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Abstract: This paper estimates the optimal forecasting model of stock returns and the nature of stock returns 

volatility in Nigeria using daily All-Share stock data.  The study unlike previous ones estimates six sets of 

symmetric and asymmetric GARCH-family models of stock returns volatility (three of which are augmented with 

trading volume)  in three different set of error distributions: normal, student’s t and generalized error 
distribution (GED) with a view to selecting the model with best predictive power. Relying on root mean square 

error (RMSE) and Thiel’s Inequality Coefficient, GARCH (1,1) and augmented EGARCH(1,1) in GED proved 
to possess the best forecasting capability as adjudged by the last 30 days out-of-sample forecast. Our finding 

also suggests the presence of leverage effect and decline in persistence parameter after incorporating trading 

volume. Overall, the result provides evidence of high probability of making negative return from investment in 

the Nigerian stock market over the sample period. The empirical merit of the model is, thus, its potential for 

applications in analysis of value at risk (VaR) of quoted stocks and, therefore, evaluation of risk premia that 

guide investors’ choice of stock portfolio. 
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1. INTRODUCTION 

An established feature of stock returns is that they exhibit volatility clustering1, i.e., periods of swing 
followed by periods of relative calm (Harvey and Chakravarty, 2008). In this regard, it was 
discovered that, for vast classes of models, the average size of volatility is not constant but changes 
with time in a manner that is predictable. Interestingly, the generalized auto-regressive conditional 
heteroscedasticity (GARCH) model introduced by Bollerslev (1986) and Taylor (1986) is among the 
oldest most widely used models for capturing volatility/risk, i.e., changing variances, in financial time 
series that exhibit time-varying volatility clustering2. Increasingly too, studies on the volatility of 
stock returns which have been dominated by time series models of conditional heteroscedasticity have 
tended to find strong supports for asymmetric ARCH/GARCH-type effect. In Nigeria, however, the 
contributions of error distributions seems to have been ignored while modeling stock market volatility 
even though past and recent studies have shown that the application of appropriate error distribution 
in volatility models enhances the efficiency of a model (see for e.g., Chang, 2010; Jiang, 2012).  

More so, the ARCH/GARCH –type models do not provide a theoretical explanation of volatility or 
what, if any, the exact contribution of information3 flows are in the volatility-generating process. In 

                                                           

1
Other stylized facts (features) of stock returns are heavy tails (conditional fat- tailed-ness), leverage (volatility 

asymmetry) and conditional skewness. Leverage means that negative returns tend to be associated with higher 
volatility than positive returns of the same magnitude. Fat tailed-ness means that the standardized conditional 
returns is more fat-tailed than the Gaussian (normal) returns while conditional skewness means that the 
standardized returns is not symmetric. For stock returns the skewness is typically negative which means that the 
probability of large negative return is greater than large positive returns– even after adjusting for the recent level 
of volatility. 
2As Engle, Focardi and Fabozzi (2007:2) note, the discovery that it is possible to formalize and generalize this 
observation was a major breakthrough in econometrics. 
3 As we see in Engle, Farcodi and Fabozzi (2007) too, trade volume provide information that could help explain 
high stock return volatility using high frequency data. 



  

 

                                

this regard, one of the early attempts4 to provide a theoretical explanation to volatility-generation 
process is the mixture of error distribution hypothesis (MDH) advanced by Clark (1973), and Epps 
and `Epps (1976) (see e.g., Tauchen and Pitts, 1983; Lamoureux and Lastrapes, 1990for empirical 
evidences). According to MDH, the variance of stock returns at a given interval is proportional to the 
rate of information arrival. As a result, volatility clustering could be a reflection of information arrival 
frequencies. All traders receive the new price signals fairly simultaneously and, therefore, the shift to 
a new equilibrium is immediate and there will be no intermediate partial equilibrium. 

The specification of appropriate volatility model for capturing fluctuations in stock returns is of 
significant policy relevance to investors and policy makers alike. First, reliable volatility model of 
asset returns aids investors in their risk management decisions and portfolio adjustments. The search 
for reliable volatility model is also important because unfettered fluctuation in asset return could 
influence investment decision that can manifest in the real sector with adverse consequences for 
economic growth and development. Second, undue swings in asset returns could impose challenges to 
monetary policy formulation and consequently undermine the price stability objective of the monetary 
authority. For instance, increase in stock prices leads to higher interest rate (see Fischer 1981)that 
could generate inflationary spree in the economy (see Spiro, 1990).As De Gruwe (2008) argues, asset 
price inflation inevitably lead to crashes. In this regard, stabilization policy is needed since those 
policies that stabilize asset price can also stabilize inflation and output. Therefore, the determination 
of the nature of stock returns volatility and its optimal forecasting model makes a crucial pre-
condition for the Central Bank‟s intervention in the Nigerian Stock Market.  

The paper has two-fold objectives, namely to: (i) examine the nature of volatility/risk of stock returns 
in Nigeria and (ii) determine the optimal forecasting model for Nigerian stocks and their 
predictability. 

Similar study has been done by Chiang (2010) who analyzed the Chinese stock exchange, Jiang 
(2012) who analyzed the New York stock exchange and Tian and Guo (2006) who analyzed the 
Shangai and Shenzhen exchanges of the Chinese Stock market. We apply the commonly used 
GARCH-family models on Gaussian (normal), student‟s t and generalized error distribution with a 
view to selecting the best forecasting volatility model with the appropriate error distribution for the 
Nigeria stock market over the sample period.  

The rest of the paper is organized as follows. Section 2 deals with the theoretical and empirical 
literature, and the analytical framework of GARCH- family models adopted for the study while the 
methodology and data is presented in section 3. Section 4 discusses the results with applications and 
section 5 concludes the paper. 

2. LITERATURE REVIEW 

This sub-section, as has been noted, deals with the review of relevant theoretical and empirical 
literature on modeling the volatility of stock returns. The analytical scheme – i.e., the specific 
technique chosen to investigate stock returns volatility – namely the GARCH-family models, adopted 
for the study is also discussed. 

