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Abstract

Is the supply of researchers or the demand for technologies more important for
innovation? The supply of research labor captures a scale effect, whereas the demand
from production labor for technologies captures a market-size effect. We find that both
the scale effect and the market-size effect are important for innovation and their relative
importance depends on the relative intensity of lab-equipment R&D and knowledge-
driven R&D in the innovation process.
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1 Introduction

In an influential study, Jones (1999) shows that the R&D-based growth model features a scale
effect, which implies that a larger labor force causes a higher growth rate of technologies.
Intuitively, with a larger labor force, there is more labor for R&D. Acemoglu (2002) shows
that the R&D-based growth model also features a market-size effect under which the growth
rate of technologies is increasing in the amount of labor that uses the technologies. Therefore,
the scale effect and the market-size effect are closely related. Acemoglu (2002) writes, "[s]ince
the scale effect is related to the market size effect [...], one might wonder whether, once we
remove the scale effect, the market size effect will also disappear."
This study disentangles the scale effect and the market-size effect. The supply of research

labor determines the scale effect, whereas the demand from production labor for technologies
determines the market-size effect. In a Schumpeterian growth model that features both lab-
equipment R&D and knowledge-driven R&D, we find that the growth rate of technologies is
generally increasing in both research labor and production labor. Therefore, both the scale
effect and the market-size effect matter to innovation. However, their relative importance
depends on the relative intensity of lab-equipment R&D and knowledge-driven R&D. Under
knowledge-driven R&D that uses research labor as input, only the scale effect matters to
innovation. Under lab-equipment R&D that uses final good as input, only the market-size
effect matters to innovation. In general, the importance of the scale effect relative to the
market-size effect is increasing in the intensity of research labor relative to final good in the
innovation process. Extending our analysis to a semi-endogenous growth model, we find that
the scale effect and the market-size effect are still present but affect the long-run level of
technologies, instead of the long-run growth rate of technologies. We also confirm our results
in a hybrid growth model that features both endogenous and semi-endogenous growth.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which new products drive innovation.
Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992)
develop the Schumpeterian model in which higher-quality products drive innovation. Jones
(1999) shows that these seminal studies feature a scale effect and discusses two approaches
of removing this scale effect.1 Acemoglu (2002) develops an R&D-based growth model of
directed technical change and argues that "the scale effect and the market size effect [...]
are distinct". He shows that the market-size effect exists even without the scale effect on
growth; however, his formulation maintains the scale effect on level. Our study complements
Acemoglu (2002) by showing the different determinants of the scale and market-size effects
and the importance of the relative intensity of two conventional R&D specifications.

2 A Schumpeterian growth model

We consider the Schumpeterian model. Previous studies often assume that the R&D sector
uses either research labor (i.e., knowledge-driven R&D) or final good (i.e., lab-equipment
R&D). We specify a generalized R&D process that uses both research labor and final good.

1See Laincz and Peretto (2006), Cozzi (2017a, 2017b) and Peretto (2018) for recent studies.
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2.1 Household

The representative household has the following utility function:

U =

∫
∞

0

e−ρt ln ctdt, (1)

where the parameter ρ > 0 is the discount rate and ct denotes consumption at time t. The
household supplies m units of manufacturing labor and s units of research labor. Research
labor s determines the supply of an input for innovation and captures the scale effect. Pro-
duction labor m uses invented technologies and determines the market size of innovation.
The household maximizes utility subject to the following asset-accumulation equation:

ȧt = rtat + wm,tm+ ws,ts− ct. (2)

at is the real value of assets (i.e., the share of monopolistic firms). rt is the real interest rate.
wm,t and ws,t are respectively the real wage rates of manufacturing labor and research labor.
Standard dynamic optimization yields

ċt
ct
= rt − ρ. (3)

2.2 Final good

Competitive firms produce final good yt using the following Cobb-Douglas aggregator:

yt = exp

(∫ 1

0

ln xt(i)di

)
, (4)

where xt(i) is intermediate good i ∈ [0, 1]. The conditional demand function for xt(i) is

xt(i) =
yt
pt(i)

, (5)

where pt(i) is the price of xt(i).

