
Munich Personal RePEc Archive

Collaborative knowledge creation:

Evidence from Japanese patent data

Mori, Tomoya and Sakaguchi, Shosei

Institute of Economic Research, Kyoto University, Graduate School

of Economics, The University of Tokyo

29 August 2018

Online at https://mpra.ub.uni-muenchen.de/88716/

MPRA Paper No. 88716, posted 01 Sep 2018 02:12 UTC



Collaborative Knowledge Creation:
Evidence from Japanese Patent Data

Tomoya Mori∗,† Shosei Sakaguchi‡, §

August 29, 2018

Abstract

In this paper, we quantitatively characterize the mechanism of collaborative knowl-
edge creation at the individual researcher level à la Berliant and Fujita (2008) by using
Japanese patent data. The key driver for developing new ideas is found to be the
exchange of differentiated knowledge among collaborators. To stay creative, inventors
seek opportunities to shift their technological expertise to unexplored niches by utiliz-
ing the differentiated knowledge of new collaborators in addition to their own stock
of knowledge. In particular, while collaborators’ differentiated knowledge raises all
the average cited count, average (technological) novelty and the quantity of patents
for which an inventor contributes to the development, it has the largest impact on the
average novelty among the three.
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1 Introduction

Knowledge creation has been a key factor in various aspects of economic modeling. Some

of the new ideas result in innovations, which in turn fuel economic growth.1 The structure

of market and competition may be subject to the extent of the diffusion and imitations

of invented technologies.2 Furthermore, the concentration of research and development

(R&D) activities is the defining feature of the largest cities.3 Nevertheless, the mechanism

of knowledge creation – at the ultimate micro level of individual inventors – has not been

explicitly specified in these strands of the literature. Empirical studies are necessarily

scarce.4

In this study, we investigate data on Japanese patents applied between 1995 and 2009.

Given that about 90% of these patents were developed in collaborations, we focus on the

causal relationship in collaborative knowledge creation based primarily on the microeco-

nomic model proposed by Berliant and Fujita (2008).5

We consider two complementary measures of output from a given patent project: one

reflecting quality based on forward citation counts and the other reflecting (technological)

novelty based on the timing of each patent application in the relevant technological category.

The productivity of a given inventor is then defined by the quality/novelty-adjusted count

of patents in which this inventor participated, where each patent count is also discounted

by the number of inventors involved in the patent.

Under either measure, our data indicate the presence of substantial downward pressure

on inventor productivity: fewer than half of inventors with above-median productivity in

a five-year span, 1995–1999 (2000–2004), maintain at least the same relative productivity in

the next five-year span, 2000–2004 (2005–2009).6 At the same time, it is also true that some

top inventors stay highly productive, while some inferior inventors overthrow superior

ones and climb the productivity ladder. Overall, the substantial churning of the relative

productivities of inventors is observed over time.

The extant literature provides plausible explanations for the declining trend of inven-

tor productivity. On the one hand, inventors have an incentive to stick to established

technologies since they have accumulated expertise on them through learning-by-doing

(Horii, 2012). On the other hand, once made public, technologies face incessant innova-

1For example, Romer (1990); Grossman and Helpman (1991a); Aghion and Howitt (1992); Kortum (1997);
Klette and Kortum (2004); Acemoglu et al. (2017); Akcigit and Kerr (2018).

2For example, Grossman and Shapiro (1978); Chang (1995); Matutes et al. (1996); Schotchmer (1996);
König et al. (2014); Panebianco et al. (2016).

3For example, Duranton and Puga (2001); Bettencourt et al. (2007); Davis and Dingel (2018).
4Somewhat informal studies can be found in, for example, Breschi et al. (2003); Garcia-Vega (2006);

Østergaard et al. (2011); Huo and Motohashi (2015); Inoue et al. (2015); Akcigit et al. (2018).
5Since an applied patent does not necessarily result in an innovation, our analyses are essentially

about knowledge creation rather than innovation, although we use these two terms interchangeably when
appropriate.

6To compare the productivity of a given inventor at different time points, it is convenient to aggregate
multiple years since the output of an inventor is typically intermittent. The basic results remain essentially
the same under different timespans.
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tions by which new technologies replace old ones (e.g Grossman and Helpman, 1991b;

Klette and Kortum, 2004). Publicized technologies also attract imitations that deprive the

opportunity to profit by refining them (e.g., Chu, 2009; Cozzi and Galli, 2014; Jell et al.,

2017). The latter negative effects eventually dominate the former positive ones since

learning-by-doing is subject to decreasing returns (Horii, 2012).

How do successful inventors stay productive in these circumstances? Horii (2012)

proposed a theoretical model of innovation associated with technological shifts. In his

model, consumers wish to satisfy an indefinite range of wants, which induces an inventor

to seek an unexplored technological niche in which he or she can create demand for

new products associated with the new technology. While Horii’s model lacks a micro

mechanism underlying the technological shifts, it is complemented by Berliant and Fujita

(2008).7

In the Berliant-Fujita model, agents communicate via common knowledge and invent

in pairs by utilizing their mutual differentiated knowledge, where an appropriate balance

between common and differentiated knowledge facilitates collaborative innovation. A

longer duration of collaboration by the same pair increases their common knowledge while

decreasing their mutual differentiated knowledge, which at the same time accumulates

differentiated knowledge between them and the remaining agents. To maintain the best

knowledge composition, agents optimally choose the set of their collaborators and the

allocation of time for each collaboration.

Given these facts and the theoretical background, we develop three separate regression

models, each of which focuses on one key causality in knowledge creation.

The first model is a reduced form of the pairwise “knowledge creation function” pre-

sented by Berliant and Fujita (2008). In this model, we focus on the differentiated knowl-

edge of collaborators, as this is an obvious source of new ideas that would take an inventor

to an unexplored technological niche. It is quantified in terms of the novelty/quality-

adjusted output of the collaborator excluding the patents developed jointly with the inven-

tor. We find that a 10% increases in collaborators’ differentiated knowledge for an inventor

raises his or her quality- and novelty-adjusted research output by around 2.8% and 3.5%,

respectively, which thus implies positive but decreasing returns of this knowledge. The de-

creasing returns are considered to result from the fact that the collaborators’ differentiated

knowledge eventually overwhelms the common knowledge with collaborators as well as

the differentiated knowledge of the inventor him- or herself. Hence, the key mechanism

of knowledge creation by Berliant and Fujita (2008) is shown to be empirically supported.

In the second model, we decompose the contribution by collaborators’ differentiated

knowledge to the research output of an inventor (computed from the regression of the first

model) into the fraction accruing to the quality/novelty and that to the quantity of his or

7The Berliant-Fujita model is to our knowledge the only explicit formalization of collaborative innovation
at the individual inventor level. Weitzman (1998) and Olsson (2000, 2005) proposed formulations in which
new ideas are generated by the recombinations of extant ideas. However, in their models, the process
through which such recombinations take place were passive.
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her research output. Whereas we find that the contribution is mostly dedicated to increas-

ing the quantity, rather than the quality, of research output under the quality-adjusted

productivity measure, as large as around 65% of the contribution accounts for increasing

the novelty, rather than the quantity, of research output under the novelty-adjusted pro-

ductivity measure. This result indicates that a major role of collaboration is to induce the

technological shift of an inventor to a new niche, consistent with Berliant and Fujita (2008)

as well as Horii (2012).

In the third model, we probe into the factors determining the amount of differentiated

knowledge that each inventor obtains from his or her collaborators. In this regression, we

focus on the role of the collaborator recombination and find that a more active recombina-

tion has a selection effect in collaborations, as it results in the set of new collaborators with

a larger average quality/novelty-adjusted differentiated knowledge. We find that a 10%

increase in the new collaborators of an inventor raises the average quality- and novelty-

adjusted differentiated knowledge of collaborators by around 14% and 18%, respectively.

While we also find that more able collaborators (i.e., those with a larger amount of

differentiated knowledge) tend to be attracted to the top inventors with a particularly

large stock of knowledge, inventors with a smaller stock of knowledge may still be able to

compensate for their shortage of knowledge by conducting more active recombinations of

collaborators.

These findings explain the observed upgrading of inferior inventors as well as the

persistent productivity of top inventors.

In these regressions, we control for individual fixed effects, period fixed effects, and

local factors by using a variety of establishment/firm-level micro geographic data on em-

ployment, production output, R&D expenditure, and residential population. Yet, we face

identification problems due to network endogeneity, since the differentiated knowledge

and recombination of collaborators are derived from endogenous collaborations among

inventors, that is, the strategic collaborations among inventors to maximize their produc-

tivities.

The identification and estimation of models with endogenous networks are substantial

challenges in the econometric literature (e.g., Jackson et al., 2017). We argue, however, that

each endogenous variable for an inventor in our models can be reasonably instrumented by

the average value of the same variable for his or her indirect collaborators. The relevance

of the instrument comes from the assortative matching by productivity among firms

and workers, which also involves inventors (e.g., Mori and Turrini, 2005; Behrens et al.,

2014; Eeckhout and Kircher, 2018; Gaubert, 2018). The matching is essentially exogenous

to individual inventors given that it takes place more broadly than the interactions of

R&D activities. Our identification strategy is a methodological contribution which may

also be applied in other related problems of strategic interactions in which appropriate

instruments for endogenous regressors have been hard to find (e.g., Jackson et al., 2017,

§8).
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The rest of the paper is organized as follows. We start by making key observations

about the dynamics of knowledge creation and inventor productivities in Section 2. The

related literature is reviewed in Section 3. The Berliant-Fujita model is described in Section

4 and the corresponding regression models are presented in Section 5. The data are detailed

in Section 6, the identification strategy is discussed in Section 7, and the regression results

are presented in Section 8. Section 9 concludes and discusses future research directions.

2 Facts

To guide our analyses to follow, we make three observations on patent development in

Japan, while postponing the description of the data to Section 6.

2.1 Productivity of an inventor

Our panel data consist of three periods, each of which aggregates five consecutive years:

period 0 includes the years from 1995 to 1999, period 1 from 2000 to 2004, and period 2

from 2005 to 2009. We focus on the balanced set I of 107,724 inventors, each of whom

participated in at least one patent in each period.

An inventor is typically involved in multiple patents in a given period. Let Git be the

set of patents in which inventor i participates in period t, and G j for j ∈ Git be the set of

inventors who participate in patent j. If the output of patent project j is expressed by a

scalar g j > 0, then the productivity of an inventor i can be defined in terms of the total output

of patents in which he or she participated in period t, with the output of each patent being

discounted by the number of inventors involved in the patent:

ȳit =
∑

j∈Git

g j

|G j|
(2.1)

where |G j| means the cardinality of set G j. (Hereafter, the expression |X| for any set X

means the cardinality of X.)

We consider two aspects of inventor productivity. One is the quality based on the cited

count. In this case, g j represents the count of citations that patent j received within three

years of publication.8 The other aspect we consider is novelty. In this case, g j represents

the degree of the (technological) novelty of patent j defined by the reciprocal, 1/r j, of the

order, r j = 1,2, . . ., of this patent in terms of its application date among all the patents

8It is assumed that there is at least one (self-)citation, namely g j ≥ 1, under the quality-adjusted measure.
That is, the cited count for each patent is inflated by 1 if there is no self-citation to avoid dropping patents
without citations. Some authors (e.g., Inoue et al., 2015) argue that the citation-adjusted output of a patent
project should exclude self-citations by inventors in the project. Our analyses, however, include them since
there is no clear incentive to inflate the cited counts for patents (unlike the case of academic papers); hence,
the self-citations tend to reflect genuine technological dependence. We also consider the productivity of an
inventor simply based on counts of patents in which he or she participated, that is without citation weights
(see Section 6.1.3). We find no qualitative difference between the results with and without citation weights.
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classified in the same technological category as j.9 Thus, our novelty measure reflects the

nicheness of the technological invention publicized by the patent. It can also be interpreted

as an inverse measure of the crowdedness of the market for the corresponding technological

category.

The technological category of a patent is identified by the “subgroup” of the Interna-

tional Patent Classification (IPC) (see Section 6.1.2). About 40,000 IPC subgroups are active

in each period, and a single primary IPC subgroup is assigned to each patent.

2.2 Dynamics of the relative productivities of inventors

By using the productivity measures introduced above, this section discusses the dynamics

of the relative productivities of inventors. Let ITOP
t (x) represent the set of inventors in the

top x% in I in terms of their productivity in each period t = 0,1, and 2. The set of inventors

in each 5% interval of the productivity percentiles from 0% to 100% can then be expressed

by Γt(x) ≡ ITOP
t (x)\ITOP

t (x− 5) for x = 5,10, . . . ,100, where “\” is a set difference operator.

Call Γt(x) the (productivity) class x of inventors in period t.

For classes, x = 5,10, . . . ,100, under quality- and novelty-adjusted productivities, the

height of each blue bar in Panels (a) and (b) in Figure 1, respectively indicates the share

of the inventors of class x in period 0 who stay at least in the same class x′ (≤ x) in period

1. As essentially the same result is obtained for the transition from periods 1 to 2, we can

make the following observation:

Observation 1 (Churning of relative productivities) Under either measure of productivity,

fewer than half of inventors above the median productivity x < 50 in period t−1 remain at least as

productive in period t ∈ {1,2}, indicating a strong pressure to prevent inventors from maintaining

their relative productivity. In other words, a sizable proportion of inferior inventors replace superior

ones in their productivity ranking in each period.

As discussed in the Introduction, a major reason for this downward pressure may be

the obsolescence and imitations of technologies as well as decreasing returns in learning-

by-doing from the extant technologies. Yet, we find that some top inventors stay highly

productive, while some inferior ones surpass superior inventors. Each red bar in Figure

1, for example, indicates the share of inventors in the corresponding class in period 0 who

transitioned to the top 5% class in period 1. Although upgrading to the top 5% is less

likely for inventors in a lower class, the transitions are observed from a wide range of

lower classes.10

9Our data include all the patents applied in 1993 and thereafter as well as some older applications
published in 1993 or later. Thus, by construction, our measure of novelty tends to overstate the novelty in
technological categories defined before 1993. However, since our regression analyses use novelty data from
2000 and later (i.e., periods 1 and 2), the effect of truncation should not be too problematic as we have a
seven-year lead time before 2000. A part of the remaining overstatement is also controlled for by the period
fixed effect.

10A similar observation was made for US data between 1880 and 1940 by Akcigit et al. (2017), who found
evidence that new inventors receive more patent citations than incumbent inventors.
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Quality-adjusted productivity percentile (top %)

Share (%)

To the top 5%
To the current ranking or higher

Novelty-adjusted productivity percentile (top %)

To the top 5%
To the current ranking or higher

(a) Quality adjusted (b) Novelty adjusted

Figure 1: Change in the productivity class of inventors from period 0 to period 1

Taken together, there is thus a substantial churning of the relative productivities of

inventors under both productivity measures. From the regression analyses in Section 8.1,

we will find that the downward pressure on the productivity of an inventor is represented

by the negative net effect of his or her knowledge stock. Our primary objective is to

identify the factors that differentiate upgrading inventors from downgrading ones behind

the churning of relative productivities among inventors.

2.3 Collaborator recombinations and technological shifts

We next present the key relationship among the productivity, collaboration structure, and

technological specialization of inventors that suggests the mechanism behind the creation

of knowledge associated higher quality and novelty.

To this end, denote by

Nit ≡ ∪ j∈Git
G j\{i} (2.2)

the set of collaborators of inventor i ∈ I in period t such that each inventor in Nit participates

in the development of at least one common patent with i in period t. The collaborator

recombination of inventor i ∈ I in period t is then defined by

∆nit ≡ |Nit\Ni,t−1| (2.3)

i.e., the number of new collaborators in period t.11 The average values of∆nit for inventors

in I are 9.84 and 6.37 in periods 1 and 2, respectively. Provided that the number of

collaborators is the same across periods, these values coincide with the average numbers

of collaborators that were replaced.

Next, define the technological specialization of inventor i in period t by set Sit of the

IPC subgroups associated with the patents in which inventor i is involved in period t.

Accordingly, the technological shift of inventor i is defined, similarly to the collaborator

recombination in (2.3), by the number of IPC subgroups in which i is newly specialized in

11Alternatively, it may be defined by the sum of the number of new collaborations and that of separations
from the collaborations in the previous period, i.e., ∆nit = |Nit\Ni,t−1|+ |Ni,t−1\Nit|. The qualitative result
remains the same under both definitions.
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period t:

∆sit ≡ |Sit\Si,t−1| . (2.4)

The average values of ∆sit are 4.41 and 2.66 in periods 1 and 2, respectively. The high

correlations between ln∆nit and ln∆sit, namely 0.55 and 0.54 in periods 1 and 2, respec-

tively, suggest that new collaborations of an inventor are associated with a shift in his or

her technological expertise.

For what purpose, then, do inventors shift their technological specialization? As

discussed in the Introduction, Horii (2012) considered an economy in which demand

for new technologies always exists, meaning that inventors have incentives to shift their

technological expertise to unexplored niches and develop novel technologies.

While Horii (2012) did not explicitly specify a micro mechanism underlying the tech-

nological shifts, if the collaborator recombination is an effective means for this purpose as

modeled by Berliant and Fujita (2008), other things being equal, he or she is more likely

to achieve a technological niche (i.e., a larger novelty-adjusted ȳit) in the current period

through the technological shift, ∆sit, realized by a larger collaborator recombination, ∆nit,

from the previous period.

In the Berliant-Fujita model, the technological shift is realized by utilizing the differen-

tiated knowledge of new collaborators. Our data are highly suggestive of this causality, as

the correlations between the novelty-adjusted ln ȳit and ln∆sit are 0.30 and 0.29 in addition

to the high correlation between ln∆sit and ln∆nit mentioned above.

Not surprisingly, these high correlations extend to include the quality-adjusted pro-

ductivity measure. To see this, consider the sets of inventors who stay in a given quality-

adjusted productivity class x = 5,10, . . . ,100 persistently in both periods 1 and 2, i.e.,

Γ(x) ≡ ∩t=1,2Γt(x). Denote the average collaborator recombination by an inventor in class x

in period t by

∆nt(x) ≡
1

|Γ(x)|

∑

i∈Γ(x)

∆nit (2.5)

the average technological shift by an inventor in class x in period t by

∆st(x) ≡
1

|Γ(x)|

∑

i∈Γ(x)

∆sit (2.6)

and the average productivity of an inventor in class x in period t by

ȳt ≡
1

|Γ(x)|

∑

i∈Γ(x)

ȳit. (2.7)

Figure 2 plots∆nt(x),∆st(x), and novelty-adjusted ȳt for t= 1,2 for each quality-adjusted

productivity class x= 5,10, . . . ,100. There is a clear increasing tendency of all three measures

for more quality-wise productive inventors (i.e., for a smaller x). Specifically, ∆nt, ∆st, and
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the novelty-adjusted ȳt are 15.3, 13.0, and 0.22 (12.0, 8.60, and 0.14) in period 1 (period 2),

respectively for the top 5% inventors quality-wise, while they are only 3.11, 0.75, and 0.003

(3.09, 0.73, and 0.002), respectively for the bottom 5% inventors quality-wise (i.e., x = 100).

In particular, the novelty of technologies developed by the top 5% inventors quality-wise

is more than 60 times higher than that of the bottom 5% inventors quality-wise in both

periods.12

Quality-adjusted productivity percentile (top %)

(novelty-adjusted)

(novelty-adjusted)

(novelty-adjusted)

Figure 2: Relationship among collaborator recombinations, technological shifts, and the
productivities of inventors

Taken together, our observation can be summarized as follows.

Observation 2 (Recombinations, technological shifts, and inventor productivities) A more

quality-wise productive inventor practices a more active recombination of collaborators and is as-

sociated with a larger technological shift as well as higher novelty in the created knowledge on

average.

A causal relationship behind this observation will be identified in Section 8. Specifically,

a larger effort for collaborator recombination by an inventor (i.e., a larger ∆nit) raises

his or her productivity (i.e., a larger ∆ȳit) by selective collaboration, that is by finding

new collaborators who have more relevant differentiated knowledge to shift his or her

technological expertise to a new niche (i.e., a larger ∆sit associated with higher novelty),

or to enhance the quality of his or her specialized technological skill.

2.4 Invention strategies by productivity level

Our final observation is on the difference in the actions taken by inventors with different

productivity levels. Panels (a) and (b) in Figure 3 show the distributions of collaborator

recombinations and the novelty-adjusted productivity of inventors in period 1 for the top

10% and bottom 10% inventors under quality-adjusted productivity, namely Γ(5)∪Γ(10)

and Γ(95)∪Γ(100), respectively.13 Both distributions are substantially right skewed for the

12In fact, the technological novelty of the top 5% inventors is disproportionate. Even compared with the
top 10% inventors, the degree of their technological novelty is more than twice as large.

