time to type

11As a side note, one could attribute the differences in terms of decision time between the HCL and LCL
treatments to the mechanics of the task i.e., the fact that given the mechanical nature of typing a number, it
takes more time to type an 8-digit number rather than a 1-digit number. However, typing the number cannot be
the sole explanation of the differences we observe in decision times between the two treatments. This is because
the difference of the median decision times (combined over all tasks) in the medium panel of Table 3 is (roughly)
4.6 secs while for the bottom panel of the same table, it is (roughly) 3.9 secs. Thus, a difference of at least 0.7
secs should be attributed to differences in decision or response styles and not solely on the mechanics of the
recall task.

12The robust estimator of variance that relaxes the assumption of independent observations involves a slight
modiffication of the robust (or sandwich) estimator of variance which requires independence across all observa-
tions (StataCorp, 2013, pp. 312).
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Table 4: Logit regression of recall success/failure and Censored regressions of recall time

Recall success Recall time
. . . overall . . . for correct recall

(1) (2) (3)
Constant 1.878 (1.942) 5.741∗∗∗ (1.379) 5.578∗∗∗ (0.918)
Task: Budget line 1.656∗∗∗ (0.166) -0.562∗∗∗ (0.102) -0.499∗∗∗ (0.083)
Task: Addition 1.119∗∗∗ (0.194) -0.178∗∗ (0.082) -0.194∗∗∗ (0.074)
Task: Click-a-button 1.804∗∗∗ (0.172) -0.533∗∗∗ (0.094) -0.482∗∗∗ (0.087)
HCL treatment -4.692∗∗∗ (0.168) 4.864∗∗∗ (0.147) 4.044∗∗∗ (0.109)
Period 0.009∗∗∗ (0.002) -0.013∗∗∗ (0.001) -0.012∗∗∗ (0.001)
Demographics Yes Yes Yes
σu - - 1.640∗∗∗ (0.063) 1.100∗∗∗ (0.030)
N 13350 13330 8861
Log-likelihood -4722.996 -24841.391 -13407.884
AIC 9469.992 49708.781 26863.559
BIC 9559.983 49806.252 26955.721

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the
multiplication task. The different number of observations between regressions (1) and (2) is because
the software failed to record timing for 20 instances out of 13,350 (≈0.15%).

in an answer. With respect to differences between the various decision tasks, subjects exhibit

significantly better success rates in correctly recalling the memorized number after every decision

task than after the multiplication task (which was intended to be the hardest task in our

experiment). Overall, subjects do much better after the induced budget line task and the

click-a-button task. In fact, a Wald test of equality of coefficients of the induced budget line

task variable and the click-a-button task variable (in model (1)) does not reject the null (χ2 =

1.82, p-value = 0.178), indicating that subjects perform equally well in recalling the number

after these two tasks. The Period variable is positive and statistically significant indicating that

subjects perform better as the experiment progresses.

In terms of decision time, models (3) and (4) point to similar conclusions. Subjects take

significantly less time to recall the number after every decision task as compared to the mul-

tiplication task. All pairwise Wald tests of equality of decision task variables reject the null

(p-value < 0.001), indicating statistically significant differences between response times for re-

call after the various decision tasks. Overall, subjects spend significantly less time in recalling

the number after the induced budget line task, although the magnitude of the difference with

the click-a-button task is quite small (about 0.4 second). This is perhaps an indication that the

induced budget line allocation task did not impose a significant additional burden in the work-

ing memory of subjects. The Period variable is negative and statistically significant indicating

that subjects take slightly less time to recall the number as the experiment progresses.
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4.2 Manipulation checks

Having established in section 4.1 that the 8-digit number memorization task was indeed

difficult, in this section we ask whether the difficulty of the memorization task worked in the

expected direction. That is, we ask whether the cognitive load manipulation resulted in loading

the working memory capacity of subjects which in turned led to worse outcomes for tasks where

reasoning was required. Deck and Jahedi (2015) note the importance of these manipulation

checks because if memorizing a large number does not affect ability to do multiplication, then a

more extreme cognitive load manipulation would be warranted. On the other hand, if subjects

cannot perform a simple addition when memorizing a number, then the manipulation might be

too strong.

