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Abstract

In some situations forecasts for a number of sub-aggregations are required for

analysis in addition to the aggregate itself. In this context, practitioners typically

rely on bottom-up methods to produce a set of consistent forecasts in order to avoid

conflicting messages. However, using this approach exclusively can mean that fore-

casting accuracy is negatively affected when compared to using other methods. This

paper presents a method for increasing overall accuracy by jointly combining the

forecasts for an aggregate, any sub-aggregations, and the components from any

number of models and measurement approaches. The framework seeks to benefit

from the strengths of each of the forecasting approaches by accounting for their

reliability in the combination process and exploiting the constraints that the ag-

gregation structure imposes on the set of forecasts as a whole. The results from the

empirical application suggest that the method is successful in allowing the strengths

of the better-performing approaches to contribute to increasing the performance of

the rest.

Keywords: Bottom-up forecasting; Forecast combination; Hierarchical forecast-

ing; Reconciling forecasts

JEL codes: C53, E27, E37

*This research was produced while studying at the School of Economics and Finance, Queen Mary Univer-

sity of London and the author acknowledges and is grateful for their financial support.

1



1 Introduction

Macroeconomic aggregates play a fundamental role in assessing the state of the eco-

nomy. Consequently, many different people and institutions devote considerable re-

sources to predicting key economic variables. When it comes to policy-making institu-

tions, however, the interest usually goes beyond that of the aggregate alone. As Esteves

(2013) points out, these institutions often need to have detailed breakdowns of their

aggregate forecasts. One obvious reason for this is that they may wish on occasions to

provide some additional information to the public. It is likely, however, that the strongest

reasons have to do with the analysis that remains within the institution. In the context

of inflation forecasting, Espasa and Senra (2017) encourage looking beyond the aggreg-

ate alone, based on the argument that a similar Headline Inflation can correspond to

very different inflation situations which, in turn, may require very different actions to

be taken by the authorities.

Policy-making institutions find it relevant to look at a breakdown of components, be-

cause this can provide useful information concerning the components themselves, provide

better understanding of the aggregate and increase aggregate forecasting accuracy (Es-

pasa and Senra, 2017). In line with this view, it is not uncommon to find alternative dis-

aggregation scenarios being presented within the same assessment, as a way of provid-

ing further insight for a particular topic. In this context, if forecasts for the aggregate,

any sub-aggregations and the components are produced independently of one another,

inconsistent and conflicting messages may appear. Because of this, practitioners typ-

ically rely on using a bottom-up approach that includes all the necessary components

to produce a consistent underlying forecasting scenario (Esteves, 2013; Ravazzolo and

Vahey, 2014).

However, using the bottom-up approach alone can mean that aggregate accuracy is

negatively affected when compared with other methods. In particular, the relevant em-

pirical literature points out that, depending on the scenario, the direct methods may

produce more accurate forecasts than the bottom-up approach.1 There are strong argu-

ments in favour of using direct approaches instead of the bottom-up approach when the

concern is aggregate accuracy alone. One of these is that, due to cancellation between

components, aggregates can behave relatively smoothly even when the disaggregate

data has a high degree of volatility (Hyndman et al., 2011). Another is that common

1This is supported theoretically by Lütkepohl (1987) and many empirical comparisons like: Espasa et al.

(2002), Benalal et al. (2004), Hubrich (2005) and Giannone et al. (2014) for inflation in the Euro area;

Marcellino et al. (2003), Hahn and Skudelny (2008), Burriel (2012) and Esteves (2013) for European GDP

growth; and Zellner and Tobias (2000), Perevalov and Maier (2010) and Drechsel and Scheufele (2013) for

GDP growth in specific industrialized countries.
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factors that are relatively unimportant at an individual level may dominate the aggreg-

ate (Granger, 1987). A third is that bottom-up strategies that treat the disaggregate

components independently would almost certainly be misspecified, because they cannot

properly approximate the underlying multivariate process (Hendry and Hubrich, 2011).

Practitioners who do not want to rely on the bottom-up approach have the alternative

of simply using direct methods for the aggregate and reconciling the disaggregate fore-

casts when needed. Proceeding in this way, however, has the undesirable result that

any useful information arising from the interactions between components is discarded

(Hyndman et al., 2011). As pointed out previously, the direct method is better than the

bottom-up approach in certain situations. In others, it is the latter that performs best. A

forecaster who is concerned with overall accuracy will, therefore, want to benefit from

both methods if possible.

If the concern were only for the aggregate, a popular way of dealing with competing

forecasts would be simply to combine them. The idea of forecast combination was

put forward quite a while ago in Bates and Granger (1969) and deals with the issue

of exploiting the information contained in each individual forecast in the best possible

way. The evidence in favour of using these methods as a way of increasing forecast-

ing accuracy is substantial (Timmermann, 2006). As explained by Hoogerheide et al.

(2010), a common justification for using forecast combination is that in many cases

it is impossible to identify the true economic process and, therefore, different models

play a complementary role in approximating it. Another is that, in the context of be-

ing unable to establish the single model that produces the smallest forecasting error

in advance, combination appears as a way of hedging against choosing an exceedingly

bad one (Hubrich and Skudelny, 2017). The second of these justifications seems par-

ticularly relevant for policy-makers, given their aversion to correcting their published

assessments.2

Notwithstanding the extensive literature on combination methods, almost all of it deals

with one variable at a time. In the context of forecasting economic aggregates and their

components, this means disregarding the aggregation structure as a source of valuable

information. A notable exception to this apparent omission in the combination literat-

ure is that of Hyndman et al. (2011). They propose a combination method to improve

overall accuracy of an aggregate and its components, using the structure underlying the

aggregate and any sub-aggregations. Specifically, they use individual forecasts for all

levels of aggregation and combine them optimally. In their empirical application, they

find that the method improves overall accuracy. Despite their good results, it is limited

in at least two ways that could restrict its applicability to other problems. On the one

2Goodhart (2004) argue that perceived mistakes by the central banks could rapidly undermine the pub-

lic’s confidence in them.
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hand, the combination weights are determined solely by the aggregation structure. On

the other, the method can only handle a single hierarchical structure.

In terms of the combination weights, there are situations where information regarding

the quality of the forecasts under consideration is available, in which case it could be

desirable to be able to incorporate this information into the combination process. Such

a situation could come up in a context where data is released asynchronously. Because

of the lag in the publication of GDP, for example, current quarter growth is routinely

estimated based on leading indicators (Antipa et al., 2012).3 In many cases this involves

estimating GDP components based on information that is usually not published at the

same time, meaning that a new estimate can be produced with every new release (Bell

et al., 2014; Higgins, 2014; Mogliani et al., 2017).4 In this context, it should be expected

that the relative reliability of the different forecasts would change significantly every

time a model is run. Also, even if no prior information regarding the reliability of the

forecasts is available, another reason why it may be desirable to have some control over

the combination weights is that the combination literature highlights the gains that

can be obtained from weighting different forecasts based on their recent performance

(Timmermann, 2006).

As regards allowing more than one hierarchy to be considered, the appeal lies in the

fact that alternative measurement approaches and stratifications can provide valuable

information for the forecasting process. For example, based on the theoretical argu-

ments given by Clark (2004), Peach et al. (2013) and Tallman and Zaman (2017) find

significant improvements in aggregate accuracy from forecasting the prices of goods

and services separately. Hargreaves et al. (2006) and Jacobs and Williams (2014) make

a similar case for tradable and non-tradable inflation. Being able to consider both strat-

ifications in the combination process may therefore be desirable. The same argument

can be made for forecasts coming from different measurement approaches. Frale et al.

(2011), for example, find gains in aggregate accuracy from combining forecasts from the

production and expenditure approaches for measuring GDP, while Aruoba et al. (2013)

do so for the income and expenditure perspectives.

This chapter picks up on this point and, in order to improve overall accuracy of a dis-

aggregate forecasting scenario, develops a framework that is flexible enough to incor-

porate both these aspects. For this purpose, it brings together the literature devoted

to increasing forecasting accuracy through alternative disaggregation choices with that

of forecast combination. The method consists of producing individual forecasts for all

3In Europe, for example, the first preliminary estimate of total GDP is released about 45 days after the

end of the reference quarter and the first complete estimate about 65 days after.
4The Federal Reserve Bank of Atlanta’s nowcasting tool, for example, is updated on average five or six

times a month following nearly every major economic data release (Higgins, 2014).
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the series involved and considering them as initial guesses. They are then updated,

based on their relative reliability, so that they comply with the identities that define the

aggregate.

The rest of the chapter is organized as follows: Section 2 develops the framework that

allows series from different levels of aggregation from any number of measurement

approaches to be combined. Section 3 presents an empirical implementation using

CPI data for France, Germany and the United Kingdom. Section 4 summarizes the

conclusions.

2 A Framework for Combining Forecasts from Different Ag-

gregation Levels and Alternative Measurement Approaches

The motivation for developing a multi-level combination method is that incorporating

the information regarding the aggregation structure into the forecasting process of the

components could improve their accuracy. Given that any set of component forecasts

necessarily implies an aggregate forecast, it is also desirable that the multi-level method

should exhibit the improvements that are expected from aggregate combination alone.

For this reason, in what follows, the task of developing a multi-level combination frame-

work is viewed as one of extending traditional single-variable combination methods so

that they allow the bottom-up aggregate forecasts to be expressed in terms of the un-

derlying component forecasts.

In this context, a property that is required in developing the multi-level method is that

it should result in the same outcome as that of a comparable traditional method, if the

circumstances are equivalent. An example for this is that, in a context where the direct

aggregate and bottom-up forecasts are equally reliable, the aggregate forecasts result-

ing from combining both aggregate forecasts should be the same as that of combining

the direct aggregate forecasts with those of the components. In incorporating the com-

ponents into the combination process, two additional properties are considered to be

desirable. The first requires consistency between the reliability of the components and

that of the resulting aggregate. Although it could be argued otherwise, it makes eco-

nomic sense that if all components have the same reliability according to some measure,

this should be equal to the reliability of the aggregate that results from adding up the

components. The second additional property establishes that once the reliability of the

different forecasts is taken into consideration, in line with considering the initial es-

timates as the best guesses, the combination procedure should result in each of the

definitive forecasts deviating as little as possible from their initial estimates.
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Figure 1: Different Aggregation Scenarios for an Aggregate

Note: Numbered squares highlight different aggregation scenarios: 1. A single one-level hierarchy, 2. Two different
measurement approaches for the same aggregate, each based on a one-level hierarchy, and 3. A two-level hierarchy with
two sets of non-nested sub-aggregations. The shaded rectangle highlights the type of hierarchical structure considered
in Hyndman et al. (2011).

To have a notion of the forecasting setting under consideration, Figure 1 presents a

simple picture of the general aggregation structure. It shows two different measure-

ment approaches for the same aggregate, based on the same basic components. By

considering non-nested sub-aggregations, the structure is not strictly hierarchical in

the sense considered by Hyndman et al. (2011). Figure 1 also outlines the strategy

for developing a method to solve such a combination problem. It consists in starting

from a simple problem and progressively extending it to the more complex setting. The

numbered squares illustrate this progression. The first two steps consider developing

the necessary framework to solve the problem for a single one-level hierarchy and then

extending it to admit multiple disjoint measurement approaches. The third and final step

consists in using the results from both the previous settings to solve the combination

for any number of levels and sub-aggregations. In practice, this is done by formulating

the general problem as one of a succession of one-level combinations.5

2.1 One-Level Hierarchies

People working on the compilation of aggregate statistics regularly face the need to bal-

ance information from different sources in order to produce official statistics. In many

of those applications, like the production of national accounts and social-accounting

matrices, the reconciliation process involves a massive amount of data, with the result

that procedures have been proposed over the years to iron out the differences (Dalgaard

5The general framework is derived step-by-step in section A of the Appendix.
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and Gysting, 2004). In a recent paper, Rodrigues (2014) cast the whole problem of bal-

ancing statistical economic data into a Bayesian framework. They suggest treating the

data as stochastic processes, modelling their prior properties accordingly and finding

the balanced posterior by means of relative entropy minimization.

The process proposed by Rodrigues (2014) equates to searching for a posterior distri-

bution that is as close as possible to the prior while satisfying the required restrictions.

Although their implementation is specific to balancing economic data, the principle be-

hind their framework resembles the problem of any sort of forecast combination. The

individual forecasts serve as best guesses, where different forecasts have different re-

liability and cross-sectional identities must be met. They establish that a number of

the conventional reconciliation methods are in fact particular cases of their general

framework and show that there is a one-to-one correspondence. Based on this corres-

pondence, they argue that it is possible to identify the conventional method’s underlying

assumptions and go on to suggest using least squares approaches when uncertainty es-

timates are available.