13Similar distributions are obtained for period 2.
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top 10% inventors. That is, although both ∆nit and the novelty-adjusted ȳit are larger on

average for the top 10% than the bottom 10% inventors, a substantial population of the

top 10% still do not seek new collaborations or novelty in developed technologies.

Average

Top 10%
Bottom 10%

Top 10%
Bottom 10%

Average

(a) Collaborator recombination

(novelty-adjusted)

(b) Novelty-adjusted productivity

Figure 3: Collaborator recombinations and novelty-adjusted productivity of the top 10%
and bottom 10% inventors quality-wise in period 1

On the one hand, the top 10% inventors appear to rely on their high innate ability and/or

a large stock of knowledge to maintain their high quality-adjusted productivity without

seeking novel technologies. On the other hand, in the context of the Berliant-Fujita model,

the right skewness of the red plots in Figure 3 implies that an inventor without high innate

ability or a large stock of knowledge may still be able to raise his or her productivity

by selective collaboration, that is by finding new collaborators who have more relevant

differentiated knowledge to enhance his or her technological expertise.

To see if this conjecture on the difference in invention strategy between more and less

established inventors can be verified in the data, let us compare the size of the collaborator

recombination and that of the knowledge stock between upgrading and downgrading

inventors for each productivity class of inventors.

If the size of the knowledge stock of inventor i in period t is given by kit =
∣

∣

∣∪
t′<t

Sit′
∣

∣

∣,

then the top 5% inventors quality-wise have on average 3.3 and 2.3 times more stock of

knowledge than the bottom 5% quality-wise in periods 1 and 2, respectively. This fact

means that established inventors can rely more on their stock of knowledge to create new

knowledge than less established ones. However, Berliant and Fujita (2008) suggested that

less established inventors can compensate for their lack of knowledge by utilizing the

knowledge of their collaborators.

For a given productivity measure, let ∆n
Top 5%
t (x) represent the average size of collabo-

rator recombinations by inventors who upgraded their productivity class from x in period

t− 1 to the top 5% in period t. Similarly, let ∆nDown
t (x) be the average size of the collab-

orator recombinations of inventors who downgraded their productivity class from x in

period t−1 to x′ > x in period t for x = 5,10, . . . ,95.14 In the same manner, we can construct

k
Top 5%
t (x) and kDown

t (x) of the knowledge stock for each class x = 5,10, . . . ,95 in period t−1.

14The lowest class x = 100 is omitted since there is no further downgrade from there.
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Panels (a) and (b) in Figure 4 plot the ratio of the relative size of the collaborator re-

combination, ∆n
Top 5%
t (x)/k

Top 5%
t (x), of upgrading inventors and that, ∆nDown

t (x)/kDown
t (x),

of downgrading ones for each productivity class x = 5,10, . . . ,95 under the quality- and

novelty-adjusted measures of productivity, respectively.

Period 1
Period 2

Quality-adjusted productivity percentile (top %)

Period 1
Period 2

Novelty-adjusted productivity percentile (top %)

(a) Quality adjusted (b) Novelty adjusted

Figure 4: The relative size of the collaborator recombination for upgrading and down-
grading inventors in period 1

Although there is an exception at the low end of the quality-adjusted productivity class

in period 2 (see Figure 4(a)), one can find a general tendency summarized as follows.

Observation 3 (Collaborator recombination versus stock of knowledge) Inventors with higher

productivity rely relatively more on their own knowledge stock than knowledge from new collabo-

rators, while the opposite is true for inventors with lower productivity.

In Section 8.3, we will find that the observed difference among inventors in their reliance on

their own stock of knowledge and the collaborator recombinations appears in their strategy

for realizing higher average quality/novelty of differentiated knowledge of collaborators

which in turn raises their research productivity.

3 Literature

The literature related to knowledge creation is diverse, including economic growth, in-

dustrial organization, and regional economics. We provide a brief overview of them here

as the background of our study.

3.1 Theories

Innovation, a consequence of knowledge creation, is at the heart of economic growth

theory. The first appearance of knowledge in this literature was in the form of learning-

by-doing, which describes the situation in which labor productivity increases with capital

accumulation (e.g. Arrow, 1962; Romer, 1986). Later, human capital was distinguished

from physical capital (e.g., Lucas, 1988; Caballe and Santos, 1993). The explicit mechanisms

behind knowledge accumulation, however, were left unspecified in these models.

The first formalization of intentional innovation was in the public research sector by

Shell (1966, 1967). A large variety of market-driven innovations by the private sector
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were proposed in the 1990s and thereafter (e.g., Romer, 1990; Grossman and Helpman,

1991b,a; Aghion and Howitt, 1992; Kortum, 1997), where investment decisions on R&D

were explicitly modeled. The positive externalities from the accumulated human capital

improved productivity in knowledge creation and drove economic growth in these models.

There has been a recent surge in the literature initiated by Klette and Kortum (2004),

who linked innovation technologies at the firm level to firm dynamics and then to growth

at the economy level. They formalized quality ladder-type innovation at the firm level as

an outcome of research building on the firm’s present product lines. In their model, the

product scope of a firm is interpreted as the stock of knowledge, which agrees with the

argument by Weitzman (1998) that a new idea can generate a larger number of other new

ideas if recombined with a larger number of existing ideas. Among a number of extensions,

Akcigit and Kerr (2018), for example, distinguished innovations between new product cre-

ation and production process improvement at the firm level, where the former draws more

from the prevailing product quality in the economy, while the latter depends more on the

present quality of the firm’s products. Akcigit et al. (2016) distinguished basic and applied

research, which differ in their extent of positive spillovers. Lentz and Mortensen (2008)

and Acemoglu et al. (2017) introduced vertical heterogeneity among firms in innovation

capacity.

These models of firm-level innovation, however, still abstract from the mechanism

through which the stock of knowledge is utilized by inventors in a firm to make innovations

happen. As an exception, the recent contribution by Akcigit et al. (2018) extended these

quality ladder models of growth by introducing the endogenous formation of a research

team in which each ex ante homogeneous individual inventor faces an endogenous choice

to become a team leader or a team member.

The strategic aspects of innovation by individual firms have been explored by utilizing

the techniques of industrial organization and network science. For example, König et al.

(2014) formulated a trade-offbetween R&D collaborations and product market competition

among firms when investment in R&D by a firm reduces not only the production cost of

this firm, but also those of collaborating competitors. Panebianco et al. (2016) formalized

the mechanism of technology diffusion among firms by explicitly modeling the market for

the innovation and the timing of the diffusion in a given network of firms. However, they

still abstracted from the mechanism of knowledge creation as well as from the endogeneity

of the network of firms within which R&D collaborations or innovation diffusion can take

place.15 This topic has often been studied in conjunction with the cost and benefit of

the properties of a given patent system (e.g., Grossman and Shapiro, 1978; Chang, 1995;

Matutes et al., 1996; Schotchmer, 1996).

The literature on knowledge creation at the inventor level is more scarce than that at

the firm level. To our knowledge, the study by Olsson (2000, 2005) was the first successful

15See also Yang and Maskus (2001); Glass and Saggi (2002); Tanaka (2006); Tanaka et al. (2007) for related
analyses in the context of economic growth.
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attempt to formalize the notion of cogitation by an individual inventor in developing new

ideas. Ghiglino and Tabasso (2015) proposed a microeconomic model of the innovation

diffusion process that depends on the applicability of knowledge. Knowledge creation in

these models, however, is treated as passive, and follows some stochastic process.

The work by Berliant and Fujita (2008) was, to our knowledge, the first to formalize

active knowledge creation by individual inventors, with a strong focus on collaborative

knowledge creation.16 In their model, the steady-state size of the collaborating set of agents

depends on the relative importance of common versus differentiated knowledge, where a

larger size will result if differentiated knowledge is more appreciated.17

The typical steady state of the Berliant-Fujita model, however, does not replicate the

observed churning of relative productivity among inventors discussed in Section 2. Horii

(2012) complemented the Berliant-Fujita model in this aspect. In his model, consumers

have an indefinite range of wants and thus demand for new technologies always exists. On

the production side, learning-by-doing and local spillovers from the technological vicinity

induce innovations to take place at discrete locations in the technological space. As the

productivity improvement from learning-by-doing is subject to decreasing returns, there

is an incentive to deviate from the extant technology and innovate in a distant unexplored

niche in which a firm can rouse demand for the new technology and make a profit.

The cost of the technological shift in this deviation is implicit, and it depends on

the distance from the extant technologies that determines the levels of competition and

spillovers from these technologies. The collaborative knowledge creation in the Berliant-

Fujita model complements this aspect in return by providing a possible micro mechanism

for achieving the shift.

3.2 Empirics

A sizable literature on the effects of R&D investment on innovation, firm productivity,

and economic growth in a country started in the 1960s (e.g., Griliches, 1964, 1979; Scherer,

1982; Coe and Helpman, 1995). In particular, after Kortum (1997) and Klette and Kortum

(2004), studies began to structurally estimate the variations and extensions of their mod-

els by using firm-level micro data (e.g., Lentz and Mortensen, 2008; Akcigit et al., 2016;

Acemoglu et al., 2017; Akcigit and Kerr, 2018). While these studies relate the innovation

behavior, size, and growth of firms to aggregate economic growth, as discussed in the

previous section, their models are not designed to disclose the innovation mechanism at

the inventor level within a firm, which is the focus of our study. Moreover, in these struc-

tural model-adjusted approaches, the innovation technologies are not typically estimated

16Jovanovic and Rob (1989) proposed a related search model in which collaborations with more able
partners are more likely to result in the development of better knowledge.

17A variety of extensions of Berliant and Fujita (2008) have been proposed. Berliant and Fujita (2011) aug-
mented their model with foresights and the possibility of learning from public knowledge; Berliant and Fujita
(2012) introduced the variation in distance among agents; and Berliant and Mori (2017) allowed for hetero-
geneity in the innovation technology among inventors.
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directly.

One exception is the work by Akcigit et al. (2018), who estimated a reduced-form

model of team-level innovation similar to the knowledge creation function of the Berliant-

Fujita model. Their key variable is the quantity and quality of the interactions within a

team, which is a sort of composite of the differentiated and common knowledge among

collaborators in the Berliant-Fujita model. The crucial difference from our approach is that

their research team formation is considered to be exogenous, while the endogeneity of the

network is the key factor in the Berliant-Fujita model.

Another large strand of the literature is on knowledge spillover and diffusion (e.g.,

Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and Kominers,

2015). Its concern is on the distance and routes on which innovated technology and

knowledge spread, not on how the knowledge is created. However, we still incorporate the

results of such studies and show that the creativity of an individual inventor is positively

influenced by the spillovers from other inventors in his or her geographic vicinity.

Breschi et al. (2003); Garcia-Vega (2006); Østergaard et al. (2011) developed measures of

common and differentiated technological knowledge relevant for innovation, showing that

diversified knowledge as well as the mutual relatedness of knowledge within a firm and

the innovation productivity of the firm are positively correlated. By using Japanese patent

data similar to ours, Huo and Motohashi (2015) found a positive correlation between

differentiated (as well as common) knowledge among inventors within a firm and their

innovation productivities, whereas Inoue et al. (2015) focused on innovations by firm pairs,

thereby avoiding the reflection problem typical in a network environment, and argued that

there is a decreasing return to common knowledge between collaborators. However, all

these studies ignore the endogeneity of collaborations, and thus the underlying causality

is not clear.

Finally, this paper is also related to econometric identification and estimation in the

context of a linear model in which some regressors are derived from endogenous net-

work formation. The network endogeneity that arises in this study comes from inven-

tors’ strategic interactions to maximize their productivity by collaborations. Most com-

mon way to deal with network endogeneity is to consider network formation model to

identify and estimate the parameters of interest (e.g., Goldsmith-Pinkham and Imbens,

2013; Hsieh and Lee, 2016; Comola and Prina, 2014; Li and Zhao, 2016; Patacchini et al.,

2017).18 However, this approach imposes parametric restrictions on the network forma-

tion model, and the estimation is biased when the model is misspecified. Since the model

by Berliant and Fujita (2008) provides no simple econometric model of network formation

as will be clear in Section 4, this traditional approach fails in our case. Thus, in contrast,

in this paper we do not suppose any parametric model of network formation; instead,

18Another typical approach assumes exogeneity of network structure (e.g., Bramoullé and Treich, 2009;
Bramoullé and Fortin, 2010). A closely related work by Akcigit et al. (2018) on knowledge creation adopts
this approach.
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we propose an alternative approach to deal with endogenous regressors for an inventor

by instrumental variables that are constructed from the information of his or her indirect

collaborators. We argue in Section 7 that this type of instrumental variables work if only

the information from sufficiently far indirect collaborators is used and the relevance of the

instruments comes from the variation exogenous to the network in question.

4 The Berliant-Fujita model

This section provides a brief overview of the theoretical model of knowledge creation

proposed by Berliant and Fujita (2008).

In a given period of time, each agent develops new knowledge either in isolation or

by collaborating in pairs, building on the stock of knowledge accumulated in the past.

Let I be the set of all the agents who engage in knowledge creation, where all agents are

assumed to be symmetric. Let δi j ∈ [0,1] be the proportion of time that agent i ∈ I allocates

for the collaboration with j ∈ I. If a given agent i works in isolation (i.e., collaborates with

him- or herself), his or her knowledge creation is subject to constant returns technology,

given by

yii =















akii, δii ∈ [0,1]

0, otherwise
(4.1)

where a > 0, kii is the knowledge stock of agent i, and yii is the output. If he or she instead

collaborates with agent j (, i), the joint output, yi j, of this collaboration is given by

yi j =



















b
(

kC
ij

)θ(

kD
ij

)
1−θ

2
(

kD
ji

)
1−θ

2 , δi j ∈ [0,1]

0, otherwise
(4.2)

where b > 0, kC
ij

is the common knowledge between i and j, kD
ij

is the knowledge of agent i

differentiated from that of j, andθ ∈ (0,1) is the relative importance of common knowledge.

All knowledge is symmetric, and the output from the collaboration of agents i and

j becomes their common knowledge. Thus, the common knowledge between i and j

increases relative to their differentiated knowledge as their collaboration lasts longer, while

the differentiated knowledge between i (as well as j) with other agents increases relative to

their common knowledge. To achieve the best combination of common and differentiated

knowledge with collaborators, agents collectively decide the group of collaborators, where

each agent i optimally chooses δi j for each j ∈ I of his or her collaborators.19

In this context, the group size that maximizes growth in the knowledge stock is given

by 1+ 1/θ. Indeed, this is a typical steady-state equilibrium when agents initially have

sufficient common knowledge, which is a natural situation for collaborations to start

(Berliant and Fujita, 2008, Proposition 1). In a symmetric steady-state equilibrium where

all agents follow the same collaboration pattern, the equilibrium time allocation for col-

19Myopic core is adopted as the equilibrium concept.
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laborations is given by δi j ≡ δ = 1/(1+1/θ) for all i, j ∈ I.

5 Regression model

In this section, we introduce three reduced-form regression models to identify the causal

relationship among the quality/novelty of inventions, collaborators’ differentiated knowl-

edge, and magnitude of the collaborator recombination at the inventor level based on the

Berliant-Fujita model. In the regressions, we focus on collaborative inventions, and do not

address the choice between working in collaboration and working in isolation. In other

words, our formulation assumes a positive number of collaborators for each inventor in

each period.

Let t = 0,1, . . . ,T be the consecutive periods in which data are available and let It be the

set of all inventors who participated in the development of at least one patent in period

t. The subset of inventors, each of whom is involved in the development of at least one

patent in every period (introduced in Section 2.1), is denoted by I (⊂ It).

Let Gt represent the set of all patents applied in period t. We call the development

of each patent j ∈ Gt a project j. Then, G j introduced in Section 2.1 represents the set of

inventors who participated in project j, and the set of projects in which inventor i ∈ It

participated (also introduced in Section 2.1) can be rewritten as Git ≡ { j ∈ Gt : i ∈ G j}.

Accordingly, the set Nit of the collaborators of inventor i in period t is given by (2.2) in

Section 2.3, and the output, ȳit, of inventor i is given by (2.1) in Section 2.1.

5.1 A reduced-form Berliant-Fujita knowledge creation function

To bring the knowledge creation function (4.2) to the data, we modify the original speci-

fication. First, while this is defined for each of the multiple pairwise collaborations,20 we

formulate a reduced-form regression model for a single average pairwise knowledge creation

function:

ln yit = α+β lnkD
it +γ1 lnkit+γ2 (lnkit)

2
+ lnAit+λi+τt+εit (5.1)

in which yit represents the average pairwise output by inventor i:

yit = ȳit/nit (5.2)

20Since the average number of inventors per patent in our data is about two (see row 7 in Table 1 as well
as Section 6), the assumption of multiple pairwise collaborations is reasonable.
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where nit ≡ |Nit|.
21 It is implicit that the variation in pairwise productivities for a given

inventor is random and is captured by the inventor- and period-specific error term, εit.

Second, in (5.1), we focus on the differentiated knowledge, kD
ji

, of collaborators in (4.2),

since this is a source of new ideas as discussed in Section 2, while abstracting from the role

of the common knowledge, kC
ij

, and that of the differentiated knowledge, kD
ij

, of inventor i

him- or herself in (4.2). This key variable appears as kD
it

in the second term on the right-

hand side (RHS) of (5.1) in the form of the average (pairwise) differentiated knowledge of the

collaborators of i, and is defined by the average output that the collaborators of i produced

outside the joint projects with i:22

kD
it =

1

nit

∑

j∈Nit

∑

k∈G jt\Git

gk

|Gk|
. (5.3)

Here, kD
it

includes only the fresh differentiated knowledge of collaborators that they

create with inventors other than i in the current period and not their knowledge stock

from the past. This definition reflects Observation 1 in Section 2.2 that past knowledge

(which is essentially past productivity in our case) is strongly associated with negative

effects, possibly from imitation and obsolescence despite the positive effects of learning-

by-doing.

The value of kD
it

may also be interpreted as the average productivity of i’s collaborators

outside joint projects with i. This feature is important when we construct an instrument

for this variable in Section 7.

Third, as for the common knowledge kC
ij

and differentiated knowledge kD
ij

of each

inventor i in (4.2), their effects are controlled for by the stock of knowledge of each inventor:

kit =
∣

∣

∣∪
t′<t

Sit′
∣

∣

∣. (5.4)

While this approach does not capture the roles of the common knowledge between i and

21To understand pairwise productivity à la Berliant and Fujita (2008), consider two groups of inventors.
In group A, two inventors together produce two patents, while in group B, three inventors together produce
three patents. For simplicity, let g j = 1 for all patents j. It follows that the proportion of output in each project
accruing to one inventor is one-half in group A and one-third in group B. The total output of inventor i is then
ȳi = 1/2×2 = 1 in group A and ȳi = 1/3×3 = 1 in group B. However, we assume that knowledge is always
created in pairs as in the Berliant-Fujita model. For an inventor in group A, his or her share (one-half) of a
given patent is an outcome of the pairwise collaborations with his or her only collaborator; in other words,
the proportion of the output of a pairwise collaboration in a given project accruing to him or her is one-half
(= 1/2÷1). Since group A produces two patents, the total pairwise output is given by yi = 1/2×2= 1 for each
inventor i. Since an inventor in group B has two collaborators, the proportion of the output of the pairwise
collaboration accruing to an inventor for each patent is one-sixth (= 1/3÷2), and the total pairwise output for
each inventor i is 1/6×3 = 1/2. Thus, inventors in group A are more productive in pairwise collaborations
than those in group B.

22In principle, it is possible to formulate the knowledge creation function in terms of the total output ȳit

of inventor i. In that case, kD
it

is replaced by nitk
D
it

. However, since we abstract from the common knowledge
between inventor i and his or her collaborators and the differentiated knowledge of i by adding lnkit and
(lnkit)

2, the effects of nit on these variables are not obvious. Thus, we prefer to follow closely the pairwise
knowledge creation function proposed by the Berliant-Fujita model as in (5.1).
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his or her collaborators and of the differentiated knowledge of i precisely,23 they are by

definition expected to be positively correlated with the knowledge stock of i.24

Moreover, the size of the knowledge stock is expected to control for a variety of other

effects, including the learning-by-doing effect as well as imitations and obsolescence effects

on the extant technologies discussed in Section 2.2. We include the squared term, the fourth

term on the RHS of (5.1), to capture their overall effects up to the second order.

Finally, in the fifth term, Ait bundles the inventor- and time-specific productivity shifters

for inventor i:

Ait ≡ eX
′
it
η, (5.5)

where Xit represents a vector including the inventor-specific and time-varying controls

such as spillover effects from other inventors in the geographical neighborhood, proximity

to R&D expenditure, manufacturing employment/production, and residential population.

In the last three terms on the RHS of (5.1), λi, τt, and εit represent the time-invariant in-

ventor fixed effect, period fixed effect, and inventor- and period-specific error, respectively.