The top panel of Table 5 shows the success rate in the multiplication, addition and click-a-

button tasks across the two treatments. The click-a-button task has an almost perfect success

rate which is not statistically different between the two treatments. This indicates that the

task was easy to perform and that subjects could adequately execute the task even when their

working memory was loaded. Recall that the task was designed as a control task which does

not require any reasoning to execute. Also note that the task was easy when subjects were

cognitively loaded to the degree done in our study; i.e., higher load may have had detrimental

effects. The addition task was designed as a task of intermediate difficulty (something between

the click-a-button and the multiplication task in terms of difficulty). Subjects did very good

in this task when they were placed under low cognitive load with a success rate of 91.87%.

The HCL treatment successfully reduced this success rate to 85.98% which is a statistically

significant reduction according to a χ2 test (p-value = 0.005). The multiplication task was

designed to be more cognitively demanding and this is exactly what our data show: subjects

show a success rate of 55.82% under the LCL treatment but only a success rate of 39.08% in

the HCL treatment (p-value < 0.001).

The medium and bottom panels in Table 5 show response times for each decision task sepa-

rately for each treatment. The bottom panel constraints the sample to only those that correctly

answered the decision task (i.e., they correctly responded to the multiplication, addition or

the click-a-button task). The pattern is similar to what was discussed in the previous section.

Subjects spent more time to respond to more difficult tasks, compared for example to the 8.66

seconds needed to respond to the multiplication task and the 2.25 seconds needed to respond to

the click-a-button task under the HCL treatment. In addition, subjects take slightly more time

when they respond incorrectly to the decision task, indicating that the extra time they take is

probably due to extra effort needed to solve the task.

Overall, the response times indicate that the multi-tasking demands of the high cognitive

load treatment led to an increase in the time needed to make a decision. This is in sharp
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contrast to Gerhardt et al. (2016) where they find that subjects are 10% faster in the presence

of cognitive load than in the absence of it. This difference may be due to two design differences:

for one their control treatment was a no-load treatment rather than a low-load treatment as in

our case. Second, in their experiment subjects could not cause an earlier display of the recall

stage of the working memory task while in our design, since subjects could move at their own

pace, making a faster decision would lead to displaying the memory recall stage faster. It is

unclear how all these subtle differences may have produced different behaviors for the subjects.

This is an area that is still relatively under-developed in the academic literature.

Table 5: Success rate and mean [median] decision time (in secs) in decision tasks

HCL LCL p-value

Success rate
Multiplication 39.08% 55.82% <0.001

Addition 85.98% 91.87% 0.005
Click-a-button 99.77% 99.78% 0.975

Decision time
Multiplication 8.66 [9.45] 8.43 [8.66] 0.166

Addition 5.44 [5.02] 4.46 [4.05] <0.001
Click-a-button 2.25 [1.51] 2.53 [1.89] 0.014

Decision time for correct decision
Multiplication 7.51 [7.75] 7.17 [7.17] 0.076

Addition 5.07 [4.72] 4.32 [3.94] <0.001
Click-a-button 2.23 [1.51] 2.51 [1.88] 0.011

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Last column shows p-values comparing
the two treatment for all rows of the table based on a χ2 test (for the top panel) and a Kruskal-Wallis test
(for the other two panels). Differences between tasks are statistically significant (p-value < 0.001) based on
a χ2 test (for the top panel) and a Kruskal-Wallis test (for the other two panels; column-wise) separately
for each treatment and panel.

Table 6 econometrically controls for the influence of observable characteristics and allows us

to explore the joint influence of the treatment variable and decision tasks. Model (1) shows the

coefficient estimates from a logit model where the dependent variable is success/failure in the

decision task, while models (2) and (3) show the results from the censored regression models

with censoring from above at 11 seconds (this is the time limit imposed to all decision tasks).

