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Abstract

We propose a new methodology to employ composite indicators for performance analysis of units of inter-
est using and extending the family of Stochastic Multiattribute Acceptability Analysis. We start evaluating
each unit by means of weighted sums of their elementary indicators in the whole set of admissible weights.
For each unit, we compute the mean, u, and the standard deviation, o, of its evaluations. Clearly, the
former has to be maximized, while the latter has to be minimized as it denotes instability in the evalua-
tions with respect to the variability of weights. We consider a unit to be Pareto-Koopmans efficient with
respect to u and o if there is no convex combination of u and o of the rest of the units with a value of
w that is not smaller, and a value of o that is not greater, with at least one strict inequality. The set of
all Pareto-Koopmans efficient units constitutes the first Pareto-Koopmans frontier. In the spirit of context-
dependent Data Envelopment Analysis, we assign each unit to one of the sequence of Pareto-Koopmans
frontiers. We measure the local efficiency of each unit with respect to each frontier, but also its global
efficiency taking into account all frontiers in the o — u plane, thus enhancing the explicative power of
the proposed approach. To illustrate its potential, we present a case study of ‘world happiness’ based on
the data of the homonymous report, produced annually by the United Nations’ Sustainable Development
Solutions Network.
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1 Introduction

In recent years, composite indicators are witnessed as increasingly popular tools for evaluating the perfor-
mance of units such as countries and institutions (Becker et al., 2017). In fact, there are over 500 official
composite indicators evidenced to date, mainly produced by institutions, scholars and universities, with the
aim of assessing countries in a complex socio-economic phenomenon (Bandura, 2011; Yang, 2014). Under-
standably, their adoption by global institutions (e.g. the OECD, UN, World Bank etc.) over the past years
has gradually drawn the attention of the media and policy-makers around the globe (Saltelli, 2007), and the
number of applications in the literature has surged ever since (Greco et al., 2018). This spiral of attention
raises several flags on issues that are still debated in the literature, mainly regarding two stages in the con-
struction of an index; namely, the weighting and aggregation. There is a wide variety of methods available
in these steps, and there is no documented approach without a single drawback (Gan et al., 2017). Unde-
niably, the choice of the proper method lies in the developer’s craftsmanship and the objective of the index
(OECD, 2008). Nonetheless, these issues are still in great need of consideration; especially when something
as crucial as a policy is to be drawn on the basis of a synthetic measure that could easily be ‘manipulated’
(Grupp and Schubert, 2010; Abberger et al., 2017).

A fundamental step in the construction of composite indices regards the weighting of elementary indica-
tors. Very often, this point is not taken into account and an equally-weighted mean -typically the arithmetic
(e.g. see, among others, the Index of Economic Freedom (Miller et al., 2018) and the Inclusive Development
Index (Samans et al., 2018)), but sometimes also the geometric one (see, e.g., the 2010 HDI; UNDP, 2010)-
is considered, mainly due to simplicity, or a lack of framework to suggest otherwise (Freudenberg, 2003).
This oversimplifying choice, however, is “obviously convenient but also universally considered to be wrong”
(Chowdhury and Squire, 2006, p.762). By contrast, sometimes the dimensions are weighted by taking into
account reasonable differences in the importance of the considered dimensions (Decancq and Lugo, 2013).
Either way, at first sight, this procedure of weighting the indicators -with, or without equal weights- could
appear as a neutral approach to the problem of aggregating the different dimensions, given a single, well-
determined vector of weights. Of course, this implicitly assumes a representative agent (Hartley and Hartley,
2002), summing up in itself the preferences of all the individuals potentially interested in the composite in-
dex. However, one has to admit that, in a miscellaneous group of people, each one may assign a radically
different importance to the considered dimensions and, consequently, in order to ensure that the composite
index is meaningful, the diversity of existing viewpoints has to be considered (Decancq et al., 2013).

Undeniably, the hypothesis of the representative agent is rather stringent. Moreover, it has been long
criticized in economics with the so-called “fallacy of composition”, proposed by Kirman (1992), who gave an
example in which the representative agent disagrees with all individuals in the economy (a similar point can
be found in Blackburn and Ukhov (2013), examining the relationship between individual and aggregate risk
preferences in the financial markets). Besides the observation of a plurality of preferences corresponding to
the individuals interested in the composite index; one has to take into account that each individual can be
seen as a multiplicity of ‘selves’ that she is composed of (see, e.g., Elster, 1987). Several researchers have
acknowledged the relevance of this point in economics (see, e.g., Ainslie, 2001; Schelling, 1980; McClure
etal., 2004), so that even to represent an individual’s preferences, we need to consider a set of weight vectors
for the considered dimensions. Something similar happens in Multiple Criteria Decision Aiding (MCDA) (for
an updated survey, see Greco et al., 2016). In particular, some recently-introduced MCDA models consider a
plurality of value functions compatible with the preferences expressed by a decision maker (see, e.g., Greco
et al., 2008a, 2010; Corrente et al., 2013), or even a probability distribution in the set of value functions
(see, e.g., Corrente et al., 2016b). This can be interpreted as a plurality of selves for each individual, from
the point of view that each considered value function is a specific ‘self’. Similar arguments hold for multi-
prior models proposed for decisions under uncertainty, where each individual takes a decision considering
a plurality of probability distributions on the state of the worlds (see, for example, Gilboa and Schmeidler,
1989; Bewley, 2002; Gilboa et al., 2010). On a more general note, there is a growing interest in multi-utility



models (see e.g. Evren and Ok, 2011; Giarlotta and Greco, 2013) representing preferences of individuals
with a set of utility functions %, such that an alternative a is at least as good as alternative b if the value as-
signed to a is not smaller than the value assigned to b by all utility functions u € 2. Multi-utility models are
appreciated, because they permit to represent incomplete preferences, which are considered more realistic
for individual preferences than the classical models assuming perfect comparability among all alternatives
(see e.g. Aumann (1962), but also Von Neumann and Morgenstern (1944, pp.19-20)). This point is also
related to the question of interpersonal comparability. In fact, between the two extreme positions of perfect
comparability, i.e. between single individual preferences (see e.g. Marshall, 1961), and of absolute inter-
personal incomparability (see e.g. Robbins, 1935); there could be an intermediate position, such as the one
proposed by Sen (1970), which is based on the idea that the preferences of each individual are represented
by a set of welfare functions rather than a single one. In the context of composite indicators, in which the
utility function is represented by the weighted sum of single indicators, these arguments suggest to abandon
the idea of a single, allegedly well-defined weighting of dimensions corresponding to a single utility func-
tion. Indeed, by taking into account the whole set of admissible weight vectors, one can consider the whole
spectrum of preferences of individuals, as well as multiple selves within each individual interested in the
composite index. With respect to the domain of composite indices, this approach was recently proposed by
Greco et al. (2017) using Stochastic Multiattribute Acceptability Analysis (SMAA) (Lahdelma et al., 1998;
Lahdelma and Salminen, 2001). More specifically, by considering a probability distribution on the set of
feasible weight vectors, SMAA reveals the probability that a unit attains a given ranking position, as well as
the probability that a given unit is better than another. It is worth noting that the above consideration of
multiple selves also suggests to consider a plurality of weight vectors for composite indices not only at the
level of a collectivity of individuals, but also at the level of single individuals. In this case the typical results
of SMAA, which are the probability that an alternative a is the most preferred, or the probability that a is
preferred to alternative b, can be interpreted in terms of random choices (Luce, 1959; McFadden, 1981).
In fact, this is perfectly in line with the prevailing application of SMAA within MCDA, where it is applied to
support decision problems with a single decision-maker.

In this paper we will argue that another possible use of the plurality of weight vectors is to consider
for each unit the mean value (u) of the composite index (CI) and its variability -measured by the standard
deviation (0)- in the space of feasible weight vectors. Of course, the former is supposed to be maximized,
while the latter shall be minimized, as higher values denote more volatile overall performance attributed to
changes in the weight vectors. In fact, the rationale for minimizing o is manifold. On abstract and general
grounds, it is worth stressing that -once the variety of perspectives on the dimensions under analysis has
been fully considered in the preceding weighting stage- the dispersion is a measure such that the lower it
is the better. Thus, the dispersion of the CIs is an inverse measure of the robustness of the performance of
a given unit as to the weighting choice. On a conceptual ground, it somehow reflects how balanced is the
performance of a given unit among the considered dimensions. If its performance depends on one or very
limited number of dimensions to a greater extent, that unit will achieve very different overall performances
according to those dimensions being valued most or least in relative terms (i.e. according to different vectors
of weights). The dependence on a given (eventually) favorable vector of weights is something that needs
to be minimized in the construction of an overall efficiency measure, in order to pursuit robustness in the
evaluation process.

The above argument about the opportunity of the methodological choice to minimize sigma can be ex-
panded on economic grounds. For example, assuming that the evaluation exercise involves the creation of a
composite index intended to measure multidimensional well-being in an attempt to go beyond GDP (Stiglitz
et al., 2010); our approach can be interpreted in the following neo-Benthamite perspective (see e.g. Collard,
2006). The value given by the composite indicator when the weight vector representing a given individual
is adopted can be seen as the “happiness” of that individual. Consequently, the distribution of the values
assumed by the composite indicators computed in the space of the considered weight vectors can be seen
as an estimate of the distribution of the well-being among the considered population. In this perspective,



the average (u) and the standard deviation (o) of the distribution can be seen as two parameters describing
it. Moreover, if we suppose that the distribution is approximately normal (which is reasonable, considering
the relatively great number of weight vectors we extract with a random sampling), then, o and y unam-
biguously characterize the distribution. In this context, u should be clearly maximized because multiplying
u for the number of individuals in the considered population we get an estimate of the sum of individual
“happiness”. Since Bentham’s social welfare function (SWF) is simply additive with equal weights, substi-
tuting the mean to the the actual values, will not change the overall SWF level. Instead, o can be seen as a
measure of inequality in the distribution of well-being in the population, which is an important issue in the
“GDP economics” discussion (see e.g. Piketty, 2018). Moreover, the argument about the perverse effects of
excessive levels of inequality has been connected to the recent financial crisis using the ‘suspension bridge’
figurative narrative (Reich, 2010). Thus, the discussion on inequality with respect to the distribution of
well-being seems to us quite relevant in this neo-Benthamite “beyond GDP economics” perspective. In this
respect, the standard deviation (o) can be regarded just as a common measure of inequality used in the
economic literature (Atkinson, 1970). Once transposed to the multidimensional well-being setting, the dis-
persion between different CIs maintains its conceptual nature of inequality. Consistent with this conceptual
framework, we argue that o has to be minimized. Put differently, expanding to the multidimensional setting
at hand, Atkinson (2015, p.9)’s argument with respect to the single measure of inequality based on income
is: “[We are] not seeking to eliminate all differences in economic outcomes. [We are] not aiming for total
equality. Indeed, certain differences [...] may be quite justifiable. Rather, the goal is to reduce inequality
[...]"

Therefore, it is reasonable that, ceteris paribus, the performance of units showing higher levels of dispersion
will be considered worse than the performance of units registering lower levels of dispersion around the
average well-being of the hypothetical community under investigation. Of course, this comparative static
can be extended to include the dynamic case accordingly. Indeed, building upon Barro and Sala-i Martin
(1992)’s seminal contribution in terms of (o-)convergence of GDE a given set of units could, in principle, be
observed and evaluated at regular intervals (e.g. years) to check whether a more balanced multidimensional
performance (still according to a variety of different weighting choices) is occurring over time.

On the same premises, a higher dispersion of the measure of performance -as a result of an unbalanced
endowment along the considered dimensions- is undesirable when dealing with capital endowment. For
example, Hansen (1965, p.13), with reference to the case of regional development, argued that “persons
benefited most by SOC [Social Overhead Capital ] may migrate to other regions in the absence of supplementary
policy measure”. More recently, Martin (2011, p.14), in analyzing the resilience of UK regions to economic
shocks, pointed out how an unbalanced economic structure and, “especially the relative dependence on pro-
duction industry, is generally regarded as having a major influence on the sensitivity of regional economies to
recessionary shock”. A similar argument has been made by Collins et al. (2017) with reference to the effects
of smartness on resilience at city level. Indeed, the study of Collins et al. (2017) shows that the unbal-
ance between different dimensions of ‘smartness’ does increase the cities’ vulnerability to shocks. Hence,
for example, in measuring the competitiveness of these regions via a CI considering the different economic
sectors, the unbalance towards the production industry clearly has to be penalized. In terms of our proposed
measure, the heavy dependence on the production industry would result in higher levels of dispersion gen-
erated by extremely high [low] CIs depending on the weights randomly assigning a relative higher [lower]
importance to this sector. Nonetheless, this high dispersion will be taken into account by the methodological
choice setting the minimization of o as an objective of the evaluation exercise.