The values of the parameters α,β,γ1,γ2,η, and τt are estimated by the regressions.

5.2 Quality/novelty and quantity decomposition

The definition of quality and novelty of output by an inventor given by (2.1) implies the

log-linear relationship between the quality and the quality/novelty of his or her output:

ln yit = ln y
p

it
+ ln y

q

it
. (5.6)

In the first term on the RHS of (5.6), y
p

it
denotes the quantity, i.e., the average count of

patents, of inventor i’s pairwise output given by

y
p

it
≡ ȳ

p

it
/nit (5.7)

where ȳ
p

it
≡
∑

j∈Git
1/|G j|which is the case of g j = 1 in (2.1) ; whereas in the second term, y

q

it

represents the average quality/novelty of i’s pairwise output given by

y
q

it
≡ yit/y

p

it

(

= ȳit/ȳ
p

it

)

. (5.8)

We can thus decompose the effect of each explanatory variable in (5.1) into the quantity

23Ideally, the knowledge stock may be defined in terms of productivities as in the case of kD
it

in (5.3).
However, this leads to an identification problem because of the endogeneity induced by including the
lagged outcomes. Moreover, as shown in Section 2.2, publicized technologies are quickly imitated and thus
become obsolete. Hence, the output measures may be unsuitable for defining the knowledge stock.

24In principle, it is possible to define average pairwise common knowledge of inventor i, for example,
by kC

it
= 1

nit

∑

j∈Nit
|S̄it ∩ S̄ jt|, and average pairwise differentiated knowledge of i by kD∗

it
= 1

nit

∑

j∈Nit
|S̄it\S̄ jt|,

where S̄i ≡ ∪t′<tSit′ . (Refer to footnote 23 for a reason that we should avoid defining kC
it

and kD∗
it

in terms

of productivities as in kD
it

.) Since these should strongly correlate with kit by construction, and hence can be
controlled for by kit to a large extent, however, we focus on the identification of the most interested causal
relationship between kD

it
and yit, rather than allowing for multiple endogenous variables.
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and the quality/novelty of inventors’ pairwise output, yit, by estimating the model given

by

ln ym
it = α

m+βm lnkD
it +γ

m
1 lnkit+γ

m
2 (lnkit)

2
+ lnAm

it +λ
m
i +τ

m
t +ε

m
it (5.9)

for m = p and q, where the coefficients of each explanatory variable for m = p and q add up

to that of the corresponding variable in (5.1). In particular, we have

β = βp+βq (5.10)

for the effect of collaborators’ differentiated knowledge.

5.3 Recombinations and the differentiated knowledge of collaborators

Finally, we introduce our third regression model (5.11) to identify the factors determining

the value of kD
it

in (5.1):

lnkD
it = α̃+ β̃ ln∆nit+ γ̃1 lnkit+ γ̃2 (lnkit)

2
+ ln Ãit+ λ̃i+ τ̃t+ϵit (5.11)

where ∆nit given by (2.3) is considered to be endogenous as it is a result of inventors’

endogenous collaboration.

The aim of this regression is twofold. One is to see if the more active recombination

of collaborators results in acquiring knowledge associated with higher quality/novelty

from collaborators, as we interpreted Observation 2 in the context of the Berliant-Fujita

model, while the other is to see if the substitutability between the stock of knowledge

and collaborator recombinations suggested by Observation 3 is relevant in raising the

quality/novelty of collaborators’ differentiated knowledge.

It is to be noted that we present the results of the two separate estimations for (5.1) and

(5.11), rather than incorporating the collaborator recombination explicitly in the knowl-

edge creation function given by (5.1), since only the former has a specific microeconomic

foundation according to Berliant and Fujita (2008). More specifically, in the Berliant-Fujita

model, each inventor optimally chooses the size of the collaborator recombination to

balance the common and differentiated knowledge between him or her and his or her col-

laborators, not just to maximize the value of the differentiated knowledge of collaborators.

Thus, (5.11) captures only a part of the entire causality behind the determination of kD
it

.

6 Data

In this section, we describe our dataset, focusing primarily on patent data.

6.1 Patent data

The original patent data were taken from the published unexamined patent applications of

Japan. In particular, we focus on the published patent applications to be examined for
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approval rather than approved patents. The advantage of using unexamined applications

is that the flow of unexamined applications at a given point in time reflects the amount of

research activities going on at that point more precisely than the flow based on approved

patents. Indeed, it is possible to objectively evaluate the quality of each unexamined patent

in terms of cited counts as well as the novelty of the technology proposed by the patent.

The unique feature of our dataset developed by Artificial Life Laboratory (2018) is that

each inventor is uniquely identified as long as his or her name and affiliation have not

changed.25 For such individual inventors, we can identify the set of all patents in which

each inventor was involved in the development as well as the set of inventors with whom

he or she has collaborated at different time points. This feature of our dataset enables us to

construct panel data that show the relationship between the productivity and collaboration

patterns of individual inventors.

6.1.1 Patent projects

Our analysis targets inventors who helped develop the patents applied between 1995

and 2009 in Japan, while we use information on all the patents applied between 1993

and 2016 to construct the relevant variables. To take into account the fact that patent

development is a time-consuming project whose underlying research could take several

years, the productivity of an inventor is evaluated in terms of his or her output over five

years. The choice of a five-year window for each period also reflects the availability of

other relevant data such as population, employment, production, and investment data

from the census.

We construct a three-period panel by aggregating five consecutive years in each period:

period 0 consists of the years from 1995 to 1999, period 1 from 2000 to 2004, and period 2

from 2005 to 2009. Since kit and ∆nit require information on the previous period, period 0

is not included in the regressions.

In addition, we cannot include the years of 2010–2016 in the regression since we need

information up to seven years from the application date of each patent to account for the

time lag between the date of application and that of publication as well as to allow for

three/five years from the publication date to count the forward citations for each patent

(see Section 6.1.3). Consequently, our panel for the regressions consists of two periods, 1

and 2.

Table 1 summarizes the basic data. There are 1,758,780 and 1,546,596 patents applied in

periods 1 and 2, the development of which |I1| = 1,208,197 and |I2| = 1,094,789 individual

inventors were involved, respectively (see rows 1 and 4).26 Among them, we focus on

25The name and address matching in Japanese is highly involved because of the wide variation in
expressions meaning the same address, firm name, and so on. This database provides the results from
highly reliable matching exercises.

26The fact that the number of patents per inventor is declining over time may reflect the influence of
the tendencies of block patents (e.g., Chu, 2009; Cozzi and Galli, 2014; Nicholas, 2014; Jell et al., 2017). In
particular, after the applied unexamined patents were made public in digitized form in 1993, firms have
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the productivities of inventors who have been active throughout all three periods and

are located in a part of the country contiguous to the four major islands, the main island

(Honshu), Hokkaido, Kyushu, and Shikoku. There are |I| = 107,724 such inventors.

While our panel is constructed for these 107,724 inventors present throughout the study

period, the information on the other inventors is still used as long as they collaborated

with these selected inventors.

Row 7 of Table 1 shows that the average number of inventors in a project throughout

the study period is about two. In other words, the assumption of pairwise collaboration

in the Berliant-Fujita model is indeed not far from reality, which in turn justifies using our

regression model for the pairwise knowledge creation function in (5.1).

Table 1: Descriptive statistics of the basic variables

Period

(1) (2)

Variable 1 2

(2) Number of IPC classes 120 122

(3) Number of IPC subclasses 608 615

(4) Number of IPC subgroups
∣

∣

∣∪i∈I Sit

∣

∣

∣ 40,691 38,339

(5) Number of inventors in period t |It| 1,208,197 1,094,789

(6) Number of inventors active in all periods |I| 107,724 107,724

(7) Number of inventors per patent |G jt| 2.193 2.244
(1.538) (1.609)

(8) Share of collaborating inventors
∣

∣

∣{i ∈ It : |Nit| > 0}
∣

∣

∣/|It| 0.896 0.868

(9) Number of collaborators per inventor |Nit| 8.518 6.323
(9.321) (7.579)

(10) Number of new collaborators per inventor ∆nit 6.893 4.354
(7.907) (5.848)

(11) Number of patents per inventor |Git| 10.66 6.858
(16.21) (11.95)

(12) Number of IPC subgroups per inventor |Sit| 5.471 3.713
(5.223) (4.026)

(13) Size of cumulative IPC subgroups per inventor | ∪t′<t Sit′ | 4.550 8.958
(4.659) (7.582)

Numbers in parentheses are standard deviations.

Moreover, as row 8 indicates, about 90% of inventors have at least one collaborator,

which also justifies our focus on collaborative knowledge creation. A shown in row 9,

an inventor is working with six to nine collaborators on average (i.e., collaborations are

typically polyadic), which also agrees with the implication from the Berliant-Fujita model.

Each inventor is involved in the development of six to 10 patents in each period (row

11), which are associated with three to five IPC subgroups (see Section 6.1.2) (row 12).27

6.1.2 IPC

The technological classification of patents provides useful information for quantifying

the knowledge of inventors as well as controlling for the possible incompatibility in the

stronger incentives to block potential competitors from innovating in their common technologies.
27We adopt IPC subgroups to describe the technological knowledge associated with patents.
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productivity comparison of patents across different technological categories.

Each published patent application is associated with at least one technological clas-

sification based on the IPC, which is maintained by the World Intellectual Property Or-

ganization. The IPC classifies technologies into eight sections: A (human necessities),

B (performing operations; transporting),. . ., H (electricity). These sections are divided

into classes such as A01 (agriculture; forestry; animal husbandry; hunting; trapping; fish-

ing) and B02 (crushing, pulverizing, or disintegrating; preparatory treatment of grain for

milling) and then into subclasses such as A01C (planting; sowing; fertilizing) and B02B

(preparing grain for milling; refining granular fruit to commercial products by working the

surface). Each subclass is subdivided into groups (e.g., A01C1 is “apparatus, or methods

of use thereof, for testing or treating seed, roots, or the like, prior to sowing or plant-

ing”) and then into subgroups (e.g., A01C 1/06 (coating or dressing seed) and A01C 1/08

(immunizing seed)).

Unlike the Standard Industrial Classification (SIC), the IPC’s labeling scheme for tech-

nology classification is consistent over time (i.e., there is no arbitrary relabeling of the same

technology classes). Thus, if a new category is introduced at a given point in time, then it

means that the technologies associated with this category have been newly developed.

For example, the classes B81 (microtechnology) and B82 (nanotechnology) introduced

in 2000 in section B (performing operations; transporting) refer to the newly emerged tech-

nologies for manipulating materials and structures at micro- and nano-scales, respectively

around that time. As another example, the shale revolution in the late 2000s in the United

States was made possible by some key innovations in excavation technology that mainly

belong to a new subclass C09K (compositions for drilling of boreholes or wells; compo-

sitions for treating boreholes or wells) that was split from E21B (earth or rock drilling;

obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells)

in 2006. If there are no fundamental changes in technology in a given category, the classi-

fication remains the same. Such a case is found, for example, in A47C (furniture; domestic

articles or appliances; coffee mills; spice mills; suction cleaners in general).

Taken together, the set of technological categories specified in the IPC at a given point

in time roughly represents the set of the state-of-the-art technologies at that time, and

hence makes an appropriate proxy for the set of technological knowledge.

While at least one IPC subgroup (hence, one group, one subclass, one class, and one

section) is attached to each published patent application, the applicant can claim more

than one IPC subgroup for his or her patent. Thus, the IPC subgroups beyond the primary

one associated with a given patent reflect certain subjective standards for the identification

of the technology, which may vary across applicants.

For this reason, we only take into account the primary IPC subgroup of each patent

to represent its technology. In this regard, we have 121, 609, and 40,691 (123, 616, and

38,339) relevant IPC classes, subclasses, and subgroups, respectively for period 1 (period

2), which are claimed as the primary technological classifications of the applied patents in
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our data (rows 2–4 in Table 1).

Let S denote the set of all the technological categories (in terms of either one of IPC

class, subclasstz, or subgroup) and the technological category assigned to patent j be s j ∈ S.

The technological specialization of inventor i is then defined by

Sit = ∪ j∈Git
{s j}. (6.1)

For the regressions, we adopt IPC subgroups to construct Sit and quantify the cumulative

stock of knowledge, kit, defined in (5.4).

Similarly, to quantify the technological novelty defined in Section 2.1, we adopt IPC

subgroups as they exhibit the largest variation among inventors. We also control for the

IPC class fixed effect to account for the possible incompatibility of the quality/novelty

adjustment of patents across different technology categories.

6.1.3 Productivity and differentiated knowledge

Table 2 lists the descriptive statistics for the productivity variables. In addition to the

quality- and novelty-adjusted productivities introduced in Section 2.1, we consider two

more measures based on claim counts and patent counts for our robustness check (detailed

below). The table has two columns for each measure to list the values in periods 1 and 2.

Row 1 shows the adjusted output of a patent project. Our preferred measure of the

quality of a given patent is based on the count of forward citations following Trajitenberg

(2002); Akcigit et al. (2018).28 In our baseline analysis, we count the forward citations of

each patent within three years of the publication date following Akcigit et al. (2018), while

we also conduct the same analysis under the count of forward citations within five years

of publication to check the robustness (see Appendix C).

For the applied patents published between 1995 and 2006, Figure 5 shows the frequency

distribution of the cited timing in terms of days from publication in the first 10 years after

publication. The peak is at around two years. Indeed, the cited counts in the first three

years account for more than 75% of the total cited count in the first 10 years for all samples.

Thus, using the cut-off of three years from publication to evaluate the quality of the applied

patent appears to be reasonable.

Columns 1 and 2 list the numbers for this measure of patent quality for periods 1 and

2, respectively.

Alternatively, we use technological novelty based on the IPC subgroups introduced

in Section 2. Since cultivating a novel technology requires knowledge, there may be a

more direct relationship between knowledge input and technological novelty. To check

the robustness, we also present the second-stage results for novelty-adjusted productivity

using the IPC subclasses instead of subgroups in Appendix C.

28Cited counts may not be an optimal measure of patent quality when there is an incentive to block
follow-up patents as discussed by Abrams et al. (2013).

22



For robustness, we additionally adopt patent claims as an alternative measure for the

technological novelty of a patent. Each claim indicates an aspect of the patent to be

protected. Thus, its count can be considered to reflect the technological novelty within a

patent. While the claims are made by applicants, this is not a fully subjective measure of

quality since each claim incurs monetary costs. Columns 3 and 4 list the numbers for this

quality measure for periods 1 and 2, respectively.

The last measure to be considered is to count the patents applied as they are (i.e., the

output value, g j, for each patent j is one). Columns 5 and 6 list the numbers for this

measure of patents for periods 1 and 2, respectively.

Table 2: Descriptive statistics of the productivity variables

Productivity measure Cited counts Novelty Claim counts Patent counts

(1) (2) (3) (4) (5) (6) (7) (8)

Period 1 2 1 2 1 2 1 2

(1) Output of a patent g jt 1.535 1.423 0.013 0.009 7.231 8.906 1.000 1.000
(2.527) (3.850) (0.056) (0.049) (9.555) (81.53) (0.000) (0.000)

(2) Productivity of ȳit 7.906 5.048 0.047 0.024 36.67 40.89 4.824 3.099
an inventor (16.83) (163.31) (0.134) (0.084) (109.14) (4173.48) (7.749) (5.936)

(3) Pairwise productivity yit 1.389 1.728 0.009 0.006 6.682 25.48 0.894 0.677
of an inventor (3.160) (175.04) (0.049) (0.032) (88.27) (4478.60) (1.911) (1.739)

(4) Avg. diff. knowledge kD
it

1.411 1.053 0.008 0.005 6.578 5.646 0.874 0.747
of collaborators (7.520) (4.539) (0.043) (0.034) (49.51) (25.86) (4.699) (3.057)

Numbers in parentheses are stand1ard deviations.

Figure 5: Cited timing in the 10 years after publication

As defined in (2.1), when the output of a project is attributed to each inventor, it is

discounted by the total number of inventors involved in the project. Row 2 of Table 2 lists

the output, ȳit, attributed to inventor i under each alternative productivity measure.

Row 3 of Table 2 lists the average pairwise productivity, yit, of each inventor defined by

(5.2), which corresponds to the output of the knowledge creation function (4.2) proposed

by Berliant and Fujita (2008) under these alternative productivity measures.

Finally, row 4 of Table 2 lists the average differentiated knowledge of collaborators

defined by (5.3) for each productivity measure. These numbers are not surprisingly

comparable to the values of the pairwise productivity of an inventor in row 3.

23



6.2 Locational factors

The possible influence of various exogenous locational factors on productivity in knowl-

edge creation has been suggested by existing studies. Below, we briefly describe each

factor included in the regression, with the precise definitions relegated to Appendix A. For

factors 2–5 below, the size of the concentration in a circle of a given radius around each

inventor i ∈ I is computed.

Urban agglomerations (UAs): R&D activities are disproportionately concentrated in large

cities (see, e.g., Helsley and Strange, 2004; Davis and Dingel, 2018; see also Figure 7(b) in

Appendix D). Hence, to correctly account for the heterogeneity in productivity across

cities, individual inventors are associated with UAs. Specifically, we define a UA to be a

contiguous area of population density at least 1000 per 1km2 with the total population at

least 10,000.29

For inventors located within a 10 km buffer of each of the 453 UAs, the closest UA

is assigned, while for those located outside the 10 km buffer of any of these UAs, their

locations are considered to be rural. In the regression analyses below, the standard errors

are clustered by UA. In the regression analyses, the standard errors are clustered by UAs.30

Inventor population aINV
it

: The effects of spillovers and competition from the local popu-

lation of inventors have been recognized in the literature (e.g., Jaffe et al., 1993;

Thompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and Kominers, 2015). To account

for these effects of the local inventor population for each inventor i, we exclude his or her

collaborators, Nit.

R&D expenditure aR&D
it

: R&D expenditure naturally influences patent development.31

Manufacturing employment and output aMNFe

it
and aMNFo

it
: R&D may be subject to

spillovers from manufacturing concentration (e.g., Griliches, 1979; Coe and Helpman,

1995; Ulku, 2007). Moreover, developed patents may be the most intensively utilized

in manufacturing industries; hence, the proximity to them may matter for research pro-

ductivity.32

Residential population aPOP
it

: Residential population in the neighborhood reflects the level

of urban infrastructure that might affect the behavior of inventors.33

29The population data are obtained from the Population Census (2010a) of Japan.
30As UAs on average expand spatially over time, we used the boundaries of UAs in 2010, each of which

provides on average the largest spatial extent during the study period of 1995–2009. However, the choice of
the particular time point should not affect the basic results since most inventors are concentrated in relatively
large UAs whose spatial coverage is relatively stable over the study period.

31The R&D expenditure values are obtained from the micro data of the Survey of Research and Develop-
ment (1997-2010b) and from the Corporate Activities Basic Survey (1995-2010).

32The manufacturing employment values are obtained from the micro data of the Establishment and
Enterprise Census for (1996, 2001, 2006) and Economic Census for Business Frame (2009) of Japan; the man-
ufacturing output values are obtained from the micro data of the Census of Manufacturers (1995, 2000, 2005)
and Economic Census for Business Frame (2009) of Japan.

33The data are obtained from the Population Census (1995, 2000, 2005) of Japan.
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7 Identification by instrumental variables

This section presents our strategy for identifying the causalities behind knowledge creation

by dealing with the endogeneity of the differentiated knowledge and recombinations of

collaborators for individual inventors. There are two sources of endogeneity. One comes

from inventors’ endogenous collaboration (i.e., network endogeneity). The other comes

from the mutual dependence of the productivities between an inventor and his or her

collaborators through kD
it

in model (5.1) (as well as (5.1)’), which makes the differentiated

knowledge, kD
it

, of collaborators endogenous. This is the so-called reflection problem in

the context of econometric network analysis. In our case, however, we argue that the

endogenous variables, kD
it

in model (5.1) and ∆nit in model (5.11), for inventor i can be

instrumented by the average value of the same variable for the indirect collaborators of i.

Below, we first formally define the instruments for the endogenous variables based on

the indirect collaborators of each inventor in Section 7.1, explain their relevance in Section

7.2, and finally the exogeneity of the instruments is established in Section 7.3.