Model (3) is constrained to the subsample of subjects that correctly answered the decision tasks.

All models are estimated with clustered standard errors at the individual level. We also fitted

models with interaction terms between the treatment variable and the task dummies. Only in

models (2) and (3) were the interaction terms significant.

Results in Table 6 confirm the descriptive analysis above. Subjects are more successful in the

click-a-button task and the addition task than the multiplication task while the HCL treatment

results in a lower success rate across all decision tasks (Model (1) in Table 6). The larger coeffi-

cient of the click-a-button coefficient implies a larger marginal effect and a larger probability of

success in the respective task than that of the addition task. Given that interaction terms are

used in models (2) and (3), some caution is needed when interpreting the results. The negative
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coefficients for the task dummies indicate that subjects spent less time in the click-a-button

and the addition task under the LCL treatment. The non-significant HCL treatment dummy

can be interpreted as an absence of an effect of the HCL treatment in the multiplication task13.

That is, in the multiplication task subjects needed about the same time to recall the num-

ber under the low and high cognitive load treatments. The statistically significant interaction

terms indicate an asymmetric effect: subjects take more time under high cognitive load in the

addition task (as compared to the multiplication task) but take significantly less time under

high cognitive load in the click-a-button task (as compared to the multiplication task).14 Wald

tests reject equality of coefficients between the click-a-button and the addition task variables

across all models (p-value < 0.001). In addition, the Period variable coefficients indicate that

performance improves as the experiment progresses both in terms of probability of success and

decision time (as subjects take less time to respond).

Table 6: Logit regression of success/failure in the decision task and Censored regression of
decision time

Success Decision time
Decision time for
correct answers

(1) (2) (3)
Constant -3.135∗∗ (1.454) 8.903∗∗∗ (1.184) 7.823∗∗∗ (0.951)
Task: Addition 2.262∗∗∗ (0.138) -4.297∗∗∗ (0.174) -2.916∗∗∗ (0.168)
Task: Click-a-button 6.290∗∗∗ (0.717) -6.239∗∗∗ (0.213) -4.730∗∗∗ (0.187)
HCL treatment -0.670∗∗∗ (0.142) 0.315 (0.269) 0.323 (0.231)
Task: Addition × HCL treat-
ment

- - 0.663∗∗ (0.287) 0.413 (0.257)

Task: Click-a-button × HCL
treatment

- - -0.622∗∗ (0.308) -0.622∗∗ (0.270)

Period 0.142∗∗∗ (0.040) -0.477∗∗∗ (0.027) -0.389∗∗∗ (0.024)
Demographics Yes Yes Yes
σu - - 2.246∗∗∗ (0.049) 1.718∗∗∗ (0.038)
N 2670 2670 2104
Log-likelihood -910.171 -5573.819 -4119.722
AIC 1842.343 11175.638 8267.445
BIC 1907.131 11258.095 8346.567

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the multiplication
task.

13This is because the HCL treatment is interacted with task dummies and multiplication is the base/excluded
task.

14This result could be related to the difficulty of the tasks. More specifically, the click-a-button was the
easiest task to perform and makes sense for subjects to try to minimize the time they spent on this task in order
to quickly move to the recall screen, hoping that this way they will be more successful in recalling the number.
On the other hand, the addition task was not the most difficult task so it makes sense for subjects to spend
some time to try to perform it correctly while at the same time they feel confident they can keep the number in
their memory.
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All in all, the results presented in this section show that the treatment was effective in

inducing the desired effect according to our manipulation check. A significant effect shows up

even in the task where low reasoning is required (addition task) but not in a task where no

reasoning is required (click-a-button task). Furthermore, we found that the effect increases in

magnitude in a task involving high reasoning such as the multiplication task.