2.3 Intermediate goods

There is a unit continuum of monopolistic industries producing differentiated intermediate
goods. The production function of the industry leader in industry i ∈ [0, 1] is

xt(i) = z
qt(i)mt(i), (6)

where the parameter z > 1 is the quality step size, qt(i) is the number of quality improvements
that have occurred in industry i as of time t, and mt(i) is manufacturing labor employed in
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industry i. Given the productivity level zqt(i), the marginal cost of the leader in industry i
is wm,t/z

qt(i). The monopolistic price is

pt(i) = µ
wm,t
zqt(i)

, (7)

where the markup µ ∈ (1, z) is a policy parameter determined by the government.2 The
wage payment is

wm,tmt(i) =
1

µ
pt(i)xt(i) =

1

µ
yt, (8)

and the monopolistic profit is

πt(i) = pt(i)xt(i)− wm,tmt(i) =
µ− 1

µ
yt. (9)

2.4 R&D

Equation (9) shows that πt(i) = πt. Therefore, the value of inventions is the same across
industries such that vt(i) = vt.

3 The no-arbitrage condition that determines vt is

rt =
πt + v̇t − λtvt

vt
, (10)

which states that the rate of return on vt is equal to rt. The return on vt is the sum of
monopolistic profit πt, capital gain v̇t and expected capital loss λtvt, where λt is the arrival
rate of innovation.4

Competitive entrepreneurs recruit research labor st and devote Rt units of final good to
perform innovation. The arrival rate of innovation is

λt = ϕ(st)
1−α

(
Rt
Zt

)α
, (11)

where ϕ > 0 is a productivity parameter and Zt denotes aggregate technology. The parame-
ter α ∈ [0, 1] is the intensity of final good relative to research labor in the innovation process.
Knowledge-driven R&D is captured by α = 0, whereas lab-equipment R&D is captured by
α = 1. The first-order conditions for {st, Rt} are (1− α)λtvt = ws,tst and

αλtvt = Rt ⇔ αϕs1−α
(
Rt
Zt

)α−1
vt
Zt
= 1, (12)

which uses (11) and st = s.

2Grossman and Helpman (1991) and Aghion and Howitt (1992) assume that the markup is equal to the
quality step size z, due to limit pricing between current and previous quality leaders. Here we follow Evans
et al. (2003) to consider price regulation under which the regulated markup ratio is µ ∈ (1, z).

3We follow the standard approach in the literature to focus on the symmetric equilibrium. See Cozzi et
al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique rational-expectation
equilibrium in the Schumpeterian model.

4When the next innovation occurs, the previous technology becomes obsolete. This is known as the Arrow
replacement effect; see Cozzi (2007) for a discussion.
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2.5 Economic growth

Aggregate technology Zt is defined as

Zt ≡ exp

(∫ 1

0

qt(i)di ln z

)
= exp

(∫ t

0

λωdω ln z

)
, (13)

which uses the law of large numbers. Differentiating the log of Zt with respect to time yields
the growth rate of technology given by

gt ≡
Żt
Zt
= λt ln z. (14)

Substituting (6) into (4) yields the aggregate production function given by

yt = exp

(∫ 1

0

qt(i)di ln z +

∫ 1

0

lnmt(i)di

)
= Ztm. (15)

Thus, the growth rate of output yt is also gt, which is determined by λt as shown in (14).
From (3) and (10), the balanced-growth value of an invention is

vt =
πt
ρ+ λ

=
µ− 1

µ

Ztm

ρ+ λ
, (16)

which uses (9) and (15). Equation (16) shows that vt is increasing in production labor m,
capturing the market-size effect in Acemoglu (2002). Substituting (16) into (12) yields

λ = αϕs1−α
(
Rt
Zt

)α−1
µ− 1

µ
m− ρ. (17)

Substituting st = s into (11) yields

λ = ϕs1−α
(
Rt
Zt

)α
. (18)

Combining (17) and (18) yields

(ρ+ λ)αλ1−α =

(
α
µ− 1

µ

)α
ϕs1−αmα, (19)

which determines the unique steady-state equilibrium λ.
Equation (19) shows that the arrival rate λ of innovation is increasing in production labor

m (i.e., the market-size effect) and research labor s (i.e., the scale effect). Therefore, the
equilibrium growth rate g in (14) is also increasing in the market-size effect m and the scale
effect s. Proposition 1 summarizes this result.