7.1 Instruments

Let N̄ℓ
it

be the set of up to the ℓ-th indirect collaborators of inventor i given by

N̄ℓit = N̄ℓ−1
it ∪

[

∪ j∈N̄ℓ−1
it

N jt

]

ℓ = 1,2, . . . (7.1)

where, for convenience, the set of the “0-th indirect collaborators” is defined by the set of

inventors consisting of i and his or her direct collaborators:

N̄0
it ≡Nit∪{i}. (7.2)

Then, to obtain N̄ℓ
it

from N̄ℓ−1
it

for each ℓ = 1,2, . . ., we expand N̄ℓ−1
it

by the union of all the

direct collaborators of j ∈ N̄ℓ−1
it

as in (7.1). The set of the ℓ-th indirect collaborators of i can

then be obtained as

Nℓit = N̄ℓit\N̄
ℓ−1
it l = 1,2, . . . (7.3)

The instruments, k
IVℓ
it

for kD
it

and ∆n
IVℓ
it

for ∆nit, are constructed as the average value of

the differentiated knowledge of collaborators and that of the collaborator recombination,

respectively for each ℓ-th indirect collaborator j ∈Nℓ
it
:

k
D,IVℓ
it

=
1

nℓ
it

∑

j∈Nℓ
it

kD
jt (7.4)

∆n
IVℓ
it
=

1

nℓ
it

∑

j∈Nℓ
it

∆n jt. (7.5)
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Alternatively, indirect collaborators may be weighted by the frequency of their appearance:

k
D,IVℓ
it

=
1

ñℓ
it

∑

l∈N̄ℓ−1
it

∑

j∈Nl

kD
jt (7.6)

∆n
IVℓ
it
=

1

ñℓ
it

∑

l∈N̄ℓ−1
it

∑

j∈Nl

∆n jt (7.7)

where ñℓ
it
≡
∑

j∈N̄ℓ−1
it

n j. Inventor j may appear more than once in the construction of k
D,IVℓ
it

in (7.6) and ∆n
IVℓ
it

in (7.7) if j ∈Nl∩Nl′ for l, l′ ∈ N̄ℓ−1
it

such that l , l′. As clarified in Section

7.2, weighting by the appearance frequency of indirect collaborators in the linkage tends

to strengthen the relevance of the corresponding instruments.

In Table 3, rows 2-6 (8-12) of column 1 show the average numbers as well as the standard

deviation in parentheses of the first to fifth indirect collaborators of an inventor in period

1 (period 2). The number of indirect collaborators increases on average dramatically from

79, 344, 1137, 3083, to 7190 (55, 225, 710, 1880, to 4294), respectively in period 1 (period 2).

7.2 Relevance

The correlations between the pairwise productivity, ln yit, of inventor i and those of

his or her first and fifth indirect collaborators are on average 0.43 and 0.23 (0.42 and

0.20), respectively for the quality-adjusted (novelty-adjusted) productivity measures. A

major reason behind the clustering of similarly productive inventors suggested in the

literature is assortative matching among firms and workers (e.g., Mendes et al., 2010;

Bartolucci and Devicienti, 2013; Eeckhout and Kircher, 2018). Assortative matching is

often considered to induce spatial sorting of firms and workers by productivity (e.g.,

Mori and Turrini, 2005; Bettencourt et al., 2007; Behrens et al., 2014; Dauth et al., 2016;

Gaubert, 2018). Accordingly, inventors are also expected to sort themselves by productiv-

ity across both firms and locations.

Since research collaborations tend to take place within a firm, among affiliated firms, as

well as among firms with business partnerships, and with more geographical proximity, an

inventor tends to face a pool of potential collaborators with relatively similar productivity

under assortative matching.

The key feature of our panel data is that both inventors’ location and affiliations to

establishments as well as firms are exogenous to individual inventors in the observations.

Moreover, the externalities underlying the assortative matching among firms and workers

discussed in the literature are typically much broader than innovation-specific ones, in-

cluding production, demand, and labor market externalities. It follows that the similarity

in productivity that persists among distant indirect collaborators can be essentially treated

as exogenous for collaboration decisions by inventors in our regressions.

Since our measure of collaborators’ differentiated knowledge kD
it

of an inventor given by
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(5.3) reflects the quality/novelty of the patents for which these collaborators are involved in

the development, it also has an aspect of their productivity. Consequently, collaborators’

differentiated knowledge exhibits higher correlations among those inventors located more

closely on their research network, which confirms the relevance of the instruments.

As for ∆nit, recall Observation 2 in Section 2.3 that inventors with higher productivities

conduct more active recombination of collaborators. As a result, the size of the collaborator

recombination, ∆nit, is expected to be relatively similar among indirect collaborators with

similar productivities. Yet, between inventor i and his or her indirect collaborator j, the

relevance between ∆nit and ∆n jt induced by the assortative matching among firms and

workers is weaker than that between kD
it

and kD
jt

, since the former pair are not related to the

productivities of i and j directly unlike the latter pair. Thus, rather than (7.5), we adopt

the alternative instrument given by (7.7) for ∆nit that puts more weights on the indirect

collaborators who are more frequently connected to i.

In Table 3, rows 2-6 (8-12) of columns 2 and 3 list the average correlations between

lnkD
it

and lnk
IVℓ
it

for ℓ = 1,2, . . . ,5 for the quality-adjusted (novelty-adjusted) productivity

measures. The correlations are as high as 0.37 and 0.29 for the quality- and novelty-

adjusted measures, respectively, even for ℓ = 5 (rows 6 and 12 and columns 2 and 3). The

correlations are smaller but still persistent for the collaborator recombinations shown in

column 4.34

7.3 Exogeneity

Since the network component of an inventor is dense and extensive, as discussed in

Section 7.1, relatively distant indirect collaborators (e.g., fifth indirect ones) can be used to

construct instruments to reduce the reflection problem. We argue below that the influence

of omitted variables that make the inventor’s collaboration network endogenous can also

be avoided as long as sufficiently distant indirect collaborators are used to construct an

instrument.

In our case, the most likely source of unobserved factors that could be shared by inven-

tors may be the technological specialization, Sit, of inventor i given by (6.1). Columns 5-8 in

Table 3 list the diversity, |Sit|, of the technological specialization of indirect collaborators by

IPC sections, classes, subclasses, and subgroups, respectively. While each inventor shares

three to five IPC subgroups with his or her direct collaborators on average (rows 1 and 7

of column 8), the corresponding numbers increase for more distant indirect collaborators;

for example, they are as large as 1000-1400 for their fifth indirect collaborators (rows 6 and

12 of column 8). Even for the crudest IPC section, the fifth indirect collaborators cover

almost all eight categories on average (rows 6 and 12 of column 5), while each inventor

34If (7.5) were used instead of (7.7) to instrument ln∆nit, the correlations between lnnit and lnn
IVℓ
it

for
ℓ = 1,2,3,4 and 5 are 0.377, 0.279, 0.203, 0.145, and 0.114 (0.333, 0.243, 0.183, 0.127, and 0.099), respectively in
period 1 (period 2). The qualitative results from the regression of (5.11) to be presented in Section 8.3 do not
change under (7.5), although the values of the estimated coefficients are less stable among the alternative
sets of indirect collaborators, ℓ = 1,2, . . . ,5.
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and his or her direct collaborator share one or two on average (rows 1 and 7 of column 5).

Similar observations can be made for the IPC classes and subclasses listed in columns 6

and 7 of Table 3, respectively.

These more distant indirect collaborators of an inventor are not just more diverse in their

technological specialization; each of them also has smaller commonality in technological

specialization with the inventor. To see this, column 9 of Table 3 shows the average values

of the Jaccar index between the technological specialization Sit (in terms of IPC subgroups)

of inventor i and those of his or her ℓ-th indirect collaborators j ∈Nℓ
it

in period t:

jℓit =
1

nℓ
it

∑

j∈Nℓ
it

|Sit∩S jt|

|Sit∪S jt|
∈ [0,1] (7.8)

where nℓ
it
≡ |Nℓ

it
|. A larger value of jℓ

it
implies higher average similarity in technological

specialization between inventor i and his or her ℓ-th indirect collaborators. In particular, it

takes 0 if their technological specializations do not overlap (i.e., Sit∩S jt = 0 for all j ∈Nℓ
it
),

while it takes 1 if their technological specializations are the same (i.e., Sit = S jt for all j ∈Nℓ
it
).

Table 3: Relevance and exogeneity of the instruments

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indirect-
ness ℓ

Count Corr. with lnkD
it

Corr
with
ln∆nit

Diversity in technological category
jℓ

it
Citation Novelty Section Class Subclass Subgroup

Period 1

(1) 0 1.000 1.000 1.000 1.000 1.812 2.473 2.984 5.404 0.330

(0.952) (1.788) (2.409) (5.060) (0.214)

(2) 1 79.17 0.832 0.685 0.407 4.670 17.38 32.49 94.83 0.087

(117.7) (2.057) (14.62) (32.57) (102.8) (0.120)

(3) 2 343.9 0.609 0.500 0.314 5.860 32.48 72.72 242.0 0.045

(517.9) (2.074) (23.65) (64.70) (240.9) (0.083)

(4) 3 1137 0.513 0.416 0.240 6.691 50.07 129.7 492.2 0.025

(1690) (1.869) (30.23) (97.96) (433.8) (0.062)

(5) 4 3083 0.440 0.342 0.185 7.200 67.56 199.2 866.8 0.014

(4260) (1.584) (33.33) (126.4) (675.2) (0.046)

(6) 5 7190 0.363 0.291 0.148 7.501 83.07 275.8 1400 0.009

(8742) (1.314) (33.31) (146.3) (969.1) (0.036)

Period 2

(7) 0 1.000 1.000 1.000 1.000 1.533 1.918 2.241 3.683 0.432

(0.799) (1.381) (1.874) (3.938) (0.271)

(8) 1 55.09 0.826 0.700 0.360 4.073 12.35 22.07 63.30 0.100

(88.42) (2.006) (10.85) (23.28) (74.30) (0.149)

(9) 2 225.3 0.607 0.506 0.271 5.306 23.84 50.43 164.6 0.054

(352.4) (2.147) (18.70) (48.17) (179.4) (0.106)

(10) 3 709.8 0.504 0.421 0.215 6.256 38.60 93.40 343.9 0.030

(1111) (2.022) (25.89) (77.71) (341.1) (0.077)

(11) 4 1880 0.428 0.353 0.162 6.888 54.59 148.8 617.6 0.018

(2927) (1.771) (30.70) (106.4) (548.8) (0.063)

(12) 5 4294 0.361 0.298 0.126 7.286 70.14 213.3 1007 0.011

(6107) (1.506) (32.81) (129.8) (793.7) (0.049)

Numbers in parentheses are standard deviations.

Between an inventor and his or her direct collaborators, j0
it
= 0.33 and 0.43 for t = 1 and

2, respectively (rows 1 and 7 of column 9). However, the index value steadily decreases
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for more distant indirect collaborators and reaches j5
it
≈ 0.01 (rows 6 and 12 of column 9).

That is, the technological similarity among distant (say fifth) indirect collaborators is only

marginal to the point that the determinants of their collaboration decision are expected

to be essentially unrelated. It follows that the endogeneity due to omitted variables is

not too much of a concern as long as sufficiently distant indirect collaborators are used to

construct the instruments.

Despite the decreasing relevance in technological specialization, recall that the similar-

ity in productivity between an inventor and his or her more distant indirect collaborators

remains strong (as shown in Section 7.2). It is thus likely that the similarity in productivity

accrues from a source other than the technological linkages between the inventor and his

or her indirect collaborators.

In addition, the firm- and location-specific effects underlying the similarity in produc-

tivity among indirect collaborators in the outcome of models (5.1) and (5.11) are essentially

controlled for by individual fixed effects as well as a variety of local factors. Hence, concern

about omitted variable bias behind the productivity similarity among indirect collabora-

tors should be low.

8 Regression results

This section presents our main regression results for models (5.1), (5.9) and (5.11) under

the quality- and novelty-adjusted productivity measures. The results under alternative

productivity measures are also presented for robustness in Appendix C.35

In all the regressions conducted, the fixed effects of inventors, periods, and IPC classes

(see Section 6.1.2) are controlled for. The local factors described in Section 6.2 except for

residential population are constructed for a circle with a 1 km radius around each inventor

to approximate the establishment-specific effects, while it is set to 20 km for residential

population to account for the urban environment.36

Standard errors in all the regressions are clustered by UAs (refer to Section 6.2),37 since

the productivities of collaborative activities within each UA are expected to be influenced

by the stochastic shocks specific to the UA. In this context, since the instruments lnk
D,IVℓ
it

for lnkD
it

in (5.1) and (5.9) as well as ln∆n
IVℓ
it

for ln∆nit in (5.11) involve inventors located in

different UAs, one might suspect that standard cluster-robust standard errors are incorrect

because the instruments for any inventor i might be correlated with errors ε jt in (5.1), εm
jt

in (5.6) and ϵ jt in (5.11) for any inventor j even if inventors i and j are located different

35More specifically, we consider four alternative measures of inventor productivity for models (5.1) and
(5.11): (i) forward citation counts within five years of publication, (ii) technological novelty based on the IPC
subclass, (iii) patent claim counts, and (iv) unweighted counts of patents. For (5.9), we consider (i) and (iii).

36Appendix D presents the results for (5.1) and (5.11) under the alternative radius values for local factors
for robustness.

37As R&D activities are highly urban and agglomerative, almost all observations in I are found in UAs.
In fact, among the 56,464 inventors in I who have at least one fifth-indirect collaborators, and are chosen to
be the basic set of observations in all the IV regressions in this section, only four inventors locate outside the
UAs.
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UAs. However, we consider that the standard cluster-robust standard errors still provide

the correct standard errors, since the inventor fixed effects controlled in all the regressions

encompass UA specific fixed effects, and that makes the errors free from the correlation

with UAs.38

8.1 The reduced-form Berliant-Fujita model

Table 4 summarizes the regression results for model (5.1), with columns 1-5 (6-10) pre-

senting the results for quality-adjusted (novelty-adjusted) productivity. Columns 1 and

6 report the results from the ordinary least squares (OLS) regression for quality- and

novelty-adjusted productivity, respectively, while the rest report those from the two-stage

least squares (2SLS) instrumental variable (IV) regressions. For the IV regressions, we

used the third to fifth indirect collaborators to construct the IVs for lnkD
it

. More specifically,

we used all three instruments, lnk
IVℓ
it

for ℓ = 3,4 and 5, in column 2 (column 7), while we

used only one of them, ℓ = 3,4 and 5, in columns 3, 4, and 5 (8, 9, and 10), respectively for

quality-adjusted (novelty-adjusted) productivity.39 To make the regression results compa-

rable, the observations are restricted to the set of 58,464 inventors (rather than the 107,724

considered in Sections 2 and 6) who have at least one fifth indirect collaborator.40

The OLS results for both quality- and novelty-adjusted productivities confirm our ear-

lier finding in Section 2 on the implication from Berliant and Fujita (2008), who predicted

a positive effect of collaborators’ differentiated knowledge, lnkD
it

(row 1, columns 1 and 6).

The estimated positive effect of the knowledge stock, lnkit, of an inventor (row 2,

columns 1 and 6) and the negative effect of its squared term, (lnkit)
2 (row 3, columns 1 and

6), are consistent with the positive but decreasing returns of learning-by-doing from the

extant technologies discussed in Sections 2 and 5.

However, since lnkit > 0 from the definition of kit (≥ 1) in our data, the second-order

effects appear to dominate the first-order effects; in other words, the net effect of the

knowledge stock appears to be mostly negative. The overall negative effects associated

with the knowledge stock imply that the positive learning-by-doing effects are dominated

by the negative effects from imitations and obsolescence, which accounts for the persistent

downward pressure on inventor productivity pointed out in Observation 1 in Section 2.2.

We now turn to the results from the IV regression. For all the choices of IVs, the

first-stage F values are large (row 12, columns 2-5 and 7-10), meaning that the relevance

of the IVs does not seem to be weak (see Table 8 in Appendix B for the results of the

first-stage regressions). To confirm the exogeneity of the IVs, we used lnk
IVℓ
it

for all ℓ = 3,4

and 5 in columns 2 and 7 for quality- and novelty-adjusted productivities, respectively

38Note that standard errors are still allowed to vary across UAs.
39Aside from the theoretical gap between (5.1) and (5.11) pointed out in Section 5.3, it in fact looks as if

the instrument ln∆n
IVℓ
it

for ln∆nit also works as an instrument for lnkD
it

in the estimation of (5.1) because

ln∆n
IVℓ
it

has relevance with lnkD
it

via (5.11). However, the relevance turned out to be rather weak between

∆n
IVℓ
it

and kD
it

, although ∆nit has positive significant effect on kD
it

.
40The basic properties of each variable remain the same, as described in Table 1.
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and conducted Hansen’s (1982) J test for overidentifying restrictions. The p-values of

the test are 0.928 and 0.768 for quality- and novelty-adjusted productivities, respectively

(row 11, columns 2 and 7), meaning that the exogeneity of the IVs cannot be rejected.41

Moreover, the estimated coefficients for the alternative choices of the IVs are remarkably

similar (compare columns 2-5 with columns 7-10), which is also indicative of these IVs

being reasonably exogenous.

The comparison between the OLS and IV results shows that the negative net effect of

the knowledge stock persists in the IV result; hence, our explanation above for the OLS

regression for Observation 1 continues to be valid.

For the effect of lnkD
it

, we found downward bias in the OLS regression (compare columns

1 and 2-5 with columns 6 and 7-10 in row 1).42 A possible explanation for the bias is that

a more productive inventor attracts a larger number of potential collaborators and thus

tends to end up with more collaborators (with lower productivity) than he or she actively

chose to work with. The removal of this reverse causality left a larger positive selection

effect in the estimated coefficient of lnkD
it

.

For the OLS regression, this selection effect may be partly picked up by the effect of

the local concentration of inventors, lnaINV
it

, which has upward bias (compare columns 1

and 2 with columns 6 and 7 in row 4).43 Larger differentiated knowledge is not necessarily

associated with a larger potential inventor population unless inventors actively choose

to start new collaborations. However, a larger inventor concentration should naturally

induce more fruitful collaborations, resulting in larger differentiated knowledge from col-

laborators, than a smaller one does. As a consequence, in the IV result, the part of the OLS

estimate of the coefficient of lnaINV
it

for which the collaborator recombination is responsible

is absorbed into the coefficient of lnkD
it

. What is left in the estimated effect of lnaINV
it

may

be interpreted as the positive spillover effect from the local inventor concentration.

It is intuitive that the concentration of R&D expenditure has a persistent positive effect

for all the specifications (row 5), while the size of manufacturing output has essentially no

impact on innovation productivity.

The positive significant effects of local manufacturing employment on quality-adjusted

productivity (row 6, columns 1-5) may reflect the fact that innovations are linked to

production; and citations are often made by the related production units of nearby firms.

On the contrary, the manufacturing employment concentration is insignificant for novelty-

adjusted productivity (row 5, columns 6-10), as technological novelty is not necessarily

directly related to present production levels.

The local concentrations of residential population do not have a significant influence

on inventor productivity as expected.

41Of course, this result of Hansen’s J test by no means is sufficient to guarantee the exogeneity of the
instruments, if all the instruments are subject to the same type and magnitude of bias.

42Akcigit et al. (2018) reported a similar downward bias on the effects of interaction levels on innovation
productivity within a patent team.

43Of course, we cannot single out omitted variable bias, as the bias may be due to the reflection problem.
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The estimated coefficient value of lnkD
it

for the IV regression is 0.27-0.29 (0.34-0.38) for

quality-adjusted (novelty-adjusted) productivity – still far below 1 (see row 1, columns

2-5 and 8-10) – which is consistent with the Berliant-Fujita model. This finding indicates

decreasing returns to the differentiated knowledge of collaborators, as the benefit from

collaborators’ differentiated knowledge will eventually be dominated by that of common

knowledge with collaborators as well as the differentiated knowledge of the inventor him-

or herself.44

Note that it is not meaningful to make comparison of the magnitudes of the estimated

elasticities of yit with respect to kD
it

between quality and novelty-adjusted productivities,

since we do not know the true value of quality and novelty of a patent.