2.1. Theoretical Literature 

The use of auto-regressive conditional heterosceadsticity models for analyzing volatility of asset 
returns was due to the pioneering work of Engle (1982) where the conditional variance of a 
disturbance term was made a function of linear combination of squared residuals in the recent past. 
Progressively, the potential of the ARCH model spurred a number of other researches that resulted in 
the development of several other ARCH-type models. As we see in Rydberg (2000), the fact that large 
lag values are required in the ARCH models implies that many parameters are needed which 
sometimes lead to over-parametization. 

To achieve a parsimonious model, therefore, Bolerslev (1986) and Taylor (1986) independently 
proposed the extension of ARCH model with an Autoregressive Moving Average (ARMA) 
formulation. This model, which is popularly called the Generalized ARCH model (GARCH), models 

                                                           
4 Alternative explanation of volatility clustering include the existence of autocorrelation in the news arrival 
process of Diebold and Nerlove (1989); Sequential Information arrival hypothesis of Copeland (1976); and 
market microstructure effects of Bollerslev and Domowitz (1991). 



 
 

 

                                

conditional variance as a function of its lagged values as well as squared lagged values of the 
disturbance term. Although, the GARCH model has proved very useful in capturing symmetric effect 
of volatility, it has certain limitations. For instance, it assumes that positive and negative error terms 
have a symmetric effect on volatility, i.e., good and bad news have the same size of effect on 
volatility in the model. In practice, this assumption is frequently violated by stock returns, in 
particular, in that volatility tends to increase more after bad news than after good news (especially in 
non-crisis periods), the so-called leverage effect (first proposed by Black, 1976). Technically, this 
assumption implies that the estimated parameters in the GARCH model are restricted to a positive 
value, the so-called non-negativity parameter restriction. In other words, a major limitation of the 
GARCH model is that in reality the non-negativity constraint imposed on the parameter of the 
GARCH model is frequently violated5. 

To overcome these constraints, the asymmetric GARCH-family models (which are extensions of the 
original GARCH model) have been proposed. These include the Exponential GARCH model 
(EGARCH) proposed by Nelson (1991), the Power GARCH (PGARCH) proposed by Ding, Granger 
and Engle (1993), the Threshold GARCH (TGARCH) proposed by Zakoian (1994), and the Beta-t-
GARCH family models proposed by Harvey and Chakravarty, 2008) and elaborated in the ensuing 
literature by Harvey and Sucarrat (2012).The central idea behind this asymmetric GARCH-family 
model is the leverage effect, i.e., the fact that in reality good and bad news of the same magnitude 
have differential effects on the volatility (conditional variance) of stock returns. 

The Exponential GARCH model which captures the asymmetric properties of stock returns volatility 
was proposed to address three principal deficiencies of GARCH model. These are: (i) restriction of 
the estimable parameters to a positive value to ensure positive effect on conditional variance; (ii) 
absence of asymmetric response of volatility to shocks (e.g. from lagged residuals, variances and/or 
trade volumes), i.e., absence of asymmetric term in GARCH model; (iii) difficulty in measuring 
volatility persistence in a strongly stationary series. The use of log-conditional variance in the 
EGARCH model rather than conditional variance (as is the case in normal GARCH model) implies 
that the leverage effect (asymmetric response of volatility) is exponential and not quadratic. In other 
words, the specification of volatility (conditional variance) in terms of its logarithmic transformation 
implies that the parameters are no longer restricted to positive value. That is, the more realistic case 
wherein volatility response differentially to good news (positive shock) and bad news (negative 
shock) of the same magnitude is captured. This is a key advantage of EGARCH model over the 
symmetric GARCH model. 

In Ding, Granger and Engle  (1993), the standard deviation of GARCH model initially proposed by 
Bollerslev (1986), Taylor (1986) and Schwert (1989) is further generalized in such a way that the 
conditional standard deviation is raised to a power, d (positive exponent). The d-power conditional 
standard deviation is modeled as a function of lagged conditional standard deviation and lagged 
absolute innovations raised to the same power (d). The resultant model is called the power GARCH. 

The expression becomes a standard GARCH model when the positive exponent is set at two. 
Interestingly, the provision for the switching of the power increases the flexibility of the 
model. 

Similarly, in Zakoian (1994), the TGARCH model is specified by allowing the conditional standard 
deviation in the standard GARCH to depend on the sign of lagged innovations. This specification 
does not restrict parameter to a positive value. As has been said, one may note that parameter 
restriction to positive value is meant to guarantee the positivity of volatility (conditional variance). 
Nonetheless, to ensure stationarity of the TGARCH model, the parameters have to be restricted and 
the choice of error distribution should account for the stationarity. The TGARCH model is closely 
related to the GJR-GARCH model developed by Glosten et al. (1993).  

It is insightful to note that in response to the criticism concerning the a-theoretical nature of GARCH-
family models, the standard asymmetric GARCH-family models are now augmented with trading 
volume. In this regard, the pioneering work of Lamoureux and Lastrapes (1990) have found evidence 

                                                           

5In this regard, the asymmetric coefficients of asymmetric GARCH-family model are allowed to assume 
positive or negative values.  



  

 

                                

that the inclusion of trading volumes in GARCH models of return results in a decrease of the 
estimated volatility persistence or even causes it to disappear. Few studies have, however, found 
persistence in volatility even after incorporating trading volume as an information variable (see e.g. 
Najand and Yung, 1991; Chen et al, 2001). This show that the effect of trading volume on stock 
returns volatility is still an empirical issue. This study, therefore, finds it necessary to test the effect of 
trade volume in explaining stock returns volatility in the context of the Nigerian stock market. 

In term of choice of appropriate error distribution, economics and finance literature is also not 
unequivocal over appropriate choice of error distribution (normal, student-t or generalized error 
distribution) for robust modeling of stock returns. Since stock returns are characterized by certain 
stylized facts such as volatility clustering, leverage effect (asymmetric response of volatility to 
positive and negative shocks of the same magnitude) and are frequently fat-tailed, the traditional 
assumption of normality in volatility modeling of stock returns could lead to less than robust 
regression estimates. As we see in Mandelbrot (1963) and Fama (1965), it is deduced that daily stock 
returns are non-Gaussian and tend to have leptokurtic and fat-failed distribution. For this reason, 
Bollerslev (1986) relaxed the traditional normality assumption to accommodate time varying volatility 
by assuming that the error is student-t distributed. Similarly, Malmsten and Terasvirta (2004) argue 
that first order EGARCH model in normal error is not sufficiently flexible enough for capturing 
kurtosis and autocorrelation in stock returns. They, therefore, suggested that the standard GARCH 
model could be improved by replacing the normal error distribution with more fat-tailed error 
distribution since increasing the kurtosis of the error distribution will help standard GARCH model 
capture kurtosis in stock returns series.  