4.3 Economic rationality

Given that the manipulation checks in section 4.2 show that the cognitive load treatment

concurrently affects tasks that involve both low and high reasoning, we now turn to examining

the treatment effects for economic rationality. For this, we employ as the dependent variable of

interest the various goodness-of-fit measures discussed in Section 3.

Table 7 shows the mean, standard deviation, and median values for the various measures

separately for each treatment. Overall, our calculated goodness-of-fit measures for rationality

compare well with other similar experimental studies. For example, average Afriat’s CCEI in

Choi et al. (2014) is 0.881 with a 0.14 standard deviation and a 0.93 median value. The median

HMI is 23 (out of 25 choices) in Choi et al. (2014) which compares well with our HMI of 53

and 54 (out of 60 choices) for the HCL and LCL treatments, respectively. The MPI comes

in interval form (minimum/maximum) so we employ the range as our dependent variable to

use in the table. Table 7 shows that both mean and median values are very close. The last

two columns in Table 7 present results from the statistical tests comparing the two treatments.

Every single test fails to reject the null indicating a null treatment effect. In addition, Figure 3

graphs the distribution of the various measures by treatment using kernel density estimators.

A similar picture emerges since the lines practically overlap for the two treatments.

Table 8 shows the results from OLS regressions (for Afriat’s CCEI, HMI, MCI) and an

interval regression model (for the MPI which comes in interval form). The specifications control

for the observable characteristics listed in Table 2 and a time variable representing the total

decision time a subject spent in the 60 periods of the induced budget line task. This allows

us to control for decision style differences. The table confirms our null result obtained in

the descriptive analysis. In fact, the only statistically significant variable emerging from our

regressions is the Raven test score suggesting that fluid intelligence might be a more important

factor determining economic rationality than a temporary cognitive load manipulation. To

examine if there might be differential effects of ability to recall a number and fluid intelligence

under high/low cognitive load, in alternative specifications we also interacted the treatment

dummy with: a) a variable that counts the number of correctly typed digits in the recall task

and b) the Raven test score. However, the interaction terms were not significant in any of the

specifications and so we did not pursue this further.
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Figure 3: Kernel density estimators of goodness-of-fit measures for consistency with the Gen-
eralized Axiom of Revealed Preference

(a) Afriat’s CCEI (matrix power algorithm) (b) Afriat’s CCEI (Warshall’s algorithm)

(c) HMI (d) MPI range

(e) MCI (normalized by total budgets) (f) MCI (normalized by total cost to remove violations)

Notes: CCEI, HMI, MPI, MCI stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump
index, Minimum Cost index, respectively.
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Table 7: Descriptive statistics of goodness-of-fit measures by treatment

HCL LCL Kruskal-Wallis
p-value

Kolmogorov-
Smirnov p-value

A
fr
ia
t’
s

C
C
E
I

Matrix power algo-
rithm

0.939 (0.078) [0.966] 0.927 (0.097) [0.966] 0.964 0.606

Warshall’s algo-
rithm

0.917 (0.100) [0.955] 0.894 (0.136) [0.944] 0.737 0.684

Mirror data combo;
Matrix power algo-
rithm

0.880 (0.121) [0.931] 0.890 (0.117) [0.926] 0.550 0.449

Mirror data combo;
Warshall’s algo-
rithm

0.811 (0.184) [0.909] 0.828 (0.169) [0.892] 0.867 0.587

HMI 51.736 (6.034) [53] 52.044 (6.453) [54] 0.554 0.981
MPI range 10.995 (12.174) [6.547] 13.271 (14.963) [8.597] 0.652 0.670

M
C
I normalized by total

budgets
2.551 (5.573) [0.396] 4.082 (11.420) [0.496] 0.934 0.803

normalized by total
cost to remove vio-
lations

0.493 (0.987) [0.084] 0.709 (1.671) [0.097] 0.983 0.803

Notes: Standard deviation in parentheses. Median value in brackets. Penultimate column shows p-values
comparing the two treatments for all rows of the table based on a Kruskal-Wallis test. Last column shows
p-values from a Kolmogorov-Smirnov equality of distributions test comparing the two treatments for all
rows of the table. HCL (LCL) stands for the high (low) cognitive load treatment. CCEI, HMI, MPI, MCI
stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump index, Minimum Cost index,
respectively. The MPI index is in interval form therefore the table presents summary statistics of the range
of the intervals.
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Table 8: OLS regressions of goodness-of-fit measures and Interval regression (for MPI) with
clustered standard errors