Table 4: Regression results (Dependent variable: ln yit)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.163∗∗∗ 0.286∗∗∗ 0.286∗∗∗ 0.287∗∗∗ 0.273∗∗∗ 0.164∗∗∗ 0.344∗∗∗ 0.341∗∗∗ 0.353∗∗∗ 0.377∗∗∗

(0.0102) (0.0254) (0.0257) (0.0353) (0.0399) (0.00493) (0.0310) (0.0335) (0.0296) (0.0629)

(2) lnkit 0.110∗∗∗ 0.0931∗∗∗ 0.0931∗∗∗ 0.0929∗∗∗ 0.0949∗∗∗ 0.147∗∗∗ 0.114∗∗∗ 0.115∗∗∗ 0.113∗∗∗ 0.108∗∗∗

(0.0153) (0.0119) (0.0119) (0.0143) (0.0165) (0.0172) (0.0228) (0.0229) (0.0226) (0.0248)

(3) (lnkit)
2 -0.0890∗∗∗ -0.0820∗∗∗ -0.0820∗∗∗ -0.0820∗∗∗ -0.0828∗∗∗ -0.195∗∗∗ -0.178∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.175∗∗∗

(0.00967) (0.00868) (0.00865) (0.00954) (0.00991) (0.00926) (0.00594) (0.00564) (0.00665) (0.0108)

(4) lnaINV
it

0.171∗∗∗ 0.117∗ 0.117∗ 0.117∗ 0.123∗∗ 0.310∗∗∗ 0.200∗∗ 0.202∗∗ 0.195∗∗ 0.180∗∗∗

(0.0579) (0.0633) (0.0635) (0.0597) (0.0540) (0.0913) (0.0939) (0.0965) (0.0887) (0.0672)

(5) lnaR&D
it

0.0272∗∗∗ 0.0256∗∗∗ 0.0256∗∗∗ 0.0256∗∗∗ 0.0258∗∗∗ 0.0420∗∗∗ 0.0364∗∗∗ 0.0365∗∗∗ 0.0362∗∗∗ 0.0354∗∗∗

(0.00786) (0.00679) (0.00679) (0.00664) (0.00670) (0.0156) (0.0127) (0.0128) (0.0125) (0.0120)

(6) lnaMNFe
it

0.0149∗∗∗ 0.0240∗∗∗ 0.0240∗∗∗ 0.0240∗∗∗ 0.0230∗∗∗ -0.00859 0.0132 0.0128 0.0143 0.0172
(0.00566) (0.00438) (0.00436) (0.00533) (0.00598) (0.0105) (0.00989) (0.00955) (0.0108) (0.0158)

(7) lnaMNFo
it

0.00832 0.00522 0.00522 0.00520 0.00555 -0.00362 -0.00512 -0.00509 -0.00519 -0.00539
(0.00581) (0.00804) (0.00806) (0.00779) (0.00732) (0.00552) (0.00721) (0.00717) (0.00732) (0.00761)

(8) lnaPOP
it

-0.449 -0.660 -0.660 -0.661 -0.637 0.793∗ 0.0701 0.0837 0.0346 -0.0611
(0.519) (0.490) (0.490) (0.493) (0.470) (0.442) (0.415) (0.427) (0.390) (0.358)

(9) τ1 0.227∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.172∗∗∗ 0.178∗∗∗ 0.304∗∗∗ 0.173∗∗∗ 0.175∗∗∗ 0.166∗∗∗ 0.149∗∗∗

(0.0159) (0.0150) (0.0149) (0.0213) (0.0245) (0.0307) (0.0382) (0.0403) (0.0352) (0.0477)

(10) R2 0.151 0.184
(11) Hansen J p-val. 0.928 0.768

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

8.2 Quality/novelty and quantity decomposition

In this section, we decompose the effect of each explanatory variable in (5.1) into the

fraction that accrues to the quantity and to the quality/novelty of his or her output, as

explained in Section 5.2. We only present the result for the latter here, and that for the

former is relegated to Appendix C.2.

The regression results are summarized in Table 5. This table is organized similarly to

Table 4, except for the dependent variable. The first-stage of the regression is shared with

(5.1). To confirm the exogeneity of the IVs, similarly to (5.1), we used lnk
IVℓ
it

for all ℓ = 3,4

44We obtain qualitatively the same result under alternative quality and novelty measures of inventor
productivity in Appendix C (refer to Table 10).

32



and 5 in columns 2 and 7 for quality- and novelty-adjusted productivities, respectively

and conducted Hansen’s (1982) J test for overidentifying restrictions. The p-values of the

test are 0.419 and 0.314 for quality- and novelty-adjusted productivities, respectively (row

11, columns 2 and 7), meaning that the exogeneity of the IVs cannot be rejected.

Together with the results summarized in Table 4, the results from the present re-

gressions in Table 5 reveal the extent to which each explanatory variable contributes to

quality/novelty and to the quantity in collaborative knowledge creation.

As for the differentiated knowledge of collaborators, whereas we find that its contri-

bution is mostly (more than 90%) attributed to increasing the quantity, rather than the

quality, of research output under the quality-adjusted productivity measure (compare

row 1 and columns 2-5 in Tables 4 and 5),45 as large as around 65% of the contribution

accrues to increasing the novelty, rather than the quantity, of research output under the

novelty-adjusted productivity measure (compare row 1 and columns 7-10 in Tables 4 and

5).46,47

This result indicates that the collaborators’ differentiated knowledge is an especially

effective source of technological novelty, and thus, appears to be the key factor for in-

ducing the technological shift of an inventor to a new niche, which is consistent with

Berliant and Fujita (2008) as well as Horii (2012).

The decompositions of the effects of other explanatory variables are also worth expla-

nations, although there are no formal theories that account for them.

For both quality and novelty-adjusted productivity measures, the inventor as well as

R&D expenditure concentrations exhibit positive significant effect on the quantity but not

on the quality of inventions (rows 4 and 5 in Tables 5 and 13). The effects of manufacturing

employment and production concentrations are also similar between quality- and novelty-

adjusted cases. But, they tend to raise the quality rather than the quantity of inventions

(rows 6 and 7 in Tables 5 and 13).

The former result suggests that positive externalities from researcher agglomeration

primarily promote starting inventions, whereas the latter result may reflect the tendency

that the proximity to the manufacturing concentration and production promotes more

targeted inventions with higher quality and novelty.

The results of our regressions so far identified the causal relation suggested by the

Berliant-Fujita model behind the correlation between collaborators’ differentiated knowl-

edge and the productivity of inventors in Observation 2 in Section 2.3, except for the linkage

between the collaborator recombination of an inventor and the amount of differentiated

45For the quality-adjusted productivity, the result remains essentially the same even if citations are
counted in a five-year, instead of three-year, window (refer to columns 1-5 in Table 12).

46For the impacts on the quantity y
p

it
of inventor’s output for both quality and novelty-adjusted produc-

tivity measures, refer to Table 13 in Appendix C.2.
47We find positive significant effects of lnkD

it
on the novelty when the productivity is measured by claim

count (see columns 6-10 in Table 12), which can be considered as an alternative novelty measure of a patent
as discussed in Section 2.1.
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knowledge of his or her collaborators that will be established in Section 8.3.48 It follows

that technological shift, ∆sit, which was found to be correlated with higher productivity

in Observation 2, is in fact intentionally directed toward less explored niches because of

inventors’ quest for more novel invented technologies. The technological shift caused by

utilizing collaborators’ differentiated knowledge appears to be a means to overcome the

negative effects of the past knowledge stock of inventors pointed out in Observation 1.

This part of the result is missing from the Berliant-Fujita model in which all knowledge is

assumed to be symmetric. However, this finding agrees with the theoretical result of Horii

(2012), who considered a more realistic economy with demand for new technologies.

Table 5: Regression results (Dependent variable: ln y
q

it
)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.0273∗∗∗ 0.0264∗∗ 0.0269∗∗ 0.0154 0.00321 0.119∗∗∗ 0.230∗∗∗ 0.231∗∗∗ 0.221∗∗∗ 0.247∗∗∗

(0.00169) (0.0120) (0.0119) (0.0192) (0.0221) (0.00278) (0.0143) (0.0146) (0.0168) (0.0330)

(2) lnkit 0.0104∗ 0.0106 0.0105 0.0121 0.0138∗ 0.0364 0.0162 0.0161 0.0179 0.0132
(0.00578) (0.00714) (0.00710) (0.00832) (0.00758) (0.0240) (0.0274) (0.0274) (0.0272) (0.0272)

(3) (lnkit)
2 -0.00549∗∗∗ -0.00554∗∗∗ -0.00551∗∗∗ -0.00616∗∗∗ -0.00684∗∗∗ -0.108∗∗∗ -0.0976∗∗∗ -0.0976∗∗∗ -0.0985∗∗∗ -0.0961∗∗∗

(0.00101) (0.00138) (0.00136) (0.00189) (0.00202) (0.00520) (0.00651) (0.00655) (0.00653) (0.00657)

(4) lnaINV
it

-0.0364∗∗∗ -0.0361∗∗ -0.0363∗∗ -0.0313∗∗ -0.0260∗∗ 0.0719∗∗ 0.00411 0.00368 0.00967 -0.00596
(0.0126) (0.0141) (0.0142) (0.0137) (0.0102) (0.0318) (0.0392) (0.0397) (0.0383) (0.0400)

(5) lnaR&D
it

-0.00252 -0.00251 -0.00252 -0.00236 -0.00220 0.0118∗ 0.00839 0.00837 0.00868 0.00789
(0.00414) (0.00421) (0.00422) (0.00409) (0.00377) (0.00638) (0.00570) (0.00569) (0.00569) (0.00598)

(6) lnaMNFe

it
0.0271∗∗∗ 0.0271∗∗∗ 0.0271∗∗∗ 0.0262∗∗∗ 0.0254∗∗∗ 0.00798 0.0215∗∗ 0.0216∗∗ 0.0204∗∗ 0.0235∗∗

(0.00559) (0.00521) (0.00520) (0.00531) (0.00641) (0.00850) (0.00929) (0.00919) (0.00949) (0.0112)

(7) lnaMNFo

it
0.00861 0.00863 0.00862 0.00891∗ 0.00921∗ -0.00636 -0.00728 -0.00729 -0.00720 -0.00742

(0.00556) (0.00534) (0.00535) (0.00518) (0.00526) (0.00458) (0.00656) (0.00657) (0.00637) (0.00684)

(8) lnaPOP
it

-0.582∗∗ -0.580∗∗ -0.581∗∗ -0.562∗∗ -0.541∗∗ 0.610 0.163 0.160 0.200 0.0971
(0.238) (0.240) (0.239) (0.250) (0.251) (0.440) (0.477) (0.476) (0.479) (0.497)

(9) τ1 0.101∗∗∗ 0.102∗∗∗ 0.101∗∗∗ 0.107∗∗∗ 0.112∗∗∗ 0.151∗∗∗ 0.0699∗∗∗ 0.0694∗∗∗ 0.0765∗∗∗ 0.0578∗

(0.0180) (0.0223) (0.0223) (0.0245) (0.0200) (0.0202) (0.0210) (0.0209) (0.0225) (0.0323)

(10) R2 0.086 0.140
(11) Hansen J p-val. 0.419 0.314

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

8.3 Recombinations and the differentiated knowledge of collaborators

This section presents the results for model (5.11), which incorporated the fundamental

causality assumed in the Berliant-Fujita model that the collaborator recombination is an

effective means to collect novel ideas for innovations. Table 6 summarizes the regression

results. This table is organized similarly to Table 4, except that the dependent variable is

ln∆kD
it

, and ln∆n
IVℓ
it

for ℓ = 3,4 and 5 serve as the IVs for an endogenous variable, ln∆nit,

in this case.

The OLS estimates suggest a positive effect of the collaborator recombination on the

size of collaborators’ differentiated knowledge (row 1, columns 1 and 6) as expected. The

48Although we used inventor productivity, ȳ, in Section 2 rather than pairwise productivity, yit, these are
highly correlated, with correlation coefficients of 0.73 and 0.76 in periods 1 and 2, respectively. Thus, the
observations made for ȳ in Section 2 basically apply to yit as well.
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effect of the knowledge stock on collaborators’ differentiated knowledge (rows 2 and 3,

columns 1 and 6 of Table 6) turns out to be similar to that on inventor productivity (rows

2 and 3, columns 1 and 6 of Table 4).

However, given the correlations among inventor productivity, collaborators’ differen-

tiated knowledge, and collaborator recombinations underlying the innovations, the OLS

estimates may be severely biased because of endogeneity. The IV estimates in columns 2-5

and 7-10 indicate that this is indeed the case.

Now, we look at the IV results in detail. For all the different choices of IVs, the first-

stage F values are large (row 12, columns 2-5 and 7-10), suggesting that the relevance of the

IVs is not weak (see Table 9 in Appendix B for the results from the first-stage regressions).

To confirm the exogeneity of the IVs, as in the case of model (5.1), we used ln∆n
IVℓ
it

for

all ℓ = 3,4 and 5 in columns 2 and 7 for quality- and novelty-adjusted productivities,

respectively and conducted Hansen’s (1982) J test for overidentifying restrictions. The

p-values of the test are 0.255 and 0.363 for quality- and novelty-adjusted productivities,

respectively (row 11, columns 2 and 7), meaning that the exogeneity of the IVs cannot be

rejected.49 The estimated coefficients for the alternative choices of the IVs are less stable

than those for model (5.1), but they agree with each other qualitatively (compare columns

2-5 with columns 7-10).

There is substantial downward bias in the coefficient estimate for ln∆nit for the OLS

regression (compare columns 1 and 2 with columns 6 and 7 in row 1). As in the case of

model (5.1), for the OLS regression, a part of the effect of the collaborator recombination

appears in that of local inventor concentration, since a larger inventor concentration implies

a larger pool of potential collaborators. The downsized effect of lnaIV
it

in the IV regression

is consistent with this interpretation (compare columns 1 and 2-5 with columns 6 and 7-10

in row 5).

Another source of the bias is reverse causality. A higher productivity for an inventor is

on average associated with the larger differentiated knowledge of his or her collaborators

as well as a larger stock of knowledge. This bias appears to be reflected in the estimated

coefficient of the knowledge stock, lnkit, which has substantial upward bias in the OLS

(compare columns 1 and 2-5 with columns 6 and 7-10 in row 2).

Once the endogeneity of ln∆nit is controlled for, we find that the first-order effect of

the knowledge stock almost disappears (columns 2-5 and 7-10 of row 2), and instead the

second-order effect becomes positive significant (columns 2-5 and 7-10 of row 3); thus,

the effect of the knowledge stock exhibits increasing returns. The size of differentiated

knowledge is then not necessarily associated with a larger number of new collaborators.

On the one hand, a highly established inventor with a large knowledge stock can attract

highly able collaborators selectively even without a large replacement of collaborators. On

the other hand, an inventor with only a small stock of knowledge should place a large

49The same caveat stated in footnote 41 applies here.
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effort to find able collaborators for successful inventions, which in turn results in a large

number of new collaborators. Other local factors play relatively minor roles.

We find that the elasticities of average quality- and novelty-adjusted differentiated

knowledge of collaborators with respect to the recombination of collaborators for an in-

ventor are around 1.4 and 1.8, respectively. While these estimated elasticities are greater

than 1, since the pairwise research productivity exhibits decreasing returns in the input of

collaborators’ differentiated knowledge, the positive effect of the collaborator recombina-

tion on inventor productivity will be diminishing.

Table 6: Regression results (Dependent variable: lnkD
it

)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) ln∆nit 0.104∗∗∗ 1.372∗∗∗ 1.400∗∗∗ 1.523∗∗∗ 1.236∗∗∗ 0.244∗∗∗ 1.722∗∗∗ 1.718∗∗∗ 1.962∗∗∗ 1.714∗∗∗

(0.00626) (0.0629) (0.0748) (0.119) (0.132) (0.00792) (0.0847) (0.0914) (0.157) (0.131)

(2) lnkit 0.131∗∗∗ -0.0220 -0.0253 -0.0401 -0.00554 0.147∗∗∗ -0.0313 -0.0308 -0.0601 -0.0303
(0.0427) (0.0669) (0.0653) (0.0814) (0.0732) (0.0338) (0.0638) (0.0632) (0.0786) (0.0669)

(3) (lnkit)
2 -0.0364∗∗ 0.223∗∗∗ 0.229∗∗∗ 0.254∗∗∗ 0.195∗∗∗ -0.0422∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.310∗∗∗ 0.259∗∗∗

(0.0156) (0.0197) (0.0167) (0.0422) (0.0392) (0.0161) (0.0233) (0.0223) (0.0476) (0.0360)

(4) lnaINV
it

0.387∗∗∗ 0.0138 0.00580 -0.0304 0.0539 0.515∗∗∗ 0.0800 0.0813 0.00957 0.0825
(0.0916) (0.0426) (0.0467) (0.0461) (0.0507) (0.118) (0.103) (0.107) (0.0878) (0.0939)

(5) lnaR&D
it

0.0134 0.000705 0.000432 -0.000799 0.00207 0.0320∗ 0.0172∗ 0.0172∗ 0.0148 0.0173∗

(0.0111) (0.00478) (0.00487) (0.00571) (0.00447) (0.0165) (0.00896) (0.00895) (0.00939) (0.00915)

(6) lnaMNFe
it

-0.0706∗∗∗ -0.0139 -0.0127 -0.00720 -0.0200 -0.110∗∗∗ -0.0436∗∗ -0.0438∗∗ -0.0329 -0.0440∗

(0.0220) (0.0147) (0.0151) (0.0183) (0.0137) (0.0186) (0.0219) (0.0213) (0.0302) (0.0239)

(7) lnaMNFo
it

0.0214 0.00814 0.00786 0.00657 0.00957 0.00221 -0.0133 -0.0132 -0.0158 -0.0132
(0.0215) (0.00992) (0.0101) (0.0110) (0.00960) (0.0265) (0.00922) (0.00923) (0.0107) (0.00920)

(8) lnaPOP
it

1.371 -0.552 -0.594 -0.780 -0.345 3.574∗∗∗ 1.332 1.338 0.968 1.345
(1.043) (1.229) (1.217) (1.403) (1.273) (1.137) (1.050) (1.037) (1.247) (1.103)

(9) τ1 0.415∗∗∗ 0.514∗∗∗ 0.517∗∗∗ 0.526∗∗∗ 0.504∗∗∗ 0.698∗∗∗ 0.814∗∗∗ 0.814∗∗∗ 0.833∗∗∗ 0.814∗∗∗

(0.0269) (0.0504) (0.0525) (0.0481) (0.0428) (0.0373) (0.0285) (0.0287) (0.0310) (0.0291)

(10) R2 0.160 0.178

(11) Hansen J p-val. 0.255 0.363

(12) 1st stage F 237.7 639.9 338.5 253.9 237.7 639.9 338.5 253.9

(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

Taken together, we confirmed that collaborator recombinations are an effective means

to acquire differentiated knowledge from new collaborators to facilitate invention, thereby

identifying the causal relationship behind Observation 2. Moreover, the results of our

regressions also accounted for the mechanism behind Observation 3 in Section 2.4. In

other words, we found that the knowledge stock and collaborator recombination remain

two effective means for an inventor to improve his or her productivity via collecting

differentiated knowledge, even after controlling for the individual fixed effects. More

productive inventors attract highly able collaborators with their large knowledge stocks,

and thus can collect differentiated knowledge without large replacements of collaborators.

Meanwhile, less productive ones depend on relatively large recombination of collaborators

to collect differentiated knowledge.

Taken all together, the rather intricate mechanism underlying the churning of inventor

productivities in Observation 1 has been disentangled, and explained from the micro-level
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behavior of individual inventors.

9 Discussion and further research directions

In this section, we summarize our findings and their implications, and discuss possible

immediate extensions and further research directions.

9.1 The Berliant-Fujita mechanism and beyond

We have shown evidence consistent with the polyadic collaborative knowledge creation

mechanism proposed by Berliant and Fujita (2008). To our knowledge, our work is the first

to provide micro-econometric evidence for knowledge creation at the individual inventor

level taking into account the endogeneity of collaborations.50 We have also addressed two

major counterfactual aspects of the Berliant-Fujita model, guided by the theoretical model

presented by Horii (2012).

One is that that each inventor in their model belongs to a fixed network component

in a typical steady state, meaning that polyadic interactions happen only within a given

set of collaborators. However, in the data, the set of collaborators evolves for each agent

over time, and the inter-temporal recombination of collaborators is found to revise in-

ventors’ technological expertise by meeting new agents and adopting their differentiated

knowledge.

The other is that inventors in their model face no imitation or obsolescence of their

technological knowledge since the number of potential knowledge is infinite and they are

symmetric. In reality, however, we found negative significant effects from the knowledge

stock of inventors on their productivity. If inventors stick to their past achievement, they

most likely lose their present level of creativity in the long run. If, instead, agents are

willing to explore new research directions by meeting new collaborators with different

backgrounds from theirs, they are more likely to keep their creativity by shifting their

technological expertise to unexplored niches. We have explained this more realistic causal

relationship by estimating the second and the third regression models, (5.9) and (5.11), in

addition to the reduced form of the Berliant-Fujita model (5.1). Specifically, collaborator

recombinations are found to be effective in raising the average quality as well as novelty

of the collaborators’ differentiated knowledge, thereby enhance the quality and novelty of

the research output of an inventor.

These additional results reveal a so far overlooked aspect of collaborative knowledge

creation. Namely, the active collaborator recombinations are an effective strategy for a

fledgling inventor to improve his or her research productivity, as well as for an established

inventor to maintain his or her high productivity (although the latter can also utilize his

or her large stock of knowledge).

This evidence has an important policy implication: Firms, cities, regions and countries

50See Akcigit et al. (2018) for another related attempt at the patent project.
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that promote encounters and collaborations among individual inventors across organiza-

tions and institutions, despite the possibility of imitations and undesired diffusions, have

better chances to foster innovation there. While the lower organizational and institutional

barriers for research collaboration are not incompatible with the protection of intellectual

property by patents, our finding supports more active coordination than divisions among

researchers to encourage innovations.51

9.2 Extensions

There are a number of short-run and long-run extensions, among which we touch on three.