Consequently, collectively taking into account the above arguments, it is straightforward to define a
dominance relation by considering the mean value and the standard deviation as follows: A unit a is 0 — u
Pareto-dominating unit b if the mean value of a is not smaller than that of b and the standard deviation of
a is not greater than that of b, with at least one of these two inequalities being strict. Thus, unit a will be
o — u Pareto-efficient if there is no other unit o — u Pareto-dominating it with respect to the former inequal-
ities. Analogously, obtaining the set of all efficient units permits to constitute the o — u Pareto-efficiency



frontier. Consideration of the mean value and the standard deviation along with the related dominance
and efficiency concepts clearly reminds the Markowitz mean-variance analysis (Markowitz, 1952), which
formed the foundations of modern portfolio theory (Elton et al., 2009). However, we are not only interested
in finding dominating solutions (i.e. alternatives lying on the Pareto-efficiency frontier), but in measuring
the efficiency of each unit with respect to the frontier. In the domain of Operations Research this naturally
leads to the consideration of Data Envelopment Analysis (DEA) (Charnes et al., 1978; Cooper et al., 2011),
which brings us to acknowledge another definition of efficiency, taking into account this time the possibility
to combine different units. More specifically, in this case, unit a is Pareto-Koopmans efficient (Charnes et al.,
1985) if there is no linear combination of the mean values (u) and standard deviations (o) of the rest of
units dominating a. Moreover, we are interested in decomposing the set of considered units in a family
of Pareto-efficiency frontiers, as well as in a family of Pareto-Koopmans efficiency frontiers. For instance,
considering the Pareto efficiency, the first frontier is the o — u Pareto efficiency frontier above-introduced,
the second frontier is the o — u Pareto-efficiency frontier obtained once the units of the previous frontier
have been removed, and so on until all the remaining units are o — u efficient. Of course, an analogous
procedure holds for the computation of all Pareto-Koopmans efficiency frontiers. This idea of a sequence
of Pareto frontiers has been considered within the celebrated evolutionary multi-objective optimization al-
gorithm NSGA-II (Deb et al., 2002), while the idea of a sequence of Pareto-Koopmans frontiers has been
introduced by Seiford and Zhu (2003) under the name of “context-dependent” DEA. In this case, we adopt
this idea of successive efficiency frontiers to measure and analyze the efficiency of units with respect to the
considered composite indicators. More specifically, we introduce a local efficiency measure with respect to
each frontier in the above-mentioned sequence that takes a positive value when the unit is dominating the
considered efficiency frontier, and a negative value if the unit is dominated by the efficiency frontier. This
is based on the intuition of ‘attractiveness’ and ‘progress’, inherent in the context-dependent DEA (Seiford
and Zhu, 2003). Moreover, augmenting the latter, we define a global measure of efficiency by aggregating
the local efficiency measures corresponding to the efficiency frontiers in the sequence. This enhances the
explicative power of our proposed approach, that summarizes in a single value a more holistic evaluation of
the units under consideration.

Last but not least, let us now point out two remarks related again to the above recalled interpretation of
a plurality of weight vectors in terms of a plurality of utility functions for an individual with multiple selves:

e The proposed concept of o — u efficiency can be also applied to represent evaluations of single indi-
viduals whose preferences can be represented in terms of a plurality of weight vectors. In this case,
the set of considered weight vectors can be elicited by interacting with the decision maker, following
the basic idea of robust ordinal regression (Greco et al., 2008b; Kadzinski and Tervonen, 2013). Note
that, in this context, it is also possible to elicit a distribution of probabilities in the space of feasible
weight vectors (Corrente et al., 2016c¢). Of course this probability can be used to define the mean and
the variance of the approach we are proposing.

e The proposed methodology can be also seen as a different approach for SMAA, that is, instead of
computing the probability that each considered alternative could obtain a given rank position and the
probability of being preferred to another alternative; one could compute the mean y and the standard
deviation ¢ of the values assigned by the weighted sum to each alternative. Afterwards, u and o
could be used to arrive at a single overall evaluation using the overall (global) efficiency measure that
we propose in this study. In fact, this represents a new method in the SMAA family (Tervonen and
Figueira, 2008) that we call o —u—SMAA.

This paper introduces the o-u efficiency analysis, illustrating its potential in a case study of world happiness,
based on the homonymous report by Helliwell et al. (2017). In the following, Section 2 describes in more
detail the issues of weighting in the construction of a composite index. Section 3 introduces the o-u efficiency
analysis, followed by a brief didactic example given in Section 4 to illustrate its application on a step-by-step
basis. Section 5 contains the case study of world happiness and a robustness analysis of the obtained results.



Section 6 contains a discussion about further considerations and generalization of the proposed approach.
Section 7 provides conclusive remarks and future direction of research.

2 Composite indicators: Some methodological issues

2.1 Weighting dimensions in composite indicators

The use of composite indicators is constantly growing by the day. This can be witnessed by an ever-increasing
number of composite measures produced every year by global institutions, academics and media around the
world (Bandura, 2011; Yang, 2014), despite the severe criticism these synthetic measures received in their
inauguration (see Sharpe, 2004, pp.9-11). This is mainly owed to their irresistible property of summarizing
complex phenomena with a sole number that can be easily interpreted as a benchmark (Saisana et al.,
2005). Of course, this can be seen as both an asset and a liability at the same time. More specifically, lack
of transparency in their construction allows significant room for ‘manipulation’ (Grupp and Schubert, 2010;
Abberger et al., 2017). The reason being is that there exists a sequence of steps in the construction of an
index and, admittedly, different choices in each step might radically alter the final outcome. As one would
expect, not a single step in the construction of an index lacks criticism (Booysen, 2002); nonetheless, the
paramount critique lies in two stages, namely the weighting and aggregation of the underlying indicators.
The former refers to the process of declaring the importance of index dimensions, whereas the latter refers
to the final synthesis of the overall index. In this paper we are engrossed with the former, thus the discussion
of this section will solely revolve around it.

The basic model of composite indicators is the following. There exists a set of units I = {1,...,n} to be
evaluated with respect to the set of dimensions J = {1,...,m}, the values of which are x; j- For each unit
i € I, the vector X; = [x;q,...,X;,] collects the values assigned to that unit in the dimensions from J. To
each dimension j € J, a weight, w;, is attached such that w; =0 for all j € J and Z;.n:l w; = 1. Given a
weight vector w = [wq,...,w,, ], the composite index assigns the following value to each uniti € I:

n
CI(Xi,W) = ZXUW]

j=1

The authoritative Handbook on Constructing Composite Indicators (OECD, 2008) lists several approaches
regarding the weighting procedure in the construction of a composite index (for a recent review of existing
methodologies, criticism and proposed solutions, see Greco et al., 2018), with equal weighting being the
most common scheme on the grounds of equal importance (Paruolo et al., 2013, p.627). This, however, also
appears to be the most criticized (Decancq and Lugo, 2013). More specifically, assignment of equal weights
can be seen as a convenient solution of the last resort that is “obviously convenient, but also universally con-
sidered to be wrong” (Chowdhury and Squire, 2006, p.762). It is mainly used when there is no scientific
basis to justify peculiar weighting (OECD, 2008), or when an alleged objectivity, or simplicity (Babbie, 1995;
Freudenberg, 2003) is desired; the latter often justified using the principle that is known as ‘Occam’s Razor’
(Hopkins, 1991, as cited in Cherchye et al. (2007)). Nonetheless, this rationale could be contradicted for
the following reasons. First, equal weights could be reasonably considered subjective as they are consid-
ered objective (see, e.g., Ray, 2008; Mikuli¢ et al., 2015). The reason being is that equal weights consist a
specific weight vector that could represent a specific type of person who equally prefers all attributes of an
index. Second, as far as the uncertainty around the lack of a framework to support differential weighting
is concerned, there are more realistic solutions to equal weights that have been proposed in the literature
to deal with this issue (see, e.g., Doumpos et al., 2016, 2017; Greco et al., 2017). Third, in response to the
argument corresponding to Occam’s parsimony (i.e. “since it is probably impossible to obtain agreement on
weights, the simplest arrangement [equal weighting ] is the best choice”, Hopkins (1991, p.1471)), we could
argue that, perhaps, a better principle to abide by would be Einstein’s parsimony that “things should be made



as simple as possible - but no simpler”. In addition, in contradicting Babbie (1995)’s argument that equal
weighting is the virtue of simplicity; Cherchye et al. (2007, p.141) add: “our own opinion regarding Babbie’s
statement is, hence, the other way around: the burden of the proof should be on equal weighting whereas the
norm should be differential [benefit of the doubt | weighting”.

Other past solutions revolve around two sets of approaches, often characterized as ‘subjective’, and ‘ob-
jective’ respectively (Booysen, 2002). The former set involves participatory techniques such as the Budget
Allocation Process (BAP) (see OECD, 2008, p.96) or Analytic Hierarchy Process (AHP) (Saaty, 1977, 1980).
These engage a single, or a number of stakeholders (e.g. a panel of experts) to decide upon the weights to
be assigned, according to their beliefs/expertise (hence, the term ‘subjective’). These approaches appear to
be ideal where a well-defined framework for national policy exists (see Munda, 2005b). Still, they might
yield radically different results (see Saisana et al., 2005, p.314, for a comparison between AHP and BAP),
while in the presence of many criteria, they can give decision-makers ‘cognitive stress’ that is amplified in
the AHP due to the number of pairwise comparisons required (Ishizaka and Nemery, 2013). The second set
of approaches are awarded their epithet (‘objective’) from the fact that they do not rely on human judgment,
but rather on the use of data-driven techniques (e.g. Multiple linear regression analysis, Principal Compo-
nent Analysis (Pearson, 1901), Factor Analysis (Spearman, 1904), or Data Envelopment Analysis (Charnes
et al., 1978)). These have been conceptually criticized for being disoriented from the objective at hand, or
that they provide non-reasonable vectors (Decancq and Lugo, 2013), while at the same time they have a few
methodology-related drawbacks that need to be addressed (Greco et al., 2018).

Irrespective of classification though (i.e. ‘subjective’, or ‘objective’), the above approaches produce at
most a single weight vector overall -or, in the case of DEA, a single weight vector for each unit- that is then
used in the stage of aggregation to synthesize the composite index. While this procedure is common practice
in the domain of composite indicators (OECD, 2008), either unwittingly or deliberately, the developer as-
sumes that the obtained set of weights is representative of the whole population interested in the composite
index. Understandably, one could argue that this is a rather stringent assumption, as in a miscellaneous
group of people, each individual may assign a radically different importance to each dimension, and the
representativeness assumption may be only valid for a very small portion of the population or it could even
become infeasible overall. Decancq et al. (2013) argue that when a policy-maker chooses a weight-vector,
there are several individuals who are inevitably ‘worse-off’. This situation highly resembles the case of the
representative agent in economics (see e.g. Hartley and Hartley, 2002), which has been long criticized in the
literature by Kirman (1992). Kirman provides an example in which, quaintly to his title, the ‘representative’
agent disagrees with all the individuals in the economy. Acknowledging this confounding situation, Greco
et al. (2017) recently proposed the use of SMAA (Lahdelma et al., 1998; Lahdelma and Salminen, 2001)
to take into account the whole set of possible weight vectors in the evaluation process. According to the
authors, the standard procedure of choosing a single weight vector produces a single, allegedly ‘representa-
tive’ ranking for the evaluated units that “amalgamates different preferences in the population” (p.6). SMAA
essentially permits the inclusion of several potential viewpoints in the decision-making process, e.g. in the
form of weight vectors, enriching this way the single ranking that is obtained from a single preference. In
terms of output, probabilistic rankings are assigned to each unit, expressing its probability to be ranked first,
second etc.; or, its probability to be preferred to another unit. The use of SMAA in this exercise seems allur-
ing, whether it is applied to take into account potential representations of citizens’ preferences (Greco et al.,
2017), or simply to deal with uncertainty in the lack of information about decision-makers’ preferences (see
e.g. Doumpos et al., 2016, 2017). Since SMAA is the fundamental framework that we take into account in
this paper, we present it in more detail in the following subsection.