In this same line of thinking, Nelson (1991) recommended the use of EGARCH model with 
generalized error distribution (GED) based on, at least, two of its desirable properties. First, a student-
t error distribution may imply infinite unconditional variance for the errors; hence, the GED which 
accommodates more fat-tails than normal error distribution could help to increase the kurtosis and 
reduce the autocorrelation of squared observation. Second, the EGARCH model is stationary if the 
innovations have a generalized error distribution (GED).This study, therefore, estimates first order 
symmetric and asymmetric GARCH-family models, each, in Normal, Student‟s-t and generalized 
error distributions (GED) with a view to determining the volatility model with best predictive power 
in the most appropriate error distribution. This is important not only for proper forecasting of stock 
return in Nigeria that guide investor‟s portfolio choice, it is also necessary for accurate assessment of 
value at risk (VaR). Importantly, the determination of optimal forecasting model of stock returns 
makes a crucial pre-condition for the Central Bank‟s intervention in the stock exchange market. 

2.2. Review of Empirical Literature 

Following the seminal work of Engle (1982) on volatility modeling, several other works have been 
done. Yet, certain theoretical/empirical issue, such as the effect of error distribution assumption on the 
conditional variance (volatility)and forecasting performance of GARCH family models, is scarce and 
unresolved (see Franses and McAleer, 2002;Anders, 2006). Some of the works on volatility modeling 
estimate a particular GARCH model with one or two error distributions, while some apply a particular 
error distribution to few ARCH family models to either: (i) establish the best forecasting model for 
conditional variance; (ii) determine the best fitted volatility model or; (iii) confirm the ability of a 
model to capture stylized facts inherent in high frequency financial time series. As has been noted, the 
contribution of trade volume (as a surrogate for information arrival to explain stock return volatility) 
and error distribution assumption on the forecasting performance of returns volatility is very scanty 
(minimal). As Atoi (2014) notes, available literature tend to capture the asymmetric properties of 
financial data without recourse to error distribution. 

Jayasuriya (2002) examines the effect of stock market liberalization on stock returns volatility in 
Nigeria and fourteen other emerging market data, from December 1984 to March 2000 to estimate 
symmetric GARCH model. The study found that positive (negative) changes in prices have been 
followed by negative (positive) changes in volatility. The Nigeria portion of the result indicates more 
of business cycle behavior of stock return rather than volatility clustering. In studying volatility 
behavior of stock returns for emerging markets, Ogum et al (2005) apply the Nigerian and Kenya 
stock data on EGARCH model. The finding differed from that of Jayasuriya (2002). Although 
volatility persistence was found in both markets; volatility responds more to negative shocks in the 
Nigeria market and the reverse is the case for Kenya market. 



 
 

 

                                

Okpara and Nwezeaku (2009) randomly selected forty one companies from the Nigerian stock 
Exchange to examine the impact of beta and idiosyncratic risk on returns using data from 1996 to 
2005. By relying on EGARCH (1, 3) model, the result shows less volatility persistence and indicates 
the presence of leverage effect in the Nigerian stock exchange, implying that bad news (negative 
shock) drives volatility more than good news (positive shock) of equal magnitude. Dallah and Ade 
(2010) investigated the volatility of daily stock returns of Nigerian insurance stocks using daily data 
from twenty six insurance companies covering a period of December 15, 2000 to June 9, 2008 as 
control data set and from June 10 2008 to September 9, 2008 as out-of-sample dataset. The results of 
ARCH (1), GARCH (1,1), TARCH (1,1) and EGARCH (1,1) indicate that EGARCH is more suitable 
in modeling stock returns as it outperforms the other models in the model-fit evaluation (using 
Schwarz and Aikike information ) and out-of-sample forecast (using RMSE and Thiel‟s Inequality 
Coefficient). 

A too I (2014) examines a set of first order symmetric and asymmetric ARCH family model using 
daily Nigerian All Shares Index (ASI) from June 2, 2008 to February 11 2013 under alternative error 
distributions (normal, student-t, and generalized error distribution). The result shows that PGARCH 
(1, 1, 1) in student-t error distribution has the best predictive power based on root mean square error 
(RMSE) and Theil‟s inequality coefficient (TIC). The findings also shows the presence of leverage 
effect and recommends that empirical works should consider alternative error distributions so as to 
guarantee robust volatility forecasting model for sound policy decision and proper investment 
portfolio choice.  

Chang (2010) analyzes the effect of the economic and financial crisis on Chinese stock return 
volatility using daily data from 2000 to 2007 as the pre-crisis period and 2007 to 2010 as the during-
crisis period. The findings show that the EGARCH model fits the data better than the GARCH model 
in modeling the volatility of Chinese stock returns. The result also indicates that volatility is more 
persistent during crisis period than in pre-crisis period. 

Dallah and Ade (2010) examined the volatility of daily stock returns of the Nigerian insurance stocks 
using daily data from twenty six insurance companies. The period December 15, 2000 to June 9, 2008 
was considered as the training data set and from June 10, 2008 to September 9, 2008 as out-of-sample 
data set. The result of ARCH (1), GARCH (1,1), TGARCH(1,1) and EGARCH(1,1) indicates that 
EGARCH(1,1) is more suitable in modeling stock price returns as it outperforms  the other models in 
model evaluation and out-of-sample forecast. 

An evaluation of the state of literature on GARCH family models shows that alternative error 
distributions (normal or Gaussian, student‟s t and generalized error distribution) have so far been 
ignored in modeling the volatility of stock returns in Nigeria. This study adds value to existing studies 
in this area by modeling stock returns volatility in three alternative error distributions with a view to 
selecting an optimal forecasting model for Nigeria. Further, in response to criticism concerning the a 
theoretical nature of volatility models, this study includes trading volume as an information variable 
(as suggested by Lamoureux and Lastrapes, 1990; Najand and Youn, 1991; Chen at al, 2001) to 
explain volatility of stock return in Nigeria. 