First, it is an obvious interest to investigate the role of firms and establishments in

R&D activities. Since the financial resources for R&D are typically provided by firms,

firm-specific patterns of collaborations and R&D policies could affect the productivity of

individual inventors.52 By matching the addresses of establishments in the patent database

with those of the Census of Manufacturers, it is in principle possible to investigate the

impact of patent development on firm productivity.53

Second, the non-technological diversity among collaborators in terms of, for example,

gender, age, education, and cultural background may affect productivity. For example,

Østergaard et al. (2011) and Inui et al. (2014) found a positive significant influence of gen-

der diversity in the innovation productivity of Danish and Japanese firms, respectively.

Finally, it is intriguing to explore the differences in the location patterns of R&D activi-

ties and industries. It is argued that disproportionately large cities are typically associated

with a concentration of knowledge-intensive activities (e.g., Davis and Dingel, 2017, 2018).

However, the fundamental distinction between knowledge-intensive activities and those

that are less knowledge-intensive has not been made clear thus far.

From our findings, R&D activities – the ultimate knowledge-intensive activities – are

expected to be concentrated geographically to better reflect their incentive for frequent

collaborator recombinations than industrial activities whose concentrations are typically

induced by input/output linkages, demand, and production externalities.

Figure 6(a) plots the aggregate novelty-adjusted patent output and manufacturing

output against the population size of a UA in period 1, where all values are expressed by

shares in all UAs.54 The solid and dashed lines indicate the fitted OLS lines for the patent

count and manufacturing output plots, respectively. While both plots are super-linear in

UA size (i.e., per-capita productivity is increasing in agglomeration size), it is substantially

51See Boldrin and Levine (2013) for a related survey of the literature arguing that the patent system
hinders rather than promotes innovations.

52See Akcigit and Kerr (2018) for an initial attempt in this direction, as they distinguish R&D that is
internal and external to firms and study the firm dynamics that arise from this distinction.

53In our preliminary attempt, we could match about 70% of establishments that appear in the patent data
with those that appear in the Census of Manufacturers.

54The location of the patent is identified by the location of the patent applicant who is typically the leader
of the patent project. Manufacturing output is obtained from the micro data of the Census of Manufacturers
in 2000.
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more so for patent output. In fact, doubling the population size of a UA raises R&D

productivity by 2.5 times,55 while raising manufacturing productivity only by 1.2 times.

Figure 6(b) plots the diversity in the primary IPC subclasses of the applied patents

as well as the industrial diversity in terms of the number of four-digit Japanese SIC

manufacturing industries against the population size of UAs in 2000, where all values

are in shares again.56 Comparing UAs in terms of the diversity in IPC subclass and SIC

four-digit industry categories is reasonable, since these two classifications are comparable

in the total number of active categories in UAs, which is 608 for the former and 562 for

the latter. The solid and dashed lines indicate the fitted OLS lines for the patent class

diversity and industrial diversity plots, respectively. While diversity is increasing in the

population size of a UA for both patent categories and manufacturing industries, the

former is substantially more so: doubling the population size of a UA almost doubles

the diversity in the technological category of patents applied in the UA, whereas it only

increases the industrial diversity by 55%. Thus, while a larger UA is associated with both

larger intensive (i.e., per-capita output) and extensive margins (i.e., diversity) in both R&D

and production activities, this tendency is substantial stronger for the former.

These findings are suggestive of a positive association between population concentra-

tion and matching externalities promoting collaborator recombinations in large cities.57

However, the mechanism behind the difference between R&D and industrial location pat-

terns has not been fully explored either theoretically or empirically, and this remains a

future research subject.58
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Figure 6: Industrial and research outputs and diversities in UAs in 2000

55The estimated elasticity of patent output with respect to UA population size is similar among alternative
output measures. Specifically, under IPC subclass and cited count, they are 1.516 and 1.458, respectively.

56The industrial diversity of a given UA is defined as the number of four-digit manufacturing industries
that have positive employment in the UA.

57See, for example, Agrawal et al. (2017); Perlman (2016); Mori and Takeda (2018) for recent empirical
studies on geographic agglomeration of R&D activities. In particular, Mori and Takeda (2018) found that
the nation-wide development of high-speed railway network had a substantially larger positive impact on
the agglomeration of R&D activities than on population agglomeration.

58It is also possible to ask if there is any particularly relevant geographic scope of collaborations, e.g.,
within an establishment, a district, a metropolitan area and an island, and so on. See Gordon (2013) for
evidence on the geographic scope of co-authorship in academic research.
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Appendix

A Locational factors

In this section, the description of UAs and precise definitions for the measures of the local

factors discussed in Section 6.2 are given.

UAs – Panels (a) and (b) in Figure 7 show the spatial distribution of inventors in I and

453 UAs as of 2010, respectively, where the warmer colors in each panel indicate higher

population density. Each inventor is assigned to the closest UA if there is any UA within

10 km of his or her location.

(a) Spatial distribution of inventors (b) Urban agglomerations in 2010

Figure 7: Spatial distribution of researchers and UAs

Inventor population – The local population, aINV
it

, of inventors within a given distance, d̄,

of the location of inventor i is defined as

aINV
it =

∣

∣

∣

∣

{

j ∈ It\Nit : d(i, j) < d̄
}

∣

∣

∣

∣

, (A.1)

where d(i, j) represents the great-circle distance between inventors i and j (rows 1-4, Table

7). To evaluate the pure spillover effects, this population excludes the collaborators, Nit,

of i.

R&D expenditure – Focusing on manufacturing, we first aggregate firm-level R&D ex-

penditure at the industry level according to the three-digit Japanese SIC in each period

t. Denote the industry-level R&D expenditure (in million yen) by vm for each industry

m ∈Mt, where Mt is the set of three-digit manufacturing industries in period t.59

59Data on R&D expenditure at the firm level are available for firms with at least four employees for every
year from 1997 to 2009 from the Survey of Research and Development. Since we do not have data in 1995
and 1996, the total expenditure in 1997–1999 has been inflated by 1.67 times to obtain the value of R&D
expenditure in period 0.
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Next, from the micro data of the Establishment and Enterprise Census as well as the Eco-

nomic Census (Ministry of Internal Affairs and Communications of Japan, 1996, 2001, 2006;

Statistics Bureau, Ministry of Internal Affairs and Communications of Japan, 2009), we find

the set of establishments, Emt, in each industry m ∈Mt in period t, and compute the em-

ployment share, ekt, of each establishment k ∈ Emt within industry m.

Table 7: Descriptive statistics of the locational factors

(1) (2)
Period 1 2

(1) inventor population 1km 5,750 5,629
(7,225) (7,282)

(2) 5km 31,026 30,158
(42,143) (42,269)

(3) 10km 70,720 66,011
(79,277) (77,330)

(4) 20km 140,204 127,470
(129,401) (120,751)

(5) R&D investment 1km 10,454 18,480
(78,020) (180,284)

(6) 5km 150,581 278,911
(338,668) (703,381)

(7) 10km 300,256 520,066
(466,130) (920,505)

(8) 20km 550,420 899,652
(584,891) (1,098,091)

(9) Manufacturing employment 1km 2,240 6,676
(1,505) (7,106)

(10) 5km 52,974 76,491
(32,395) (74,655)

(11) 10km 182,597 212,371
(106,414) (166,473)

(12) 20km 551,875 509,703
(318,789) (322,326)

(13) Manufacturing output 1km 21,801,942 20,774,589
(in thousand) (58,182,730) (83,883,736)

(14) 5km 158,183,183 104,957,604
(129,167,825) (129,388,708)

(15) 10km 445,908,195 317,846,559
(255,976,915) (226,259,080)

(16) 20km 1,213,122,353 956,808,207
(626,842,420) (532,719,932)

(17) Residential population 5km 595,461 615,722
(386,442) (399,930)

(18) 10km 2,100,541 2,156,271
(1,388,078) (1,432,171)

(19) 20km 6,386,959 6,573,357
(4,252,098) (4,416,168)

Numbers in parentheses are standard deviations.

Assuming that the R&D expenditure of each establishment in each industry is propor-

tional to the employment size of the establishment, the value of R&D expenditure of each

establishment in period t is approximated by vmtemt. Assuming that the R&D expenditure

in the previous period t−1 affects the productivity of inventors in the current period t, the

R&D around inventor i in period t is given as follows (rows 5-8, Table 7):

aR&D
it =

∑

m∈Mt

∑

k∈{ j∈Em : d(i, j)<d̄}

vm,t−1ek,t−1. (A.2)
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Manufacturing concentration – Assuming that the employment size and output of an

establishment correlate with demand for new knowledge, we proxy the local market size

for an invented technology around inventor i by the local manufacturing employment and

output around i:60

a
MNF j

it
=

∑

k∈{ j∈Et : d(i, j)<d̄}

ekt (A.3)

where Et = ∪m∈MtEmt, and ekt represents the total output value (employment) of establish-

ment k for j = o ( j = e) (rows 9-16, Table 7).

Residential population – The local residential population is defined as

aPOP
it =

∑

k∈{ j∈R : d(i, j)<d̄}

rkt (A.4)

where R represents the set of 1km-by-1km cells covering the relevant location space in

Japan; the centroid of each cell is considered to be the representative location of the cell

in measuring the distance from the cell; rkt is the residential population in cell k ∈ R at the

beginning of period t (rows 17-19, Table 7).61

B First-stage regressions

This section presents the results of the first-stage regressions for the 2SLS IV regressions

corresponding to columns 2-5 and 7-10 in Table 4 and those in Table 6 in Tables 8 and 9,

respectively.

60Another interpretation of aMNF
it

is the spillover from the manufacturing concentration around i in period
t.

61The residential population in the 1 km-by-1 km cells is available from the Population Census of Japan
(Statistics Bureau, Ministry of Internal Affairs and Communications of Japan, 1995, 2000, 2005).
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Table 8: Regression results (Dependent variable: lnkD
it

)

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) k
D,IV3
it

0.436∗∗∗ 0.453∗∗∗ 0.340∗∗∗ 0.402∗∗∗

(0.0266) (0.0169) (0.0146) (0.0132)

(2) k
D,IV4
it

0.0235∗ 0.349∗∗∗ 0.0880∗∗∗ 0.347∗∗∗

(0.0128) (0.0136) (0.0149) (0.0149)

(3) k
D,IV5
it

0.00544 0.249∗∗∗ 0.0411∗ 0.266∗∗∗

(0.0409) (0.0271) (0.0225) (0.0250)

(4) lnkit 0.124∗∗∗ 0.124∗∗∗ 0.131∗∗∗ 0.134∗∗∗ 0.156∗∗∗ 0.156∗∗∗ 0.166∗∗∗ 0.176∗∗∗

(0.0212) (0.0210) (0.0266) (0.0304) (0.0126) (0.0128) (0.0130) (0.0145)

(5) (lnkit)
2 -0.0491∗∗∗ -0.0491∗∗∗ -0.0524∗∗∗ -0.0545∗∗∗ -0.0900∗∗∗ -0.0892∗∗∗ -0.0934∗∗∗ -0.0949∗∗∗

(0.00741) (0.00738) (0.0107) (0.0126) (0.00766) (0.00777) (0.00967) (0.0114)

(6) lnaINV
it

0.359∗∗∗ 0.360∗∗∗ 0.390∗∗∗ 0.402∗∗∗ 0.504∗∗∗ 0.515∗∗∗ 0.538∗∗∗ 0.561∗∗∗

(0.0787) (0.0772) (0.0845) (0.0859) (0.0969) (0.0988) (0.108) (0.115)

(7) lnaR&D
it

0.00240 0.00259 0.00553 0.00979 0.0140 0.0158 0.0178 0.0252
(0.00909) (0.00921) (0.0104) (0.0113) (0.0137) (0.0142) (0.0166) (0.0181)

(8) lnaMNFe
it

-0.0668∗∗∗ -0.0663∗∗∗ -0.0745∗∗∗ -0.0759∗∗∗ -0.0954∗∗∗ -0.0943∗∗∗ -0.111∗∗∗ -0.118∗∗∗

(0.0196) (0.0189) (0.0244) (0.0266) (0.0221) (0.0197) (0.0238) (0.0239)

(9) lnaMNFo
it

0.0227 0.0227 0.0242 0.0242 0.0160 0.0151 0.0149 0.00968
(0.0207) (0.0204) (0.0247) (0.0246) (0.0294) (0.0273) (0.0320) (0.0317)

(10) lnaPOP
it

1.139 1.143 1.391 1.510 3.041∗∗∗ 3.084∗∗∗ 3.466∗∗∗ 3.699∗∗∗

(0.935) (0.918) (1.112) (1.148) (1.042) (0.985) (1.163) (1.240)

(11) τ1 0.285∗∗∗ 0.288∗∗∗ 0.333∗∗∗ 0.369∗∗∗ 0.474∗∗∗ 0.504∗∗∗ 0.548∗∗∗ 0.611∗∗∗

(0.0211) (0.0190) (0.0233) (0.0288) (0.0346) (0.0345) (0.0382) (0.0443)

(12) R2 0.205 0.205 0.183 0.171 0.203 0.201 0.188 0.179

(13) F 443.2 718.4 652.5 84.21 398.6 925.4 541.2 113.2

(14) p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(15) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period
fixed effects are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1
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Table 9: Regression results (Dependent variable: ln∆nit)

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) ln∆n
IV3
it

0.244∗∗∗ 0.278∗∗∗ 0.244∗∗∗ 0.278∗∗∗

(0.0212) (0.0138) (0.0212) (0.0138)

(2) ln∆n
IV4
it

0.00997 0.231∗∗∗ 0.00997 0.231∗∗∗

(0.0321) (0.0304) (0.0321) (0.0304)

(3) ln∆n
IV5
it

0.106∗∗∗ 0.208∗∗∗ 0.106∗∗∗ 0.208∗∗∗

(0.0339) (0.0392) (0.0339) (0.0392)

(4) lnkit 0.114∗∗∗ 0.116∗∗∗ 0.117∗∗∗ 0.117∗∗∗ 0.114∗∗∗ 0.116∗∗∗ 0.117∗∗∗ 0.117∗∗∗

(0.0268) (0.0266) (0.0261) (0.0255) (0.0268) (0.0266) (0.0261) (0.0255)

(5) (lnkit)
2 -0.202∗∗∗ -0.202∗∗∗ -0.203∗∗∗ -0.204∗∗∗ -0.202∗∗∗ -0.202∗∗∗ -0.203∗∗∗ -0.204∗∗∗

(0.00986) (0.00962) (0.00971) (0.00984) (0.00986) (0.00962) (0.00971) (0.00984)

(6) lnaINV
it

0.232∗∗∗ 0.237∗∗∗ 0.261∗∗∗ 0.273∗∗∗ 0.232∗∗∗ 0.237∗∗∗ 0.261∗∗∗ 0.273∗∗∗

(0.0529) (0.0542) (0.0600) (0.0651) (0.0529) (0.0542) (0.0600) (0.0651)

(7) lnaR&D
it

0.00704 0.00845 0.00680 0.00712 0.00704 0.00845 0.00680 0.00712
(0.00751) (0.00733) (0.00840) (0.00874) (0.00751) (0.00733) (0.00840) (0.00874)

(8) lnaMNFe
it

-0.0329 -0.0326∗ -0.0412∗ -0.0427∗ -0.0329 -0.0326∗ -0.0412∗ -0.0427∗

(0.0200) (0.0194) (0.0220) (0.0240) (0.0200) (0.0194) (0.0220) (0.0240)

(9) lnaMNFo
it

0.00479 0.00514 0.00793 0.00868 0.00479 0.00514 0.00793 0.00868
(0.0142) (0.0142) (0.0155) (0.0170) (0.0142) (0.0142) (0.0155) (0.0170)

(10) lnaPOP
it

1.053∗∗ 1.106∗∗ 1.210∗∗ 1.338∗∗ 1.053∗∗ 1.106∗∗ 1.210∗∗ 1.338∗∗

(0.506) (0.539) (0.585) (0.585) (0.506) (0.539) (0.585) (0.585)

(11) τ1 -0.167∗∗∗ -0.146∗∗∗ -0.139∗∗∗ -0.131∗∗∗ -0.167∗∗∗ -0.146∗∗∗ -0.139∗∗∗ -0.131∗∗∗

(0.0206) (0.0187) (0.0252) (0.0263) (0.0206) (0.0187) (0.0252) (0.0263)

(12) R2 0.197 0.196 0.190 0.189 0.197 0.196 0.190 0.189

(13) F 142.2 406.1 57.40 28.24 142.2 406.1 57.40 28.24

(14) p-value 0.000 0.000 0.000 3.44e-07 0.000 0.000 0.000 3.44e-07

(15) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period
fixed effects are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1

C Results for the alternative quality measures of patents

Supplementary regression results for models (5.1) and (5.1)’ in Section 8.1 as well as model

(5.11) in Section 8.3 are presented in Sections C.1, C.2 and C.3, respectively.

C.1 Results for model (5.1)

Tables 10 and 11 present the results from the second-stage regressions for model (5.1) based

on the four alternative measures are presented, where the output, g j, of project j in (2.1)

is given by (i) the cited count within five years of its publication, (ii) technological novelty

based on the IPC subclass, (iii) count of patent claims; or (iv) count of patennts, i.e., g j = 1

for all j. The organization of each table is the same as that in Table 4.
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Table 10: Regression results (Dependent variable: ln yit)

(i) Citations (5 years) (ii) Novelty (Subclass)

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.163∗∗∗ 0.282∗∗∗ 0.283∗∗∗ 0.271∗∗∗ 0.252∗∗∗ 0.176∗∗∗ 0.305∗∗∗ 0.288∗∗∗ 0.351∗∗∗ 0.411∗∗∗

(0.0109) (0.0276) (0.0280) (0.0361) (0.0393) (0.00867) (0.0281) (0.0334) (0.0311) (0.0757)

(2) lnkit 0.116∗∗∗ 0.0991∗∗∗ 0.0991∗∗∗ 0.101∗∗∗ 0.103∗∗∗ 0.117∗∗∗ 0.0952∗∗∗ 0.0981∗∗∗ 0.0874∗∗∗ 0.0774∗∗∗

(0.0155) (0.0117) (0.0115) (0.0148) (0.0168) (0.0217) (0.0143) (0.0146) (0.0131) (0.0201)

(3) (lnkit)
2 -0.0887∗∗∗ -0.0820∗∗∗ -0.0820∗∗∗ -0.0826∗∗∗ -0.0837∗∗∗ -0.122∗∗∗ -0.112∗∗∗ -0.113∗∗∗ -0.108∗∗∗ -0.104∗∗∗

(0.01000) (0.00892) (0.00888) (0.00996) (0.0103) (0.0143) (0.0103) (0.0105) (0.00944) (0.0124)

(4) lnaINV
it

0.167∗∗∗ 0.118∗ 0.118∗ 0.122∗∗ 0.130∗∗ 0.246∗∗∗ 0.174∗∗ 0.184∗∗ 0.148∗∗ 0.116∗∗∗

(0.0539) (0.0606) (0.0608) (0.0573) (0.0527) (0.0658) (0.0708) (0.0747) (0.0701) (0.0388)

(5) lnaR&D
it

0.0269∗∗∗ 0.0254∗∗∗ 0.0254∗∗∗ 0.0255∗∗∗ 0.0258∗∗∗ 0.0402∗∗∗ 0.0370∗∗∗ 0.0374∗∗∗ 0.0359∗∗∗ 0.0344∗∗∗

(0.00744) (0.00650) (0.00651) (0.00645) (0.00660) (0.0130) (0.0111) (0.0115) (0.0102) (0.00808)

(6) lnaMNFe

it
0.0188∗∗∗ 0.0269∗∗∗ 0.0269∗∗∗ 0.0262∗∗∗ 0.0249∗∗∗ -0.00508 0.00844 0.00665 0.0133 0.0196
(0.00566) (0.00465) (0.00463) (0.00549) (0.00589) (0.0112) (0.0106) (0.00993) (0.0114) (0.0195)

(7) lnaMNFo

it
0.00857 0.00546 0.00545 0.00575 0.00624 -0.00994∗∗ -0.0108∗∗ -0.0107∗∗ -0.0111∗ -0.0115∗

(0.00616) (0.00835) (0.00838) (0.00786) (0.00733) (0.00459) (0.00508) (0.00489) (0.00581) (0.00659)

(8) lnaPOP
it

-0.435 -0.626 -0.627 -0.609 -0.578 0.357 0.0202 0.0649 -0.102 -0.257
(0.527) (0.494) (0.494) (0.502) (0.489) (0.507) (0.438) (0.458) (0.413) (0.325)