2.2 Stochastic multiattribute acceptability analysis (SMAA)

SMAA offers a solid solution to real-world decision-making that is surrounded by any source of uncertainty.
In the domain of composite indicators, such an example would involve a decision-maker that is unable



to provide the parameters required for the evaluation process (see e.g. Doumpos et al., 2016, 2017). In
this paper we are engrossed with the step of weighting, hence, we are solely considering this source of
uncertainty. Essentially, SMAA takes it into account by considering a probability distribution f,, over the
space of all weight vectors

m
W= {WZ[Wl,...,wm]:ijO,j=1,...,m,ij=1}.
j=1

Understandably, if a different importance has to be assigned to the dimensions from J, the space W is
transformed accordingly. For instance, if the dimension ji;) is the most important, j,) the second most
important and so on until the least important, j,,); we have to assign higher weights to the more important
dimensions, thus the space W is transformed as follows:

m
W= {w:[wl,...,wm]:wjm ij(z) Z...wj(m) 20,]:1,...,m,2wj:1}.
j=1

As the composite index CI(x;, w) provides a ranking for each w in W, SMAA calculates the position attained
by each unit, i, as follows:

rank(i,w) =1+ Zp (CI(%y,w) > CI(x;,wW)),
i'#i
where p(true) =1, p(false) = 0. Likewise, for every i € I, SMAA defines the favorable rank weights of unit
iel
W/ ={weW :rank(i,w)=r}

being the set of feasible weights that position unit i in the r'" place, r = 1,...,n, in the final rank. Finally,
SMAA delivers the rank acceptability indices, the central weight vectors and the pair-wise winning indices
as follows:

e Rank Acceptability Index (RAI) for uniti € I and rth position, r =1,...,n,

b, = J fuw (W) dw.
wew/

RAI illustrates the proportion of weight vectors w € W giving unit i the " position in the obtained
final ranking. For instance, bl.1 represents the share of weight vectors for which unit i takes the first
position.

e Provided bl.1 # 0, Central Weight Vector (CWV) for unit i

w¢ L fo(W)w dw.

i1
b} Jwew

CWV represents the weight vector of a potential decision-maker, according to whom unit i is the best.



e Pairwise Winning Index (PWI) for units i and i’

Piir = J fW(W)dW.
weW :rank(i,w)>rank(i’,w)

PWI (Tervonen et al., 2009b; Leskinen et al., 2006) shows the probability that unit i is better than unit

i’

For some recent papers utilizing SMAA in the MCDA context, the reader is referred, among others, to Durbach
(2009); Lahdelma and Salminen (2009); Tervonen et al. (2009a,c); Menou et al. (2010); Aertens et al.
(2011); Corrente et al. (2014); Angilella et al. (2015), while for a comprehensive review, see Tervonen and
Figueira (2008). SMAA was only recently introduced in the field of composite indicators. More specifically,
Doumpos et al. (2016) use it to deal with the uncertainty arising from the lack of information regarding
the parameters to be used in the evaluation process of some financial institutions. Using 10,000 uniformly
distributed random weights and marginal value functions, the authors evaluate the overall financial strength
of 1,200 commercial banks through an additive value function setting, given five financial characteristics
from the CAMEL framework. A similar application is found in Doumpos et al. (2017), comparing the overall
financial strength of Islamic and conventional banks. Greco et al. (2017) propose the use of SMAA in the
context of composite indicators as a way to deal with the issue of representativeness inherent in the single
weight vector. The authors evaluate the 20 regions of Italy based on 65 socio-economic criteria. By enlarging
the space of weight vectors, they refrain from the classic setting of the univocal set of weights, including
1,000,000 uniformly distributed weight vectors. In an alternative interpretation, this could be potentially
seen as an expression of several decision-makers’ preferences, e.g. ranging from policymakers to citizens,
regarding the importance of the index dimensions. This involvement of a ‘multiplicity of participants’, or
even ‘selves’ (see Elster, 1987) could indeed be enriching to consider in such an exercise. Quoting Munda
(2005a, p.132): “when science is used in policy, the appropriate management of quality has to be enriched
to include this multiplicity of participants and perspectives”. While the author’s point refers to the context
of a sustainability policy exercise (regarding the objectives and scales of such an analysis and the set of
dimensions to be used in the evaluation process), the intended allegory is astonishingly fit to the context of
the decision-makers’ number and preferences respectively.

3 The o-pu efficiency

We stand by the principle that a meaningful composite index should ideally reflect a multiplicity of view-
points. Technically speaking, this can be achieved in the weighting stage, in which individuals that the index
is concerning can participate, by expressing their preferences on the importance of index dimensions. These
individuals could constitute different clusters, e.g. experts, policy-makers, or even citizens at whom poli-
cies are addressed. Therefore, the main driver of this concept refrains from the classic scheme of a single,
allegedly representative weight vector in the construction of an index, by taking into account all these in-
dividuals’ viewpoints. With this aim in mind, we re-consider the framework of SMAA, though, instead of
focusing on the probability of obtaining a given ranking position, or the probability that a unit is better than
another; for each unit, i € I, we synthesize the distribution of its composite indicators values, CI(x;,w), by
computing its mean value u; and standard deviation o; in the weight vector space W as follows:

M = fw(W)CI(x;, W) dw, (1)

wew

o= \J fuW[CI(x;, W) — ;T dw. 2
wew
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As it will become clear towards the end of this section, but mainly in Section 4, where we go through
the steps using a didactic example, the integrals defining the values of y; and o; can be approximated in
a Monte Carlo simulation environment. This analogy between the original inferential problem and such
techniques (e.g. bootstrap) is greatly described in Daraio and Simar (2007a, p.53), in terms of “an analogy
between the real world, where we want to make inference about [a parameter of interest] but most of the
desired quantities are unknown, and the bootstrap world, where we mimic the real world but where everything
is known and so can be computed or simulated by Monte-Carlo methods”. With respect to the two parameters
of interest, understandably, u; is intended to be maximized, because it represents the average evaluation of a
unit taking into account the variability of the weight vectors w. Instead, o; has to be minimized, as it exhibits
the instability in the overall evaluations with respect to the variability of weights. Let us note that, in some
form, this reminds of the same reasoning explicit in the Markowitz model (Markowitz, 1952). Following his
influential theory, taking into account the mean, u;, and the standard deviation, o;, one can draw a plane
that units i € I are plotted on, pending evaluation. To be consistent with the proposed concept of o — u
efficiency analysis, we will refer to this throughout the text as ‘The o —u plane’, which is illustrated in Figure
1 and shows the standard deviation o (on the horizontal axis) and the mean u (on the vertical axis) of ten
European countries with respect to the data of the 2017 World Happiness Report (WHR) (Helliwell et al.,
2017) that will be detailed in Section 4. Moreover, one can define a ¢ — u Pareto dominance relation on the
set of units I as follows: for all i,i’ € I, unit i is Pareto dominating unit i’ if u; > u; and o; < oy, with at
least one of the two inequalities being strict. A uniti € I is 0 — u Pareto efficient if there is no other unit
dominating it. The set of all Pareto efficient units constitutes the Pareto frontier. A concept stricter than oc—u
Pareto efficiency is the o — u Pareto-Koopmans efficiency (Charnes and Cooper, 1962). A uniti €l is 0 —u
Pareto-Koopmans efficient if there is no convex combination of u; and o of the remaining units, i’ # i,
with a mean value u that is not smaller, and a standard deviation ¢ that is not greater, with at least one of
these inequalities being strict. Formally, a unit i € I is o — u Pareto-Koopmans efficient if for all [A;,,i’ #i],
with A;, > 0, for all i’ # i and Zi/#i Ay =1, neither (3) nor (4) hold:

Z?Li/,ui/ > U and Z 7(,1'/0'1'/ < g; 3
i'#i i'#i
Z?Li/ui/ > U; and Z)Li’o-i’ > 0. (4)
i'#i U#i

The set of all o — u Pareto-Koopmans efficient units constitutes the o — u Pareto-Koopmans frontier. The
membership of a unit i € I to the Pareto-Koopmans efficiency frontier can be verified with a direct or an
indirect procedure described below.

The direct procedure verifies that there exists no unit -obtained as linear combination of mean u;, and
standard deviation o ;- dominating unit i. This is obtained by considering the following LP problem:

ef =Max ¢
S.t.
Zli/‘ui/ = Ui + €
i'#i
Zz‘i’o-i/ < g;—€¢
{ i

Ai=0, Vil #i

D=1

\ir#£i

where a unit, i, is o — u Pareto-Koopmans efficient if £/ < 0.
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Figure 1: The o — u plane.

Units i € I are plotted on the plane with coordinates (o;,u;). The o — u analysis hereby
presented concerns ten EU countries evaluated with respect to the data of the 2017 World
Happiness Report (WHR) (Helliwell et al., 2017) as explained in Section 4.
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The indirect procedure to test the o — u Pareto-Koopmans efficiency requires to consider the following
LP problem:

67 =Max 6

S.t.
au;—fo; = auyp—Poy+6, Vil #i (5)
a,Bf=0
a+pB=1

which can be interpreted as follows. An evaluation au; — o, with a, 8 2 0 and a + 8 = 1, is assigned to
all units i’ € I. The non-negative coefficient a for the mean u;; and the non-positive coefficient —f3 for the
standard deviation o, are coherent with the idea that u; is intended to be maximised and o is intended
to be minimised. Therefore, ideally, the greater au; — o}/, the better the unit i’ performs with respect to
u;» and 0. The LP problem verifies whether a pair (a, ) exists, for which unit i € I receives an evaluation
that is not worse than the remaining units, i’ # i, that is if au; — fo; = au;, — o, + 6, Yi’, with a non-
negative value of 6. This happens if 6] > 0, which, for the units belonging to the o — u Pareto-Koopmans
efficiency frontier, represents the margin that can be subtracted from the overall evaluation au; — f3o; of
unit i maintaining the maximality of its evaluation with respect to all other units i’ # i. For all units i € I
that do not belong to the o — u Pareto-Koopmans efficiency frontier, the greater the absolute value of 67,
the greater the margin that has to be added to au; — fo;, in order to attain the evaluation au; — o, of
the units belonging to the o — u Pareto-Koopmans efficiency frontier. In this sense, the value of 67 can be
interpreted as a measure of efficiency of unit i € I with the following characteristics:

e if 57 is non-negative, then unit i is efficient, with higher values of &} indicating greater efficiency for
L

e if 67 is non-positive, then unit i is inefficient, with higher values of |57| indicating greater inefficiency

11



fori.

For this reason, in the following we shall refer to 6  as the o — u Pareto-Koopmans efficiency of unit i.

The following proposition enunciates the equivalence between the direct and the indirect test of the o — u
Pareto-Koopmans efficiency.

Proposition 1. 67 > 0 if and only if & <0

Proof.
Let us start by proving that if 67 > 0 then &7 < 0.
If 57 > 0, then there exists a, # > 0, with a + 8 = 1, for which:

au;—pBo; = auy —Poy forall i’ #1i.

Therefore, for all A =[A;,i’ #i] with A, > 0, for all i’ # i, and >, A, = 1, we have:
i'#i
li/(a,ui — /50'1) = Xi/(a,ui/ — [50'1'/) for all i/ 7é i (6)
By (6) we can get the following:
Z Av(ap;—poy) = Z Av(apy —Boy),
i'#i i'#i

and, consequently,
au; — ﬁO'i = az A‘i’lu’i’ — /5 Zlilo-i"
i/ i/
This implies that the following condition is not verified

Z Airlhir Z

i £

Z?Li/ai/ < (O

i'#i
with at least one strict inequality.

This amounts to the Pareto-Koopmans efficiency of unit i, so that we have ¢* < 0. Thus, we proved that if
67 2 0, then &7 < 0. Let us now prove that if ¢7 <0, then 67 > 0.