2.1.1 Optimization Problem for a Single One-Level Hierarchy

The problem of combining direct aggregate forecasts with the components from a bottom-

up approach is one of finding the set of forecasts that satisfies the required restrictions

and is as close as possible to the preliminary figures. In particular a least-squares for-

mulation is used. This means letting the undefined criterion for “as close as possible”

be governed by some quadratic loss function.

The problem for a one-level hierarchy is expressed as a general constrained quadratic

program of the form:

min
α,β

A∑

i=1

fi,t (yi,t, αi,t, ϕi,t)
2 +

D∑

d=1

N∑

j=1

gd,j,t (qd,j,t, βd,j,t, φd,j,t)
2

(1)

subject to:

(1 + α1,t) y1,t −

N∑

j=1

(1 + β1,j,t)w1,j,tq1,j,t = 0

(1 + α1,t) y1,t − (1 + αi,t) yi,t = 0 for i = 2 to A

(1 + β1,n,t) q1,n,t − (1 + βd,n,t) qd,n,t = 0 for d = 2 to D, n = 1 to N

where yi,t is the preliminary forecast for time t of the i-th aggregate model of a total

of A, αi,t is the percentage deviation of the definitive forecast from the preliminary, ϕi,t
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is its exogenously chosen optimization weight and fi,t is some function of the three.

Similarly, qd,n,t is the preliminary forecast for time t for component n of the d-th model

of a total of D disaggregate models, βd,n,t is the percentage deviation of the definitive

forecast from the preliminary, φd,n,t is its exogenously chosen optimization weight, gd,n,t

is some function of the three and wd,n,t is the respective aggregation weight.6

2.1.2 An Analytic Solution for a Single Set of Forecasts

With the problem formulated in this way, in addition to the obvious influence of the reli-

ability weights, it is the choice of loss function that ultimately determines the outcome.

To facilitate finding an appropriate loss function, the problem is first restricted to that of

combining one set of forecasts. That is, only one direct aggregate forecast and a single

set of disaggregate forecasts. In this context, the following loss function is proposed:

ϕt (αtyt)
2 +Qt

N∑

j=1

φj,twj,tqj,tβ
2
j,t (2)

with Qt =
∑N

j=1 (wj,tqj,t).

In deriving this particular loss function, the empirical success of the simple weighted

averages is used as the foundation and then extended to admit aggregates and compon-

ents in the same problem. There is ample evidence suggesting that in practice simple

methods often perform better than more involved procedures (Timmermann, 2006), with

the equal-weighted average standing out as a benchmark that is hard to beat (Smith and

Wallis, 2009; Elliott, 2017). To admit the components into the combination procedure,

the proportional distribution approach proposed by Denton (1971) is used. As pointed

out by Pavia-Miralles (2010), this is one of the most successful methods in the area,

given its simplicity and overall good performance. The approach fits well within the

framework as it involves minimizing the percentage deviation between the definitive

series and the initial approximations.7

Using this loss function and minimizing it subject to the restriction that the aggregate

has to be equal to the sum of the components, (1+αt)yt−
∑N

j=1wj,t(1+βj,t)qj,t, produces

6All variables are in levels and that for simplicity it is assumed that all components and aggregation

weights are strictly positive.
7Their approach is more general in that it considers minimizing the h-th differences so as to allow for

movement preservation if necessary.
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a solution that the definitive aggregate forecast is:

ỹt = Q̃t =

Q2
t + yt

N∑

j=1

(
ϕt

φj,t
wj,tqj,t

)

Qt +
N∑

j=1

(
ϕt

φj,t
wj,tqj,t

) (3)

and the definitive forecast for any given component is:

q̃n,t =


1 +

ϕt

φn,t
·

yt −Qt

Qt +
∑N

j=1

(
ϕt

φj,t
wj,tqj,t

)


 qn,t (4)

From these results, the fulfilment of the desirable properties set out in the introduction

to this section can be verified.

It is easy to see that the initial estimates of the components are modified by a factor

that is the same for all components, except the first term, ϕt

φn,t
. If all components have

equal reliability, that is φn,t = φt for all n, the expression
∑N

j=1

(
ϕt

φj,t
wj,tqj,t

)
is equal

to ϕt

φt
Qt meaning that the property regarding the coherence between aggregate and

disaggregate reliability weights is fulfilled. With this, equation (4) simplifies down to:

q̃n,t = qn,t +
ϕt

φt + ϕt
· (yt −Qt)

qn,t

Qt

making obvious the proportional distribution of the difference between the prelimin-

ary aggregate forecasts between components. Likewise, equation (3) simplifies to the

weighted average of the aggregate forecasts, meaning that the equivalence with the

traditional combination methods under comparable circumstances is met.

The suggested loss function results in the desired outcome for one set of forecasts.

If more than one set is considered for each variable, the outcome does not meet the

aforementioned conditions. The problem can be avoided, however, simply by combining

the multiple forecasts for the individual series before performing the combination of

different levels and choosing the optimization weights so as to reflect the previous step.8

2.1.3 Extension to multiple disjoint measurement approaches

On occasions, forecasts from more than one measurement approach may be available.

An immediate example of this is the fact that there are three measurement perspectives

8This is shown in section A of the Appendix.
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for GDP. In this context, it could be beneficial to incorporate them into the same com-

bination process. The one-level combination method developed in the previous section

can easily be extended to do so.

For an aggregate that can be obtained as the sum of K alternative measurement ap-

proaches, where each approach is the result of the weighted sum of the respective

strictly positive Nk components, let there be a direct aggregate forecast y and K dis-

tinct aggregate forecasts, each based on the corresponding Nk component’s forecasts.

The minimization problem involving the aggregate reliability weight ϕ, the disaggregate

reliability weights φk,n and the aggregation weights wk,n, is:

min
α,β

ϕ (αy)2 +
∑K

k=1

[
Qk

∑Nk

j=1 φk,jwk,jqk,j (βk,j)
2

+2λk

(
(1 + α)y −

∑Nk

j=1wk,j(1 + βk,j)qk,j

)]

Solving the problem subject to the corresponding constraints results in the definitive

aggregate forecast being:

ỹ =

y +

K∑

k=1

(
Qk ·

Qk

χk

)

1 +

K∑

k=1

Qk

χk

(5)

and the definitive forecast for any given component being:

q̃k,n =

(
1 +

ϕ

φk,n
·
ỹ −Qk

χk

)
qk,n (6)

As in the case of a single hierarchy, for more than one set of forecasts, the same com-

bination process is followed, except that the multiple forecasts are combined in a prior

step and optimization weights are chosen to reflect this.

2.1.4 Bounds for and Response to Reliability Weight Values

In this section the bounds for the weights are explored in order to establish the feasible

region in which they guarantee a unique solution for the minimization problem. The

sensitivity of the final outcome to the choice of weights is also explored.

From the solutions it is immediately clear that what matters is the relative reliability

and therefore that the impact of a given value has to be examined in relation to the
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rest of the components. As regards to finding a single solution, both extremes for the

reliability of a forecast are examined.9

Considering as a starting point that all weights are set equal to some value, one extreme

is to have no confidence in certain forecasts. If this were the case for the aggregate

forecast only, this would mean making ϕt = 0 and therefore ỹt = Qt. On the other

hand, if it were the case for a single component n = 1, making φ1,t = 0 means that this

component absorbs all the deviation. This is clear from appreciating that ϕt

φ1,t
→ ∞ and

therefore that limφ1,t→0 (1 + αt) yt = yt. This means that the forecasts from all but this

component are taken as given and that the definitive forecast q̃1,t is found residually. It

also means that only one forecast can have a reliability weight equal to zero, otherwise

the minimization problem has infinite solutions.

The other extreme is to be completely confident about some forecasts. If this were the

case for the aggregate forecast, this means making ϕt go to infinity. In such a case it

is easy to see that limϕt→∞ (1 + αt) yt = yt. On the other hand, for a single component

n = 1, making φ1,t go to infinity implies that ϕt

φ1,t
→ 0. This means that the weight

given to the direct forecast decreases but still remains positive. Taking it to the extreme

and making all component weights go to infinity decreases to zero the weight given

to the direct forecast. That is limφt→∞ (1 + αt) yt = Qt where φn,t = φt for n = 1 to

N . Theoretically all forecasts cannot be certain, but in practice the weights have to be

given a finite number.

For the purpose of allowing for some degree of combination it makes sense to restrict

the aggregate forecasts by giving them finite reliability weights. For the components,

on the other hand, one could have a weight that implies certainty, maybe due to the

early release of relevant data. Following these guidelines, however, does not necessar-

ily prevent nonsense results occurring. This might happen, for example, when some

forecasts are considered to be as good as certain. Setting valid but contradictory reli-

ability weights could result in unintended outcomes such as components measured in

levels becoming negative, due to insufficient degrees of freedom in the the combination

procedure.

As regards the sensitivity of the outcome to different values of the reliability weights, it

is possible to see how the solution in equation (3) is affected by varying ϕt and φn,t by

looking at the effect of the reliability of one component when the rest are held constant.

For this purpose, let φi,t = kϕt and φn,t = ϕt for all other components. Using these

weights results in the solution being:

ỹt =

(
1 +

k

k − (k − 1)si

)−1(
k

k − (k − 1)si
Qt + yt

)
(7)

9For simplicity the analysis is performed for a single hierarchy and only one set of forecasts.
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where si =
wi,tqi,t

Qt
.

Not surprisingly, the additional weight that is given to the bottom-up forecast depends

on the relative reliability of the component and its weight within the aggregate. If there

were only one component -that is equivalent to having many components but giving

them all the same reliability- si = 1 and Qt would be given k times more weight than yt.

On the opposite side of the spectrum, as si tends to zero the extra weight given to Qt

converges to zero.

2.2 Multi-Level Hierarchies and Alternative Sub-aggregations

This section presents the general framework for multi-level combination. The method

involves deriving for each forecast for the aggregate and sub-aggregations a set of con-

sistent component forecasts and then combining them to produce a definitive bottom-

up forecast. The method effectively breaks down the whole problem into a sequence

of one-level combinations. In terms of the aggregate forecasts, it is shown that this is

equivalent to combining the aggregate forecasts produced from different intermediate

aggregation levels for the case of equal reliability weights. By construction, the result

is a fully consistent forecasting scenario.10

2.2.1 An Aggregate Forecast Expressed as a Set of Reconciled Components

Let there be a single aggregate forecast y and a single set of disaggregate forecasts qn

for n = 1 to N , the aggregate reliability weight ϕ, the disaggregate reliability weights

φn and the aggregation weights wn. In this context, based on the one-level framework,

the aggregate and component forecasts are given by equations (3) and (4). Then, to

have a disaggregate scenario that is consistent with y taking qn, for n = 1 to N , as the

best guesses, it is enough to make the aggregate reliability arbitrarily large, ϕ → ∞.

With this, the y-consistent component forecasts are given by:

q̂
(y)
n,t =


1 + yt−Qt

φn,t·
∑N

j=1

(

1
φj,t

wj,tqj,t

)


 qn,t (8)

Having taken into consideration the relative reliability of the components in the process

of producing the y-consistent components, the new set of forecasts can inherit the reli-

ability of y. With this, definitive component forecasts can be produced by combining the

10The derivation is shown in detail in section B of the Appendix,
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original and y-consistent forecasts:

q̃altn,t =
φn,tqn,t+ϕtq̂

(y)
n,t

φn,t+ϕt

=

(
1 + ϕt

φn,t
· yt−Qt

(φn,t+ϕt)
∑N

j=1
1

φj,t
wj,tqj,t

)
qn,t

For equal weights among components, that is φn = φ, the sum of them results in a

definitive aggregate forecast that is the weighted average of both preliminary aggregate

forecasts.

This result, which is valid for one level of disaggregation, is extendible to unlimited

exhaustive groupings of components. Let there be S unique groupings of Ks sub-

aggregations of components. The best guess of the decomposition of any sub-aggregation

ys,k can be found using equation (8). That is:

q̂
(ys,k,t)
n,t =

(
1 +

ys,k,t−Qs,k,t

φn,t·χs,k,t

)
qn,t

with χs,k,t =
∑

qn∈ys,k

1
φn,t

wn,tqn,t and Qs,k,t =
∑

qn∈ys,k

wn,tqn,t.