(9) τ1 0.272∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.220∗∗∗ 0.229∗∗∗ 0.380∗∗∗ 0.290∗∗∗ 0.302∗∗∗ 0.257∗∗∗ 0.216∗∗∗

(0.0175) (0.0156) (0.0155) (0.0237) (0.0272) (0.0269) (0.0350) (0.0387) (0.0353) (0.0524)

(10) R2 0.165 0.237

(11) Hansen J p-val. 0.845 0.208

(12) 1st stage F 712.6 2134 1053 512.4 491.3 1393 801.8 440.7

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

Table 11: Regression results (Dependent variable: ln yit)

(iii) Claim count (iv) Patent count

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.198∗∗∗ 0.339∗∗∗ 0.337∗∗∗ 0.354∗∗∗ 0.386∗∗∗ 0.163∗∗∗ 0.326∗∗∗ 0.324∗∗∗ 0.347∗∗∗ 0.377∗∗∗

(0.0133) (0.0383) (0.0391) (0.0386) (0.0389) (0.0112) (0.0304) (0.0319) (0.0298) (0.0403)

(2) lnkit 0.140∗∗∗ 0.115∗∗∗ 0.116∗∗∗ 0.113∗∗∗ 0.107∗∗∗ 0.0981∗∗∗ 0.0775∗∗∗ 0.0777∗∗∗ 0.0749∗∗∗ 0.0710∗∗∗

(0.0135) (0.0152) (0.0151) (0.0165) (0.0181) (0.0114) (0.00723) (0.00713) (0.00811) (0.0125)

(3) (lnkit)
2 -0.0953∗∗∗ -0.0858∗∗∗ -0.0859∗∗∗ -0.0848∗∗∗ -0.0827∗∗∗ -0.0826∗∗∗ -0.0742∗∗∗ -0.0743∗∗∗ -0.0732∗∗∗ -0.0716∗∗∗

(0.00337) (0.00338) (0.00345) (0.00293) (0.00318) (0.00911) (0.00715) (0.00712) (0.00740) (0.00850)

(4) lnaINV
it

0.212∗∗∗ 0.142∗∗ 0.143∗∗ 0.135∗∗ 0.119∗∗ 0.187∗∗∗ 0.109 0.110 0.0992 0.0846
(0.0559) (0.0579) (0.0584) (0.0540) (0.0490) (0.0658) (0.0734) (0.0741) (0.0686) (0.0525)

(5) lnaR&D
it

0.0276∗∗∗ 0.0251∗∗∗ 0.0252∗∗∗ 0.0249∗∗∗ 0.0243∗∗∗ 0.0290∗∗∗ 0.0265∗∗∗ 0.0265∗∗∗ 0.0261∗∗∗ 0.0257∗∗∗

(0.0101) (0.00865) (0.00869) (0.00833) (0.00784) (0.00971) (0.00767) (0.00772) (0.00722) (0.00663)

(6) lnaMNFe

it
0.0148∗∗ 0.0274∗∗∗ 0.0272∗∗∗ 0.0287∗∗∗ 0.0315∗∗∗ -0.00502 0.0120∗∗ 0.0117∗∗ 0.0141∗∗ 0.0172∗

(0.00658) (0.00542) (0.00541) (0.00582) (0.00697) (0.00639) (0.00504) (0.00493) (0.00673) (0.0102)

(7) lnaMNFo

it
0.0127∗∗ 0.00860 0.00866 0.00817 0.00726 0.000798 -0.00151 -0.00148 -0.00180 -0.00223

(0.00508) (0.00604) (0.00602) (0.00627) (0.00654) (0.00344) (0.00586) (0.00584) (0.00614) (0.00635)

(8) lnaPOP
it

0.594 0.154 0.161 0.108 0.0105 0.0162 -0.331 -0.326 -0.374 -0.439
(0.478) (0.484) (0.487) (0.468) (0.422) (0.450) (0.409) (0.411) (0.400) (0.350)

(9) τ1 0.122∗∗∗ 0.0788∗∗∗ 0.0794∗∗∗ 0.0742∗∗∗ 0.0645∗∗ 0.133∗∗∗ 0.0801∗∗∗ 0.0807∗∗∗ 0.0735∗∗∗ 0.0637∗∗∗

(0.0236) (0.0230) (0.0229) (0.0249) (0.0251) (0.0160) (0.0155) (0.0158) (0.0150) (0.0170)

(10) R2 0.105 0.107

(11) Hansen J p-val. 0.399 0.629

(12) 1st stage F 889.2 2646 1498 901.9 774.7 2309 1188 648.1

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

C.2 Results for model (5.9)

Table 12 presents the second-stage regression results for model (5.9) under the productivity

measure based on cited counts in a five-year window (columns 1-5) and on claim counts
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(columns 6-10). The organization of the table is the same as that in Table 5.

Table 12: Regression results (Dependent variable: ln y
q

it
)

Citations (5 years) Claim count

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.0354∗∗∗ 0.0389∗∗∗ 0.0396∗∗∗ 0.0240 0.0163 0.0739∗∗∗ 0.135∗∗∗ 0.134∗∗∗ 0.143∗∗∗ 0.167∗∗∗

(0.00155) (0.00896) (0.00897) (0.0161) (0.0255) (0.00316) (0.00848) (0.00840) (0.0172) (0.0347)

(2) lnkit 0.0160∗∗ 0.0155∗∗ 0.0154∗∗ 0.0176∗∗ 0.0187∗∗ 0.0433∗∗ 0.0325 0.0327 0.0312 0.0269
(0.00663) (0.00752) (0.00749) (0.00887) (0.00850) (0.0210) (0.0219) (0.0217) (0.0241) (0.0274)

(3) (lnkit)
2 -0.00482∗∗∗ -0.00462∗∗ -0.00458∗∗ -0.00545∗∗ -0.00589∗∗ -0.0126∗ -0.00848 -0.00857 -0.00798 -0.00635

(0.00171) (0.00183) (0.00181) (0.00241) (0.00287) (0.00725) (0.00791) (0.00781) (0.00872) (0.0100)

(4) lnaINV
it

-0.0451∗∗∗ -0.0466∗∗ -0.0469∗∗ -0.0404∗∗ -0.0372∗∗ 0.00711 -0.0231 -0.0224 -0.0267 -0.0386
(0.0170) (0.0190) (0.0191) (0.0190) (0.0148) (0.0477) (0.0392) (0.0399) (0.0341) (0.0288)

(5) lnaR&D
it

-0.00304 -0.00308 -0.00309 -0.00289 -0.00279 -0.00182 -0.00288 -0.00286 -0.00301 -0.00343
(0.00525) (0.00534) (0.00535) (0.00518) (0.00489) (0.00483) (0.00493) (0.00494) (0.00489) (0.00492)

(6) lnaMNFe

it
0.0321∗∗∗ 0.0323∗∗∗ 0.0324∗∗∗ 0.0313∗∗∗ 0.0308∗∗∗ 0.0257∗∗∗ 0.0312∗∗∗ 0.0311∗∗∗ 0.0318∗∗∗ 0.0340∗∗∗

(0.00639) (0.00609) (0.00607) (0.00634) (0.00748) (0.00891) (0.00870) (0.00866) (0.00909) (0.00980)

(7) lnaMNFo

it
0.00880 0.00871 0.00869 0.00910 0.00930 0.0132∗∗ 0.0114∗∗ 0.0114∗∗ 0.0112∗ 0.0105∗

(0.00631) (0.00620) (0.00620) (0.00600) (0.00618) (0.00585) (0.00577) (0.00576) (0.00586) (0.00612)

(8) lnaPOP
it

-0.594∗∗ -0.599∗∗ -0.600∗∗ -0.576∗∗ -0.563∗∗ 0.616 0.426 0.430 0.403 0.327
(0.269) (0.269) (0.268) (0.280) (0.284) (0.448) (0.455) (0.453) (0.471) (0.499)

(9) τ1 0.149∗∗∗ 0.147∗∗∗ 0.147∗∗∗ 0.154∗∗∗ 0.158∗∗∗ -0.0252 -0.0440∗∗ -0.0436∗∗ -0.0463∗∗ -0.0538∗∗

(0.0209) (0.0244) (0.0245) (0.0261) (0.0217) (0.0180) (0.0173) (0.0170) (0.0200) (0.0241)

(10) R2 0.109 0.030

(11) Hansen J p-val. 0.382 0.465

(12) 1st stage F 712.6 2134 1053 512.4 889.2 2646 1498 901.9

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii)
∗∗∗p<0.01, ** p<0.05, * p<0.1.

Tables 13 and 14, the second stage regression results for model (5.9) with m = p. Specif-

ically, in Table 13, kD
it

is based on cited counts in a three-year window (columns 1-5) and

on novelty in terms of IPC-subgroup (columns 6-10), whereas in Table 14, it is based on

cited counts in a five-year window (columns 1-5) and on claim counts (columns 6-10).

Table 13: Regression results (Dependent variable: ln y
p

it
)

Citations (3 years) Novelty (Subgroup)

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.135∗∗∗ 0.260∗∗∗ 0.259∗∗∗ 0.272∗∗∗ 0.270∗∗∗ 0.0451∗∗∗ 0.114∗∗∗ 0.110∗∗∗ 0.132∗∗∗ 0.130∗∗∗

(0.0103) (0.0283) (0.0290) (0.0271) (0.0373) (0.00521) (0.0214) (0.0246) (0.0170) (0.0416)

(2) lnkit 0.0999∗∗∗ 0.0825∗∗∗ 0.0826∗∗∗ 0.0808∗∗∗ 0.0811∗∗∗ 0.111∗∗∗ 0.0982∗∗∗ 0.0989∗∗∗ 0.0949∗∗∗ 0.0952∗∗∗

(0.0110) (0.00729) (0.00725) (0.00844) (0.0125) (0.0144) (0.0112) (0.0106) (0.0125) (0.0194)

(3) (lnkit)
2 -0.0835∗∗∗ -0.0765∗∗∗ -0.0765∗∗∗ -0.0758∗∗∗ -0.0759∗∗∗ -0.0868∗∗∗ -0.0803∗∗∗ -0.0807∗∗∗ -0.0787∗∗∗ -0.0788∗∗∗

(0.00921) (0.00761) (0.00759) (0.00796) (0.00884) (0.0104) (0.00821) (0.00800) (0.00869) (0.0115)

(4) lnaINV
it

0.207∗∗∗ 0.153∗∗ 0.153∗∗ 0.148∗∗ 0.149∗∗∗ 0.238∗∗∗ 0.196∗∗∗ 0.199∗∗∗ 0.185∗∗∗ 0.186∗∗∗

(0.0678) (0.0752) (0.0755) (0.0700) (0.0574) (0.0651) (0.0659) (0.0683) (0.0612) (0.0389)

(5) lnaR&D
it

0.0298∗∗∗ 0.0281∗∗∗ 0.0281∗∗∗ 0.0279∗∗∗ 0.0280∗∗∗ 0.0302∗∗∗ 0.0280∗∗∗ 0.0282∗∗∗ 0.0275∗∗∗ 0.0276∗∗∗

(0.0105) (0.00925) (0.00927) (0.00892) (0.00867) (0.0112) (0.0101) (0.0102) (0.00967) (0.00885)

(6) lnaMNFe

it
-0.0122∗ -0.00309 -0.00313 -0.00222 -0.00236 -0.0166∗∗ -0.00823 -0.00872 -0.00604 -0.00626
(0.00702) (0.00616) (0.00611) (0.00725) (0.00869) (0.00772) (0.00745) (0.00756) (0.00718) (0.00950)

(7) lnaMNFo

it
-0.000286 -0.00341 -0.00340 -0.00371 -0.00366 0.00274 0.00217 0.00220 0.00202 0.00203
(0.00354) (0.00438) (0.00438) (0.00435) (0.00426) (0.00420) (0.00344) (0.00345) (0.00339) (0.00343)

(8) lnaPOP
it

0.133 -0.0794 -0.0785 -0.0997 -0.0965 0.183 -0.0932 -0.0768 -0.165 -0.158
(0.461) (0.420) (0.420) (0.409) (0.387) (0.535) (0.509) (0.517) (0.495) (0.458)

(9) τ1 0.126∗∗∗ 0.0708∗∗∗ 0.0710∗∗∗ 0.0655∗∗∗ 0.0663∗∗∗ 0.153∗∗∗ 0.103∗∗∗ 0.106∗∗∗ 0.0898∗∗∗ 0.0911∗∗∗

(0.0183) (0.0215) (0.0217) (0.0199) (0.0223) (0.0179) (0.0236) (0.0254) (0.0206) (0.0342)

(10) R2 0.102 0.087 0.087 0.084 0.084 0.089 0.078 0.079 0.072 0.072

(11) Hansen J p-val. 0.878 0.177

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii)
∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table 14: Regression results (Dependent variable: ln y
p

it
)

Citations (5 years) Claim count

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.128∗∗∗ 0.243∗∗∗ 0.243∗∗∗ 0.247∗∗∗ 0.236∗∗∗ 0.124∗∗∗ 0.204∗∗∗ 0.203∗∗∗ 0.212∗∗∗ 0.219∗∗∗

(0.0103) (0.0308) (0.0317) (0.0281) (0.0351) (0.0122) (0.0329) (0.0342) (0.0295) (0.0267)
(2) lnkit 0.100∗∗∗ 0.0837∗∗∗ 0.0837∗∗∗ 0.0831∗∗∗ 0.0847∗∗∗ 0.0969∗∗∗ 0.0828∗∗∗ 0.0829∗∗∗ 0.0815∗∗∗ 0.0802∗∗∗

(0.0110) (0.00723) (0.00717) (0.00874) (0.0127) (0.0127) (0.00986) (0.00968) (0.0113) (0.0152)

(3) (lnkit)
2 -0.0839∗∗∗ -0.0774∗∗∗ -0.0774∗∗∗ -0.0772∗∗∗ -0.0778∗∗∗ -0.0827∗∗∗ -0.0773∗∗∗ -0.0774∗∗∗ -0.0768∗∗∗ -0.0763∗∗∗

(0.00928) (0.00767) (0.00765) (0.00820) (0.00905) (0.00982) (0.00869) (0.00863) (0.00903) (0.0104)
(4) lnaINV

it
0.212∗∗∗ 0.165∗∗ 0.165∗∗ 0.163∗∗ 0.167∗∗∗ 0.204∗∗∗ 0.165∗∗ 0.165∗∗ 0.161∗∗ 0.158∗∗

(0.0685) (0.0773) (0.0777) (0.0716) (0.0596) (0.0704) (0.0817) (0.0823) (0.0772) (0.0687)
(5) lnaR&D

it
0.0299∗∗∗ 0.0285∗∗∗ 0.0285∗∗∗ 0.0284∗∗∗ 0.0285∗∗∗ 0.0294∗∗∗ 0.0280∗∗∗ 0.0280∗∗∗ 0.0279∗∗∗ 0.0278∗∗∗

(0.0107) (0.00964) (0.00965) (0.00939) (0.00925) (0.0105) (0.00972) (0.00975) (0.00944) (0.00929)

(6) lnaMNFe

it
-0.0133∗ -0.00542 -0.00542 -0.00514 -0.00590 -0.0110 -0.00381 -0.00388 -0.00315 -0.00251
(0.00713) (0.00618) (0.00614) (0.00715) (0.00823) (0.00726) (0.00661) (0.00657) (0.00737) (0.00779)

(7) lnaMNFo

it
-0.000229 -0.00324 -0.00324 -0.00335 -0.00306 -0.000475 -0.00279 -0.00276 -0.00300 -0.00321
(0.00363) (0.00425) (0.00426) (0.00412) (0.00412) (0.00374) (0.00469) (0.00470) (0.00469) (0.00457)

(8) lnaPOP
it

0.159 -0.0266 -0.0265 -0.0330 -0.0152 -0.0225 -0.272 -0.269 -0.295 -0.317
(0.464) (0.426) (0.427) (0.417) (0.402) (0.496) (0.500) (0.502) (0.494) (0.492)

(9) τ1 0.124∗∗∗ 0.0673∗∗∗ 0.0673∗∗∗ 0.0654∗∗∗ 0.0708∗∗∗ 0.148∗∗∗ 0.123∗∗∗ 0.123∗∗∗ 0.121∗∗∗ 0.118∗∗∗

(0.0188) (0.0243) (0.0246) (0.0217) (0.0236) (0.0167) (0.0183) (0.0185) (0.0182) (0.0182)

(10) R2 0.100 0.087 0.087 0.086 0.089 0.100 0.093 0.094 0.092 0.091
(11) Hansen J p-val. 0.931 0.905
(12) 1st stage F 712.6 2134 1053 512.4 889.2 2646 1498 901.9
(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii)
∗∗∗p<0.01, ** p<0.05, * p<0.1.

C.3 Results for model (5.11)

Table 15 presents the second-stage regression results for (5.11) with the productivity mea-

sure based on cited counts in a five year window (columns 1-5) and novelty in terms of

IPC subclass (columns 6-10). Table 16 similarly presents the results under the productivity

measures based on claim counts (columns 1-5) and on patent counts (columns 6-10).

Table 15: Regression results (Dependent variable: lnkD
it

)

(i) Citations (5 years) (ii) Novelty (Subclass)

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) ln∆nit 0.107∗∗∗ 1.383∗∗∗ 1.413∗∗∗ 1.533∗∗∗ 1.236∗∗∗ 0.171∗∗∗ 1.486∗∗∗ 1.506∗∗∗ 1.630∗∗∗ 1.381∗∗∗

(0.00587) (0.0683) (0.0781) (0.118) (0.133) (0.00876) (0.0869) (0.0891) (0.139) (0.152)
(2) lnkit 0.137∗∗∗ -0.0166 -0.0202 -0.0346 0.00109 0.143∗∗∗ -0.0154 -0.0179 -0.0328 -0.00278

(0.0452) (0.0688) (0.0675) (0.0831) (0.0736) (0.0502) (0.0746) (0.0734) (0.0867) (0.0795)

(3) (lnkit)
2 -0.0366∗∗ 0.225∗∗∗ 0.231∗∗∗ 0.256∗∗∗ 0.195∗∗∗ -0.0428∗ 0.226∗∗∗ 0.231∗∗∗ 0.256∗∗∗ 0.205∗∗∗

(0.0160) (0.0191) (0.0165) (0.0412) (0.0372) (0.0228) (0.0279) (0.0250) (0.0478) (0.0446)
(4) lnaINV

it
0.365∗∗∗ -0.00994 -0.0187 -0.0539 0.0332 0.485∗∗∗ 0.0985∗ 0.0925 0.0560 0.129∗∗

(0.0965) (0.0387) (0.0417) (0.0467) (0.0513) (0.0973) (0.0537) (0.0578) (0.0464) (0.0546)
(5) lnaR&D

it
0.0129 0.000127 -0.000170 -0.00137 0.00160 0.0233 0.0102 0.00995 0.00871 0.0112

(0.0106) (0.00535) (0.00545) (0.00644) (0.00493) (0.0155) (0.00793) (0.00796) (0.00762) (0.00800)

(6) lnaMNFe

it
-0.0666∗∗∗ -0.00955 -0.00822 -0.00286 -0.0161 -0.101∗∗∗ -0.0423∗∗ -0.0414∗∗ -0.0359∗ -0.0470∗∗∗

(0.0212) (0.0150) (0.0154) (0.0186) (0.0138) (0.0213) (0.0166) (0.0170) (0.0207) (0.0157)

(7) lnaMNFo

it
0.0221 0.00871 0.00840 0.00715 0.0102 0.00217 -0.0116 -0.0118 -0.0131 -0.0105

(0.0204) (0.0112) (0.0115) (0.0125) (0.0104) (0.0268) (0.0108) (0.0107) (0.0111) (0.0114)
(8) lnaPOP

it
1.238 -0.698 -0.743 -0.925 -0.475 2.153∗∗ 0.160 0.129 -0.0591 0.319

(1.058) (1.278) (1.269) (1.454) (1.307) (0.880) (1.087) (1.081) (1.211) (1.109)
(9) τ1 0.459∗∗∗ 0.560∗∗∗ 0.562∗∗∗ 0.571∗∗∗ 0.548∗∗∗ 0.678∗∗∗ 0.781∗∗∗ 0.783∗∗∗ 0.792∗∗∗ 0.773∗∗∗

(0.0289) (0.0539) (0.0560) (0.0512) (0.0465) (0.0279) (0.0311) (0.0323) (0.0338) (0.0277)

(10) R2 0.177 0.218
(11) Hansen J p-val. 0.254 0.261
(12) 1st stage F 237.7 639.9 338.5 253.9 237.7 639.9 338.5 253.9
(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.
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Table 16: Regression results (Dependent variable: lnkD
it

)