Proposition 1 Economic growth is increasing in the market-size effect and the scale effect.
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Considering a zero discount rate ρ→ 0, we can simplify (19) to

lim
ρ→0

λ =

(
α
µ− 1

µ

)α
ϕs1−αmα. (20)

Substituting (20) into (14) yields

lim
ρ→0

g =

(
α
µ− 1

µ

)α
ϕs1−αmα ln z, (21)

which shows that the importance of the market-size effect m relative to the scale effect s
on growth is increasing in the intensity α of final good relative to research labor in the
innovation process. Equation (19) shows that this result is robust to ρ > 0.5 Intuitively, as
α increases, R&D spending Rt becomes more important for innovation relative to research
labor st; consequently, the market-size effect, which determines the value of inventions,
becomes more important relative to the scale effect in determining innovation. Proposition
2 summarizes this result.

Proposition 2 The importance of the market-size effect relative to the scale effect on eco-
nomic growth is increasing in the intensity of final good relative to research labor in the
innovation process.

Finally, we consider knowledge-driven R&D given by α = 0 and lab-equipment R&D
given by α = 1. Under knowledge-driven R&D, the arrival rate of innovation is λKD = ϕs
and the growth rate of technology is gKD = ϕs ln z. Therefore, only the scale effect s
matters under knowledge-driven R&D because innovation is solely determined by the supply
of research labor in this case.6 Under lab-equipment R&D, the arrival rate of innovation is
λLE = ϕm(µ−1)/µ−ρ, and the growth rate of technologies is gLE = λLE ln z. Therefore, only
the market-size effectmmatters under lab-equipment R&D because innovation is determined
by the demand for technologies in this case.7 Proposition 3 summarizes these results.

Proposition 3 Under knowledge-driven R&D, only the scale effect matters to innovation.
Under lab-equipment R&D, only the market-size effect matters to innovation.

5One can apply the approximation ln(X) ≈ X − 1 to (19) to show that ∂λ/∂m ≈ α and ∂λ/∂s ≈ 1− α.
6This result is robust to allowing s to be allocated between research sr and production sx. For example,

one can modify (6) as xt(i) = z
qt(i)[mt(i)]

β [sx,t(i)]
1−β to confirm that gKD is still independent of m.

7If we assume that s can be allocated to production sx and specify xt(i) = z
qt(i)[mt(i)]

β [sx,t(i)]
1−β , then

gLE = [ϕmβs1−β(µ−1)/µ−ρ] ln z. Although innovation is also determined by s in this case, its effect works
through the market size (i.e., the demand from production labor sx = s for technologies).
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3 A scale-invariant Schumpeterian growth model

In this section, we allow for population growth and convert the model into a semi-endogenous
growth model. In this case, we assume that research labor is st ≡ sLt and production labor
is mt ≡ mLt, where s + m ≤ 1 and population Lt increases at an exogenous growth rate
n > 0. Then, we modify the innovation process in (11) as follows:

λt =
ϕ(st)

1−α

Zφt

(
Rt
Zt

)α
, (22)

where the parameter φ > 0 and the new term Zφt capture an increasing-difficulty effect of
R&D similar to Segerstrom (1998). The rest of the model is the same as in Section 2. We will
show that Rt/Zt is proportional to mt and increases at the rate n in the long run. Therefore,
(st)

1−α(Rt/Zt)
α also increases at the rate n. Then, a steady-state arrival rate λ of innovation

requires that Zφt also grows at the rate n in the long run. Therefore, the long-run growth
rate of aggregate technology Zt is g = n/φ, and the steady-state arrival rate of innovation is
λ = g/ ln z = n/(φ ln z).8