2.3. Analytical Framework of ARCH/GARCH Family Models 

The ARCH Model (Engel 1982 Model) 

Every ARCH or GARCH family model requires two distinct specifications: the mean and variance 
equations. According to Engel, conditional heteroscedasticity in a stock return (SRET) – denoted byyt 
– can be modeled using ARCH model expressing the mean equation in the form: 

    (1) 

Equation 1 is a „q‟ order autoregressive model. The mean equation is the same for all ARCH/GARCH 
family models. 

εt = σ1 v1, where v1  = i. i. d. N (0,1), i.e.,  the residual (εt) is independent and identically distributed 
with a mean of zero and unit variance. The conditional variance (volatility) is modeled with the use of 

ARCH model by specifying the series  thus: 



  

 

                                

                  (2) 

Where   and . 

An ARCH (q) model can be estimated using ordinary least square (OLS).  

To test for the presence of ARCH effect (i.e., the presence of ARCH component), we need to check if 
the coefficient of the ARCH term (αi) is statistically significant or not. A finding of ARCH effect 
justifies the use of GARCH family models. We employ the Langrange Multiplier test procedure 
proposed by Engle (1982) or the ARCH LM test. This procedure is as follows: 

First, we estimate the best fitting autoregressive model ARCH (q),  

and obtain the squares of the error  and then regress them on a constant (α0) and q lagged values of 
the residual as follows: 

                       (3) 

where  q is the lag order, i.e., length of ARCH lags.  

The hypothesis of ARCH effect is stated as follows: 

Ho: αi =0 for all i =1… q. 

H1: αi is not equal to 0 

The decision rule for test of ARCH effect is as follows: 

If probability value is less than 5%, we reject H0 (which say that there is no ARCH effect) and accept 
H1. In other words, we conclude that there is an ARCH effect. As has been noted, the mean equation 
is the same for all ARCH/GRACH family models 

2.4. GARCH (p, q) Model – Bollerslev (1986) and Taylor (1986) Model 

If an autoregressive moving average model (ARMA model) is found for the error variance (σt2), the 
model is a generalized autoregressive conditional heteroskedasticity (GARCH) model. The general 
specification of GARCH (p, q) is as follows: 

---    (4) 

Where αi = coefficients of the ARCH component; and βi = coefficient of the GARCH component. 

The three parameter (α0, αi and βi) are restricted to be positive (assumed to be non-negative) and αi + 
βi < 1 to achieve stationarity 

The test for the present of GARCH effect is established in two steps: 

First, we estimate the best fitting AR(q) model which is the AR (q) model  with a lag order that gives 
the lowest Aikike and Swartz information and highest log-likelihood ratio. 

Compute and plot the autocorrelations of  by  

                                             (5) 

The Exponential GARCH Model, EGARCH (Nelson, 1991) 

The exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model by 
Nelson (1991) is another version of the GARCH (p,q) model. The modification is that the lagged 
squared autoregressive component (ϵ2t-i) appearing in the standard GARCH model is replaced with a 
standard normal variable which may also come from a generalized error distribution (GED). Thus, the 
conditional variance of EGARCH (p,q) model is specified generally as:  



 
 

 

                                

 

log (σ2t) = β0 +∑qi = 1   αiεt-i +γiεt-i + ∑pj = 1βj log(σ2t-j)                                         (6) 

σt-i  σt-i  

Where αi, γi, βj are the coefficients of the ARCH, asymmetric and GARCH terms, respectively. 

εt-1 > 0 and εt-1< 0 implies good news and bad news respectively. Their total effects are (1 + γi)|εt-1| 
and (1 – γi) |εt-1|, respectively.  

When γi< 0 (statistically), the expectation is that bad news would have higher impact on volatility. 
The EGARCH model achieves covariance stationarity when ∑pj=1βj<1.  

Failing to accept the null hypothesis (H0) that γi = 0 (i.e., the acceptance of the H1 that γi< 0) shows 
the presence of leverage effect, that is bad news have stronger effect than good news on the volatility 
of stock index return. 

2.5. Threshold GARCH (TGARCH) Model (Zakoian, 1994)  

The TGARCH model is similar to GJR-GARCH in that it also introduces asymmetry into the model. 
The generalized specification of the conditional variance using TGARCH (p,q) is stated as follows:  

σ2t = β0 + ∑qi=iαii ε2t-i +  ∑qi=1γiIt-iε2t-i+ ∑pj=1βjσ2t-j                               (7) 

Where It-i = 1 if є2t < 0 and 0 otherwise. In other words, It-I is a binary number which assume a value 
of 1 if there is bad news, ε2t < 0 (negative shock) and zero if there is good news (positive shock). 

In the TGARCH model, bad news implies that є2t-i< 0 and good news implies that ε2t-i> 0 and these 
two shocks of equal magnitude have differential effects on the conditional variance. Good news has 
an impact of αi and bad news has an impact of αi + γi. Bad news increases volatility when γi> 0, 
which implies the existence of leverage effect in the i-th order and when γi ≠ 0 the news impact is 
asymmetric.  

2.6. Augmented Asymmetric GARCH- Family Models 

As has been noted, the occurrence of a time dependent conditional heteroscedasticity could be due to 
an increased volume of trading and/or variability of prices following the arrival of new information 
into the market. Trading volume is used as a measure of information flow. Lamoureux and Lastrapes 
(1990) empirically verified that the use of trading volume (as an additional variable in the conditional 
variance equation) leads to a significant decrease in volatility persistence (α + β) or, sometimes, a 
persistent parameter that is close to zero. Nonetheless, Lamoureux and Lastrapes (1990) also 
recognized that the use of contemporaneous trading volumes to explain volatility raises the issue of 
simultaneity bias, in that trading volume will not be a strict exogenous variable to stock returns. To 
solve this problem, Najand and Yung (1991) use lagged trading volume in their volatility equation. 
Recently, Tian and Guo (2006) using raw lagged volume and  natural log of lagged volume as an 
explanatory variable to augment the GARCH-family models found that the log of lagged volume 
achieve better results in terms of removing GARCH and ARCH effects.  

In this regard, this study augments the symmetric and asymmetric GARCH family models (GARCH, 
EGARCH and TGARCH) employed in the study using log of lagged trading volume. 