For a given unit, i, let us consider the pair (o;, u;) and the two following sets:

e the set P* (o, u;) of all the pairs (o, u) € Ri Pareto dominating (o;, u;), that is

P (o;,u;)={(o,u) € Ri : 0 < 0; and u = u; with at least one strict inequality}

e the set P~ (0, u;) given by the convex hull of the pairs (o, u;) with i’ # i, that is

P_(O'i,.u,l') = {(Zli/,ui/,z%i/ai/) . A’i’ 2 0 for all i/ ;é i and Z)Li/ = 1} .

i'#i i/ i/
Let us remember that the condition &} < 0 implies that (o, u;) is Pareto-Koopmans efficient. This means

that there exists no pair (o, u) € Ri being a convex combination of the pairs (o, u;) € Ri, i’ # i that is
dominating (o, u;). As the set of pairs (o, u) € Ri dominating (o}, u;) is P*(o;, u;) and the set of convex
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combinations of the pairs (o, u;/),i’ # i, is P~ (0, u;), the Pareto-Koopmans efficiency of (o;, u;) amounts to
the condition that P* (o, u;) and P~ (0o, u;) are disjoint. Let us point out that both P* (o, u;) and P~ (o, u;)
are convex sets in R?. Therefore, for the hyperplane separating theorem (see e.g. Boyd and Vandenberghe
(2004), there must be a hyperplane separating P* (o, u;) from P~ (o, u;) in the o — u space. In fact, this
means that there exists a straight line au — o =y, such that:

ap—po >y

for all (o, u) € P*(o;, u;), and
au—po <y

for all (o, u) € P~(oy, u;). For contradiction, suppose now that 67 < 0. This means that for all a, § > 0 we
have

au; —fo; <auy—poy

for at least one i’ # i. Thus, for all y € R

au; —po; >y
implies

auy —pBoy >y

for at least one i’ # i. But (o, u;) € P~ (0, u;) and therefore, there cannot exist any hyperplane

au—po =y

separating P*(o;, u;) from P~(o;,u;). Thus, in this case the pair (o, y;) is not o — u Pareto-Koopmans
efficient. So, if £ < 0 and, consequently (o;, u;) is efficient, then 67 > 0.
O

The o — u Pareto-Koopmans efficiency 6; of unit i € I refers to the o — u Pareto-Koopmans efficiency
frontier. However, for a unit that is quite remote from the o — u Pareto-Koopmans efficiency frontier, it
might not be very meaningful to compare it with units of that frontier, as they could be seen as potentially
implausible benchmarks. Instead, it could be useful to compare these remote units with their counterparts
that are closer to them in the o — u plane, and as such, constitute more realistic benchmarks. This suggests
taking into consideration the idea of a sequence of efficiency frontiers considered within the celebrated
evolutionary multi-objective optimization algorithm NSGA-II (Deb et al., 2002).

A first sequence of o — u efficiency frontiers can be defined by taking into consideration the Pareto
dominance. In this perspective, the set of all o — u Pareto-efficient units constitutes the first o — u Pareto
efficiency frontier, denoted by PF;. Removing PF; from I and computing again the o — u Pareto efficiency
frontier for the remaining units, we get the second o —u Pareto-efficiency frontier denoted by PF,. The third
o — u Pareto efficiency frontier, PF5, and the following ones can be computed analogously.

The sequence of Pareto efficiency frontiers PFy, PF,, ..., PF, based on the concept of Pareto dominance
is used in NSGA-II (Deb et al., 2002). However, for the sake of our analysis, an analogous sequence of
efficiency frontiers based on the concept of Pareto-Koopmans dominance seems more appropriate. The idea
of a series of Pareto-Koopmans frontiers has been originally introduced by Seiford and Zhu (2003) as “context-
dependent” data envelopment analysis. It was developed to show the ‘attractiveness’ or ‘progress’ of each
evaluated DMU, according to each frontier in the sequence. The reason being is that the authors assume each
efficiency frontier (or ‘level’) to be an alternative ‘evaluation context’ that, measuring the ‘attractiveness’ of
each unit from, greatly facilitates identifying DMUs with outstanding performance, or simply to differentiate
between efficient DMUs. In the spirit of their study, we suggest decomposing the set of evaluated DMUs into
a sequence of Pareto-Koopmans frontiers that illustrate the o — u efficient DMUs on each level. We call the
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efficiency frontiers of this new sequence first o — u Pareto-Koopmans efficiency frontier, denoted by PKF;,
second o — u Pareto-Koopmans efficiency frontier, denoted by PKF,, and so on and so forth. Let us denote
by PKF = {PKFj,...,PKF,} the set of all the o — u Pareto-Koopmans efficiency frontiers. For each unit
i €1, and for each o — u Pareto-Koopmans efficiency frontier PKF; € PKF, we can define a ‘local’ o — u
Pareto-Koopmans efficiency o;; with respect to PKF;, as follows:

5ik = Max &
s.t.
k—1
./
au; —pPo; = auy—Poy +6, Vi eI\UPKFh 7
h=1
a,pfp=0
a+p=1

The above LP problem verifies whether there exists a pair (a, ), for which unit i € I receives an evaluation
au; — Bo; which is not worse than the analogous evaluation of the rest of the units i’ € I\ Uﬁ;i PKFy,
that is, all the units i’ belonging to the k" o — u Pareto-Koopmans efficiency frontier, or to a better o —
Pareto-Koopmans efficiency frontier. This happens if 6;;, = 0. Instead, if §;; < 0, then unit i belongs to a
o — u Pareto-Koopmans efficiency frontier worse than PKFy, that is, i € PKF, with h = k+1,...,p. The
interpretation of §;, with respect to the k" o — u Pareto-Koopmans efficiency frontier is analogous to the
interpretation of 67 with respect to the overall o — u Pareto-Koopmans efficiency frontier. More precisely,
for the units in the k'" o — u Pareto-Koopmans efficiency frontier or better, §;, = 0 represents the margin
that can be subtracted from the overall evaluation au; — fo; of unit i maintaining an evaluation that is
superior to all units in the k" o — u Pareto-Koopmans efficiency frontier or worse. Instead, for all units
i € I belonging to the k" ¢ — u Pareto-Koopmans efficiency frontier or worse, the absolute value of & <0
represents the margin that has to be added to au; — 3o;, in order to obtain the same evaluation of at least
one unit belonging to k-th o — u Pareto-Koopmans efficiency frontier or better. Therefore, as 6] constitutes
an efficiency measure with respect to the overall o — u Pareto-Koopmans efficiency frontier (that, in fact,
corresponds to the first o —u Pareto-Koopmans efficient frontier), §;; constitutes an efficiency measure with
respect to the overall k" o — u Pareto-Koopmans efficiency frontier. For this reason, in the following we
shall refer to &;; as 0 — u Pareto-Koopmans efficiency of unit i with respect to the k" frontier.

The following proposition gives a simple, yet useful result with respect to the o — u Pareto-Koopmans effi-
ciency corresponding to the k" frontier.

Proposition 2. The o — u Pareto-Koopmans efficiency respects the o — u Pareto dominance, that is, for
alli,i’ €I if u; > uy and o; < oy, then 6, = 6, foranyk=1,...,p.
Proof. As u; = uy and o; < oy, au; —Po; = auy — oy for all a, B = 0 with a + = 1. Consequently,

al; —ﬂO'l'/ = 07V 20 —ﬁO'i// +6
implies
au; —ﬁO'i = ;i —ﬂO'i// +6
for any i” € I and any &6 € R. Therefore
k—1

al;s —ﬂO'i/ > aAWUin —/50'1'// + 5i’k: Vi// S I\ U PKFh
h=1
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implies

k—1
au; —ﬁO'i = 07V 507 —/30'1'// + 5i’k> Vi// el \ U PKFh
h=1
Consequently, since §;; is the maximum 6 satisfying
k—1
a‘l,Li —/50'1' > Ol,ul-u —/30'1'// + 5, Vi// el \ U PKFh,
h=1

we have to conclude that 6;; = 6. O

Augmenting the above analysis and the classic concept of context-dependent DEA, we may proceed to a more
holistic evaluation as follows. To all units i € I, we can assign an overall, ‘global’ o — u Pareto-Koopmans
efficiency score, denoted by sm;, that reflects its efficiency with respect to all frontiers from PKEF, as follows:

P
sm; = Z5ik. (8)
k=1

The following corollary of Proposition 2 ensures that overall o — u Pareto - Koopmans efficiency score sm;
respects the o — u Pareto dominance.

Proposition 3. For all i,i’ € I if u; > uy and o; < o}/, then smy; = smy/.
Proof. By Proposition 2: y; = u; and 0; < o, implies 6;; = 6; for all k = 1,...,p. Consequently, we

have
p p
sm; = Z5ik = Z5i/k =S8m;..
k=1 k=1

O

In the following we supply some remarks related to the application of our approach in real life problems. As
usual for the other indices of SMAA, the integrals defining the mean value y; and the standard deviation o,
i € 1, can be approximated by numerical methods or via the use of a Monte-Carlo simulation, which, as noted
in Daraio and Simar (2005, 2007a) (during the computation of the m, or a-order efficiency measures), is a
usual and convenient way to avoid numerical integration. In fact, as the authors acknowledge (Daraio and
Simar, 2005, p.103), “the quality of the approximation can be tuned” by increasing the number of simulations
(in our particular case, this would refer to the number of random draws of the weight vectors). Therefore,
using a random sampling of q vectors of weights - with g being a relatively large number; for instance,
following the suggestions of Tervonen and Lahdelma (2007), g could equal 10,000- we may approximate
the two parameters of interest. The q random extracted weight vectors wy, = [Wyp,...,Wnnl,h = 1,...,q
can be collected in the following m x ¢ RW matrix:

wWip Wi 0 W
Wo1 Way o+ Wy

q
q
RW =
mxq

Wi Wma 0 Wpy
Using the weight vector matrix RW, a composite index CI(x;, wy) can be computed for each unit i € I and

each weight vector wy,, and the obtained results can be ordered in the following nxq matrix CI shown below:
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CI(x1,wy) CI(xy,wy) -+ CI(xy,wg)

CI(xg,w;) CI(xp,wW3) ... CI(x3,w,)
CI = . . .

nxq

CI(Xn,Wl) Cl(xn,WZ) C(xn,wq)

Using the values collected in CI, for each unit i € I one can compute the approximated values i; and &; for
the mean y; and the standard deviation o; as follows:

q

- 1

Ui = - E :CI(Xi,Wh),
945

q
o= \J iZ(CI(Xi:Wh)_[Ii)Z-

h=1

It is worth noting that, when it comes to real-world applications, the existence of outliers is a constant struggle
and an issue that appears more often than not (Hawkins, 1980). The presence of outliers in a working data
set could seriously impact the obtained estimators of local and global efficiency measures respectively. In
such a case, the preceded analysis could be greatly benefited by established robust frontier techniques (e.g.
see, among others, the studies of Simar and Wilson, 1998; Daraio and Simar, 2005, 2007b). In this study
we will consider the use of ‘partial’ frontier techniques, such as the m-order frontiers (Cazals et al., 2002;
Daraio and Simar, 2005) to obtain robust estimators for the local and global o — u efficiencies. An extended
discussion and application is presented in sub-section 5.1.

Last but not least, before concluding this section, let us comment on the concept of efficiency we are
proposing, comparing it with other efficiency measures proposed in the literature. First, note that we are
considering a non-parametric frontier approach for the “production set” ¥ of pairs (o, u). In fact, in our
approach, W is the set of all pairs (o, u) obtained as convex combination of pairs (o;, u;),i =1,...,n, that is

¥ = {(Zn:li.uijzn:liai) :A;20,i=1,...,n, and Zn:)Li = 1},
= =1 i=1

which has the following efficient frontier:
U= {(cr,,u) : there is no (¢, u’) € ¥ such that (o/,u’) # (o,u),0’ <o and u’ > ,u} .

The Pareto-Koopmans efficiency 67 we compute can be interpreted as a distance from the efficient frontier
U. Indeed, we can imagine to scalarize the vectors (o, u) introducing the scalarization function F,, (o, u) =
au—pBo,a,B = 0,a+ B =1,, measuring the distance D ((a,u),\fl) between (o, u;),i = 1,...,n, and the
efficient frontier ¥ as:

D ((og, 1), ¥) = min,, ,negFap(0i i) —Fap(o’,u),
and, finally, taking into account all the feasible pairs (a, ) we get:
5? = mina,ﬁzo,a+/3=1D ((Ui,.ui); ‘T’) .