Substituting (16) into αλtvt = Rt yields

Rt
Zt
=
µ− 1

µ

αλ

ρ+ λ
mt, (23)

which shows that Rt/Zt is proportional to mt in the long run. Substituting (23) into (22)
yields the long-run level of technology (per capita) as follows:

Zφt
Lt
=
ϕ(st/Lt)

1−α(mt/Lt)
α

λ

(
µ− 1

µ

αλ

ρ+ λ

)α
=
ϕs1−αmα

λ

(
µ− 1

µ

αλ

ρ+ λ

)α
, (24)

where λ = n/(φ ln z) is determined by exogenous parameters. Equation (24) shows that
the long-run level of technology is increasing in the market-size effect m and the scale effect
s. Furthermore, the relative importance of the market-size effect m and the scale effect s
on innovation is determined by the relative intensity α of final good and research labor in
innovation. Under knowledge-driven R&D (i.e., α = 0), only the scale effect s matters to
innovation. Under lab-equipment R&D (i.e., α = 1), only the market-size effect m matters
to innovation. All these results are the same as before, except the effect on innovation is
reflected in the long-run level of technology instead of the long-run growth rate of technology.

3.1 Labor allocation

In this section, we extend the semi-endogenous growth model by allowing the factor input s
to be allocated between research sr and production sx. Specifically, we modify (6) as follows:

xt(i) = z
qt(i)[mt(i)]

β[sx,t(i)]
1−β, (25)

8Alternatively, one can achieve long-run endogenous growth despite population growth by replacing Zφt
in (22) with Lt, where Lt captures a dilution effect in the spirit of Laincz and Peretto (2006). In this case,
(19) is the same as before except for s1−αmα being replaced by (st/Lt)

1−α(mt/Lt)
α.
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where β ∈ (0, 1). In the appendix, we derive the long-run level of technology (per capita) as

Zφt
Lt
=
ϕs1−αβmαβ

λ
Ω, (26)

where λ = n/(φ ln z) and the composite parameter Ω is defined as

Ω ≡

(
α
µ

)α (
1−α
1−β

)1−α
λ(µ−1)
ρ+λ

[
1 + 1−α

1−β
λ(µ−1)
ρ+λ

]1−αβ .

Equation (26) shows that technology Zφ/Lt is increasing in the market-size effect m and
the scale effect s. The importance of m relative to s is increasing in α. The exponent on s
is 1 − αβ = 1 − α + α(1 − β), where 1 − α captures the scale effect from sr and α(1 − β)
captures the market-size effect from sx. Under knowledge-driven R&D (i.e., α = 0), only
the scale effect s matters to technology. Under lab-equipment R&D (i.e., α = 1), only the
market-size effect mβs1−β matters, where s1−β captures the demand from production labor
(sx)

1−β for technologies. All these results are the same as before.

3.2 Hybrid innovation

In this section, we extend the Schumpeterian growth model by modifying (22) as follows:

λt =

(
θ

Zφt
+
1− θ

Lt

)
ϕ(st)

1−α

(
Rt
Zt

)α
, (27)

where the parameter θ ∈ [0, 1] determines the importance of semi-endogenous growth relative
to endogenous growth. This hybrid innovation originates from Cozzi (2017a). For simplicity,
we focus on β = 1. Substituting (23) into (27) yields the following condition:

(ρ+ λ)αλ1−α =

(
θ
Lt

Zφt
+ 1− θ

)(
α
µ− 1

µ

)α
ϕs1−αmα. (28)

Whether the balanced growth path exhibits semi-endogenous growth or endogenous growth
depends on the population growth rate n.
If n is below a threshold n∗, then Lt/Z

φ
t converges to zero. In this case, the steady-state

arrival rate of innovation is endogenous and determined by

(ρ+ λ)αλ1−α = (1− θ)

(
α
µ− 1

µ

)α
ϕs1−αmα. (29)

The threshold is defined as n∗ ≡ φλ∗ ln z, where λ∗ is the endogenous λ determined in (29).
If n is above n∗, then Lt/Z