Following the same process as for the one-level case, the definitive forecast for the

components is given by:

q̃n,t =


1 + 1

φn,t+
S
∑

s=1
ϕs,k,t

·
S∑

s=1

(
ϕs,k,t

φn,t
·
ys,k,t−Qs,k,t

χs,k,t

)

 qn,t (9)

Summing up these forecasts for the case where all forecasts within the same grouping

have the same reliability, results in the definitive aggregate being:

ỹt =
φtQt+

S
∑

s=1
ϕs,tYs,t

φt+
S
∑

s=1
ϕs,t

(10)

where Ys,t =

Ks∑

k=1

ys,k,t.

It becomes clear that, under these circumstances, the definitive forecast is a weighted

average of all the aggregate forecasts and, therefore, that for the case of equal weights,

combining the aggregate forecasts produced from different aggregation levels is equi-

valent to the aggregate bottom-up forecast that results from imposing the different ag-

gregate and intermediate forecasts on the component forecasts and then combining all

the resulting component forecasts.
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2.2.2 Multi-level Combination Algorithm

The previous section shows that the process of combining many different aggregation

levels and measurement approaches can be broken down into a series of one-level com-

binations involving each sub-aggregation and the components. With this, the procedure

to generate the definitive aggregate forecast and fully-consistent underlying scenario is

described by the following algorithm:

1. Forecasting Step:

(a) Produce individual forecasts for each of the models

(b) Establish reliability weights for each of the forecasts

2. Single-variable Combination Step:

(a) Combine all single variable forecasts

(b) Establish reliability weights for each of the single variable forecasts

3. Multi-level Combination Step:

(a) For each variable in all K sub-aggregations, perform a one-level combination

with the bottom-level components assigning the variable an arbitrarily large

reliability weight and using the components’ own reliability weights.

(b) For each of the N components, combine the original forecasts with theK sets

of sub-aggregation consistent component forecasts, using for the latter the

reliability weight of the corresponding sub-aggregation variable.

(c) With the definitive component forecasts use a bottom-up approach to produce

the definitive forecasts for the aggregate and sub-aggregations.

As in the case of the one-level combination, caution should be taken in making sure that

contradictory reliability weights are not used in the combination process. The possibility

of clashes between reliability weights could increase, given that in each step of the

multi-level combination the sub-aggregation is assigned an arbitrarily large weight.

3 Empirical Application

As an empirical application of the method, a forecasting exercise is performed using CPI

data from France, Germany and the United Kingdom. Six different forecasting models

and four different ways of establishing the combination weights are used within the
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framework. The evaluation is performed over the 2001-2015 period in a quarterly rolling

scheme using a ten year window where in each period the models are re-estimated and a

one-year-ahead quarterly forecast is generated.11 The aggregate forecasting accuracy is

assessed by comparing the results with that of the single models and traditional forecast

combinations. The forecasting accuracy of the components is evaluated against that of

the single models.

3.1 Data and Sub-aggregations

For the exercise, CPI data for France, Germany and the United Kingdom is used. The

data is quarterly and seasonally adjusted, spanning from 1991 to 2015 and available

from the OECD statistics database. For all three countries the chosen lowest level of

disaggregation are the twelve components presented in Table 1.

Table 1: Components Breakdown for Empirical Application

1. Food and non-Alcoholic beverages 6. Health

2. Alcoholic beverages, tobacco and narcotics 7. Transport

3. Clothing and footwear 8. Communication

4. Housing, water, electricity, gas and 9. Recreation and culture

other fuels 10. Education

5. Furnishings, household equipment and 11. Restaurants and hotels

maintenance 12. Miscellaneous goods and services

Regarding the sub-aggregations, three are chosen. The first two are in line with the ex-

tensive literature considering core measures for inflation. Aron and Muellbauer (2012)

make a relatively extensive survey of studies that measure the benefits of removing

certain components for forecasting, most of which find improvements from treating

food and energy separately from the rest of CPI. The first sub-aggregation is therefore

this breakdown. In line with Clark (2004); Peach et al. (2013) and Tallman and Zaman

(2017), the second sub-aggregation separates the remaining CPI components from the

first sub-aggregation in goods and services. The third follows Hargreaves et al. (2006)

and Jacobs and Williams (2014), who similarly argue that the forces driving prices of

tradables and non-tradables are very different in nature. They find significant improve-

ments in aggregate accuracy from considering them separately.

The distribution of the different components among the sub-aggregation follows John-

son (2017) as closely as possible.12 Taking all these factors into consideration, the

11This is only a pseudo real-time forecasting exercise given that historical data revisions and vintages are

ignored.
12The actual distribution is presented in section D of the Appendix.
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Figure 2: Aggregation Structure of the Empirical Application

aggregation structure for the empirical application is presented in Figure 2.

3.2 Forecasting Models

Univariate models

Regardless of the numerous developments in econometric modelling, univariate meth-

ods continue to provide a strong benchmark against which to compare other models

(Marcellino, 2008; Chauvet and Potter, 2013). They are also the methods used in many

of the aggregate-disaggregate forecasting competitions and are therefore a reasonable

starting point.

The first model is a random walk for the quarterly growth rate. The forecasts are pro-

duced using:

x̂i,t+1|t = xi,t

where xi,t is the first difference of the logarithm of the variable. The second is an

autoregressive model of order one for the first differences of the variables, xi,t = ai +

ρixi,t−1 + ǫi,t, where the forecasts are then produced using:

x̂i,t+1|t = âi + ρ̂ixi,t

Multivariate models

To account for the interdependence between components, Bayesian Vector Autoregress-

ive models (BVARs) are also used. Following the implementation in Banbura et al.

(2010), the estimated model is:

Xt = c+A1Xt−1 + . . .+A5Xt−5 + ǫt
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and the forecasts are produced using:

X̂t+1|t = ĉ+ Â1Xt + . . .+ Â5Xt−4

In particular, four specifications are used. The two first sets of VARs include Gross

Domestic Product (GDP) and the respective set of series: i.e. Headline CPI alone, and

each of the three sub-aggregations and components separately. The first of the set of

VARs is estimated with all variables in first differences. In the second, the variables are

differentiated according to a unit root test.13

Following the notion in Hendry and Hubrich (2011), VARs that include all CPI series

and GDP in the same model are also estimated. Similarly, the VARs are estimated in

first differences and differentiated according to the tests.

The smallest VARs, that is the two that include GDP and only Headline CPI, are estim-

ated by OLS using two lags. All the others are estimated using five lags and the choice

of overall tightness, as in Banbura et al. (2010), is made so that the in-sample fit equals

that of a two-variable VAR with five lags estimated by OLS over the first 10 years of the

sample.

All this results in six sets of forecasts over the forecasting horizon for each one of the

variables.

3.3 Empirical Reliability Weights

Even in the absence of relevant external knowledge, it may be desirable to determine

reliability weights based on the properties of the preliminary estimates. Timmermann

(2006) present an extensive survey on some of the suggestions from the combination lit-

erature for single variables and more become available from ongoing research (Hansen,

2008; Wei and Yang, 2012; Hsiao and Wan, 2014). Taking into consideration the ease

with which each suggestion can be incorporated into the framework, four alternatives

are suggested.

Scheme 1: Equal Weights

An obvious choice for the first set of weights is equal weights. This, because it serves

as a natural benchmark against which to compare all the others and because in the

traditional combination literature it has proved to perform remarkably well.

13The differentiation is presented in section D of the Appendix.
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Scheme 2: In-Sample Fit

Using in-sample fit to determine combination weights is not uncommon. Kapetanios

et al. (2008) find promising results from using weights calculated using information

criteria. Extending their particular approach to compare different series, however, is

not straightforward. As an alternative, a normalization of the measure used by Banbura

et al. (2010) to determine in-sample fit for their Bayesian VARs is implemented.

For this purpose, let the root mean square percentage error (RMSPE) at time u using

information up to time p for the h-step ahead forecast of xi as:

RMSPEi,u,p,h,v =

√√√√1

v

u−h∑

s=u−h−v

(
xi,s+h|p

xi,s+h
− 1

)2

(11)

where xi,s+h|p is the fitted value for xi using the coefficients calculated at time p and

v determines how much data is included in the measure. The latter is limited by the

number of lags that are included in each model.

The weights based on in-sample fit are then defined as:14

ωISP
i,t,h,v =

1

RMSPEi,t,t,h,v
(12)

The reliability weights are calculated for every rolling window using the five most recent

years of the window as evaluation sample.

Scheme 3: Out-of-Sample Past Performance

An obvious extension of the idea of weighting according to predictability is to weigh

the different forecasts based on their recent out-of-sample performance. This approach

goes as far back as Bates and Granger (1969). Empirical studies suggest that forecasts

weighted by the inverse of their MSE are found to work well in practice (Stock and

Watson, 1999; Timmermann, 2006).

Following the same idea and arguments expressed for the in-sample fit weights, the

weights based on out-of-sample past performance are defined as:

ωOSP
i,t,h,v =

1

RMSPEi,t,s,h,v
(13)

14In the context of forecast combination using predictive measures, Eklund and Karlsson (2007) raise

awareness regarding the possibility of distorting weight distribution due to overconfidence in models that

over-fit data. Aiolfi and Favero (2005) for example use the model’s R
2 to decide on the combination of

forecasts.
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where in this case the s that goes into the formula as the time subscript is not a para-

meter, but the index in the sum embedded in equation (11). The reliability weights are

calculated for every rolling window using the last two years as evaluation window.

Scheme 4: Optimal weights

In the context of single variable combinations Granger and Ramanathan (1984) ad-

dress the problem of determining the optimal combination weights as a least-squares

regression problem. Hyndman et al. (2011) extend the approach to a setting with vari-

ables from different aggregation levels. In their implementation, however, they only

consider forecasts from one hierarchy. To enable combining forecasts from both sub-

aggregations, an approximation is necessary.

The proposed approximation consists in treating all sub-aggregations as independent

and calculating the weights following the procedure in Hyndman et al. (2011). A primary

hierarchy is chosen and the weights for the other sub-aggregations are supplied from

the other hierarchies, ensuring that they are consistent with those of the chosen primary

hierarchy.15 As the weights from this method depend on the aggregation structure and

not on the reliability of the forecasts, the combination weights do not change from one

period to the next.

3.4 Forecasting Accuracy Evaluation

The forecasting accuracy is presented for different horizons by means of the model’s

mean square forecasting error (MSFE) relative to that of a benchmark model. That is,

for variable i, horizon h and using model m, the relative MSFE is:

RelMSFE(i,h,m) =
MSFE

(i,h,m)
T0,T1

MSFE
(i,h,0)
T0,T1

with

MSFE
(i,h,m)
T0,T1

=
1

T1 − T0 + 1

T1∑

t=T0

(
y
(m)
i,t+h|t− yi,t+h

)2

where y
(m)
i,t+h|t is the forecasted value for t+h at time t and T0 is the last period of actual

data in the first sample used for the evaluation and T1 is the last period of actual data in

the last sample. As usual, a RelMSFE lower than one reflects an improvement over the

benchmark model for which m = 0.

15The derivation is presented in section C of the Appendix
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As regards measuring the overall forecasting accuracy of the components, this is done

by comparing the cumulative absolute errors in the contribution to the aggregate level.

For this purpose the cumulative absolute root mean square forecasting error for an

aggregate with N components qn, horizon h and using model m is defined as:

CumRMSFE
(h,m)
T0,T1

=

√√√√√ 1

T1 − T0 + 1

T1∑

t=T0

(
N∑

n=1

wn,t+h · abs
(
q
(m)
n,t+h|t− qn,t+h

))2

where q
(m)
n,t+h|t is the forecasted value for t + h at time t and T0 is the last period of

actual data in the first sample used for the evaluation and T1 is the last period of actual

data in the last sample. To evaluate the significance of the differences, for both the

aggregations and components, the forecasts are compared using the modified Diebold-

Mariano test for equality of prediction accuracy proposed by Harvey et al. (1997).16

3.5 Results

The forecasting application involves six different forecasting models and five different

aggregation approaches. This means that for each country there are 30 alternative ag-

gregate forecasts from which to choose. Table 2 presents the individual models’ relative

forecasting accuracy over the 2001-2015 sample for the three countries.

From inspecting the results, it becomes apparent that some of them occur in all three

countries. One is that the dispersion in the performance of the different models is large,

reaching 40% in the most extreme cases. Another, is that the AR(1) models perform

best and large BVARs that differentiate the variables according to the unit root test per-

form worst. Also, in all cases the best performing models show improvements of at least

15 to 20% over the aggregate random walk, depending on the horizon. Beyond that,

however, differences appear. For France, for example, it would seem that forecasting

the aggregate directly or using the separation between tradables and non-tradables, i.e.