All the three estimable models for the study (GARCH, EGARCH, TGARCH) and their augmented 
versions (augmented GARCH, augmented EGARCH and augmented TGARCH) are estimated in 
three alternative error distributions (normal, student-t and generalized error distribution).  This gives 
rise to eighteen vitality models (see result in Table 1). 

2.7.  Error Distribution and Likelihood Functions 

To check the contribution of alternative error distribution to a robust modeling of the stock returns 
series, all estimable models (GARCH, EGARCH, TGARCH and their augmented versions) are 
estimated, each, in Gaussian (normal), student-t and generalized error distribution. The output from 
the alternative error distribution is evaluated on the basis of minimal Swartz information criteria, 
maximum log likelihood ratio and minimal volatility persistence, among others.  The likelihood 
function, L(θt), is given as 



  

 

                                

2 

L(θt) = -1/2ƩT
t-1 (ln2π + lnσ2

t  +ε2
t )                                                      (8) 

       σt  

The log variance (volatility), i.e., log , is specified for each of GARCH family models. Our 
assumption that the estimable models may follow alternative error distribution (GED or student-t) 
other than the usual Gaussian (normal) assumption tends to account for kurtosis in high frequency 
return series, which are not adequately captured  with normality assumption. As in equation 8, the 
volatility models are estimated with GED by maximizing the likelihood function as follows: 

 

L(θt) = -1 log    Γ1/v
3       - 1 logσ2

tΓ(3/v) (yt– X´tθ)2v/2    

     2 Γ (3/v)(v/2)22  σ2
tΓ(1/v)                         (9) 

       
Where  v> 0. V is the shape parameter which accounts for the skewness of returns. The larger the 
value of v the greater the weight of the tail. Generalized error distribution (GED) reverts to normal 
distribution if v = 0. 

In the case of student-t distribution, the volatility models considered are estimated to maximize the 
likelihood function of student‟s t-distribution as follows: 

 

L(θ)t = - 1 log  Π (r) Γ r/22 –  1log σ2
t   (r+1) log  1 + yt-x´

tθ)2           (10) 

      2 Γ((r+1)/2)2    2     2  σ2
t(r-2)    

Where r>2; Here, r is the degree of freedom and controls the tail behavior. The econometric 
specification of equation 8, 9 and 10is adopted from E Views 7.0 manual (also see Graham, 2005 and 
Eric, 2008 for further expositions on generalized error distribution). 

3. METHODOLOGY AND DATA 

This sub-section deals with the specification of our estimable GARCH family models, data source and 
transformation and model selection/forecasting evaluation. 

3.1. Estimable GARCH-Family Models 

σ2
t = α0+  𝑞𝑘=1 α1ε2

t-1+  𝑞𝑘=𝑗 βjσ2
t-1                     (11) 

log(σ2
t) = β0 +∑q

i = 1    α1εt-1+γ1εt-1 + ∑p
j = 1βj log(σ2

t-1)                                (12) 

σt-1  σt-1  

σ2t = β0 + α1ε2
t-1 +γ1It-1ε2

t-1+ β1σ2
t-1                                    (13) 

Equation 11, 12 and 13 are the estimable GARCH (1,1), EGARCH(1,1) and TGARCH(1,1) models, 
respectively. The respective augmented GARCH (1,1), EGARCH (1,1) and TGARCH (1,1) models 
are specified as equations 14,15 and 16, thus; 

σ2
t  = α0+  𝑞𝑘=1 α1ε2

t-1+  𝑞𝑘=𝑗 βjσ2
t-1    + ψlogVolumet-1                    (14) 

 

log(σ2
t) =β0 +∑q 

i = 1      α1εt-1 +γ1εt-1 + ∑p
j = 1βj log(σ2

t-1) +ψlogVolumet-1                         (15) 

σt-1   σt-1  

σ2t = β0 + α1ε2

t-1 + γ1It-1ε2

t-1 + β1σ2
t-1 +ψlogVolumet-1                     (16) 

 

where: α1=ARCH coefficient; β1 = GARCH coefficient; γ1 = asymmetric coefficient, i.e., coefficient 
of the asymmetric term; ψ = augmentation coefficient, i.e., coefficient of trading volume in the 
conditional variance equation 



 
 

 

                                

The a priori expectations are as follows: 

α1 >0; β1>0; γ1<,>0 for EGARCH and TGARCH respectively; ψ<,>0; α1 + β1 >1 (to achieve 
covariance stationarity);  

The rationale for ψ<,>0 is based on the fact that trading volume has yet an imprecise role in financial 
research (see Rose 1987). Nonetheless Lamoureux and Lastrapes (1990: 4) and Tiang and Guo 
(2006:12) assumed ψ>0.α1 is expected to be positively related to log conditional variance (volatility) 
since past residuals increase current volatilities. Further, a priori, β1> 0 since past variances typically 
lead to higher contemporaneous volatilities. This is a prominent stylized fact of financial time series, 
the so-called volatility clustering.  

As has been noted, equations 11, 12, 13, 14, 15, and 16 are estimated, each, in three alternative error 
distributions: Guassian (normal), student‟s t and generalized error distribution – giving rise to 18 
equations. The results are as presented in Table 1. 

3.2.  Data Source, Transformation and Test Procedure 

This study makes use of daily stock returns and trading volume of all listed companies in the Nigerian 
Stock Exchange. The data set were retrieved from cashcraft database (see www.cashcraft.com). Due 
to significant changes in the level of prices from time to time, it is more appropriate to base volatility 
measures on percentage return rather than absolute price movements. From investment point of view 
too, it is obvious that comparing rate of return is more meaningful than comparing absolute price 
movements (Rahman, Shafiqur, Lee, Cheng-Few and Ang, 2002, Tiang and Guo, 2006). The daily 
stock prices were logged (to reduce their variances) before transforming it to stock returns. 

The daily stock return data set is calculated from daily stock price series by the formula:  

SRETt = ln (STOCKPt/ STOCKPt-1*100)  

or SRET = dlogSTOCKP*100 ; 

where ln = natural log;  d = first difference operator,  

SRETt =stock returns at time t, STOCKPt = stock price at time t.  