φ
t converges to a positive steady state. The steady-state

innovation arrival rate λ = n/(φ ln z) is semi-endogenous. The long-run level of technology
from (28) is

Zφt
Lt
=

{
(ρ+ λ)αλ1−α

θϕs1−αmα

[
µ

α(µ− 1)

]α
−
1− θ

θ

}−1
. (30)
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We see that λ∗ in (29) and Zφ/Lt in (30) are both increasing in the market-size effect m
and the scale effect s. The importance ofm relative to s is increasing in α. Under knowledge-
driven R&D (i.e., α = 0), only the scale effect s matters to innovation. Under lab-equipment
R&D (i.e., α = 1), only the market-size effect m matters to innovation. Thus, our results are
robust to hybrid innovation with a new insight that whether the economy features endogenous
growth or semi-endogenous growth depends on the population-growth threshold n∗, which
is increasing in s1−αmα; i.e., a larger scale or market-size effect makes endogenous growth
more likely by raising λ∗ because semi-endogenous growth requires λ = n/(φ ln z) > λ∗.

4 Conclusion

In this study, we find that both the supply of research labor that determines the scale effect
and the demand from production labor for technologies that determines the market-size effect
matter to innovation. Interestingly, the relative importance of these supply and demand
factors depends on the relative intensity of lab-equipment R&D and knowledge-driven R&D
in the innovation process. Therefore, this structural parameter has important empirical
implications. For example, it determines whether an education policy that increases research
labor at the expense of production labor stimulates or stifles economic growth. If the intensity
of lab-equipment R&D is high relative to knowledge-driven R&D, then a policy that promotes
apprenticeships, such as the European Alliance for Apprenticeships, may be more effective
in stimulating economic growth.
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Appendix (not for publication)

In this appendix, we generalize the production function in (6) as follows:

xt(i) = z
qt(i)[mt(i)]

β[sx,t(i)]
1−β. (A1)

From cost minimization, the marginal cost of production for the leader in industry i is

MCt(i) =
1

zqt(i)

(
wm,t
β

)β (
ws,t
1− β

)1−β
. (A2)

Given pt(i) = µMCt(i), the monopolistic profit and wage payments are respectively

πt(i) =
µ− 1

µ
pt(i)xt(i) =

µ− 1

µ
yt, (A3)

wm,tmt(i) =
β

µ
pt(i)xt(i) =

β

µ
yt, (A4)

ws,tsx,t(i) =
1− β

µ
pt(i)xt(i) =

1− β

µ
yt. (A5)

The arrival rate λt of innovation is given by (22) with st replaced by sr,t. The first-order
conditions for {sr,t, Rt} are

(1− α)λtvt = ws,tsr,t, (A6)

αλtvt = Rt. (A7)

Substituting (A1) into (4) yields

yt = Zt(mt)
β(sx,t)

1−β. (A8)

From (3) and (10), the balanced-growth value of an invention is

vt =
πt
ρ+ λ

=
µ− 1

µ

Zt(mt)
β(sx,t)

1−β

ρ+ λ
, (A9)

where the second equality uses (A3) and (A8). Substituting (A9) into (A7) yields

Rt
Zt
=

αλ

ρ+ λ

µ− 1

µ
(mt)

β(sx,t)
1−β. (A10)

Substituting (A5) and (A9) into (A6) yields

sr,t
sx,t

=
1− α

1− β

λ(µ− 1)

ρ+ λ
. (A11)

Substituting (A10) and (A11) into (22) yields

λ =
ϕ(sx,t)

1−αβ(mt)
αβ

Zφt

(
α

µ

)α(
1− α

1− β

)1−α
λ(µ− 1)

ρ+ λ
, (A12)

which shows that a steady-state equilibrium λ requires Zφt to grow at the rate n. Substituting
(A11) into sx,t + sr,t = st yields

st =

[
1 +

1− α

1− β

λ(µ− 1)

ρ+ λ

]
sx,t. (A13)

Substituting (A13) into (A12) yields (26).
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