Sub-aggregation 3, results in the most accurate forecasts. Also, the improvements of

the better models over the random walk and large BVARs are statistically significant for

all sub-aggregations. For Germany, on the other hand, the choice of sub-aggregation

does not seem to make much impact on the results with the differences between models

being not statistically significant in most cases. Finally, for the United Kingdom using

the AR(1) for Sub-aggregation 3, or with a bottom-up approach using the components,

produces the best results. Using the AR(1) with other sub-aggregations produces fore-

casts that are significantly worse. As in the case of France, in this case too the large

BVARs are significantly worse than the better models.

16Original test proposed by Diebold and Mariano (1995).
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Table 2: Single-Model Aggregate Forecasting Errors by Sub-aggregation

France Germany United Kingdom

Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Headline CPI

RW 1.00°° 1.00°° 1.00°° 1.00°° 1.00° 1.00°° 1.00 1.00 1.00 1.00 1.00 1.00

AR 0.91 0.82 0.73 0.67 0.88 0.80 0.78 0.74 0.96°° 0.91°° 0.93°° 0.94°°

SVDIF 0.85 0.80 0.77 0.72 0.87 0.83 0.88 0.87 0.92°° 0.88 0.90 0.90

SVDDIF 0.93 0.95 0.99° 1.00 0.92 0.92 0.99 1.00 0.94 0.92 0.95 0.95

LVDIF 1.13°° 1.03°° 0.96°° 0.91°° 0.87 0.90 0.96 0.94 1.03°° 1.04° 1.05°° 1.09°°

LVDDIF 1.17°° 1.11°° 1.07°° 1.02°° 1.02°° 1.06° 1.17 1.20 1.16°° 1.19 1.19 1.24

Sub-agg.1

RW 1.02°° 1.01°° 1.01°° 1.02°° 1.00° 1.00°° 1.00 1.00 0.98 0.99 1.00 1.00

AR 0.91 0.84 0.76°° 0.71°° 0.87 0.80° 0.78 0.75 0.92°° 0.90°° 0.93°° 0.94°°

SVDIF 0.89 0.84 0.80 0.76 0.87 0.83 0.85 0.84 0.93°° 0.92 0.96 0.97

SVDDIF 0.89 0.87 0.88°° 0.87° 0.93° 0.93° 0.99 1.00 0.96°° 0.94 0.99 1.00

LVDIF 1.14°° 1.04°° 0.98°° 0.93°° 0.87 0.90 0.96 0.94 0.99°° 1.04°° 1.08°° 1.11°°

LVDDIF 1.19°° 1.12°° 1.06°° 1.02°° 1.02°° 1.06° 1.16 1.19 1.09°° 1.11° 1.10 1.14

Sub-agg.2

RW 1.01°° 1.01°° 1.01°° 1.01°° 1.00° 1.00°° 1.00 1.00 1.17 1.11 1.10 1.10

AR 0.89 0.82 0.76°° 0.70°° 0.87 0.79 0.78 0.75 1.02 0.92°° 0.93°° 0.93°°

SVDIF 0.88 0.80 0.76 0.72 0.85 0.82 0.83 0.82 1.06° 0.98°° 1.01° 1.01

SVDDIF 0.90 0.88 0.88°° 0.88° 0.94° 0.93° 0.99 1.00 1.05 0.98° 1.00 1.02

LVDIF 1.14°° 1.05°° 0.99°° 0.94°° 0.87 0.90 0.96 0.94 1.08°° 1.05°° 1.06°° 1.10°°

LVDDIF 1.18°° 1.12°° 1.06°° 1.02°° 1.02°° 1.06° 1.16 1.19 1.18°° 1.14°° 1.11° 1.15°

Sub-agg.3

RW 1.00°° 1.00°° 1.00°° 1.00°° 1.00° 1.00°° 1.00 1.00 0.79 0.87 0.89 0.87

AR 0.89 0.80 0.73 0.66 0.88 0.79 0.78 0.75 0.75 0.77 0.79 0.80

SVDIF 0.85 0.81 0.77 0.73 0.85 0.81 0.84 0.83 0.85°° 0.90 0.93 0.93

SVDDIF 0.95° 0.97 1.01° 1.01 0.91 0.91 0.98 1.00 0.82 0.90 0.93 0.92

LVDIF 1.13°° 1.04°° 0.97°° 0.92°° 0.87 0.90 0.96 0.94 1.02°° 1.05° 1.06° 1.06°

LVDDIF 1.17°° 1.12°° 1.08°° 1.03°° 1.01°° 1.05° 1.16 1.19 1.11°° 1.19° 1.20 1.22

Components

RW 1.00° 1.00°° 1.01°° 1.01°° 1.00° 1.00°° 1.00 1.00 0.83 0.91 0.94 0.95

AR 0.89 0.82 0.77 0.71 0.88 0.80 0.78 0.76 0.79 0.81 0.84 0.84

SVDIF 0.95 0.85 0.79 0.73 0.87 0.84 0.87 0.84 0.87°° 0.92°° 0.95°° 0.96°°

SVDDIF 0.99°° 0.89 0.86°° 0.82°° 0.93°° 0.91 0.96 0.94 0.94°° 0.97°° 1.01°° 1.04°°

LVDIF 1.11°° 1.05°° 0.99°° 0.93°° 0.87 0.90 0.95 0.93 0.95°° 1.03°° 1.07°° 1.08°°

LVDDIF 1.13°° 1.06°° 1.00°° 0.94°° 1.01°° 1.05° 1.12 1.13 1.03°° 1.09°° 1.09°° 1.12°°

Note: Aggregate mean square forecasting error (MSFE) of each model relative to that of the direct approach using the
random walk model for each horizon by sub-aggregation approach. The sub-aggregations are those of Figure 2. The
models are a random walk with drift (RW), a first-differences autoregressive model of order one (AR), two small VARs
including GDP and the series from each CPI sub-aggregation in first differences (SVDIF) and where each variable is
differenced according to a unit root test (SVDDIF) and two large VARs including GDP and the series from all considered
CPI sub-aggregations in first differences (LVDIF) and differenced according to a unit root test (LVDDIF). In bold the
lowest MSFE for each horizon and country. ° and °° denote that the respective forecast is statistically worse than
the best model for that country according to the Modified Diebold-Mariano statistic at a 10 and 5% significance level.
Calculated for one to four steps ahead forecasts over the 2001-2015 period.
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Table 3: Combination Aggregate Forecasting Error

Aggregate Multi-level
Horizon 1 2 3 4 1 2 3 4

France
Single Models

Minimum 0.85 0.80 0.73 0.66

Median 0.99 0.98 0.97 0.92

Combination

Eq.W. 0.90 0.85 0.81°° 0.78° 0.90 0.85 0.81°° 0.78°

ISP 0.96° 0.90° 0.86°° 0.80°° 0.98° 0.91° 0.86°° 0.81°°

OSP 0.90 0.84 0.80° 0.75 0.91 0.85 0.80°° 0.76

OPT 1.19°° 1.06°° 0.97°° 0.90°° 0.91 0.85 0.82°° 0.78

Germany
Single Models

Minimum 0.85 0.79 0.78 0.74

Median 0.90 0.91 0.96 0.94

Combination

Eq.W. 0.85 0.83 0.85 0.85 0.85 0.83 0.85 0.85

ISP 0.87 0.87 0.89 0.88 0.87 0.87 0.89 0.88

OSP 0.85 0.83 0.85 0.85 0.85 0.83 0.85 0.84

OPT 1.02°° 1.06°° 1.08 1.07 0.84 0.83 0.85 0.84

United Kingdom
Single Models

Minimum 0.75 0.77 0.79 0.80

Median 0.97 0.98 1.00 1.00

Combination

Eq.W. 0.85 0.86 0.87 0.88 0.85 0.86 0.87 0.88

ISP 0.89° 0.92 0.93 0.95 0.89° 0.92 0.93 0.95

OSP 0.85 0.87 0.89 0.90 0.84 0.86 0.87 0.88

OPT 0.99°° 1.04° 1.06° 1.08° 0.85 0.86 0.87 0.88

Note: Mean square forecasting error of each combination method relative to that of the direct approach using the
random walk model for each horizon. The combination weighting schemes are the simple average (EQ.W), in-sample
fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). For the aggregate optimal weights we use the
approach in Conflitti et al. (2015) that impose that weights should be non-negative and sum up to one. ° and °° denote
that the respective forecast is statistically worse than the best single model within the sample according to the Modified
Diebold-Mariano statistic at a 10 and 5% significance level. Calculated over the 2001-2015 period.

The relatively large differences between the performance of the single models support

the concerns regarding choice of one model as being potentially risky in terms of fore-

casting accuracy. The appeal of forecast combination is that this is not necessary. Table

3 presents the MSFE for both traditional and multi-level combination. As a means of

comparison, the results for the best and median single models for each country are also

presented. The weighting schemes are equivalent for both combination approaches in

the first three cases, that is equal weights, in-sample fit and out-of-sample performance.

For optimal weights, however, the two methods are not equivalent. For the aggregate,

the approach in Conflitti et al. (2015) is used. The method calculates the weights minim-

izing the MSE and stipulating that weights should be non-negative and sum up to one.

A result of the latter is that it trims off the worst-performing models. For the multi-level

case, an approximation to the weighting scheme by Hyndman et al. (2011) is used.17

17The approximation is presented in section C of the Appendix.
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It is immediately noticeable that the best-performing combinations show no improve-

ments over the best single models. They do, however, tend to be half way between

the minimum and median, therefore, supporting the view that, in a context where es-

tablishing the best model beforehand is not possible, combination will tend to reduce

the possibility of choosing a very bad one. The differences between methods, however,

are relatively small for all but the aggregate optimal weighting scheme. Its perform-

ance comes out as statistically worse than the best single models in most cases. There

is hardly any difference between the aggregate accuracy of the multi-level combina-

tions and their corresponding traditional counterparts. The only differences appear for

France for the in-sample and out-of-sample weighting schemes where the multi-level

versions are marginally worse and for the United Kingdom where they are marginally

better for the out-of-sample weighting scheme. In terms of the comparative perform-

ance among weighting schemes for the multi-level combination, the in-sample comes

out as worst of all. The differences between the other three schemes are marginal. Only

for France at the longer horizons does the out-of-sample scheme look slightly better.

Overall, the differences between the aggregate results from the traditional and multi-

level approaches seem negligible.

As regards disaggregate accuracy, Table 4 presents the cumulative MSFE of both tra-

ditional and multi-level combination for all sub-aggregations relative to that of the best

single model within each approach for each horizon. For purposes of comparison, the

median cumulative error of the single models is also presented.

The first thing to note from the distribution of the figures in bold, that denote improve-

ments over the best singe models, is that the positive impact of combination is signi-

ficantly larger for the United Kingdom than for the other two countries. In this case,

both the traditional and multi-level approaches show some improvement over the best

methods for all sub-aggregations. The multi-level method, however, outperforms the

traditional in all cases. The largest improvements are found for Sub-aggregation 2 for

which the gains from using the out-of-sample weights go up to 16% with the differ-

ences being statistically significant for all horizons but the longest. The gains from the

traditional method are quite moderate by comparison. As regards Sub-aggregations 1

and 3, the gains from the multi-level approach go up to 8 and 6% respectively while

the traditional counterparts correspondingly achieve 5 and 3% at best. For France and

Germany, on the other hand, there are also some improvements over the best models,

but these are restricted to the one-step-ahead forecasts. In these cases the multi-level

approach also performs equally well or better than the traditional combination in all

cases, but the size of the improvements are smaller. In terms of overall performance,

the combination methods tend to be well below the median cumulative error of the

single models that can go as high as 17 to 42% over the best model depending on the
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Table 4: Cumulative Disaggregate Forecasting Error

France Germany United Kingdom

Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Sub-agg.1

Single Model Median 1.12 1.17 1.23 1.30 1.07 1.16 1.28 1.34 1.09 1.11 1.14 1.18

Traditional Comb.

Eq.W. 1.03 1.04 1.08 1.11 1.00 1.06 1.12 1.19 0.97 0.96 0.95 0.98

ISP 1.08° 1.10° 1.14°° 1.15°° 1.04 1.09 1.15 1.20 1.01 1.02 1.01 1.04

OSP 1.03 1.04 1.07 1.10 1.00 1.05 1.10 1.15 0.98 0.97 0.96 1.00

Multi-level Comb.