In fact, practically all the measures of efficiency proposed in the literature can be expressed in terms of a
distance from a frontier. In this sense, the Debreu-Farrell efficiency measure (Debreu, 1951; Farrell, 1957)
gives the radial distance of the point with respect to the efficiency frontier, which in the context of the
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o — u—efficiency analysis amounts to the following two efficiency measures:

e a y-oriented efficiency measure that provides the value 6,(o;,u;), which shall be multiplied by the
average (; to permit unit i to become Pareto-Koopmans o — u—efficient, that is:

eu(o-b ‘U’l) = min{el(ai’ 9“1) € (I;}) (9)

so that, the smaller 6,(o;,u;), the more efficient is unit i that can be considered Pareto-Koopmans
efficient if 6, (o;, u;) = 1;

e a o-oriented efficiency measure that provides the value 8,(o;, u;) to be multiplied by the standard
deviation o; to permit unit i becoming Pareto-Koopmans o — u—efficient, that is:

05(0¢, u;) = max{0|(0o,u;) € T}, (10)

so that, the greater 6,(o;,u;), the more efficient is unit i that can be considered Pareto-Koopmans
efficient if 6,,(o;, u;) = 1.

Of course, in such case the LP problem formulation for the u and o-oriented efficiency measures (eq.9 &10
respectively) would be the following:

91.“ = Max 9 Gi" = Min 6
S.t. S.t.
( n ( n
O < D Ap ui < D Au;
i=1 i=1
. (11a) g (11b)
=1 =1
ZAJ =1 LZAJ =1

while, in the spirit of Andersen and Petersen (1993), one could compute the ‘super-efficiency’ of each unit
not only with respect to the first, but with respect to each Pareto-Koopmans frontier in the sequence (e.g.
‘lifting’ each time the units lying on a PKF from the constraints and re-computing the LP formulation). This
would permit to have an efficiency measure in the [0, 1] space for local efficiencies, and in the [0, c0) space
for global efficiencies. Yet, the drawback associated with these measures of efficiency is that, in our proposed
model, we consider a twofold kind of a trade-off between u and o (see Section 6 for a discussion of this
point) that is hereby lost.

4 The o-u efficiency analysis step by step: A didactic example

The present section illustrates the application of o — u efficiency analysis with a concise didactic example.
We consider a sample of the dataset supplied by the 2017 World Happiness Report (WHR) (Helliwell et al.,
2017) that will be analyzed in its entirety as a case study in the following section. The WHR provides an
evaluation of life satisfaction in more than 150 countries, based on citizens’ responses to a Gallup World Poll
survey. The report further supplies data on six key variables, analysing their relation with life satisfaction.
For this didactic example, we take into consideration a sub-set of ten European countries (namely, Austria,
Denmark, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland and United Kingdom) for the
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latest available year (data regarding the year 2016) to be evaluated through o — u efficiency analysis. For
the sake of simplicity, we only consider three of the six key variables, and more precisely, GDP per capita,
Social support and Perceptions of corruption. We report these in Table 1.

Normalization is an essential part of data aggregation to avoid adding-up “apples and oranges” (OECD,
2008, p.27). The reason being is that indicators often come in a variety of ranges or scales that might render
them incomparable in the stage of aggregation (Freudenberg, 2003). According to the author, the most
common approach is standardization due to its desirable characteristics that we forthwith quote:

“It converts all variables to a common scale and assumes a "normal" distribution; it has an average of zero,
meaning that it avoids introducing aggregation distortions stemming from differences in variable means. In the
other approaches, the scaling factor is the range of the distribution, rather than the standard deviation, which
means that extreme values can have a large effect on the composite index” (Freudenberg, 2003, p.11).

We start by standardizing the raw data reported in Table 1. As Booysen (2002, p.123) argues, “standard
scores can be further adjusted if calculations yield awkward values”. Adjustment of these values is in fact a
reasonable exercise. De Muro et al. (2011) choose to adjust these values around the range [70, 130] with
the value of a 100 being a good reference point (mean around which the standard deviations will revolve).
In their spirit, Greco et al. (2017, see online Appendix A.2) choose a different adjustment range for the
standardized values. In particular, they set it to [0, 1], with 0.5 being the mean around which the standard
deviations will revolve. Values falling outside this range (3 standard deviations away from the mean) will
be replaced with the lower or upper bound accordingly, as they could generally be considered extreme given
that within this range lie 99.73% of the values in the case of a normal distribution, and 89% of the values in
the case of any distribution (Chebyshev’s inequality).

Let us denote by y;j, i € I, j € J the raw value assumed for unit i with respect to dimension j. For each
dimension j € J, the mean value M; and the standard deviation s; can be computed as follows:

j
Z?:l Yij
b

M. =
J n

n

J Do (vij —M;)?

S]' = .
n
Using the mean M; and the standard deviation s; we obtain the z-score :

Yij — M;

Zij = —

S .

J

for each i €I and j € J. Finally, we compute the normalized values x;; as follows:
Zij .
Xjj = 0.5+€, if Mj —3s; < y;; < M +3s;

The normalization is applicable to positively-oriented dimensions, that is, dimensions for which the greater
the raw value the better (e.g. GDP per capita and Social Support). Instead, for negatively-oriented dimen-
sions, for which the greater the raw value the worse for a unit’s performance (e.g. Perception of corruption),
the normalization is formulated as follows:
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Table 1: Raw and normalized values of the considered dimensions.

Raw Data Normalized values
Country Log of GDP  Social Perceptions of Country Log of GDP  Social Corruption
per capita support corruption per capita  support free
Austria 10.69 0.93 0.52 Austria 0.48 0.49 0.44
Denmark 10.68 0.95 0.21 Denmark 0.47 0.70 0.71
France 10.54 0.88 0.62 France 0.33 0.18 0.35
Germany 10.70 0.91 0.45 Germany 0.49 0.34 0.51
Italy 10.43 0.93 0.90 Italy 0.23 0.50 0.11
Netherlands 10.76 0.93 0.43 Netherlands 0.54 0.49 0.52
Norway 11.07 0.96 0.41 Norway 0.84 0.74 0.54
Sweden 10.74 0.91 0.25 Sweden 0.53 0.38 0.68
Switzerland 10.92 0.93 0.30 Switzerland 0.70 0.50 0.63
United Kingdom 10.57 0.95 0.46 United Kingdom 0.37 0.70 0.50
Average 10.71 0.93 0.46
Standard Deviation 0.17 0.02 0.19

Data: 2017 World Happiness Report (WHR), obtained from: http://worldhappiness.report/ed/2017/. The data regard the year 2016. The detailed
description and the sources of the considered dimensions can be found in Helliwell et al. (2017, p.17).



Zij

Let us explain the general idea behind this normalization. Let us denote by y;, and y;“ the worst and best
values respectively that are taken under consideration, such that, beyond these values we consider the evalu-
ation y;; with respect to dimension j € I an outlier. This means that, if the dimension j is positively-oriented,
then y;, < _y]?“, and all the values y;; < y;, are assigned a value x;; = 0, as well as all the values y;; > y;, are
assigned a value x;; = 1. Instead, if the dimension j is negatively-oriented, then y;, > y]’.‘, and all the values
Yij < Yi. are assigned a value of x;; = 1, while all the values y;; > y;, are assigned a value of x;; = 0. We
consider as outlier a value y;; which extends y x s; beyond/above the mean M;, and, since we hereby fixed
y = 3 (though, of course, other values of y can be assigned according to the nature of the problem), this
amounts to y;, = M; —3s; and y]’." = M; + 3s; if j is positively-oriented, and y;, = M; +3s; and x;.k = M;—3s;
if j is negatively-oriented. Then, in case the value of y;; lies between the values of y;, and y]’.k, it can be nor-
malized as follows (where + means + in case j is positively-oriented and — in case j is negatively oriented,
and vice versa for F):

X Vi T Y Yij — (M; F 3s;) _
Y Yi=Yjs  (Mj+3s))—(M; F3s))
Yy MiE3s; o YT Mo F

:|:6S] ' 651 ) 6S]

If the value of y;; lies outside the interval of y;, and y;.", then the normalized value of y;; (i.e. x;;) is either
0 or 1 as explained above.

With respect to the creation of the weight vector matrix RW, in this didactic example we consider the follow-
ing two scenarios, where W pp, Wgoe, Weor denote weights for GDP per capita, Social support and Perception
of corruption respectively:

e Scenario 1: No definite ranking importance of the three considered dimensions, so that the set of
feasible weight vectors is

W= {[WGDP:WSocaWCorr] :Wepp = 0) Wsoc = 0: Wcorr = O: Wepp + Wsoc + Weorr = 1};

e Scenario 2: Social support is more important than Perception of corruption that in turn is more impor-
tant than GDP per capita, so that the set of feasible weight vectors is

W= {[WGDP’WSOC’WCOT‘T] *Wgoc = Wceorr = Wepp = 0aWGDP + Wsoc +WCorr = 1} .

For both scenarios, a set of 10,000 weight vectors wy, h = 1,...,10,000, was randomly sampled from a
uniform distribution on the feasible set of weight vectors W and collected in the matrix RW = [wj;,,j =
1,2,3,h = 1,...,10,000]. The weight vectors from RW and the normalized values x;;, i = 1,...,10,j =
1,2, 3, are then used to compute the composite indices:

j>

CI(Xi:Wh) = WGDPXi,GDP + WSocxi,Soc + WCorrxi,Corr: h= 1: LR 10: 000.

Using the values CI(x;,wy), i =1,...,10,h = 1,...,10,000, the approximation of the mean value i; and
the standard deviation G; of composite indices were calculated for each considered country. For the sake of
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simplicity, we refer to them as u; and o;, respectively. These two measures are reported for both considered
scenarios in Table 2 and plotted, along with the respective Pareto-Koopmans frontiers, on Figure 2.

The o — y Pareto-Koopmans local efficiencies 6;; of the considered countries with respect to the dif-
ferent o — u Pareto-Koopmans efficiency frontiers are given in Table 3. In both examined scenarios, the
o — u Pareto-Koopmans family of frontiers consists of five frontiers. For the first scenario, that without a
definite ranking of importance for the considered dimensions, the five frontiers are the following: PKF; =
{Norway, Netherlands, Austria} , PKF, = {Denmark, Switzerland, Germany}, PKF; = {Sweden, France},
PFK, = {United Kindom}, PKF5 = {Italy}. In the second scenario, the o — u Pareto-Koopmans frontiers re-
main the same with the exceptions of Switzerland, that was in the second o — u Pareto-Koopmans efficiency
frontier in the first scenario but descended to the third frontier in the second scenario. Similarly, Sweden,
which was in the third frontier in the first scenario has been now descended to the fourth frontier.

In terms of their overall, global efficiencies (sm;), Norway presents the highest score, while the second
highest score is attributed to Denmark in both scenarios. It is worthwhile to observe that Denmark is not in
the first 0 — u Pareto-Koopmans efficiency frontier, which, instead, is the case for Netherlands and Austria.
Therefore, we can say that even if Denmark is in a worse Pareto-Koopmans efficiency frontier with respect to
Netherlands and Austria, overall it compares better with respect to the whole set of efficiency frontiers (as
shown by the global efficiency scores, sm;). The reason being can be better explained in the following. Let
us compare Austria and Denmark in the unconstrained case. First, it is apparent that none of these countries
is dominating the other in both parameters. In particular, Denmark has a greater average score (Upenmark =
0.628, Upysria = 0.471), while Austria has a lower deviation (0 pygria = 0.013, Opepmark = 0-064). Second,
by breaking down their global scores (smpenmark = 0-561, SMpysia = 0.338), it appears that Austria has a
greater local score as to the first two frontiers, which is reasonable given that it lies on a higher frontier
(O austriar1 = 0-001,0penmarki = —0-012,0 pustriaz = 0-032,0 penmarks = 0.018); still, Denmark is ‘catching-up’
and, in fact, surpassing Austria by being more efficient with respect to the remaining three frontiers and,
in particular, boasting almost twice the Austria’s efficiency (6ustriaz = 0-047,0penmarks = 0-095,0 austrias =
0.065,0penmarka = 0-11,0 austrias = 0-193,0penmarks = 0-35). Understandably, the same applies also when it
comes to the comparison of Denmark and Netherlands, as well as Switzerland and Netherlands or Austria.
Of course, as proven in proposition 3, the same could not apply to Germany, which, despite the fact that it
shares the frontier with Switzerland and Denmark, it is dominated by both Austria and Netherlands in both
parameters. Last, but not least, let us also observe that in both scenarios Italy is the only country for which
the efficiency score, sm;, is negative. On the other hand, Italy is also the only country in the worst efficiency
frontier.
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Arithmetic Average (u)

Figure 2: Illustrative example of the o — u plane in the two scenarios considered.