The ASI used in this study spans from January 4, 2012 to 13th August , 2015 totaling 943data point 
for a „5-day per week‟ daily data set, out of which 913data points (January 4, 2012 to July2 , 2015) 
are used for model estimation and the remaining 30 data points (July 3 2015 to August 13, 2015) are 
used for model validation. This is important for optimal model selection. We also make use of its 
natural log of lagged trading volume series (logVolumet-1). The rationale for the use of log of lagged 
volume rather than its absolute lagged volume (as in Tian and Guo, 2006) is to improve the normality 
(standardize the variable) and, hence, better fit the GARCH-family models. The use of lag of volume 
(as suggested by Lamoureux and Lastrapes, 1990) rather than contemporaneous trading volume serves 
only to avoid possible simultaneity bias in that volume may not be strictly exogenous to stock returns. 

3.3.  Model Selection/Forecasting Evaluation 

We estimate each of the volatility models – GARCH (1,1), EGARCH (1,1), TGARCH (1,1) – and 
their augmented versions ((augmented GARCH (1,1), augmented EGARCH (1,1) andaugmented 
TGARCH (1,1) ) in normal, student‟s t and generalized error distribution (GED). This process 
generates eighteen volatility models. Model selection in terms of model fit was done using Schwarz 
information criterion (SIC). The model with least Schwarz criterion is adjudged the best fitted. 

 Another way of evaluating the adequacy of asymmetric models is the ability to show the presence of 
leverage effect; i.e., that bad news (negative shock) drives volatility higher than good news (positive 
shock) of equal size. The presence of leverage effect among the asymmetric models is examined by 
testing the null hypothesis that the asymmetric coefficient, γ=0 at 5% level of significance. Rejection 
of the null hypothesis implies the presence of leverage effect.  In other words, the sign and 
significance of the asymmetric coefficient (γ) point to the presence or otherwise of leverage effect. 

To test whether or not the augmented model out-performs the non-augmented model, we check if 
model augmentation reduces the persistence parameters (α1+ β1) or not (see Tian and Guo, 2006). 
This is synonymous to test of whether or not model augmentation increases the size and significance 
of asymmetric coefficient (γ) and/or improved its sign – since decline in persistence parameter tends 
to be associated with the former 

http://www.cashcraft.com/


  

 

                                

In term of forecasting performance (predictive power), clement (2005) maintains that out-of-sample 
forecasting ability remains the best criterion for selecting the model with best predictive power. We 
rely on two out-of-sample model selection criteria, namely:  root mean square error (RMSE) and 
Thiel‟s Inequality coefficient (TIC), U.  The models with minimum root mean square error (RMSE) 
and Thiel‟s Inequality coefficient (TIC) are selected and adjudged to have the best predictive power. 

4. RESULTS 

4.1. Descriptive Statistics of Series 

We begin the presentation of our empirical findings by first reporting some descriptive statistics 
(stylized facts) of stock returns and the result of our test for ARCH effect which justifies the use of 
symmetric and asymmetric GARCH-family models for our analysis. Both the Augmented Dickey 
Fuller (ADF) and Philip Perron (PP) tests of a unit root indicate that trading volume and return series 
are stationary at level; hence, there is no fear of spurious regression (see Table 9 in Appendix 1). Two 
important statistics when examining financial time series are the kurtosis and skewness. Table 
1reveals negative mean daily stock returns of -2.01 and the standard deviation which measures the 
riskiness of the underlying assets is 261.4. The higher the standard deviation, the higher the volatility 
of the market and the riskier the equity traded. Thus, this high volatility indicates high riskness of 
investing in the Nigerian stock exchange over the period under review. The difference between the 
minimum and maximum value of stock returns show wide variability in equity traded in the Nigerian 
stock exchange. 

Table1. Descriptive statistic of Daily All-Shares Stock Returns 

 

Source: Author 

Again, considering the skewness (-0.142) which is less than 0 (skewness of a normal distribution is 0), 
it means that the rate of return is not symmetric. The negative skewness indicates higher probability of 
making losses (negative returns)from the Nigeria Stock Exchange.  The kurtosis is 3.01 which is 
slightly greater than 3 (kurtosis of a normal distribution is 3). This indicates some degree of fat-
tailcharacteristics although the Jarque-Bera statistics indicate that the series is close to being normality 
distributed. 

The graphical test of volatility clustering (Figure 1) clearly shows that period of high volatility is 
accompanied by periods of low volatility. This feature of sustained period of high volatility and 
period of low volatility signifies volatility clustering, a stylized fact financial time series often exhibit. 
Our finding of volatility clustering and other stylized facts give credence to the application of 
GARCH-family models. 

 

Figure1.  Graph of Actual and Fitted values of Stock Returns 
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As has been noted, the basic test for justification (or otherwise) for the application of GARCH-family 
model is the ARCH-LM test. Table 2 shows the result of the test for ARCH effect when the residual 
of the ARCH model is subjected to ARCH-LM test. Since the probability of 0.0003 (0.03%) is less 
than 5%, it implies that the test statistic falls inside the region of rejection of H0. We, therefore, reject 
the null hypothesis (H0) of no ARCH effect. That is, we conclude that there is ARCH effect. This 
justifies the application of GARCH-family models for our analysis (see Atoi 2014; Tian and Guo, 
2006; Chang, 2010; Jiang, 2012 for further expositions). 

Table2. ARCH LM Test 

Heteroskedasticity Test: ARCH   
F-statistic 0.500613     Prob. F(1,918) 0.0003 

Obs*R-squared 0.501431     Prob. Chi-Square(1) 0.0009 

Source: Author 

4.2. Model Selection 

The presence of ARCH effect with other established stylized facts (e.g. the presence of volatility 
clustering and negative skewness) gave credence to the estimation of GARCH-family models. The 
estimation is implemented in three error distributions with a view to establishing the best forecasting 
model. Table 3 presents the result of six volatility  models [(GARCH(1,1), EGARCH(1,1), 
TGARCH(1,1), Augmented GARCH(1,1), Augmented EGARCH(1,1), Augmented TGARCH(1,1)], 
implemented in three error distributions (Gaussian or normal error distribution , student‟s t error 
distribution , and generalized error distribution), which gives rise to eighteen GARCH-family models. 