Eq.W. 1.00 1.03 1.06 1.09 0.99 1.05 1.10 1.17 0.93* 0.95 0.94 0.97

ISP 1.06 1.09 1.12°° 1.14°° 1.02 1.08 1.14 1.19 0.96 1.00 1.01 1.03

OSP 1.00 1.03 1.05 1.07 0.99 1.04 1.09 1.14 0.92* 0.94 0.94 0.96

OPT 1.01 1.04 1.07 1.10 1.00 1.05 1.11 1.17 0.94 0.96 0.95 0.96

Sub-agg.2

Single Model Median 1.12 1.23 1.27 1.34 1.10 1.17 1.24 1.29 1.06 1.13 1.15 1.16

Traditional Comb.

Eq.W. 1.01 1.07 1.09 1.13° 1.03 1.06° 1.09 1.15 0.95 0.97 0.96 0.98

ISP 1.07 1.13°° 1.15°° 1.17°° 1.07°° 1.10°° 1.12 1.17 0.99 1.01 1.01 1.01

OSP 1.01 1.06 1.06 1.09 1.02 1.05 1.07 1.11 0.96 0.96 0.96 0.98

Multi-level Comb.

Eq.W. 0.98 1.04 1.06 1.10 1.01 1.06 1.08 1.13 0.84* 0.89* 0.90 0.91

ISP 1.04 1.10° 1.12° 1.15°° 1.04 1.09°° 1.11 1.16 0.87 0.93 0.94 0.95

OSP 0.98 1.04 1.04 1.07 1.01 1.05 1.07 1.11 0.84** 0.89** 0.89* 0.90

OPT 0.99 1.04 1.06 1.10 1.01 1.06° 1.08 1.14 0.85* 0.89* 0.90 0.90

Sub-agg.3

Single Model Median 1.17 1.25 1.33 1.42 1.07 1.16 1.26 1.32 1.03 1.12 1.19 1.22

Traditional Comb.

Eq.W. 1.06 1.06 1.11°° 1.16 1.00 1.06 1.11 1.16 0.97 0.97 1.00 1.03

ISP 1.14°° 1.12 1.15°° 1.19°° 1.03 1.08 1.14 1.19 1.04 1.04 1.08 1.10

OSP 1.07 1.05 1.08°° 1.12 1.00 1.04 1.09 1.13 0.97 0.98 1.00 1.02

Multi-level Comb.

Eq.W. 1.05 1.04 1.08°° 1.13° 0.99 1.04 1.09 1.14 0.94 0.96 0.98 1.03

ISP 1.12° 1.11 1.13°° 1.17°° 1.02 1.07 1.12 1.17 0.99 1.01 1.05 1.09

OSP 1.06 1.04 1.06° 1.11 0.99 1.03 1.08 1.12 0.94 0.95 0.98 1.01

OPT 1.05 1.04 1.08°° 1.13 0.99 1.04 1.09 1.13 0.94 0.95 0.97 1.01

Components

Single Model Median 1.12 1.18 1.22 1.24 1.05 1.10 1.16 1.19 1.09 1.14 1.16 1.18

Traditional Comb.

Eq.W. 1.03 1.05 1.06 1.08 0.99 1.03 1.05 1.07 1.00 1.01 1.02 1.03

ISP 1.08°° 1.09°° 1.11°° 1.11°° 1.03 1.05 1.08 1.10 1.04 1.06° 1.07° 1.08

OSP 1.02 1.04 1.05 1.06 0.99 1.02 1.04 1.06 0.99 1.00 1.01 1.01

Multi-level Comb.

Eq.W. 1.02 1.04 1.05 1.07 0.99 1.03 1.05 1.08 1.00 1.00 1.01 1.02

ISP 1.07° 1.08°° 1.10°° 1.11° 1.03 1.06 1.08 1.11 1.03 1.04 1.05 1.07

OSP 1.01 1.03 1.04 1.05 0.99 1.02 1.04 1.06 0.98 0.98 0.99 1.00

OPT 1.03 1.04 1.06 1.08 1.00 1.03 1.05 1.08 1.01 1.01 1.02 1.02

Note: Cumulative mean square forecasting error of the forecast that results from the combination approaches for each
method relative to the minimum achievable from the single models for each horizon. The combination weighting schemes
are the simple average (EQ.W), in-sample fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). ° and °°
denote that the respective forecast is statistically worse than the best model for that country according to the Modified
Diebold-Mariano statistic at a 10 and 5% significance level. * and ** denote that the respective forecast is statistically
better than the best model for that country according to the same statistic and significance levels. Figures below one
are highlighted in bold. Calculated over the 2001-2015 period.
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horizon. In terms of relative performance of the different weighting schemes, one result

from the aggregate outcome that is also present at the disaggregate level for all three

countries is that the in-sample weighting scheme comes out worst of all. For France, in

fact, the differences with the best single model are statistically significant. As regards

the other methods, however, differences appear at the disaggregate level. The equal

and approximate optimal weights remain very similar, but the out-of-sample weighting

scheme tends to outperform the others by a small margin, particularly for the longer

horizons.

These results suggest that using multi-level forecast combination can be beneficial in

terms of disaggregate accuracy. The fact that the aggregate accuracy is practically the

same as that of the equivalent traditional single-variable methods suggests that the be-

nefits of achieving disaggregate consistency do not come at the cost of the aggregate

accuracy. Furthermore, given that the multi-level combination method shows disag-

gregate forecasting accuracy that is similar to or better than those of both the best per-

forming single-models and traditional combination, it would seem that the constraints

it imposes on the disaggregate forecasts have the desired effect.

As mentioned before, the impact of the combination method varies greatly between

countries. The results for the United Kingdom seem very positive, while for the other

two countries they are moderate at best. A possible explanation for these differences

could come from the characteristics of the data or the features of the forecasting models.

One of the arguments for using disaggregation is that modelling the aggregate can

become very challenging if the components follow very different processes. On the

contrary, if the disaggregate models are misspecified, forecasting the aggregate directly

can lead to better results. There is a middle-ground, however, where forecasting the

aggregate directly or through the bottom-up approach may give very similar results.

This could be merely due to coincidence or the fact that the estimated processes for

the aggregate end up being very similar. The results from the single models in Table

2 suggest that this may be the case for Germany and, to a lesser extent, for France.

For the former, the results for each forecasting model are almost identical across sub-

aggregations with the average difference between them being under 0.7 percentage

points. On the opposite side of the spectrum, for the United Kingdom the differences

appear comparatively large at 3.3 percentage points. France is between the two, with

1.8 percentage points.

This on its own, however, does not imply that there are no gains to be obtained from

choosing different aggregation levels. Alternative sub-aggregations could perform well

in different periods only to show similar results over the whole sample. Whether this is

in fact the case for this particular empirical application can be examined to some extent

in Figure 3. It presents the four-quarter rolling MSFE for the aggregate for all models

25



Figure 3: Dispersion of the Rolling Forecasting Error

Note: Four-quarter rolling mean square forecasting error (MSFE) for each horizon. The Min-Max shaded area shows
the span between the minimum and maximum MSFE from the 30 aggregate forecasts. The Perc.25-75 does the same
but trims off the top and bottom 25%. Calculated as four-quarter moving windows over the 2001-2015 period.

and forecasting horizons. The figure shows the dispersion of the single models referred

to as Min-max, the same measure trimming the best and worst performing 25% and the

median. The differences between countries are immediately obvious. For Germany, the

dispersion of the forecasting errors is relatively low. For all horizons the middle 50%

of the models or almost undistinguishable from the median and for the shorter horizons

the whole distribution is very concentrated. All this suggests that across most models

and sub-aggregations the difference in performance is relatively small. For the United

Kingdom and France, on the other hand, the distribution of errors is fairly dispersed

over most of the sample. Based on this analysis alone, it would appear that France

should also show some positive results. As this is not the case, it would seem that there

are other factors besides forecasting error dispersion that affect the performance of the

multi-level combination. Nevertheless, the fact that the multi-level method performs

equally well or better than the alternatives, both under favourable and unfavourable

circumstance, provides evidence of the robustness of the method and supports its use

as a way of safeguarding against mistakenly picking an outstandingly bad model.

One non-trivial detail of the previous forecasting exercise is that the evaluation period

includes the end portion of what has been called the Great Moderation and the most

recent financial crisis. A considerable body of literature has devoted itself to under-
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standing the effects of these periods on forecasting models and Chauvet and Potter

(2013) present a comprehensive review. Some of the conclusions state that many mod-

els that performed well in stable times failed completely with the increase of volatility

and that models perform differently in expansions and recessions. This last point had

been previously documented in Marcellino (2008) who finds that in recessions their

more sophisticated models showed a marked deterioration, making the simple random

walk the best performer. This could mean that the results from this empirical applica-

tion could be overly influenced by the particular performance in the crisis years, simply

because the forecasting errors could be massive. From Figure 3 the impact of the finan-

cial crisis is obvious for all three countries, for all horizons. Removing this period from

the analysis, however, does not affect the overall results. These are, aggregate accur-

acy similar to that of comparable traditional single-variable combination methods and,

in terms of disaggregate accuracy, cumulative forecasting errors that are low relative to

the median of the single-models and similar to or better than the best-performing single

models.18

Overall, in terms of the performance of the empirical weighting schemes, most of the

gains of doing multi-level combination are picked up by the equal-weighted scheme.

Some additional improvements are attainable, however, from using combination weights

based on the recent out-of-sample performance of the models. Finding these additional

gains supports the idea that being able to assign reliability weights subjectively to the

forecasts from different levels can lead to an improvement in overall forecasting accur-

acy.

4 Conclusion

The framework developed in this chapter incorporates an aggregate, any number of

sub-aggregations and its components into the same forecast combination process. The

method performs the combination relying on the merits of the individual forecasts and

acknowledges that for any realized outcome an aggregate is exactly the weighted sum

of its components. This method makes use of disaggregate components and ensures

that the accounting identities that underlie the aggregate are met, therefore delivering

a completely consistent forecasting scenario. The method contributes to the existing

literature in two aspects. First, it is flexible enough to incorporate forecasts from any

number of models, measurement approaches and sub-aggregations. Second, it allows

the use of weights that reflect the relative reliability of the preliminary forecasts them-

selves.

18The results of the exercise excluding the crisis years are provided in section D of the Appendix.
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In the empirical application with CPI data from France, Germany and the United King-

dom, the multi-level combination framework provides similar aggregate forecasting ac-

curacy to that of equivalent traditional forecast combination methods and disaggregate

accuracy equal to or better than those of the best-performing single models. In terms of

the empirically determined weighting schemes, equal-weights attain most of the bene-

fits from combination, but some additional gains are possible from using weights based

on recent out-of-sample performance. All this suggests that this method could show an

improvement over the bottom-up only approaches, in terms of disaggregate accuracy,

when a fully consistent scenario is required. This is because some degree of interde-

pendence is forced on the components’ forecasts, no matter whether they are generated

independently in the first place or not. Additionally, the possibility of establishing the

weights could prove to be useful as a way of introducing external information or judge-

ment into the forecasting process. This is something that Central Banks do regularly as

a way of incorporating a broader assessment of relevant conditions that are not expli-

citly accounted for in their models (Alessi et al., 2014).

In terms of furthering research, one possibility is to explore its uses in settings where

the asynchronous release of information means that at any given time some disaggreg-

ate data is known for the period of interest while other data has to be forecasted. An-

other possibility is to explore its use for density forecasting, in order to see how it affects

the whole distribution. From an applied perspective it would be interesting to enrich

the set of models that are included in the combination process. Some obvious candid-

ates would be to add factor models that may boost the performance of direct aggregate

forecasts (Stock and Watson, 1998; Forni et al., 2005) and at the same time incorporate

disaggregate methods that include interactions and common features between com-

ponents within the process (Espasa and Mayo-Burgos, 2013; Esteves, 2013; Stock and

Watson, 2015).
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Appendix

A Derivation for a One-level Combination

This section presents detailed derivation of the proposed method, including certain use-

ful auxiliary results. The premise revolves around the desirable properties that the loss

function is expected to fulfil, particularly that of the solution to the multi-level combin-

ation being equivalent to that of traditional single-variable methods if the conditions

are comparable. The presentation explains, among other things, why common recon-

ciliation procedures do not meet the requirements, but how, by working from them,

the proposed loss function is found. Then the framework is developed so it works in a

general setting.

Let there be a composite index that results from the simple sum ofN ≥ 2 strictly positive

components and two forecasts for it. The first, yt, comes from forecasting the aggregate

directly, while the second one, Qt, is the simple sum of the forecasts of its components

qn,t.