Black colour represents o — u efficiency analysis output in the unconstrained case (i.e. scenario 1), while grey
colour represents o — u efficiency analysis output in the constrained case (i.e. scenario 2). Numbers in paren-

theses denote respective o — u Pareto-Koopmans efficiency frontier (PKF;).
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Table 2: Evaluating the units with o — u under the two alternative scenarios.

Standard Deviation (o)

Scenario 1

Scenario 2

Unconstrained weights

Constrained weights

Country Ui o sm; Ui o; sm;
Austria 0.471 0.013 0.338 0.475 0.011 0.281
Denmark 0.628 0.064 0.561 0.646 0.051 0.514
France 0.289 0.045 0.076 0.262 0.048 0.037
Germany 0.447 0.045 0.188 0.419 0.048 0.074
Italy 0.278 0.093 -0.188 0.333 0.096 -0.209
Netherlands 0.517 0.014 0.393 0.509 0.014 0.303
Norway 0.707 0.073 0.948 0.715 0.052 0.802
Sweden 0.533 0.071 0.219 0.495 0.070 0.081
Switzerland 0.611 0.048 0.512 0.582 0.050 0.287
United Kingdom 0.519 0.078 0.394 0.564 0.080 0.204

u; and o; are the means and standard deviations of the composite index CI(x;, W)
in the 10,000 extractions accordingly. sm; is the overall score computed as in eq.8.
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Table 3: Measuring o — u Pareto-Koopmans efficiency

Unconstrained weights

Constrained weights

o — u Pareto-Koopmans efficiency

o — u Pareto-Koopmans efficiency

PKF1 PKF2 PKF3 PKF4 PKF5 PKF1 PKF2 PKF3 PKF4 PKF5

Country 61 ip b3 biq Sis Country i1 bia b3 Siq Sis
Austria 0.001 0.032 0.047 0.065 0.193 Austria 0.003 0.037 0.038 0.059 0.143
Denmark -0.012 0.018 0.095 0.110 0.350 Denmark -0.009 0.064 0.064 0.083 0.313
France -0.032 0.000 0.026 0.033 0.048 France -0.037 0.000 0.002 0.022 0.049
Germany -0.032 0.002 0.015 0.034 0.169 Germany -0.037 0.001 0.001 0.022 0.086
Italy -0.080 -0.048 -0.045 -0.015 0.000 Italy -0.086 -0.049 -0.048 -0.026 0.000
Netherlands 0.008 0.032 0.050 0.064 0.239 Netherlands 0.002 0.034 0.035 0.056 0.176
Norway 0.078 0.078 0.174 0.188 0.429 Norway 0.068 0.068 0.132 0.151 0.382
Sweden -0.040 -0.024 0.014 0.014 0.255 Sweden -0.049 -0.021 -0.020 0.010 0.162
Switzerland -0.004 0.013 0.078 0.092 0.333 Switzerland -0.019 0.000 0.028 0.028 0.249
United Kingdom -0.049 -0.031 -0.008 0.241 0.241 United Kingdom -0.047 -0.030 -0.019 0.069 0.231

PKF1-5 denote respective o — u Pareto-Koopmans frontiers illustrated in Figure 2. §;, shows the (in)efficiency of Country i, with respect to the k" frontier.



5 Case study: World Happiness Index

In this section, we apply o — u efficiency analysis to the whole set of data supplied by the 2017 Report
of ‘World Happiness’. The age-old concept of happiness can be traced back to Aristotle’s ‘eudaimonia’, a
word commonly translated as ‘welfare’ (Shin and Johnson, 1978). Central concept of the Aristotelian ethics,
welfare was seen as the ultimate human good (Robinson, 1989), which, more than two millennia after
Aristotle’s era, appears to be at the centre of academics and policy-makers’ discussions. More specifically,
world-renowned economists have recently criticized the use of traditional, economic output measures like
the GDP as a proxy for welfare (see e.g. Costanza et al., 2009; Stiglitz et al., 2009). In April 2012, an initiative
of a group of independent experts -in support of the United Nations’ High Level Meeting on happiness and
well-being- further paved this way. Through the Sustainable Development Solutions Network of the UN,
they published the first ‘World Happiness Report’ (Helliwell et al., 2012). Since 2012, these reports have
gained considerable attention, while, in the authors’ words (Helliwell et al., 2017, p.3): “happiness is now
increasingly considered the proper measure of social progress and the goal of public policy”. In fact, on a recent
OECD meeting at the ministerial level (OECD, 2016, p.12), the OECD committed to “redefine the growth
narrative to put people’s well-being at the center of governments’ efforts”.

The ‘World Happiness’ report (WHR) presents and analyses the data of a survey question conducted by
the Gallup World Poll. More specifically, 3,000 respondents in each of the -roughly- 150 countries considered,
evaluate their lives on a 0-10 scale which is known as ‘Cantril Ladder’ (see Helliwell et al., 2017, p.123).
The authors use a three-year rolling window of the average response in each country (Subjective Well-
Being; SWB) to rank them accordingly. For instance, the 2016 ranking is based on the average response of
the three-year period 2014-2016. According to the report, 6 key variables (namely GDP per capita, healthy
life expectancy at birth, social support, freedom to make life choices, generosity and perceptions of corruption)
used as proxies for 6 socio-economic aspects respectively, may on average explain 75% of the respondents’
subjective evaluations (Pooled OLS regression). Detailed information about the description and sources of
the 6 key variables can be found in Helliwell et al. (2017, Technical Box 2, p.17). We applied o —u efficiency
analysis adopting the same procedure extensively described in the previous section, which considered a sub-
sample of 10 European countries, apart from the following step. We use a three-year rolling-window for
the six variables, in order to be consistent with the procedure used by the World Happiness Report for the
subjective evaluation. This means that the values we consider in each dimension in year 2016 are in fact
non-weighted arithmetic averages of the period 2014-2016. We restrict the sample to only these countries
that possess data for all 6 dimensions for the 2016 and at least one of the years 2014 and 2015. After this
data cleaning procedure we are left with a final sample of 119 countries.

In applying the proposed approach, we find that the family of o — u Pareto-Koopmans frontiers con-
sists of 31 frontiers, which are illustrated in Figure 3. We computed the local (6;;) and global (sm;) o —u
Pareto-Koopmans efficiencies for each country. However, due to a large number of countries and frontiers in
our sample, we will hereby discuss and report only the efficiency of the top-10 ranked countries of the 2017
‘World Happiness’ report. The results for the rest of the countries (e.g. local/global efficiencies and rankings)
are disclosed in the on-line supplementary appendix (available here: https://goo.gl/URBRuC). Accord-
ing to the 2017 report, the countries found in the top ten rankings are the following: Norway, Denmark,
Iceland, Switzerland, Finland, Netherlands, Canada, New Zealand, Australia and Sweden, which are ranked in
this exact order. In our analysis, these 10 countries are found to be spread in the first seven frontiers, which
will therefore be the focus of our analysis for the rest of this section.

The countries spread over the first seven frontiers are reported in Table 4, ordered according to their
attributed rankings by the WHR (denoted ‘WHR rank’ respectively). Also reported in the table are the mean
score (u;) and the standard deviation (o;) of the countries’ scores in the 10, 000 extractions, the o —u Pareto-
Koopmans local efficiency (6;;) of each country with respect to the efficient frontiers PKF;,k=1,...,7, and
the global efficiency score (sm;) with its corresponding ranking (denoted ‘c — u rank’).

First of all, we should note that it is by definition reasonable to observe a shuffle, or even entirely different
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Figure 3: Family of o — u Pareto-Koopmans frontiers.

The 119 countries in our sample are spread over 31 o —u Pareto-Koopmans efficiency frontiers (PKF). Further details about the
coordinates, efficiency with respect to each PKE, overall o — u efficiency and rankings of each country are given in the on-line

supplementary appendix.

I I T
__ — —wNewZealand
075 [~ i == Denmark
Aus_tr_a_l’lL - B —_————— — — — ¥ Singapore
Ire'i,:f’-;"_ “orway S.veden, vS.-xnzerIand
;[ Canada
"|| VMHEFI&”C_L", - “'cemnf'rLerembourg - ¥Finland
07 - IJG 1 ok —
[ | |
| ermany ” s TT—Iong Kong
/ 1 | e
TAustria A /
068 - .I r Belglurh
I I’ Llnltéd Stat&;. _ — ¥ Thailand
| 1 ! ———
08 | (- ! Uruguay _ — — gl = —N’Jﬂpﬁﬂ
== ! :’J f" J,.; ilsrael —~ -zr,:r‘;%i';“’ s
2 / f CostaRica_ — — ¥ Spain
@ T ostaRica = Estonia — wind i
D e ! ’?‘Chlle_a"’rp e e T W ONES
-85 - jand
b IJ J K?zalyhstaiﬂ {_ T Pt ancwnﬁ Czech Republic
= | pOpRY e — =¥ Portugal e P P P s 2 = 5
4 * —— Tiwanda
_% | Nlcaragm é!uador .N' I}(exl;;) ...Be‘l'arus i = = Italy
05 | [ 7 g g _1 Slovak_a — wCambodia
E | | I |' { v J | Latvia - i
= | Macedonia) | | #Paru" J_ebanon /m{‘p —y Russia
® ¢ 1 4T o
- Honduras oid Serbia 7 r S uth Africa
0.45 irag § |/ El Salvédnl' /',lq(--'l "'(Albanla/ A o — “Hungary _ —v Lithuania
| Eenegal / ndl "4 = Ukraing™
Egy‘p& F\JO ?mﬂ G gy-,/gmdﬁr-/ Ethl;\pla’ _ — — ¥ — -yGreece
i Zam?la r.yunm" i — Georgia
04 e JGhaga '}“/'5#5 N,ger Akt
I w
|4 Armenla | Ivory Coast
| Zimbabwe "l‘ ,( Sierraleone ¢ Malawi
035 f : oo 3 iti
‘Madagascar J Guin= Congo (Kinshasa) ol - “rHaiti
Liberia e, _ = =
vTomo
s - ‘Chad South Sudan
i wafghanistan
| | I 1 1 1 | 1
0.02 004 0.06 0.08 0.1 0.12 014 0.186

Standard Deviation (o}

25




Table 4: Case study results for the first seven frontiers.

o — u Pareto-Koopmans efficiency

9¢

Country WHR i o sm. oc—u PKF1 PKF2 PKF3 PKF4 PKF5 PKF6 PKF7
rank t t ' rank 61 6o Oi3 Ois Ois Si6 Oi7
Norway 1 0.731 0.034 6.040 6 -0.004 0.003 0.008 0.017 0.020 0.024 0.034
Denmark 2 0.742 0.063 6.312 3 -0.012 0.003 0.005 0.013 0.031 0.033 0.033
Iceland 3 0.711 0.052 5.445 11 -0.022 -0.019 -0.011 -0.002 0.006 0.006 0.016
Switzerland 4 0.728 0.061 5.922 7 -0.018 -0.009 -0.007 0.017 0.017 0.020 0.020
Finland 5 0.709 0.076 5.335 13 -0.036 -0.027 -0.024 -0.017 -0.002 -0.000 0.030
Netherlands 6 0.714 0.034 5.619 10 -0.010 -0.008 0.009 0.010 0.016 0.022 0.028
Canada 7 0.721 0.024 5.843 9 -0.001 0.006 0.009 0.018 0.025 0.031 0.036
New Zealand 8 0.761 0.059 6.904 1 0.018 0.018 0.024 0.032 0.050 0.052 0.052
Australia 9 0.737 0.032 6.218 4 0.002 0.005 0.012 0.021 0.026 0.028 0.038
Sweden 10 0.737 0.056 6.173 5 -0.011 -0.002 0.009 0.009 0.026 0.028 0.028
Austria 13 0.665 0.021 4.496 17 0.002 0.002 0.011 0.020 0.021 0.025 0.032
United States 14 0.639 0.042 3.726 19 -0.021 -0.018 -0.010 -0.001 0.004 0.004 0.011
Ireland 15 0.723 0.024 5.891 8 0.001 0.001 0.010 0.019 0.026 0.032 0.038
Germany 16 0.685 0.023 4.955 15 -0.001 0.001 0.009 0.018 0.022 0.025 0.031