Table3. Estimation Results of GARCH-Family Models and their Augmented Versions 

 

Source: Author; Note: ** means significant at 5% 

In terms of the standard (non-augmented) GARCH –family models, GARCH (1, 1) and EGARCH (1, 
1) in GED, and TGARCH (1, 1) in normal error distribution returned least SIC. As regards the 
augmented asymmetric GARCH family models, the A_EGARCH (1,1) in GED and A_TGARCH 
(1,1) in GED returned minimum SIC. On the basis of these findings, GARCH (1, 1), EGARCH (1, 1), 
A_EGARCH (1, 1), A_TGARCH (1,1) in generalized error distribution  and TGARCH (1, 1) in 
normal error distribution are selected for forecast performance evaluation with a view to determining 
the model with best forecasting capability. The results of the fore casting performance evaluation will 



  

 

                                

not only supply lessons for optimal monetary policy intervention, it will also guide investor‟s choice 
of asset portfolio that ensures maximum profitability.  

For clarity, the estimation results are presented in Table 4in abridged forms in what follows. The 
percentage improvement in fitness of model due to the augmentation of the model is shown in Table 
4. As is obvious from the table 4, the inclusion of trading volume as a surrogate for information 
variable to explain volatility of stock returns (that is widely suggested in the literature) improved the 
fitness of the model. This is clearly shown by the relative minimum SIC for augmented GARCH-
family model (13.70220) with respect to its non-augmented counterpart (13.73348). 

Table4. Model Fit and Improvement of Non-Gaussian Process over Gaussian Process 

First Order 

GARCH Models 

Swartz information Criterion (SIC) % improvementof 

GaussianProcessby 

 

  

 Normal Distribution Student-t GED Student-t GED Grand 

Minimum SIC 

GARCH (1,1) 13.749 13.75652 13.73348 0.752 1.552 13.73348 

EGARCH(1,1) 13.75512 13.76306 13.75182 0.794 1.124  

TGARCH(1,1) 13.74918 13.75646 13.75548 NI NI  

A_GARCH(1,1) 13.7588 13.76605 13.76563 NI NI  

A_EGARCH(1,1) 13.7397 13.70641 13.70220 3.329 3.75 13.70220 

A_TGARCH(1,1) 13.76209 13.76181 13.71499 0.028 4.682  

Source: Authors calculation  

„NI’ Stands for Negative Improvement. This implies that TGARCH (1,1) and augmented GARCH (1,1) 

performed better under normal error distribution than under non-Gaussian process. ‘A_’ is a prefix for 
augmentation. 

From the result in Table 4, the result of EGARCH (1,1) cum lagged log-volume model performed 
better than other augmented models in terms of model fit. Similarly, as regards standard GARCH-
family models, GARCH (1,1) outperformed other models. This later result is similar to that of Tian 
and Guo (2006:8) for China.  In term of theoretical expectations, the augmentation coefficient 
(ψ)in the EGARCH (1,1) cum lagged log-volume model met the a priori expectations under the three 
alternative error distributions. This points to the importance of trade volume in explaining stock 
returns volatility and re-establishes the appropriateness of the A_EGARCH that has been selected (on 
the basis of minimum Scwartz information criterion) for forecast performance evaluation.   

Next, we analyze the presence or otherwise of leverage effect. The asymmetric coefficient of 
EGARCH model (γ1) met the a priori expectation in generalized error distribution but failed to meet 
the right sign in normal and student‟s-t error distribution (see Table 5). 

Table5. Analysis of Leverage Effect in asymmetric GARCH-family Models 

Asymmetric GARCH-family Model Asymmetric GARCH Coefficients  (γi)Under Alternative Error Distributions 

Normal  Student's t GED 

EGARCH (1,1) 0.1048 (0.0527**) 0.086618 (0.1793) -0.13864 (0.0054**) 

TGARCH(1,1) -0.1697 (0.0001**) 0.16972 (0.0001**) -0.16774 (0.000**) 

A_EGARCH(1,1) -0.16155 (0.0001**) -0.11686 (0.0432**) -0.11772 (0.0211**) 

A_TGARCH(1,1) 0.217  (0.0008) -0.1726 (0.0005**) -0.16902 (0.000**) 

Source: Author 

Note: The values in parenthesis the t-statistics. ** indicates significance at 5% level of significance. 

As Table 5clearly shows,the asymmetric coefficients (γi) across the three error distribution are 

significantly (statistically) different from zero showing the preponderance of leverage effect in 

Nigeria‟s stock returns. Thus, we conclude that the asymmetric GARCH-family models (and their 

augmented versions) indicate the presence of leverage effect. This means that bad news tend to induce 

higher volatility in stock returns than good news of equal magnitude. But as Table 5 also shows, the 

augmented EGARCH model shows more consistence in terms of signs of the asymmetric parameter 



 
 

 

                                

(γi)  across the three error distribution than its sister models. This result is not surprising given the fact 

that the A_EGARCH also returned least SIC among all augmented asymmetric GARCH models – on 

the basis of which it was selected as the best fitted asymmetric GARCH-family model analyzed in the 

study. 

Further, to investigate whether or not augmented models out-performs non-augmented models,we 

examine if model augmentation reduced persistence parameter (α1+ β1) in line with theoretical 
explanations (see Lamoureux and Lastrapes,1990 and Tian and Guo, 2006 for an exposition).  

Table6. Change in Persistent Parameter (α1+ β1) after Augmentation (%) 

Persistence Parameter before 
 Augmentation 

Persistence Parameter after 
 Augmentation 

% improvement (Decrease in  
Absolute Terms) 
 in Persistent Parameter (α1+ 
β1) due to Augmentation 

Model 
Type 

Normal 
Distribution 

Student-t GED Model Type Normal 
Distribution 

Student-t GED Normal 
Distribution 

Student‟s-t GED 

GARCH 
(1,1) 

0.691655 0.69165 0.400
01 

AGARCH 0.31119 0.31011 0.311971 38.1 38.15 8.8 

EGARCH 
(1,1) 

0.84705 0.48704 0.850
96 

AEGARCH 0.772206 0.777059 0.778076 7.48 -29 7.2 

TGARCH 
(1,1) 

0.647503 0.64785 0.647
50 

ATGARCH 0.320019 0.40403 0.56426 32.75 24.38 8.3 

Source: Author 

As can be seen from the Table6, except for EGARCH (1,1 ) model under student‟s t error distribution 
assumption, the augmentation of all GARCH-family models with log of lagged trade volume led to 
decrease in persistent parameters (α1+ β1).In other words, model augmentation increased leverage 
effect (represented by the coefficient,γ)in stock returns. 