Result 1: Failure of the Equal Distribution of Differences

The additive deviation approach proposed by Denton (1971) finds the definitive values

making the differences between them and the initial estimates equal in absolute terms.

The minimization problem for two aggregates can be written as:

min
α,β

[(1 + α) y − y]2 + [(1 + β)Q−Q]2 + 2λ [(1 + α) y − (1 + β)Q] (14)

The first order conditions imply that β = −α y
Q
and (1 + α)y = (1 + β)Q. Then replacing

β in the latter gives

(1 + α)y = Q− αy (15)

and solving for (1 + α)y gives the simple average.

If the additive approach is used directly on the component’s forecasts, however, the

minimization problem is the following:

min
α,βn

(αy)2 +
∑N

j=1 (βjqj)
2 + 2λ

[
(1 + α)y −

∑N
j=1(1 + βj)qj

]
(16)
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This time the first order conditions imply that βn = −α y
qn

for n = 1 to N and (1 +

α)y =
∑N

j=1(1 + βj)qj . Solving for (1 + α) y, the aggregate forecast resulting from the

combination is:

ỹ =
N · y +

∑N
j=1 qj

N + 1
=

1

N + 1
(N · y +Q) (17)

that is different from the simple average, given that N ≥ 2 and both aggregate forecasts

are assumed to be distinct.

Result 2: Failure of the Proportional Distribution of Differences

Following Denton (1971), the proportional deviation approach from the reconciliation

literature finds the definitive values by making the differences between them and the

initial estimates proportional. The minimization problem for two aggregates is there-

fore:

min
α,β

[
(1 + α) y − y

y

]2
+

[
(1 + β)Q−Q

Q

]2
+ 2λ [(1 + α) y − (1 + β)Q] (18)

where α and β are the percentage deviations of the definitive value from the initial

estimates.

The first order conditions imply that Q = −β
α
y and (1 + α) y = Q + βQ. The aggregate

forecast resulting from solving the problem is then:

ỹ = (1 + α) y = (1 + β)Q =

(
y ·Q

y2 +Q2

)
(y +Q) (19)

Using the inequality of arithmetic and geometric means shows that 0 ≤ (y −Q)2 =

y2 +Q2 − 2yQ. Then 2yQ ≤ y2 +Q2 and therefore:

y ·Q

y2 +Q2
≤

1

2

meaning that the solution is strictly lower than an equal weighted average if both fore-

casts are distinct.

Result 3: A Loss Function for One Set of Forecasts

From comparing the two approaches it can be seen that the only difference between

them is that the former eliminates the downward bias relative to the simple average

present in the latter by penalizing deviations based on the relative size of each aggreg-

ate forecast. The same idea can be extended to find the appropriate penalty term for

the components.
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Including an unspecified weight ηn for the disaggregate components in equation (16)

results in:

min
α,βn

(αy)2 +
N∑

j=1

(βjηj)
2 + 2λ


(1 + α)y −

N∑

j=1

(1 + βj)qj


 (20)

This time the first order conditions imply that βn = − qn
η2n

·αy for n = 1 to N and (1+α)y =
∑N

j=1(1 + βj)qj . Using this gives:

(1 + α) y =

N∑

j=1

(qj)−

N∑

j=1

(
q2j

η2j
· αy

)

Then matching with the intermediate step given by equation (15) results in:

Q−
N∑

j=1

(
q2j

η2j
· αy

)
= Q− αy

Then solving for ηn the weight for the components is:

ηn =
√

qn ·Q

With this, the loss function that produces the equal weighted result for the aggregate

is:

(αy)2 +
N∑

n=1

qjQ (βj)
2

(21)

Result 4: Incorporating Multiple Component Forecasts

If more than one set of forecasts for the same components are included in equation

(21), a bias similar to that of equation (19) appears. This happens because not only the

definitive aggregate forecasts have to coincide, but also those of the components.

This can be seen by extending the framework in equation (21) to a setting with D sets

of disaggregate forecasts for the N components. The minimization problem may be

written as:

min
α,βn

(αy)2 +
∑D

d=1

∑N
j=1 qd,jQdβ

2
d,j

+ 2
∑D

d=1

(
λd

[
(1 + α)y −

∑N
j=1(1 + βd,j)qd,j

])

+2
∑D

d=2

∑N
j=1 (δd,j [(1 + β1,j)q1,j − (1 + βd,j)qd,j ])

(22)

Simplifying the problem to the particular case with one aggregate, two disaggregate

forecasts and N = 2 the first order conditions become:
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1. ∂
∂α

: αy + λ1 + λ2 = 0

2. ∂
∂β1,n

: β1,nQ1 − λ1 + δn = 0 for n = 1, 2

3. ∂
∂β2,n

: β2,nQ2 − λ2 − δn = 0 for n = 1, 2

4. ∂
∂λd

: (1 + α)y − (1 + βd,1)qd,1 − (1 + βd,2)qd,2 = 0 for d = 1, 2

5. ∂
∂δn

: (1 + β1,n)q1,n − (1 + β2,n)q2,n = 0 for n = 1, 2

After some algebra using conditions 1, 2, 3 and 5, (1+β1,n) = q2,n(Q1q2,n+Q2q1,n)
−1(Q1+

Q2 − αy) for n = 1, 2. Using this in the corresponding condition in 4. results in:

ỹ = Φ(Q1 +Q2 − αy)

= Φ
1+Φ

(y +Q1 +Q2)
(23)

where

Φ =
Q2

1q2,1q2,2 +Q2
2q1,1q1,2

Q2
1q2,1q2,2 +Q1Q2(q1,2q2,1 + q1,1q2,2) +Q2

2q1,1q1,2

For equation (23) to be the simple average it is necessary for 1+Φ
Φ

to be equal to three.

This is equivalent to saying that Φ−1 − 1, that is given by:

Φ−1 − 1 =
Q1Q2(q1,2q2,1 + q1,1q2,2)

Q2
1q2,1q2,2 +Q2

2q1,1q1,2

has to be equal to one.

To explore the circumstances under which this is in fact true, the second set of prelim-

inary estimates is expressed as deviations from the first set, that is q2,1 = κ1q1,1 and

q2,2 = κ2q1,2 where κ1 and κ2 can take any value. Assuming that Φ−1 − 1 is in fact equal

to one would result in:

Q1(κ1q1,1 + κ2q1,2)(κ1q1,1q1,2 + q1,1κ2q1,2)

Q2
1κ1κ2q1,1q1,2 + (κ1q1,1 + κ2q1,2)2q1,1q1,2

= 1

Then:

(q1,1 + q1,2)(κ1q1,1 + κ2q1,2)(κ1 + κ2) = Q2
1κ1κ2 + (κ1q1,1 + κ2q1,2)

2

(κ1q1,1 + κ2q1,2)(κ1q1,2 + κ2q1,1) = Q2
1κ1κ2

κ21q1,1q1,2 + κ22q1,1q1,2 = 2κ1κ2q1,1q1,2

κ21 − 2κ1κ2 + κ22 = 0

that results in (κ1 − κ2)
2 = 0.
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This condition only holds when κ1 = κ2 meaning that the outcome of equation (22) is a

simple average only when the two sets of preliminary estimates are exactly the same or

the second one is simply the first multiplied by a constant.

The problem that arises from trying to combine more than one set of forecasts directly in

the multi-level combination framework can be avoided simply by combining the multiple

forecasts for the individual series before performing the multi-level combination and

choosing the optimization weights so as to reflect the prior step.

Let the result for the prior step be:

yt =
1

Γt

A∑

i=1

γi,tyi,t and qn,t =
1

∆n,t

D∑

d=1

δd,n,tqd,n,t (24)

with γi,t and δd,n,t being the reliability weights, Γt =
∑A

i=1 γi,t and ∆n,t =
∑D

d=1 δd,n,t.

The combination procedure remains unchanged except for the weights ϕt and φn,t,

which are set to reflect the reliability of the combined forecasts yt and qn,t as opposed

to the initial preliminary forecasts yi,t and qd,n,t.

In the case of equal reliability, for example, this means accounting for the fact that

the problem as a whole involves A aggregate and D disaggregate forecasts. That is

accomplished by setting ϕt = A and φn,t = D making the solution for the aggregate

forecast:

ỹt =
1

A+D


A · yt +D ·

N∑

j=1

wj,tqj,t


 (25)

By expanding the individual forecasts, given that γi,t and δd,n,t are equal to one, the

definitive aggregate forecast is left in terms of the preliminary estimates:

ỹt = 1
A+D

(
A · 1

A

∑A
i=1 yi,t +D ·

∑N
j=1

1
D
wj,t

∑D
d=1 qd,j,t

)

= 1
A+D

(∑A
i=1 yi,t +

∑D
d=1

∑N
j=1wj,tqd,j,t

) (26)

that is the same as taking the simple average of all the available forecasts for the ag-

gregate.

Result 5: One-level Combination for Multiple Measurement Approaches

For an aggregate that can be obtained as the sum of K alternative measurement ap-

proaches, where each approach is the result of the weighted sum of the respective
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strictly positive Nk components. Let there be a direct aggregate forecast y and K dis-

tinct aggregate forecasts, each based on the corresponding Nk component’s forecasts.

The aggregation weights are assumed to be positive.

The minimization problem involving the aggregate reliability weight ϕ, the disaggregate

reliability weights φk,n and the aggregation weights wk,n, is:

min
α,β

ϕ (αy)2 +
∑K

k=1

[
Qk

∑Nk

j=1 φk,jwk,jqk,j (βk,j)
2

+2λk

(
(1 + α)y −

∑Nk

j=1wk,j(1 + βk,j)qk,j

)]

The first order conditions are:

1. ∂
∂α

: ϕαy +
∑K

k=1 λk = 0

2. ∂
∂βk,j

: Qkφk,jβk,j − λk = 0 for j = 1 to Nk and k = 1 to K

3. ∂
∂λk

: (1 + α)y −
∑Nk

j=1wk,j(1 + βk,j)qk,j = 0

From 2., for any k, φk,nβk,n = λk

Qk
, and plugging in the corresponding restriction in 3.

gives:

(1 + α)y =
∑Nk

j=1wk,jqk,j +
∑Nk

j=1wk,jβk,jqk,j

y + αy = Qk +
λk

Qk

∑Nk

j=1

(
1

φk,j
wk,jqk,j

)

λk =
[∑Nk

j=1
1

φk,j
wk,jqk,j

]−1
Qk (y + αy −Qk)

Then using 1. and dividing by ϕ:

αy =
K∑

k=1

([∑Nk

j=1
ϕ

φk,j
wk,jqk,j

]−1
Qk (Qk − y − αy)

)

=
K∑

k=1

Qk

χk
(Qk − y − αy)

where χk =

Nk∑

j=1

ϕ
φk,j

wk,jqk,j .

The previous equations can be manipulated as follows:

αy =
∑K

k=1
Qk

χk
Qk −

∑K
k=1

Qk

χk
y −

∑K
k=1

Qk

χk
αy

(
1 +

∑K
k=1

Qk

χk

)
αy =

∑K
k=1

Qk

χk
Qk −

(
1 +

∑K
k=1

Qk

χk

)
y + y
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Then the definitive aggregate forecast is seen to be a weighted average given by:

ỹ =

y +

K∑

k=1

(
Qk ·

Qk

χk

)

1 +

K∑

k=1

Qk

χk

(27)

The definitive component forecasts are by obtained combining 2. and λk:

Qkφk,nβk,n − ϕQk

χk
(y + αy −Qk) = 0

βk,n = ϕ
φk,n

Qk

χk
(y + αy −Qk)

1
Qk

with the final result being:

q̃k,n =

(
1 +

ϕ

φk,n
·
ỹ −Qk

χk

)
qk,n (28)

For more than one set of forecasts, the same joint combination process is followed, only

that the multiple forecasts are combined in a prior step and optimization weights are

chosen to reflect this.

An example of choosing appropriate weights can be seen from the simple equal reliabil-

ity scenario. Let there be a single aggregate forecast y and a single set of disaggregate

forecasts qn for n = 1 to N . The solution for the aggregate forecast is is given by

equation (27) and is:

ỹ =
Q2 + y

∑N
j=1

ϕ
φj
wjqj

Q+
∑N

j=1
ϕ
φj
wjqj

(29)

that involves the aggregate reliability weight ϕ, the disaggregate reliability weights φn

and the aggregation weights wn.