Belgium 17  0.648 0.047 3.925 18 -0.025 -0.023 -0.014 -0.006 -0.003 0.006 0.007
Luxembourg 18 0.709 0.059 5.358 12 -0.027 -0.023 -0.015 -0.007 -0.002 0.010 0.010
United Kingdom 19 0.702 0.042 5.252 14 -0.018 -0.017 -0.008 0.008 0.008 0.013 0.018

Singapore 26 0.743 0.084 6.341 2 -0.018 0.001 0.006 0.015 0.032 0.034 0.034
Nicaragua 41 0.526 0.037 1.668 33 -0.017 -0.014 -0.010 0.000 0.000 0.003 0.005
Ecuador 44 0.519 0.042 1.496 38 -0.021 -0.019 -0.014 -0.005 -0.004 -0.002 0.002
Kazakhstan 60 0.541 0.038 1.871 30 -0.017 -0.014 -0.009 0.000 0.001 0.003 0.006
Hong Kong 71 0.679 0.057 4.592 16 -0.034 -0.033 -0.023 -0.015 -0.008 -0.004 0.012
Honduras 91 0.455 0.025 1.359 40 -0.004 -0.002 0.009 0.012 0.013 0.013 0.016
Macedonia 92 0.487 0.038 1.272 41 -0.017 -0.015 -0.011 -0.001 0.000 0.004 0.004
Egypt 111 0.424 0.041 0.786 55 -0.020 -0.018 -0.016 -0.004 -0.003 -0.003 0.000
Iraq 117 0.442 0.041 0.876 54 -0.020 -0.018 -0.016 -0.004 -0.003 -0.003 0.000

WHR is the rank attributed to Country i by the ‘World Happiness’ report using the Gallup World Poll surveys (i.e. ‘Cantril Ladder’). u; and o; are the means and standard
deviations of the composite index CI(x;, w) in the 10,000 extractions accordingly. smy; is the overall score computed as in eq.8. o-u rank is the rank obtained based on
the overall score sm. PKF1-7 denote respective frontiers and &y, exhibits the (in)efficiency of Country i, with respect to the k" o — u Pareto-Koopmans frontier.



patterns between the SWB (‘WHR rank’) and the o —u efficiency rankings (‘o —u rank’). The first expresses
peoples’ own subjective beliefs, while the latter refers to the aggregation of 6 variables that are considered
key determinans of the average SWB. Moreover, there is a whole ongoing discussion between the difference
of SWB and objective conditions attributed to psychological reasons and cultural differences (see Kroll and
Delhey, 2013). In other words, the two rankings are not directly comparable, nor should they necessarily
be; though one could make a few interesting inferences. To start with, it is notable, that the countries which
are self-claimed to be ranked in the top-10 positions (i.e. having the top-10 highest subjective evaluation)
are positioned in our top-10 list as well, with the exception of Iceland and Finland, which we position in the
11" and 13" places accordingly.

A second interesting point relates to the measurement of efficiency with respect to the frontiers, and how
the dynamics of these might change under some circumstances. Consider for instance Finland, a country that
is ranked 13" according to our overall o —u Pareto-Koopmans efficiency, and which participates in the o —pu.
Pareto-Koopmans family by lying on the 7¢" frontier. The reason Finland is not participating in the previous
frontier (i.e. PKF6) can be better clarified when it is compared to Luxembourg. The latter clearly dominates
the former in terms of standard deviation (0 jyxempourg = 0-059 Versus o gjnjqng = 0.076), but only marginally
dominates in terms of average performance (Uyyxembourg = 0-70865 Versus Uginigng = 0.70864 - in Table
4 both are rounded to three decimals). Therefore, if Finland slightly increases its average performance to
surpass that of Luxembourg, it will then, ceteris paribus, move to frontier 6. This is also clear by looking at the
efficiency of Finland with respect to the 6" frontier (Table 4: & Finland,6 = —0.00001), which is almost zero.
Following this line of reasoning, one could be interested to compare Finland with Iceland (Uz;n14ng = 0.70864
Versus Ureeiand = 0.7111), e.g. by looking at the (in)efficiency of the former with respect to the frontier that
the latter is lying on (Table 4: 0p;p1qng,5s = —0.002).

Another interesting point arises from tracking the frontiers’ formation from a dynamic viewpoint. More
specifically, one could be interested in tracing changes in the performance of units in the o — u plane within
a time period and thus, how were the frontiers re-structured accordingly. This could be accomplished in
several ways. For instance, one could trace all, or a subset of the o — u PKE or even trace the frontiers
and performance of only certain countries. An example is given in Figure 4, which illustrates how the first
two frontiers were changed from 2015 (illustrated in gray) to the following year (illustrated in black). To
some extent, this augments the analysis of Fare et al. (1994, see Fig.3, p.77) by visualizing the dynamic
formations of all subsequent frontiers. It quickly becomes obvious that Singapore did not participate in the
first two frontiers in 2015, but it joined the second one in 2016. Moreover, one can distinguish how the
performance of the countries lying in the first two o — u PKF changed during this time period. For instance,
as it is apparent in Fig.4, almost all countries exhibit a drop as to their mean values in 2016. This is less
noticeable in some countries and more apparent in others. Exception to this rule are Germany, Luxembourg
and Singapore, with the latter meeting with such an improvement that positioned the country in the second
frontier. Of course this can be attributed to both a remarkable improvement in the elementary indicators,
and the fact that the performance of the surrounding countries was deteriorated (e.g. see Denmark in Fig.
4). This highlights the fact that even if a unit’s performance remains steady through a time period examined,
the distance with respect to other frontiers might alter either due to an improvement, or a downturn of the
surrounding units. Understandably, this reminds of the decomposition of total factor productivity (see Fére
et al., 1997). In this sense, it is possible to directly measure the change in the overall relative efficiency (EC)
by considering a ratio in the spirit of the efficiency change component of Malmquist Productivity Index (see
Fare et al., 1994, p.71). Although it extends beyond the scope of this study, it is worth noting that such
an analysis from a dynamic viewpoint could greatly benefit the explanation of results, by decomposing the
total productivity into relative efficiency and technical change. In fact, an interesting study in the domain of
composite indicators is presented by Kortelainen (2008), constructing an Environmental Performance Index
in which they exhibit how changes in the environmental performance of 20 EU member states over the period
1990-2003 may be decomposed into shifts in relative efficiency and environmental technology respectively.
Additionally, in this particular example we have used two consecutive years, which, from a policy-maker’s
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perspective might not be enough; thus, the time period examined in the plane could be re-considered to that
of specific ‘goalposts’ (i.e. the start and end dates of a scheduled policy period, see Mazziotta and Pareto,
2016, p.989).

Figure 4: Dynamic illustration of the frontiers.

An interesting feature of o — u analysis is the comparison of units or frontiers from a dynamic viewpoint.
A developer might be keen on tracking the formation of a frontier of interest, or the performance of a unit
through time (e.g. either consecutive years, or a policy period of interest). This figure delineates the formation
of the first two o — u Pareto-Koopmans efficiency frontiers (PKF) in two consecutive years. Black colour
represents the year 2016 while grey colour represents the year 2015.
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Consequently, there are several points that could be noted from the outputs of our proposed approach.
From an overall score/ranking that takes into account all potential viewpoints (i.e. space of weight vectors)
and all potential benchmarks (as denoted by the family of o — u Pareto-Koopmans frontiers), to the analysis
of the dynamic performance of a unit. These could be all advantageous to both the developer of an index
and the individuals interested in it. Due to a high number of countries within our sample we have limited
the discussion of the results to only those countries that made the top-10 list in the 2017 WHR. For the
reader interested in the remaining results, we report these in the on-line supplementary appendix (available
here: https://goo.gl/URBRuC). We should hereby note again that subjective evaluations (i.e. those of
the WHR in this case) and our own output (i.e. sm; global efficiency scores and o — u rankings accordingly)
cannot be directly compared due to the intrinsic differences in their representation.

5.1 Robustness of results

A crucial question at this point relates to the sensitivity of the obtained results from the preceded sigma-
mu analysis. Such question is mainly driven from the fact that there could potentially exist extreme points
(outliers) distorting the results. The problem of outliers is one of the oldest in Statistics that is constantly
reemerging (Hawkins, 1980). Although the intention to explore the mechanisms driving the outliers extends
beyond the scope of this paper (for a comprehensive analysis, we refer the reader to the book of Hawkins,
1980), it is of interest to explore the steps in which outliers could distort our analysis, along with ways to
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make our inferences more robust to them. In particular, we can identify two stages in which outliers could
pose a threat, and which we forthwith explain in more detail along with ways to mitigate their impact.

The first stage is in the process of normalizing the sub-indicators, the chosen method of which could
distort the transformed indicators in the presence of ‘extreme’ units (see some common normalization tech-
niques and their drawbacks in OECD, 2008, sect. 1.5). Distorted transformed indicators could in turn affect
the computed composite indicators’ values, on which our two measures of interest (o and u) rely upon for
the subsequent part of the analysis. We believe that, up to some extent, the normalization procedure that
we follow (Greco et al., 2017) takes this issue into account by replacing the values of extreme units (see
Section 4 for a detailed description of the procedure). Moreover, the fact that in our method, a variety
of weight vectors are involved (hereby, 10,000) -contrary to the classic scheme involving a unique weight
vector- means that it could alleviate this issue even more. The reason being is that, in the case of a single
weight vector, it could happen that this particular vector favors the dimension(s) which are affected the most
from the existence of an ‘extreme’ unit in the set of DMUs. On the contrary, 10,000 weight vectors could
even out this issue, of course, always up to some extent.

The second stage in which outliers could pose a threat comes after the computation of the parameters of
interest (o; and u;) has taken place. Outliers in this stage could affect the local efficiency scores (6;), which
in turn would distort the global efficiencies (sm;). The reason being is that in DEA the addition or removal
of efficient DMUs would alter the efficiencies of the remaining DMUs (Seiford and Zhu, 2003). This means
that, if an extreme unit exists in the sigma-mu plane, it could compromise the results up to some extend,
as the overall (global) efficiency scores do not solely rely on the first Pareto-Koopmans efficient frontier, but
also on all the remaining frontiers in the sequence. In such a case, our analysis could benefit from well-
established approaches in the literature of ‘robust’ (or ‘partial’) frontiers, such as the order-m (Cazals et al.,
2002; Daraio and Simar, 2005, 2007b) or order-a (Aragon et al., 2003; Daouia and Simar, 2007) frontiers
that we explore in this section. In brief!, although slightly different in their principles, the advantage of both
above-mentioned techniques is that they are more robust to outliers than the classic efficient estimators, as
they do not simultaneously envelop all the data points but rather a sub-sample of them (the choice of which
consists the fundamental difference among the two approaches). In this paper we consider the order-m
robust frontiers, originally introduced by Cazals et al. (2002) and later generalized and extended by Daraio
and Simar (2005, 2007b), although the intuition could be similar in applying the order-a robust frontiers
(Aragon et al., 2003; Daouia and Simar, 2007).