Afriat’s CCEI HMI MPI MCI normalized by . . .
Matrix
Power
algorithm

Warshall’s
algorithm

total budget total cost

(1) (2) (3) (4) (5) (6)
Constant 0.733∗∗∗ 0.638∗∗∗ 41.696∗∗∗ 1.321 16.692 3.361

(0.135) (0.183) (9.464) (0.933) (14.043) (2.133)
HCL treatment 0.015 0.025 -0.156 0.044 -1.245 -0.196

(0.015) (0.020) (1.044) (0.099) (1.549) (0.235)
Age 0.005 0.008 0.185 -0.021 -0.531 -0.100

(0.005) (0.007) (0.372) (0.037) (0.552) (0.084)
Females -0.016 -0.025 -0.473 0.052 0.462 0.080

(0.014) (0.019) (1.005) (0.093) (1.492) (0.227)
Household size 0.003 0.002 0.053 0.044 0.162 0.017

(0.007) (0.009) (0.464) (0.041) (0.689) (0.105)
Reference in-
come

-0.000 -0.003 -0.268 0.007 0.272 0.032

(0.005) (0.006) (0.325) (0.031) (0.482) (0.073)
Raven’s test
score

0.010∗∗ 0.013∗∗ 0.866∗∗∗ -0.048 -0.526 -0.104

(0.005) (0.006) (0.320) (0.035) (0.475) (0.072)
Experience with
Raven’s test

-0.021 -0.032∗ -1.762∗ 0.110 2.435 0.363

(0.014) (0.019) (1.004) (0.098) (1.490) (0.226)
Total decision
time

0.000 0.000 0.004 -0.000 -0.001 -0.000

(0.000) (0.000) (0.003) (0.000) (0.005) (0.001)
ln(σ) - - - -0.966∗∗∗ - -

- - - (0.095) - -
N 178 178 178 178 178 178
R2 0.065 0.076 0.083 0.042 0.049
Adjusted R2 0.020 0.032 0.039 -0.003 0.004
Log-likelihood - - - -217.795 - -
AIC - - - 455.590 - -
BIC - - - 487.408 - -

Notes: CCEI, HMI, MPI, MCI stand for Critical Cost Efficiency index, Houtman-Maks index, Money Pump
index, Minimum Cost index, respectively. The table shows results from an interval regression for MPI and
OLS regressions for all other models.
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4.4 Was sample size large enough to detect treatment effects?

In this last section of the results we address whether our null effect is genuine. One could

rightly ask the question about what is the effect size that our sample size was powerful enough

to detect. Or alternatively, whether we could attribute our null result to a false negative.

Our per treatment sample size was decided based on sample size calculations and served

as a stopping rule for this experiment when we achieved the necessary per treatment sample.

Assuming α = 0.05 (Type I error) and β = 0.20 (Type II error), the per group (treatment)

minimum sample size required to compare two means µ0 and µ1, with common variance of σ2

in order to achieve a power of at least 1− β is given by (Kupper and Hafner, 1989):

n =
2(z1−α/2 + z1−β)

2

(µ0−µ1

σ
)2

(1)

For α = 0.05 and β = 0.20 the values of z1−α/2 and z1−β are 1.96 and 0.84, respectively;

and 2(z1−α/2 + z1−β) = 15.68, which can be rounded up to 16. The formula then collapses to

n = 16

∆2 (with ∆ = µ0−µ1

σ
), which is known as Lehr’s (1992) equation (see also Chapter 2 in

van Belle, 2008). To calculate a minimum sample size, one needs to feed the above formula

with values for σ and the minimum meaningful difference µ0 − µ1. To specify the necessary

parameters to feed the above formula, we looked at prior data collected by Choi et al. (2014).