If y and qn for n = 1 to N are the result of a prior combination, that is y = 1
Γ

∑A
i=1 γiyi

and qn = 1
∆n

∑D
d=1 δd,nqd,n with γi and δd,n being the prior reliability weights, Γ =

∑A
i=1 γi

and ∆n =
∑D

d=1 δd,n, the equivalence with the simple average of the initial forecasts can

be shown by replacing them into the solution:

ỹ =




N∑

j=1

wj

D∑

d=1

δd,j
∆j

qd,j




2

+

(
1
Γ

A∑

i=1

γiyi

)


N∑

j=1

ϕ
φj
wj

D∑

d=1

δd,j
∆j

qd,j







N∑

j=1

wj

D∑

d=1

δd,j
∆j

qd,j


+




N∑

j=1

ϕ
φj
wj

D∑

d=1

δd,j
∆j

qd,j




(30)
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Then incorporating the equal reliability of forecasts by setting γi = δd,n,t = 1 and re-

flecting the number of forecasts that are involved in the first stage with ϕ = A and

φn = φ = D, the solutions then simplifies as follows:

ỹ =
( 1
D

∑D
d=1

∑N
j=1 wjqd,j)

2
+( 1

A

∑A
i=1 yi)(

A
D
· 1
D

∑D
d=1

∑N
j=1 wjqd,j)

( 1
D

∑D
d=1

∑N
j=1 wjqd,j)+(A

D
· 1
D

∑D
d=1

∑N
j=1 wjqd,j)

=
( 1
D

∑D
d=1

∑N
j=1 wjqd,j)+(A

D

∑I
i=1 yi)

1+A
D

=
1

A+D

(
A∑

i=1

yi +

D∑

d=1

Qd

)

which is the simple average of all the aggregate forecasts.
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B Foundation for the Multi-level Combination Method

This section presents the derivation of how to present any aggregate forecast in terms

of a consistent set of component forecasts and how, in the case of equal weights, it is

equivalent to combining the aggregate forecasts produced from different intermediate

aggregation levels.

Let there be a single aggregate forecast y and a single set of disaggregate forecasts qn

for n = 1 toN , the aggregate reliability weight ϕ, the disaggregate reliability weights φn

and the aggregation weights wn. Based on the previous results, the definitive aggregate

forecast for this one-level combination is given by:

ỹ =
Q2 + y

∑N
j=1

ϕ
φj
wjqj

Q+
∑N

j=1
ϕ
φj
wjqj

(31)

where Q =
∑N

j=1wjqj and the components are obtained from:

q̃n =

(
1 +

ϕ

φn

y −Q

Q+
∑N

j=1
ϕ
φj
wjqj

)
qn (32)

With the objective of reonciling a set of components to an aggregate, equation (32) can

be rewritten as follows:

q̃n =

(
1 + ϕ

φn
· y−Q

Q+
∑N

j=1
ϕ
φj

wjqj

)
qn

=

(
1 +

ϕ
φn

·(y−Q)

Q+
∑N

j=1
ϕ
φj

wjqj

)
qn

=

(
1 +

1
φn

·(y−Q)
1
ϕ
Q+

∑N
j=1

ϕ
φj

wjqj

)
qn

Then, if the objective is to have a disaggregate scenario that is consistent with the ori-

ginal forecast y, taking qn, for n = 1 to N , as the best guesses and setting the aggregate

reliability to infinity, ϕ → ∞, results in:

q̂
(y)
n =

(
1 + y−Q

φn·
∑N

j=1
1
φj

wjqj

)
qn (33)

Then, assigning the reliability of y to the y-consistent components and combining them
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with the original forecasts for the components results in:

q̃altn = φnqn+ϕq̂
(y)
n

φn+ϕ

=

φnqn+ϕqn+
ϕ(y−Q)

φn·

∑N
j=1

1
φj

wjqj
·qn

φn+ϕ

=

(
1 + ϕ

φn
· y−Q

(φn+ϕ)
∑N

j=1
1
φj

wjqj

)
qn

that is slightly different from q̃n in equation (32). For equal weights among components,

however, that is φn = φ:

q̃altn =

(
1 + ϕ

φ
· y−Q

(φ+ϕ) 1
φ

∑N
j=1 wjqj

)
qn

=
(
1 + ϕ

φ+ϕ
· y−Q

Q

)
qn

=
(
Q(φ+ϕ)+ϕ(y−Q)

φ+ϕ

)
qn
Q

=
(
φQ+ϕy
φ+ϕ

)
qn
Q

and by summing up the components the aggregate is:

ỹ =
φQ+ ϕy

φ+ ϕ

that is the same that is obtained from setting φn = φ for the standard result in equa-

tion (32).

This is a useful result for a one-level disaggregation, but the process is in fact extendible

to unlimited exhaustive groupings of components.

Let there be S unique groupings of Ks sub-aggregations of components. Then the best

guess of the decomposition of any sub-aggregation ys,k can be found using equation

(33). That is:

q̂
(ys,k)
n =

(
1 +

ys,k−Qs,k

φn·χs,k

)
qn

with χs,k =
∑

qn∈ys,k

1
φn

wnqn and Qs,k =
∑

qn∈ys,k

wnqn.

Then, by combining all the resulting component forecasts, the definitive one is obtained

from:

q̃n =
φnqn+

S
∑

s=1
ϕs,k q̂

(ys,k)
n

φn+
S
∑

s=1
ϕs,k

=


1 + 1

φn+
S
∑

s=1
ϕs,k

·
S∑

s=1

(
ϕs,k

φn
·
ys,k−Qs,k

χs,k

)

 qn

For the case where all forecasts within the same grouping have the same reliability, the
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aggregate is given by:

ỹ =

N∑

n=1

wn


1 + 1

φ+
S
∑

s=1
ϕs

·
S∑

s=1

(
ϕs ·

ys,k−Qs,k

Qs,k

)

 qn

= Q+ 1

φ+
S
∑

s=1
ϕs

·
S∑

s=1
ϕs ·

N∑

n=1

wn

(
ys,k
Qs,k

· qn − qn

)

= 1

φ+
S
∑

s=1
ϕs

·

[
Q

(
φ+

S∑
s=1

ϕs

)
−

S∑
s=1

ϕsQ+
S∑

s=1
ϕs

Ks∑

k=1

(
ys,k
Qs,k

·
∑

qn∈Qs,k

wnqn

)]

= 1

φ+
S
∑

s=1
ϕs

·

[
φQ+

S∑
s=1

ϕs

Ks∑

k=1

ys,k

]

By making Ys =

Ks∑

k=1

ys,k, it becomes clear that the definitive forecast is a weighted aver-

age of all the aggregate forecasts:

ỹ =
φQ+

S
∑

s=1
ϕsYs

φ+
S
∑

s=1
ϕs

This shows that, for the case of equal weights, combining the aggregate forecasts pro-

duced from different aggregation levels is equivalent to the aggregate bottom-up fore-

cast that results from imposing the different aggregate and intermediate forecasts on

the component forecasts and then combining all the resulting component forecasts.
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C Approximate Optimal Weights for Multiple Measurement

Approaches

Hyndman et al. (2011) propose a method for obtaining consistent forecasts for a whole

hierarchy of time series using a regression approach. The data is described by

Yt = SYK,t (34)

where Yt is a vector containing the values for all the series in the hierarchy at time

t, S is the aggregation matrix that defines the structure of the hierarchy and YK,t is a

vector containing the values at time t for the series at the lowest level of the hierarchy

(maximum disaggregation).

For a hierarchy composed of four components, two intermediate aggregations and the

total, for example, the vector for lowest level would beY2,t = [ y2,1,t y2,2,t y2,3,t y2,4,t]
′,

the vector for all observations would be Yt = [ y0,t y1,1,t y1,2,t Y
′
2,t ]′ and the aggreg-

ation matrix would be:

S =




1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 1 0 0 0 1




′

Hyndman et al. (2011) propose using this same structure to find consistent definitive

forecasts from a set of independent forecasts for all series. They set up the following

problem for the forecasts at time h:

Ỹh = SPŶh (35)

where Ŷh are the preliminary forecasts for all series, Ỹh are the consistent definitive

forecasts for all series and P is a balancing matrix. They use the regression approach

to find P and in particular assume that the forecast errors satisfy the same aggregation

constraint as the data. Under these assumptions they find that the optimal balancing

matrix is P = (S′
S)−1

S
′ and that therefore

Ỹh = S
(
S
′
S
)−1

S
′
Ŷh (36)

The optimal combination method, however, does not contemplate multiple alternative

approaches. For the empirical application, an approximation is used. It consists of treat-

ing all sub-aggregations as independent and calculating the weights following the pro-

cedure in Hyndman et al. (2011). Then, a primary hierarchy is chosen and the weights
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for the other sub-aggregations are supplied from the other hierarchies ensuring that

they are consistent with those of the chosen primary hierarchy.

In the particular case of the empirical application depicted in Figure 2, the largest

hierarchy is chosen as the primary one, in other words the three-level one on the left.

Calculating the optimal weights using an appropriately built S matrix and the optimal

weights formula, S (S′
S)−1

S
′, provides the weights given to all series in the definitive

aggregate forecast, except for those of the tradable-non-tradable sub-aggregation. The

calculated weights are presented under the Hierarchy 1 heading in Table 5. The same

procedure is followed for the second hierarchy and the resulting weights are shown

in the same table under the Hierarchy 2 heading. As the weights given to the direct

method in both hierarchies are not the same, the ratio between the direct approach and

the sub-aggregations of the second hierarchy is preserved and the weights are adjusted

proportionally so that the weights given to the direct approach in both cases match. The

definitive approximate weights are presented in Table 5 under the Final heading.

Table 5: Approximate Optimal Weights for Empirical Application

Hierarchy 1 Hierarchy 2 Final
% % %

Headline CPI 56.3 63.1 56.3

1. Food and non-alcoholic beverages 14.6 14.6

2. Electricity, gas and other fuels 14.6 14.6

3. CPI excluding Food and Energy 27.2 27.2

1. Food and non-Alcoholic beverages 14.6 14.6

2. Electricity, gas and other fuels 14.6 14.6

3. Other goods 13.1 13.1

4. Other services 14.1 14.1

1. Tradable 30.8 27.5

2. Non-tradable 32.3 28.9

1. Food and non-Alcoholic beverages 14.6 14.6

2. Alcoholic beverages, tobacco and narcotics 3.3 3.3

3. Clothing and footwear 3.3 3.3

4. Housing, water, electricity, gas and other fuels 14.6 14.6

5. Furnishings, household equipment and maintenance 3.3 3.3

6. Health 2.3 2.3

7. Transport 2.3 2.3

8. Communication 2.3 2.3

9. Recreation and culture 2.3 2.3

10. Education 2.3 2.3

11. Restaurants and hotels 2.3 2.3

12. Miscellaneous goods and services 3.3 3.3
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D Additional Information from the Empirical Application

Table 6: Differentiation for Empirical Application and Sub-aggregation Distribution

Good or Tradable or
France Germany UK Service Non-tradable

1. Food and non-alcoholic beverages 2 2 1 - NT

2. Alcoholic beverages, tobacco and narcotics 2 2 1 Good T

3. Clothing and footwear 1 1 1 Good T

4. Housing, water, electricity, gas and other fuels 1 2 2 - NT

5. Furnishings, household equipment and maintenance 2 2 1 Good T

6. Health 1 1 1 Service NT

7. Transport 1 1 1 Service T

8. Communication 1 2 1 Service NT

9. Recreation and culture 1 1 2 Service T

10. Education 2 1 2 Service NT

11. Restaurants and hotels 2 1 2 Service NT

12. Miscellaneous goods and services 2 2 1 Good NT

Note: Number of times the series is differentiated to make it stationary according to the parametric unit root test in
Gomez and Maravall (1996). Sub-aggregation distribution based on the distribution in Johnson (2017).