The procedure to obtain robust DEA estimators of order-m -which, we hereby use to obtain robust local
and global o — u Pareto-Koopmans efficiency scores- is extensively covered in the study of Daraio and Simar
(2007b, pp.18-19). The authors provide a simple Monte-Carlo simulation implemented in four steps, which
we adopt to be fitted to our proposed approach. We implement it in two ways, described in the following.
First, if one is solely interested in taking into account a single frontier, we adopt it without any modification.
That is, for each unit i € I, we randomly draw a sample of size m (in this case we choose a ‘strict’ value of
m = 10) with replacement so that it satisfies the following conditions: y; > y; and o; < o;; 1l =1,...,m.
We then proceed by solving the LP formulation in equation 5 to obtain the efficiency score, 6;; for the
evaluated unit i with respect to PKF1. We repeat this procedure B times for every unit i € I, with B being
a relatively large number, averaging the results afterwards. Following the suggestions of Daraio and Simar
(2007a, p.72), we use a value of B = 200. Understandably, this analysis could be extended to include the
case where additional information is provided by other variables Z € R" that are exogenous to the process
but could explain part of it. In such a case, the conditional order-m efficient estimators could be used (see
e.g. Daraio and Simar, 2005, 2007b). We avoid using the exact procedure of robust m-order frontiers for the
case of multiple-frontier evaluation, as this is only ‘forward-looking’ for competitors in the sense of trying
to find competitors from only the dominating choices (i.e. y; = u;, and o; < o;, L =1,...,m). We believe
that the concept of global scores (sm;) should not only take into account the frontiers that lie ahead of a

1For a comprehensive review of the intuition behind the robust frontier techniques and a set of empirical applications, we refer
the reader to the book of Daraio and Simar (2007a).
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unit, but also to be ‘backwards-looking’, giving a sort of ‘net position’ evaluation for a unit with respect to
the ‘competitors’ in front and back of that unit. Thus, a second way in which we apply the m-order robust
frontiers, is modifying this procedure to equally look for the exact opposite scenario; that is, for each unit
i € I, we randomly draw (with replacement) m units exactly as before (i.e. y; > u;,ando; <o;l=1,...,m),
but also m units dominated by the evaluated unit (i.e. yu; < u;, and o; > o; l = 1,...,m). Then we solve
the LP formulation in eq.7 and compute the global scores (sm;) as in eq.8. A visual interpretation of the two
above-mentioned procedures is given in Fig. 5 for the case that we evaluate a random unit of interest (e.g.
Hong-Kong).

Figure 5: Didactic illustration of computing the m-order efficiency estimators in the proposed method.

This figure illustrates the computation of m-order robust efficiency estimators (Cazals et al., 2002; Daraio and Simar, 2005, 2007b) for a
randomly chosen country (hereby, Hong-Kong).

The un-adjusted case is presented in the left sub-plot, where in evaluating Hong-Kong, a randomly sampled set of countries of order m
(hereby m = 10) is used from the yellow area to find the efficiency with respect to the single frontier (or 6;;), solving the LP formulation
presented in eq.5. This procedure is repeated B times (hereby B = 200), and the expected estimator is used as an m-order robust estimator
for this country, taking into account only the first Pareto-Koopmans frontier.

The adjusted case (right sub-plot) involves the same procedure, sampling this time a set of order m from the yellow area above the
evaluated country (dominating solutions) and a set of units of order m from the yellow area beneath it (dominated solutions), solving the
LP formulation presented in eq.7 and computing the global scores (sm;) as in eq.8. This procedure is repeated B times and the expected
estimator is used as an m-order robust global estimator for this country, taking into account all potential Pareto-Koopmans frontiers in the
sampling space.
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To compare our results with both above-mentioned applications of the m-order partial frontiers, we
normalize the original and robust scores to the [0, 1] space. The diagonal in Fig. 6 shows perfect equality,
while deviations from it show under or over-evaluation of units with respect to each set of estimators (robust
or non-robust to outliers). Understandably, in the case of a single frontier (Fig.6, left sub-plot) the deviations
are very small and negligible. Taking into account the multiple-frontier case (Fig.6, right sub-plot) though,
we can clearly see the existence of three outliers (Thailand, Indonesia and Rwanda) that were affecting the
original set of estimators. With respect to the ‘scoreboards’ of the evaluated countries, 17 of them (approx.
14%) do not present any change whatsoever, while another 17 of them only change by a single ranking.
32 countries (approx. 27%) present a change of between 2 and 3 rankings (median change is 3), while
another 27 (approx. 22.7%) change between 4 and 7 rankings (that completes the 3rd quartile). The fourth
quartile contains changes between 8 and 11 rankings with only the outliers exceeding this range, changing
35 rankings. As it is also visually apparent from Fig. 7, the biggest changes are presented at and around the
frontiers in which the outliers are participating. In this respect, the robust m-order frontiers aid significantly
in adjusting the estimators to account for these outliers.
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Figure 6: Robustness checks.

This figure delineates the robustness of the obtained results using the unconditional m-order robust estimators Daraio and Simar (2005,
2007b) to the single frontier case (6;1) [left], or adjusted to the multiple-frontier case [right]. In both figures, vertical axis represents non-
robust measures of efficiency (5;; left and sm; right) and the horizontal axis represents the robust m-order (m = 10) efficiency estimators.
To render them completely comparable (adjusting their scales), we normalize them (using the ‘min-max’ method). The diagonal thus
represents perfect equality among the two, with units lying above (below) the diagonal being favored more (less) in the case of non-robust
estimators.
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Figure 7: Outliers & rank reversals.

This figure delineates the absolute changes in the rankings of the evaluated countries with respect to the robust and non-robust global
estimators produced up to this point. A, denotes absolute change of a country’s ranking with respect to the two compared set of
estimators, Q denotes quartile with respect to the whole range of rank reversals. The PKFs of the outliers are plotted to delineate how the
units at and around these frontiers in which outliers participate can distort the global efficient (non-robust) estimators.
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6 Further considerations and generalizations

A basic and natural question arising from our approach is the following: What is the trade-off between u
and o? To answer this, let us first note the following main general interpretations of a ‘trade-off’:

e Trade-off as rate of transformation; that is, taking into account the “production frontier”, how much
can we increase u and decrease o to remain in the same “isoquant”?

e Trade-off as rate of substitution; that is, taking into account the “preferences” of the stakeholder, the
policy-maker or the ‘expert’ considered in the composite indicator, how much can we increase u and
decrease ¢ to maintain the same level of “utility”?

Our approach permits to take into consideration both interpretations of a trade-off. In fact, on the one hand,
we have already observed that the Pareto-Koopmans frontier can be interpreted as the isoquant between o
and u, so that, in this perspective, the weights a and 8 attached to u and o respectively in the solution of
eq.5 can be interpreted as the rate of transformation between them. On the other hand, our approach based
on the Pareto-Koopmans frontier in the o —u space can be considered as a specific application of the Benefit
of Doubt (BoD) method (Cherchye et al., 2007) in that space. BoD is a well-known methodology in the
domain of composite indicators assigning to each unit the most favorable set of weights that maximize its
performance. Therefore, ‘weights’ a and 8 obtained from the solution of eq.5 can be interpreted analogously
to the weights of BoD. That is, they define a rate of substitution in the case that the most awarding evaluation
is adopted for the considered unit.

Another interpretation of the trade-off between u and o in terms of a rate of substitution relates to
their use in evaluating units to give an approximate value to the p-th percentile of the distribution of val-
ues assumed by the composite index CI(x;,w) in the space of weight vectors w € W. Indeed, one can
assume that this distribution is approximately normal and therefore we can compute the p-th percentile
as u— ¢ 1(p)o where ¢ !(p) is the percentile of the standard normal distribution, so that, for example,
¢71(0.1) = 1.645, ¢ 1(0.05) = 1.960 and ¢ ~(0.01) = 2.576. Suppose now that a stakeholder is interested
in evaluating units on the basis of a specific percentile, e.g. 0.05. Since each unit i € I will be attached
a value u; — 1.9600;, implicitly weights a and 3 such that g = 1.960 are adopted and, consequently, a
trade-off in terms of substitution rate such that each decrease of an amount, say A, in terms of u has to be
compensated by a decrease of 1.960A in terms of o is adopted.

In this study we have considered the development of a composite index in terms of a weighted sum
that, in fact, is a weighted arithmetic mean of the underlying sub-indicators. Nonetheless, one may easily
generalize the weighted sum by considering the weighted quasi-arithmetic mean that is

CI(x;,w)=f! (ijf(xij)),
=1

with f : [0,1] — [0, 1] being a strictly increasing function. A typical example of the weighted quasi arithmetic
mean is the weighted geometric mean that is obtained as: f(x) = logx. Notice that, our current proposal
formulating a composite indicator of the form CI(x;, w) can thus be straightforwardly extended to the general
formulation in terms of weighted quasi-arithmetic mean. It is also worth noting that, independently of the
formulation of CI(x;,w), also the utility function

U(o,u)=au—po

that we considered to define our o — u efficiency, can be written as a weighted quasi arithmetic mean, that
is

Ulo,u) = f~" (af (W= Bf ().
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In case of f(x)=1logx, we get
Ulo,w)=p*-oF.

In any case, whatever the function f is, the whole procedure we proposed to define the o — u efficiency can
be easily extended accordingly, substituting 4 and o with f(u) and f (o).

7 Conclusion

There is a long discussion in the literature of composite indicators regarding the issue of weighting in their
construction. Years of disputes and past solutions revolve around the use of a weight vector that allegedly
perfectly represents a specific unit or all evaluated units overall. Still, quite different results can be obtained
even by slightly changing this vector, the choice of which resembles a quest for the “holy grail”. Extending
this argument from a conceptual point of view, this set of weights (commonly univocal) could be never
representative for the population interested in this synthetic measure. Therefore, it seems reasonable to
take into account for each unit the distribution of values assumed by the composite index on the whole set
of feasible weight vectors. Our proposed methodology called ‘c — u efficiency analysis’ synthesizes such
distributions for each unit with its mean value, u, intended to be maximized, and its standard deviation, o,
intended to be minimized, as it denotes instability in the evaluations with respect to the variability of weights.
We further defined the concepts of o — u Pareto-Koopmans dominance and efficiency, which permitted us to
define for each unit under analysis, several types of meaningful efficiency measures. This way we outlined
the o —u efficiency analysis which can be seen as another extension of the SMAA family, and which finds its
basis in some well-known Operational Research methodologies:

e Stochastic Multiattribute Acceptability Analysis (SMAA), for the idea of considering the whole set of
feasible weight vectors;

e Data Envelopment Analysis (DEA), for the idea of measuring efficiency;

e Markowitz modern portfolio theory, for the idea of representing distributions in terms of mean and
standard deviation.

e NSGA-II, for the idea of a sequence of Pareto frontiers.
e Context-dependent DEA, for the idea of a sequence of Pareto-Koopmans frontiers.

Additionally, the o — u analysis can be seen as being at the crossroads of the following three prominent
research domains in economics:

e Well-being economics in a neo-Benthamite perspective, because consideration of the whole set of fea-
sible weight vectors can be seen as a means of taking into account the utility of all individuals in the
population.

e Research on inequality in economics, because in a “post-GDP” perspective, the standard deviation
of the distribution of composite indicators values in the space of weight vectors can be seen as the
counterpart of an income inequality measure in a standard, “GDP economics” perspective.

e Efficiency analysis taking into account, among others, the contributions of Koopmans, Debreu and
Farrell, because it permits fruitful investigation and scrutiny of mean and standard deviation of the
composite indicator values’ distribution.

With respect to its merits, the proposed methodology permits the inclusion of all potential viewpoints in
the construction of a composite index, while it takes into account the distances of units from all the o — u
Pareto-Koopmans frontiers lying on the plane, collapsed into a global efficiency score. In addition, the use
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of robust order-m or order-a efficient frontiers could greatly benefit the proposed approach by providing
more accurate estimators that are robust to outliers. While there is no particular scope in this study to
treat compensatory issues in the construction of an index; we should note that our methodology permits
the use of non-compensatory aggregation techniques such as PROMETHEE methods (see Brans et al., 1986)
or ELECTREE methods (for a survey see Figueira et al., 2016 and for a review of recent developments see
Figueira et al., 2013) to be applied instead of the additive utility model illustrated in the paper. In this case,
to apply the SMAA to PROMETHEE and ELECTRE methods, see the approaches proposed in Corrente et al.
(2014) and Corrente et al. (2016a) respectively. Moreover, interaction and hierarchy of dimensions can be
considered through the use of Choquet integral and Multiple Criteria Hierarchy Process (see e.g. Angilella
et al., 2018).

We attempted to show the potential of o —u efficiency analysis by applying it to the data supplied by the
‘World Happiness’ report, obtaining a few interesting results and insights. Of course, our methodology cannot
be considered a ‘panacea’ for the many problems affecting the adoption of composite indices, in general, and
the ‘World Happiness’ in particular (see e.g. the critical discussion on composite indices applied to wellbeing
measures in Kroll and Delhey, 2013). However, we hope that this case study can convince on the many
interesting insights that o —u efficiency analysis permits in this domain. Finally, as far as its future direction
of research is concerned, we believe that our methodology can be fruitfully applied to all the domains in
which composite indices are considered, ranging from the ranking of universities to the measurement of
competitiveness of geographical regions and beyond.
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