Since our induced budget allocation task was based on their study, it seemed natural to use

parameter values from the Choi et al. (2014) study. In their paper they calculated both Afriat’s

CCEI and the HMI. Panels A and C in Table 1 in Choi et al.’s (2014) online Appendix provided

us with the necessary information. For the CCEI, we used a range of σ values from 0.12 to

0.16 (which largely reflects the standard deviations of the CCEI in their study) and a range of

possible differences d from 0.05 to 0.1. For the HMI, we used σ values from 2 to 2.4 and a range

of possible differences d from 1 to 3.

Table 9 shows the result of equation 1 for various values of σ and d separately for the

CCEI and the HMI. It is obvious that the lower the minimum meaningful difference d and the

higher the standard deviation σ, a larger sample size is needed to detect the desired effect size

with 80% power. Our sample size can safely detect a minimum meaningful difference for CCEI

larger than 0.05 (but not smaller ones). The increase in the sample size needed to detect smaller

differences with sufficient power was deemed unrealistic given our resources. We can also safely

detect the smallest possible difference in the HMI (a value of 1). Thus, we conclude that our

sample size given a power of 80% was enough to detect even small differences in these two

particular goodness-of-fit measures. The fact that we observe no statistically significant effect

gives us enough confidence to conclude that our null effect is genuine and not the result of a

small sample size.
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Table 9: Per treatment sample size calculations for different values of σ, and d for Afriat’s CCEI
(top panel) and the HMI (bottom panel)

σ = 0.12 σ = 0.14 σ = 0.16

Afriat’s CCEI

d = 0.05 90 123 161
d = 0.06 63 85 112
d = 0.07 46 63 82
d = 0.08 35 48 63
d = 0.09 28 38 50
d = 0.1 23 31 40

σ = 2 σ = 2.2 σ = 2.4

HMI

d = 1 63 76 90
d = 2 16 19 23
d = 3 7 8 10

4.5 Economic rationality, stochastic dominance and risk preferences

Choi et al. (2014) note that consistency with revealed preference theory is a necessary but not

sufficient condition for any choices to be considered of high decision-making quality. Although

a utility function that rationalizes observed choices might exist, it is not necessary that this

function is always normatively appealing. For example, always allocating all points to the

same account implies that points will be allocated to the more expensive account in some

cases. However, this involves a violation of monotonicity with respect to first-order stochastic

dominance.

To account for the extent of GARP violations and violations of stochastic dominance, Choi

et al. (2014) combine the actual data from their experiment and the mirror image of these data

obtained by reversing the prices and the associated allocation for each observation. Figure 4

depicts a case where an individual chooses a bundle x
1 from the budget line AC with slope

−py/pz (where py, pz are the prices of the y and z accounts respectively) and the mirror image

of this choice which is bundle x′1 from the budget line A′C′ with slope −pz/py. The choice of x
1

generates a revealed preference violation involving the mirror image of this decision. However,

the choice of x2 does not generate a violation when combined with its mirror image x
′2.

We therefore created a dataset that contains the actual choices and their mirror images

and computed Afriat’s CCEI for this combined dataset. The combined data consists of 120

observations per subject. The CCEI score for the combined data, if smaller than the CCEI

computed from the actual data, indicates violations of stochastic dominance. Table 7 indicates

that there are violations of stochastic dominance as indicated by the lower CCEI computed

over the combined data. The drop in CCEI score in our data is much lower than the drop in

CCEI scores in Choi et al. (2014) (in their study the average CCEI score drops from 0.881 to

0.733) indicating less violations of stochastic dominance in our study. However, none of the
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statistical tests shown in the same table rejects the null of no difference between the cognitive

load treatments. In addition, when we regress Afriat’s CCEI computed over the combined

data on the set of regressors shown in Table 8, the associated coefficients for the HCL treatment

dummy are not statistically significant at conventional significance levels (b = −0.008, p-value =

0.694 for Afriat’s CCEI using the Matrix Power algorithm; b = −0.014, p-value = 0.633 for

Afriat’s CCEI using the Warshall’s algorithm).