42



Table 7: Single-Model Aggregate Forecasting Errors Excluding Crisis

France Germany United Kingdom

Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Headline CPI

RW 1.00°° 1.00°° 1.00°° 1.00 1.00°° 1.00°° 1.00°° 1.00°° 1.00 1.00 1.00 1.00

AR 0.80 0.71 0.67 0.73 0.84 0.77 0.78 0.80 1.00°° 0.97°° 0.99°° 1.01

SVDIF 0.79 0.74 0.72 0.78 0.85 0.84°° 0.95°° 1.00° 0.92 0.85 0.85 0.85

SVDDIF 0.86 0.82 0.82 0.85 0.88 0.83°° 0.85°° 0.86° 0.93° 0.90 0.91 0.90

LVDIF 1.13°° 1.10°° 1.10°° 1.19°° 0.81 0.74 0.77° 0.81° 0.96° 0.95 0.99 1.04°°

LVDDIF 1.21°° 1.14°° 1.13°° 1.24°° 0.95°° 0.91°° 1.04°° 1.16°° 0.98° 1.01 1.03 1.07°°

Sub-agg.1

RW 1.03°° 1.03°° 1.03°° 1.04 1.00°° 1.00°° 1.00°° 1.00°° 1.00 1.00 1.00 1.01

AR 0.85°° 0.78°° 0.75°° 0.82°° 0.84 0.76 0.76 0.79 0.94 0.91°° 0.95°° 0.98

SVDIF 0.84 0.78 0.76 0.82 0.80 0.70 0.67 0.71 0.87 0.82 0.85 0.86

SVDDIF 0.88°° 0.82 0.81 0.87 0.88 0.82°° 0.85°° 0.87° 0.92° 0.89 0.93 0.94

LVDIF 1.16°° 1.13°° 1.13°° 1.22°° 0.80 0.74 0.76 0.81° 0.95° 0.96 1.00 1.07°°

LVDDIF 1.25°° 1.19°° 1.17°° 1.28°° 0.95°° 0.91°° 1.04°° 1.16°° 1.00°° 1.03 1.06 1.11°

Sub-agg.2

RW 1.02°° 1.02°° 1.02°° 1.03 1.00°° 1.00°° 1.00°° 1.00°° 1.27 1.18 1.16 1.16

AR 0.81°° 0.74°° 0.73° 0.80 0.83 0.75 0.76 0.79 1.09 0.96°° 0.98°° 1.00

SVDIF 0.82 0.76 0.75 0.83 0.80 0.71 0.68 0.71 1.06 0.90 0.90 0.90

SVDDIF 0.89°° 0.83 0.82 0.88 0.90 0.83°° 0.85°° 0.87° 1.10 0.95 0.95 0.94

LVDIF 1.18°° 1.13°° 1.14°° 1.23°° 0.80 0.74 0.77 0.81° 1.11° 1.02 1.01 1.08°°

LVDDIF 1.25°° 1.19°° 1.18°° 1.30°° 0.95°° 0.91°° 1.05°° 1.16°° 1.17°° 1.09° 1.07 1.10°°

Sub-agg.3

RW 1.00°° 1.00°° 1.00°° 1.00 1.00°° 1.00°° 1.00°° 1.00°° 0.71 0.83 0.84 0.81

AR 0.78 0.69 0.67 0.73 0.84 0.75 0.75 0.78 0.71 0.79 0.83 0.86

SVDIF 0.79 0.74 0.73 0.78 0.79 0.71 0.71 0.75 0.76 0.83 0.85 0.84

SVDDIF 0.88° 0.84° 0.84 0.87 0.86 0.81° 0.83°° 0.86°° 0.73 0.83 0.85 0.81

LVDIF 1.13°° 1.10°° 1.10°° 1.19°° 0.80 0.74 0.76 0.81° 0.91° 0.94 0.97 1.00°

LVDDIF 1.20°° 1.14°° 1.14°° 1.24°° 0.95°° 0.90°° 1.04°° 1.16°° 0.96°° 1.06 1.08 1.09°°

Components

RW 1.01°° 0.99° 0.98° 0.99 1.00°° 1.01°° 1.01°° 1.01°° 0.81 0.90 0.91 0.91°°

AR 0.79 0.73 0.74 0.82 0.84 0.76 0.76 0.80 0.78 0.84 0.90 0.93

SVDIF 0.88 0.79 0.77 0.80 0.79 0.72 0.73 0.76 0.83 0.89° 0.95 0.99

SVDDIF 0.96°° 0.85 0.84 0.91 0.86 0.81°° 0.82°° 0.84 0.87 0.91 0.97 1.02

LVDIF 1.12°° 1.11°° 1.12°° 1.21°° 0.81 0.75 0.77 0.80° 0.87 0.93 0.99 1.04

LVDDIF 1.18°° 1.13°° 1.12°° 1.22°° 0.96°° 0.90°° 1.00°° 1.10°° 0.91° 1.00 1.04 1.10°

Note: Aggregate mean square forecasting error of each model relative to that of the direct approach using the random
walk model for each horizon by sub-aggregation approach. The sub-aggregations are those of Table ??. The models
are a random walk with drift (RW), a first-differences autoregressive model of order one (AR), two small VARs including
GDP and the series from each CPI sub-aggregation in first differences (SVDIF) and where each variable is differenced
according to a unit root test (SVDDIF) and two large VARs including GDP and the series from all considered CPI sub-
aggregations in first differences (LVDIF) and differenced according to a unit root test (LVDDIF). ° and °° denote that the
respective forecast is statistically worse than the best model for that country according to the Modified Diebold-Mariano
statistic at a 10 and 5% significance level. Calculated for one to four steps ahead forecasts over the 2001-2015 period
excluding 2008 and 2009.
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Table 8: Combination Aggregate Forecasting Error Excluding Crisis

Aggregate Multi-level
Horizon 1 2 3 4 1 2 3 4

France
Single Models

Minimum 0.78 0.69 0.67 0.73

Median 0.98 0.92 0.91 0.95

Combination

Eq.W. 0.88° 0.81 0.78 0.83 0.88° 0.81 0.78 0.83

ISP 0.95°° 0.89° 0.87 0.93 0.97°° 0.90°° 0.88 0.94

OSP 0.87° 0.79 0.75 0.80 0.89° 0.81 0.77 0.82

OPT 1.25°° 1.12°° 1.11°° 1.16°° 0.88° 0.81 0.78 0.82

Germany
Single Models

Minimum 0.79 0.70 0.67 0.71

Median 0.86 0.81 0.82 0.85

Combination

Eq.W. 0.80 0.74 0.73 0.76 0.80 0.74 0.73 0.76

ISP 0.81 0.75 0.76 0.80 0.81 0.75 0.76 0.80

OSP 0.80 0.74 0.73 0.75 0.80 0.73 0.72 0.75

OPT 0.96°° 0.92°° 0.93° 0.97° 0.80 0.74 0.74 0.76

United Kingdom
Single Models

Minimum 0.71 0.79 0.83 0.81

Median 0.94 0.94 0.97 1.00

Combination

Eq.W. 0.79 0.79 0.81 0.83 0.79 0.79 0.81 0.83

ISP 0.81 0.83 0.85 0.89 0.80 0.83 0.85 0.88

OSP 0.79 0.81 0.82 0.85 0.77 0.79 0.80 0.82

OPT 0.86 0.94 0.97 0.99° 0.79 0.79 0.80 0.82

Note: Mean square forecasting error of each combination method relative to that of the direct approach using the
random walk model for each horizon. The combination weighting schemes are the simple average (EQ.W), in-sample
fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). For the aggregate optimal weights we use the
approach in Conflitti et al. (2015) that impose that weights should be non-negative and sum up to one. ° and °° denote
that the respective forecast is statistically worse than the best single model within the sample according to the Modified
Diebold-Mariano statistic at a 10 and 5% significance level. Calculated over the 2001-2015 period excluding 2008 and
2009.
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Table 9: Cumulative Disaggregate Forecasting Error Excluding Crisis

France Germany United Kingdom

Horizon 1 2 3 4 1 2 3 4 1 2 3 4

Sub-agg.1

Single Model Median 1.15 1.23 1.29 1.31 1.10 1.16 1.26 1.26 1.09 1.13 1.15 1.16

Traditional Comb.

Eq.W. 1.05 1.08° 1.09 1.09° 1.03 1.08°° 1.10°° 1.13°° 0.98 0.98 0.98 0.99

ISP 1.11° 1.16°° 1.19°° 1.19°° 1.06 1.08° 1.12° 1.15°° 1.02 1.05 1.06 1.08

OSP 1.04 1.08° 1.08 1.09 1.03 1.06° 1.09°° 1.09°° 0.98 0.98 0.98 1.01

Multi-level Comb.

Eq.W. 1.00 1.05 1.07 1.07 1.02 1.07°° 1.10°° 1.12°° 0.92 0.96 0.97 0.97

ISP 1.07 1.13° 1.16°° 1.16°° 1.05 1.07°° 1.11°° 1.14°° 0.94 1.02 1.04 1.05

OSP 1.01 1.05 1.04 1.05 1.02 1.06°° 1.09°° 1.09°° 0.90 0.96 0.95 0.96

OPT 1.01 1.06 1.08 1.07 1.03 1.08°° 1.12°° 1.13°° 0.93 0.96 0.96 0.95

Sub-agg.2

Single Model Median 1.16 1.26 1.30 1.32 1.11 1.17 1.27 1.26 1.09 1.14 1.15 1.15

Traditional Comb.

Eq.W. 1.03 1.07 1.07 1.09 1.05 1.09°° 1.12°° 1.13°° 0.98 0.96 0.94 0.93

ISP 1.10 1.14°° 1.15 1.17° 1.09°° 1.10°° 1.14° 1.15° 1.01 1.01 0.99 0.99

OSP 1.03 1.05 1.04 1.05 1.05 1.07° 1.11°° 1.09°° 0.98 0.97 0.94 0.93

Multi-level Comb.

Eq.W. 0.98 1.03 1.03 1.05 1.02 1.08°° 1.12°° 1.12° 0.82 0.87* 0.87* 0.86

ISP 1.05 1.10 1.11 1.14 1.05 1.08°° 1.15°° 1.15° 0.84 0.90 0.91 0.91

OSP 0.98 1.03 1.00 1.02 1.02 1.07°° 1.12°° 1.10° 0.81 0.86** 0.85** 0.84*

OPT 1.00 1.03 1.03 1.05 1.02 1.09°° 1.14°° 1.14° 0.83 0.86** 0.86* 0.85

Sub-agg.3

Single Model Median 1.21 1.34 1.39 1.33 1.09 1.14 1.19 1.18 1.03 1.05 1.10 1.09

Traditional Comb.

Eq.W. 1.10° 1.13°° 1.11 1.08 1.02 1.06 1.06 1.08 0.96 0.92 0.94 0.93

ISP 1.18°° 1.22°° 1.21° 1.19 1.04 1.06 1.08 1.11° 1.02 0.98 1.02 1.02

OSP 1.10° 1.11° 1.08 1.05 1.01 1.04 1.03 1.03 0.95 0.92 0.94 0.94

Multi-level Comb.

Eq.W. 1.08 1.11 1.09 1.08 1.01 1.05 1.05 1.07 0.94 0.90* 0.92 0.95

ISP 1.17°° 1.22°° 1.20 1.20 1.03 1.05 1.07 1.10 0.97 0.94 0.98 1.01

OSP 1.08 1.11° 1.07 1.07 1.01 1.04 1.03 1.03 0.92 0.89** 0.91 0.93

OPT 1.08 1.11 1.08 1.07 1.01 1.05 1.06 1.07 0.94 0.89** 0.91 0.93

Components

Single Model Median 1.16 1.21 1.24 1.26 1.06 1.09 1.11 1.12 1.08 1.11 1.13 1.13

Traditional Comb.

Eq.W. 1.05 1.06 1.05 1.06 1.01 1.03 1.01 1.02 1.00 1.00 1.00 1.00

ISP 1.11°° 1.12° 1.11 1.12°° 1.04° 1.04° 1.03 1.05 1.05 1.05 1.05 1.06

OSP 1.04 1.05 1.03 1.04 1.01 1.03 1.00 1.00 1.00 0.99 0.98 0.98

Multi-level Comb.

Eq.W. 1.05 1.06 1.04 1.04 1.02 1.04 1.01 1.01 1.01 0.99 0.98 0.97

ISP 1.11°° 1.11° 1.10 1.11°° 1.04° 1.05° 1.04 1.05 1.04 1.02 1.01 1.02

OSP 1.04 1.04 1.01 1.02 1.01 1.03 1.01 1.00 0.98 0.96 0.95 0.95

OPT 1.06° 1.06 1.04 1.05 1.02 1.04 1.02 1.02 1.02 1.00 0.98 0.97

Note: Cumulative mean square forecasting error of the forecast that results from the combination approaches for each
method relative to the minimum achievable from the single models for each horizon. The combination weighting schemes
are the simple average (EQ.W), in-sample fit (ISP), out-of-sample performance (OSP) and optimal weights (OPT). ° and °°
denote that the respective forecast is statistically worse than the best model for that country according to the Modified
Diebold-Mariano statistic at a 10 and 5% significance level. * and ** denote that the respective forecast is statistically
better than the best model for that country according to the same statistic and significance levels. Calculated over the
2001-2015 period excluding 2008 and 2009.
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