Evaluating the empirical merit of whether or not trade volume explains stock returns volatility,Table 7 
shows that the coefficients of lagged log volume in the conditional variance (volatility) equations of 
all augmented GARCH-family model met the theoretical a priori expectation in that they are all 
negatively related to volatility. The coefficients of log lagged trade volume (ψ) are highly significant 
under the three alternative error distribution assumptions. This implies that trade volume plays quite a 
significant role (as a surrogate for information arrival) in explaining stock returns volatility in Nigeria. 
This result is similar to Lamoureux and Lastrapes (1990) but differ from those of Najand and Yung 
(1991) and Foster (1995). 

Table7. Relative Importance of Trade Volume in Augmented GARCH-family Models 

Coefficients of lagged log-volume in augmented GARCH family model (ψi) in three Error Distributions 
 Normal Student's t GED 
A_GARCH -0.000154 (0.0015**) -0.00015 (0.0029**) -0.000154 (0.0004**) 
A_EGARCH -7.9 E109 (0.000**) -7.93 E109 (0.000**) -7.9 E 9 (0.000**) 
A_TGARCH -0.00018 (0.000**) -0.00015 (0.0002**) -0.00016 (0.0001**) 

Note: The Values in parenthesis are the probability values.  ** indicates significance at 5% level of significance 

Evidence from the foregoing analyses have led to the selection of five volatility model – 
GARCH(1,1), EGARCH(1,1), A_EGARCH(1,1), A_TGARCH(1,1), and TGARCH (1,1) –based on 
minimum SIC for evaluation  of forecast performance. The result also shows that, in general, the 
volatility models performed better in generalized error distribution (GED) than in normal and 
student‟s t error distributions.   So far, we also found evidence of volatility clustering, leverage effect 
and the fact that trading volume plays quite a significant role in explaining stock returns volatility in 
Nigeria. Since we are essentially interested in determining the optimal forecasting model of stock 
returns in Nigeria, we analyze the forecast-performance of the five best-fitted GARCH-family models 
earlier selected on the basis of minimum SIC. 

As Table 8 clearly shows, GARCH (1,1) in GED out-performed other GARCH-family models as it 
returned minimum RMSE and Thiel‟s Inequality Coefficient (264.45 and 0.6086), respectively. As 
regards the augmented models, A_EGARCH (1,1) model in GED proved to be the best performing 
model. 

Table8. Forecast-Performance Evaluation of Five Best-Fitted GARCH-family Model 



  

 

                                

Selected GARCH-family Models 

Evaluation  
Criteria 

In Generalized Error Distribution (GED) in Normal Error 
GARCH(1,1) EGARCH(1,1) A_EGARCH(1,1) A_TGARCH(1,1) TGARCH(1,1) 

RMSE 264.45 264.47 264.9215 261.6744 261.7491 
TIC(U) 0.6086 0.60155 0.59992 0.635165 0.6295 
Bias 
Proportion 

0.0071 0.00047 0.00158 0.001656 0.0004 

Variance 
Proportion 

0.2627 0.23991 0.2322 0.3613 0.3434 

Source: Author (see EViews’ direct Output in Appendix) 

Note: 0=>U =<1: there is Perfect Fit if U = 0; there is Worse Fitif U=1 

Lower root mean square error (RMSE) indicates better forecasting ability of a model. 

The result of forecasting performance evaluation is further buttressed by graph of 30-day out-of-
sample forecast evaluation (Figure 2). Figure 2 presents five panels (A, B, C, D, E) indicating graphs 
of daily actual/forecast of stock returns plotted against time. A perceptive review of figure 2 indicates 
that the forecast of stock returns in panels A and C more closely trails actual returns than those of 
panels B, D and E. 

  

 

 

Figure2. Actual/Forecast of Returns for Best-Fitted GARCH-family Model in Alternative Error Distributions 

(July 3, 2015 to August 13, 2015) 

Source: Author (see actual and forecast data on daily stock returns in appendix) 

Therefore, on the basis of minimum RMSE and Thiel‟s Inequality coefficient, GARCH (1,1) and 
A_EGARCH (1,1) in generalized error distribution are adjusted the best performing GARCH-family 
model for analyzing Nigerian stock returns. 
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Table9. Result of Unit Root Test  

VAR ADF Statistics PP statistics 

Final conclusion  Lev 1st Diff Conclu Lev 1st Diff Conclu 

STOCKP 1.72 -1.12 inc 4.96* -1.56 I(0) I(0) 

SRET -48.93 - I(0) 5282.2 - I(0) I(0) 

Volume -280.75 - I(0) -282.02 - I(0) I(0) 

Source: Author’s computation. 

Note: ‘Drift’ or ‘intercept’ is assumed across the battery of Unit Root Tests; the respective critical values (CV) 
are ADF (2.93), and PP (2.93). * indicates significance at 5% LOS. The variables were examined in their level 

form, taking cognizance of the fact that taking log of variable is one way of inducing stationarity in data. The 

critical values changes when we assume ‘Drift’ ‘Drift and Trend’ or ‘none’. Inc stands for inconclusive. 

5. CONCLUSION AND RECOMMENDATIONS 

Our results shows that, in general, the volatility models performed better in generalized error 
distribution (GED) than in normal and student‟s t error distributions.  We found evidence of volatility 
clustering, leverage effect and the fact that trading volume plays quite a significant role in explaining 
stock returns volatility in Nigeria. As regards the augmented models, EGARCH (1, 1) model in GED 
proved to be the best performing model. On the basis of minimum RMSE and Thiel‟s Inequality 
coefficient, GARCH (1,1) and A_EGARCH (1,1) in GED are adjusted the best performing GARCH-
family model for analyzing Nigerian stock returns. Overall, the result provides evidence of high 
probability of making negative return from investment in the Nigerian stock market over the sample 
period. We recommend that alternative error distributions should be considering when modeling stock 
returns so as to guarantee robust volatility forecasting model for sound policy decision and proper 
investment portfolio choice 
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