Castillo et al. (2017) use an alternative measure based on expected payoff calculations and

explore, among other things, adherence to payoff dominance in the context of the induced

budget line allocation task. Since accounts in the budget allocation task are perfect substitutes

(i.e., each account has a 50% probability of being selected as binding), a subject choosing a

bundle that is not on the 45◦ line (i.e., line z = y in Figure 4) is always better off choosing

a bundle on the long side of the budget line AC; i.e., on segment BC. On the other hand,

choosing a bundle on the short side of the budget line AC; i.e. on segment AB, would violate

payoff dominance because the expected payoff is higher for any bundle on the BC segment.

To make this more concrete, bundle x
1 in Figure 4 violates payoff dominance while bundle

x
2 does not violate payoff dominance. With our data, we calculate that 33.31% of all choices

were payoff dominated in the LCL treatment and 34.20% were payoff dominated in the HCL

treatment. The number of payoff dominated choices is similar to Castillo et al. (2017) where

they find that payoff dominance is violated roughly 1/3 of the times. Based on the contingency

table of payoff dominant and dominated choices for each treatment, a χ2 text fails to reject the

null of no difference between the treatments (χ2 = 0.940, p-value = 0.332). A logit regression

(dependent variable is binary: dominant or dominated choice) with clustered standard errors at

the individual level, using the same set of regressors reported in Table 8 returns an estimated

coefficient for the HCL treatment dummy that is not statistically significant at conventional

significance levels (b = 0.056, p-value = 0.492).

Finally, we explore whether our cognitive load manipulation concurrently affects risk prefer-

ences. Since the induced budget line allocation task involves allocating points between accounts

that have an equal chance of being binding (i.e., a 50% chance), the task can also be used to

infer risk preferences. Choi et al. (2014) summarize attitudes toward risk using a fraction of

total points that a subject allocates to the cheaper account. This is a simple measure that

summarizes attitudes toward risk without invoking any assumptions about the parametric form

of the underlying utility function. The rationale for this measure for capturing risk preferences

comes from the fact that the equal allocation of points between the two accounts implies infinite

risk aversion. On the other hand, always allocating all points to the cheaper account implies risk

neutrality. Thus, the implication of the allocation of a larger fraction of points to the cheaper

account is less risk aversion, while the implication of moving toward equal division of points

between accounts (i.e., a smaller fraction of points to the cheaper account) is more risk aversion.
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Figure 4: Mirror image budget line preference violations
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Notes: An individual choosing bundle x

1 from the budget line AC with slope −py/pz and the

mirror image bundle x
′1 from the budget line A′C′ with slope −pz/py would have violated

GARP. There is no violation of GARP for the bundle x
2 and its mirror image x

′2.

With our data, we find that subjects allocate on average 48.64% of the points to the cheaper

account under the HCL treatment and 49.84% under the LCL treatment (these numbers imply

high levels of risk aversion). A Kruskal-Wallis test fails to reject the null of no difference

between allocation of points between the cognitive load treatments (χ2 = 0.199, p-value =

0.656). A regression (dependent variable is percent of points allocated to the cheaper account)

with clustered standard errors at the individual level using the same set of regressors reported in

Table 8 returns an estimated coefficient for the HCL treatment dummy that is not statistically

significant at conventional significance levels (b = −0.012, p-value = 0.308).

Taken together, the results we report in this section are important for a couple of reasons.

First, they are relevant because our results show that the null effect we report in the paper is

robust even when we account for violations of stochastic dominance. Second, our null effect on

risk preferences contrasts that of previous studies: Deck and Jahedi (2015) and Gerhardt et al.

(2016) report that cognitive load leads to more risk-averse behavior; while Castillo et al. (2017)

find that cognitive depletion via circadian mismatch leads to increased preference for risk. Our

null effect stands in the middle of previous findings. Moreover, while Castillo et al. (2017)

find that cognitive load produces changes in risk attitudes without producing a breakdown of

rationality, we find that risk preferences do not change and economic rationality does not break

down under cognitive load.
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5 Conclusions

One important question in economics is whether economic rationality can be influenced by

cognitive ability to the extent that inconsistencies resulting from low decision-making quality are

due to limited cognitive resources. A number of papers have found that increasing cognitive load

can influence performance in reasoning and math tasks as well as risk-aversion and impatience

over choices (see Deck and Jahedi, 2015). With the exception of Castillo et al. (2017), no other

study has examined the effect of cognitive load on economic rationality.

In our study, we exogenously impaired subjects’ cognitive resources via cognitive load by

using a number memorization task. We designed several incentivized manipulation checks to

undoubtedly show the success of our manipulation. We then examined the effect of our ma-

nipulation on consistency in economic rationality using induced budget allocation tasks and

several goodness-of-fit measures for rationality. Our results generally suggest a statistically and

economically non-significant effect of cognitive load on economic rationality. We then showed

that our study has a large enough sample size, given a power of 80%, to detect even small

effects, which suggests that our null effect finding is genuine and not due to false negatives. In-

terestingly, a measure of cognitive ability (i.e., the Raven test score) was statistically significant

in our regression models suggesting that fluid intelligence could be a more important correlate

of economic rationality than temporary cognitive loads in the working memory of subjects.

Furthermore, our null result is robust when we account for violations of stochastic dominance

that may occur when subjects are asked to choose a bundle on the induced budget line allo-

cation task. Importantly, we also find that cognitive load does not generate any breakdown of

rationality and does not change risk preferences, in contrast to other (somewhat mixed) results

reported in the literature (Castillo et al., 2017; Deck and Jahedi, 2015; Gerhardt et al., 2016).

Our finding corroborates well with findings in Deck et al. (2017) where they also find no

effect of cognitive load on allocation decisions on money for self and others and suggests that

subjects with less cognitive resources could still optimally allocate their limited attention to be-

havioral aspects related to economic rationality, akin perhaps to the assumption behind rational

inattention models (Sims, 2003, 2006).

Although our study is the first to test the effect of exogenously manipulated cognitive load

on economic rationality, this is admittedly just one study and so future studies should test the

robustness of our findings. One way that our design could be extended is by forcing subjects to

make quicker decisions under cognitive load. In our design, although subjects were cognitively

loaded, they could take their time responding to the induced budget allocation task. This is

indicated by the fact that, on average, response times were larger in the high cognitive load

treatment. One way to interpret this finding is that subjects could be trying to compensate

being under cognitive load by taking more time to decide, in order to engage their reasoning
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system more, i.e., ‘System 2’. Of course, this was not always effective since, for example, in

a high reasoning multiplication task, success rates were particularly low even though subjects

took more time answering the multiplication task. Limiting the time subjects could take when

making allocations in the budget task, e.g., when under time pressure, is another way one could

force engagement of ‘System 1’ and further disengagement of ‘System 2’.

Second, our point above reflects the importance of integrating the measurement of re-

sponse times as a standard part of any experiment, not just for ones that utilize cognitive

load paradigms. Given the prevalence of computerized experiments nowadays, this would be a

simple programming extension. Of course, latency/communication problems can always occur,

especially in interactive experiments, and so potential measurement errors in variables will be

important to take into account in such instances.
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Screen 10

Screen 11
(note: the selected point on the budget line is just for illustration purposes since no point was
pre-selected for subjects; subjects had to actually select a point on the budget line themselves)
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Additional figures
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Figure A1: The universe of budget lines shown to each subject in the LCL treatment and their
respective choices
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Figure A2: The universe of budget lines shown to each subject in the HCL treatment and their
respective choices
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