(iii) Claim count (iv Patent count

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) ln∆nit 0.110∗∗∗ 1.525∗∗∗ 1.538∗∗∗ 1.726∗∗∗ 1.443∗∗∗ 0.0851∗∗∗ 1.318∗∗∗ 1.342∗∗∗ 1.474∗∗∗ 1.193∗∗∗

(0.00630) (0.0540) (0.0689) (0.155) (0.173) (0.00595) (0.0512) (0.0637) (0.125) (0.130)

(2) lnkit 0.166∗∗∗ -0.00414 -0.00578 -0.0284 0.00573 0.116∗∗∗ -0.0324 -0.0354 -0.0513 -0.0174
(0.0234) (0.0526) (0.0499) (0.0720) (0.0644) (0.0307) (0.0563) (0.0543) (0.0716) (0.0640)

(3) (lnkit)
2 -0.0456∗∗∗ 0.244∗∗∗ 0.247∗∗∗ 0.285∗∗∗ 0.227∗∗∗ -0.0343∗∗∗ 0.218∗∗∗ 0.223∗∗∗ 0.250∗∗∗ 0.193∗∗∗

(0.0103) (0.0200) (0.0159) (0.0495) (0.0485) (0.0131) (0.0200) (0.0165) (0.0436) (0.0405)

(4) lnaINV
it

0.445∗∗∗ 0.0288 0.0248 -0.0303 0.0529 0.450∗∗∗ 0.0876 0.0804 0.0415 0.124∗∗

(0.131) (0.0561) (0.0575) (0.0695) (0.0759) (0.0913) (0.0534) (0.0588) (0.0474) (0.0534)

(5) lnaR&D
it

0.0186 0.00446 0.00433 0.00245 0.00528 0.0156 0.00330 0.00306 0.00174 0.00456
(0.0129) (0.00568) (0.00572) (0.00688) (0.00566) (0.0140) (0.00545) (0.00555) (0.00482) (0.00531)

(6) lnaMNFe

it
-0.0916∗∗∗ -0.0283 -0.0277 -0.0193 -0.0320 -0.106∗∗∗ -0.0505∗∗∗ -0.0494∗∗∗ -0.0434∗∗ -0.0560∗∗∗

(0.0233) (0.0203) (0.0201) (0.0266) (0.0219) (0.0219) (0.0139) (0.0140) (0.0187) (0.0141)

(7) lnaMNFo

it
0.0225 0.00768 0.00754 0.00558 0.00854 0.00888 -0.00401 -0.00427 -0.00565 -0.00270

(0.0257) (0.0132) (0.0133) (0.0142) (0.0131) (0.0253) (0.00891) (0.00877) (0.00912) (0.0101)

(8) lnaPOP
it

2.924∗∗∗ 0.778 0.758 0.473 0.903 1.808∗ -0.0609 -0.0982 -0.299 0.129
(0.886) (1.167) (1.155) (1.370) (1.227) (0.951) (1.000) (0.986) (1.173) (1.058)

(9) τ1 0.287∗∗∗ 0.398∗∗∗ 0.399∗∗∗ 0.414∗∗∗ 0.392∗∗∗ 0.301∗∗∗ 0.398∗∗∗ 0.400∗∗∗ 0.410∗∗∗ 0.388∗∗∗

(0.0262) (0.0322) (0.0338) (0.0328) (0.0289) (0.0215) (0.0319) (0.0338) (0.0314) (0.0262)

(10) R2 0.089 0.111

(11) Hansen J p-val. 0.245 0.251

(12) 1st stage F 237.7 639.9 338.5 253.9 237.7 639.9 338.5 253.9

(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii)
∗∗∗p<0.01, ** p<0.05, * p<0.1.

D Results for the alternative radiuses for the locational fac-

tors

This section presents the results from the second-stage regressions for (5.1) in Section 8.1

and (5.11) in Section 8.3 for the alternative radius values for the local factors defined in

Section 6.2 in Tables 17 and 18 (19 and 20), respectively for quality-adjusted (novelty-

adjusted) productivity.

One can see that the choice of radius values for the local factors does not alter the

qualitative results obtained in the baseline setup shown in Tables 4 and 6 in Section 8

regarding the effect of collaborators’ differentiated knowledge and that of the knowledge

stock of an inventor on his or her productivity as well as the role of the collaborator

recombination in the size of collaborators’ differentiated knowledge. The values of the

estimated coefficients for the endogenous variables, lnkD
it

and ln∆nit, as well as those for

the knowledge stock, lnkit and (lnkit)
2, appear to be stable in all cases.
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Table 17: Regression results (Dependent variable: ln yit)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.293∗∗∗ 0.296∗∗∗ 0.294∗∗∗ 0.286∗∗∗ 0.288∗∗∗ 0.288∗∗∗ 0.286∗∗∗

(0.0225) (0.0193) (0.0214) (0.0254) (0.0239) (0.0242) (0.0254)

(2) lnkit 0.0923∗∗∗ 0.0893∗∗∗ 0.0889∗∗∗ 0.0931∗∗∗ 0.0917∗∗∗ 0.0911∗∗∗ 0.0931∗∗∗

(0.0124) (0.0135) (0.0141) (0.0119) (0.0121) (0.0121) (0.0119)

(3) (lnkit)
2 -0.0814∗∗∗ -0.0803∗∗∗ -0.0802∗∗∗ -0.0820∗∗∗ -0.0815∗∗∗ -0.0816∗∗∗ -0.0820∗∗∗

(0.00886) (0.00903) (0.00911) (0.00868) (0.00879) (0.00866) (0.00868)

(4) lnaINV
it

1km 0.162∗∗∗

(0.0624)
5km 0.0886

(0.108)

10km 0.127
(0.135)

20km 0.117∗ 0.126*∗ 0.125∗ 0.117∗

(0.0633) (0.0634) (0.0709) (0.0633)

(5) lnaR&D
it

1km 0.0267∗∗∗ 0.0260∗∗∗ 0.0270∗∗∗ 0.0256∗∗∗

(0.00611) (0.00734) (0.00838) (0.00679)

5km 0.0256∗∗∗

(0.00679)

10km 0.0294∗∗∗

(0.0106)

20km 0.0314∗∗∗

(0.00865)

(6) lnaMNFe
it

1km 0.0113 0.0176*∗ 0.0209∗∗∗ 0.0240∗∗∗ 0.0277∗∗∗ 0.0202∗∗∗

(0.00825) (0.00799) (0.00487) (0.00438) (0.00597) (0.00427)

5km 0.0240∗∗∗

(0.00438)

(7) lnaMNFo
it

1km 0.00492 0.00563 0.00650 0.00522 0.00534 0.00588 0.00522
(0.00863) (0.00821) (0.00880) (0.00804) (0.00667) (0.00722) (0.00804)

(8) lnaPOP
it

1km -0.624 -0.628 -0.628 -0.660 -0.939∗ -0.522 -0.660
(0.472) (0.517) (0.546) (0.490) (0.497) (0.504) (0.490)

(9) τ1 0.165∗∗∗ 0.166∗∗∗ 0.163∗∗∗ 0.173∗∗∗ 0.164∗∗∗ 0.166∗∗∗ 0.173∗∗∗

(0.0143) (0.0174) (0.0190) (0.0150) (0.0196) (0.0117) (0.0150)

(10) H. J p-value 0.952 0.972 0.974 0.928 0.938 0.878 0.928

(11) F 768.5 775.2 758.3 727.1 734 733.4 727.1

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table 17: Regression results continued (Dependent variable: ln yit)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.284∗∗∗ 0.286∗∗∗ 0.284∗∗∗ 0.287∗∗∗ 0.280∗∗∗ 0.285∗∗∗ 0.280∗∗∗

(0.0249) (0.0248) (0.0274) (0.0248) (0.0280) (0.0249) (0.0264)

(2) lnkit 0.0932∗∗∗ 0.0923∗∗∗ 0.0913∗∗∗ 0.0931∗∗∗ 0.0907∗∗∗ 0.0921∗∗∗ 0.0903∗∗∗

(0.0115) (0.0105) (0.0121) (0.0119) (0.0117) (0.0107) (0.0117)

(3) (lnkit)
2 -0.0822∗∗∗ -0.0820∗∗∗ -0.0817∗∗∗ -0.0821∗∗∗ -0.0817∗∗∗ -0.0815∗∗∗ -0.0809∗∗∗

(0.00864) (0.00848) (0.00867) (0.00857) (0.00861) (0.00834) (0.00861)

(4) lnaINV
it

1km 0.117∗ 0.124∗∗ 0.119∗ 0.118∗ 0.115∗ 0.116∗ 0.108∗

(0.0634) (0.0599) (0.0609) (0.0608) (0.0632) (0.0654) (0.0598)

(5) lnaR&D
it

1km 0.0251∗∗∗ 0.0240∗∗∗ 0.0209∗∗∗ 0.0274∗∗∗ 0.0177∗∗∗ 0.0275∗∗∗ 0.0271∗∗∗

(0.00780) (0.00911) (0.00498) (0.00570) (0.00635) (0.00634) (0.00530)

(6) lnaMNFe
it

1km 0.0488∗∗∗ 0.0155 0.0283∗∗∗ 0.0218∗∗∗ 0.0217∗∗∗

(0.0159) (0.0157) (0.00899) (0.00515) (0.00695)

10km -0.0245
(0.0165)

20km -0.105
(0.0783)

(7) lnaMNFo
it

1km -0.00201 -0.00280 0.00736 0.0102∗

(0.0119) (0.0129) (0.00539) (0.00619)

5km 0.0573∗∗∗

(0.0199)

10km -0.0122
(0.0481)

20km 0.137∗∗∗

(0.0483)

(8) lnaPOP
it

5km 0.0295
(0.276)

10km 0.666
(0.547)

20km -0.592 -0.491 -0.217 -0.806 0.232
(0.562) (0.542) (0.533) (0.749) (0.592)

(9) τ1 0.177∗∗∗ 0.190∗∗∗ 0.160∗∗∗ 0.178∗∗∗ 0.162∗∗∗ 0.189∗∗∗ 0.203∗∗∗

(0.0153) (0.0173) (0.0132) (0.0159) (0.0162) (0.0213) (0.0271)

(10) H. J p-value 0.943 0.944 0.875 0.934 0.846 0.920 0.935

(11) F 721.8 728.7 728.5 728.6 722.6 729.1 709.6

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.

56



Table 18: Regression results (Dependent variable: lnkD
it

)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.381∗∗∗ 1.403∗∗∗ 1.404∗∗∗ 1.372∗∗∗ 1.378∗∗∗ 1.372∗∗∗ 1.372∗∗∗

(0.0616) (0.0560) (0.0571) (0.0629) (0.0583) (0.0634) (0.0629)

(2) lnkit -0.0243 -0.0279 -0.0257 -0.0220 -0.0212 -0.0225 -0.0220
(0.0660) (0.0671) (0.0671) (0.0669) (0.0673) (0.0675) (0.0669)

(3) (lnkit)
2 0.226∗∗∗ 0.231∗∗∗ 0.230∗∗∗ 0.223∗∗∗ 0.224∗∗∗ 0.223∗∗∗ 0.223∗∗∗

(0.0184) (0.0200) (0.0216) (0.0197) (0.0207) (0.0199) (0.0197)

(4) lnaINV
it

1km -0.0460
(0.0699)

5km -0.287∗∗∗

(0.100)

10km -0.338∗∗

(0.171)

20km 0.0138 0.0109 0.0144 0.0138
(0.0426) (0.0473) (0.0418) (0.0426)

(5) lnaR&D
it

1km 0.000665 0.00203 -0.000853 0.000705
(0.00443) (0.00617) (0.00529) (0.00478)

5km 0.000705
(0.00478)

10km -0.0150∗

(0.00821)

20km 0.00480
(0.0109)

(6) lnaMNFe
it

1km -0.0106 0.00436 -0.00815 -0.0139 -0.0161 -0.0144
(0.0167) (0.0151) (0.0141) (0.0147) (0.0175) (0.0146)

5km -0.0139
(0.0147)

(7) lnaMNFo
it

1km 0.00833 0.00795 0.00566 0.00814 0.0117 0.00741 0.00814
(0.00995) (0.00980) (0.0111) (0.00992) (0.0112) (0.00973) (0.00992)

(8) lnaPOP
it

20km -0.539 -0.458 -0.471 -0.552 -0.688 -0.464 -0.552
(1.231) (1.061) (1.023) (1.229) (1.247) (1.179) (1.229)

(9) τ1 0.520∗∗∗ 0.555∗∗∗ 0.557∗∗∗ 0.514∗∗∗ 0.494∗∗∗ 0.520∗∗∗ 0.514∗∗∗

(0.0550) (0.0441) (0.0358) (0.0504) (0.0552) (0.0471) (0.0504)

(10) H. J p-value 0.253 0.243 0.251 0.255 0.253 0.254 0.255

(11) F 266 258.3 249.5 237.7 238 239.6 237.7

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table 18: Regression results continued (Dependent variable: lnkD
it

)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.371∗∗∗ 1.377∗∗∗ 1.379∗∗∗ 1.381∗∗∗ 1.375∗∗∗ 1.366∗∗∗ 1.366∗∗∗

(0.0601) (0.0652) (0.0631) (0.0595) (0.0628) (0.0614) (0.0537)

(2) lnkit -0.0228 -0.0232 -0.0212 -0.0205 -0.0228 -0.0233 -0.0227
(0.0666) (0.0661) (0.0664) (0.0648) (0.0659) (0.0652) (0.0647)

(3) (lnkit)
2 0.223∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.225∗∗∗ 0.224∗∗∗ 0.223∗∗∗ 0.223∗∗∗

(0.0206) (0.0194) (0.0194) (0.0197) (0.0192) (0.0185) (0.0204)

(4) lnaINV
it

1km 0.0148 0.0176 0.0124 0.0220 0.0127 0.0117 0.0120
(0.0421) (0.0429) (0.0443) (0.0440) (0.0434) (0.0446) (0.0491)

(5) lnaR&D
it

1km 0.000500 9.21e-05 0.00515 0.0153∗∗ 0.000744 0.00240 0.00211
(0.00483) (0.00500) (0.00487) (0.00729) (0.00518) (0.00631) (0.00686)

(6) lnaMNFe
it

1km -0.0372 -0.0761∗∗ -0.0190∗ -0.0183 -0.0154
(0.0268) (0.0386) (0.00986) (0.0151) (0.0163)

10km -0.0345
(0.0464)

20km -0.0559
(0.0614)

(7) lnaMNFo
it

1km 0.00762 0.00926 0.0107 0.0103
(0.00909) (0.00726) (0.00763) (0.00854)

5km -0.0337
(0.0369)

10km -0.152∗

(0.0809)

20km 0.0171
(0.0579)

(8) lnaPOP
it

5km 0.135
(0.450)

10km 0.111
(1.355)

20km -0.566 -0.524 -0.954 -1.760 -0.529
(1.298) (1.304) (1.278) (1.340) (1.368)

(9) τ1 0.516∗∗∗ 0.522∗∗∗ 0.529∗∗∗ 0.553∗∗∗ 0.517∗∗∗ 0.529∗∗∗ 0.529∗∗∗

(0.0531) (0.0574) (0.0503) (0.0535) (0.0512) (0.0384) (0.0501)

(10) H. J p-value 0.256 0.252 0.258 0.258 0.256 0.258 0.252

(11) F 238.6 241.1 238.8 239.2 238.4 242.9 230.5

(12) #Obs 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.
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Table 19: Regression results (Dependent variable: ln yit)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.355∗∗∗ 0.358∗∗∗ 0.351∗∗∗ 0.344∗∗∗ 0.344∗∗∗ 0.345∗∗∗ 0.344∗∗∗

(0.0290) (0.0303) (0.0312) (0.0310) (0.0285) (0.0306) (0.0310)

(2) lnkit 0.112∗∗∗ 0.108∗∗∗ 0.107∗∗∗ 0.114∗∗∗ 0.113∗∗∗ 0.111∗∗∗ 0.114∗∗∗

(0.0227) (0.0211) (0.0204) (0.0228) (0.0219) (0.0231) (0.0228)

(3) (lnkit)
2 -0.176∗∗∗ -0.175∗∗∗ -0.175∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.177∗∗∗ -0.178∗∗∗

(0.00650) (0.00698) (0.00731) (0.00594) (0.00608) (0.00621) (0.00594)

(4) lnaINV
it

1km 0.256∗∗∗

(0.0789)

5km 0.223
(0.149)

10km 0.397∗∗

(0.155)

20km 0.200∗∗ 0.213∗∗ 0.212∗∗ 0.200∗∗

(0.0939) (0.0957) (0.104) (0.0939)

(5) lnaR&D
it

1km 0.0381∗∗∗ 0.0366∗∗∗ 0.0395∗∗∗ 0.0364∗∗∗

(0.0116) (0.0124) (0.0137) (0.0127)

5km 0.0364∗∗∗

(0.0127)

10km 0.0399∗∗

(0.0189)

20km 0.0492∗∗∗

(0.0154)

(6) lnaMNFe
it

1km -0.00656 -0.00148 0.00538 0.0132 0.0181 0.00757
(0.00776) (0.00851) (0.00928) (0.00989) (0.0126) (0.0110)

5km 0.0132
(0.00989)

(7) lnaMNFo
it

1km -0.00532 -0.00412 -0.00151 -0.00512 -0.00445 -0.00496 -0.00512
(0.00882) (0.00790) (0.00931) (0.00721) (0.00467) (0.00493) (0.00721)

(8) lnaPOP
it

20km 0.112 0.0752 0.0741 0.0701 -0.340 0.361 0.0701
(0.414) (0.426) (0.489) (0.415) (0.377) (0.443) (0.415)

(9) τ1 0.158∗∗∗ 0.150∗∗∗ 0.137∗∗∗ 0.173∗∗∗ 0.159∗∗∗ 0.171∗∗∗ 0.173∗∗∗

(0.0376) (0.0377) (0.0338) (0.0382) (0.0366) (0.0426) (0.0382)

(10) H. J p-value 0.663 0.619 0.642 0.768 0.823 0.782 0.768

(11) F 588.2 593.8 568.5 557.6 564.3 563.9 557.6

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *∗∗p<0.01, ** p<0.05, * p<0.1.
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Table 19: Regression results continued (Dependent variable: ln yit)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.338∗∗∗ 0.344∗∗∗ 0.342∗∗∗ 0.345∗∗∗ 0.340∗∗∗ 0.343∗∗∗ 0.332∗∗∗

(0.0300) (0.0299) (0.0301) (0.0313) (0.0303) (0.0289) (0.0302)

(2) lnkit 0.114∗∗∗ 0.113∗∗∗ 0.112∗∗∗ 0.114∗∗∗ 0.111∗∗∗ 0.113∗∗∗ 0.109∗∗∗

(0.0225) (0.0235) (0.0233) (0.0226) (0.0235) (0.0237) (0.0229)

(3) (lnkit)
2 -0.178∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.177∗∗∗ -0.177∗∗∗

(0.00592) (0.00566) (0.00622) (0.00596) (0.00618) (0.00549) (0.00558)

(4) lnaINV
it

0.203∗∗ 0.212∗∗ 0.202∗∗ 0.199∗∗ 0.195∗∗ 0.198∗∗ 0.180∗∗

(0.0917) (0.0878) (0.0912) (0.0893) (0.0950) (0.100) (0.0886)

(5) lnaR&D
it

0.0356∗∗ 0.0341∗∗ 0.0285∗∗∗ 0.0355∗∗∗ 0.0252∗∗ 0.0367∗∗∗ 0.0353∗∗∗

(0.0147) (0.0160) (0.00994) (0.0107) (0.0120) (0.0122) (0.00869)

(6) lnaMNFe
it

1km 0.0557∗∗∗ 0.0182 0.0276∗∗∗ 0.00800 0.0110
(0.0202) (0.0382) (0.0101) (0.0126) (0.00690)

10km -0.0728∗∗

(0.0294)

20km -0.169
(0.106)

(7) lnaMNFo
it

1km -0.0147∗∗ -0.0128 -0.00360 0.00286
(0.00740) (0.00967) (0.00616) (0.00574)

5km 0.0767∗∗∗

(0.0259)

10km 0.00257
(0.0890)

20km 0.168∗∗∗

(0.0404)

(8) lnaPOP
it

5km 0.248
(0.331)

10km 1.870∗∗∗

(0.672)

20km 0.155 0.286 0.803∗ 0.144 1.293∗∗

(0.500) (0.457) (0.474) (0.885) (0.535)

(9) τ1 0.184∗∗∗ 0.199∗∗∗ 0.150∗∗∗ 0.169∗∗∗ 0.153∗∗∗ 0.177∗∗∗ 0.214∗∗∗

(0.0398) (0.0322) (0.0414) (0.0358) (0.0424) (0.0299) (0.0355)

(10) H. J p-value 0.776 0.654 0.850 0.729 0.842 0.809 0.767

(11) F 550.6 563.4 555.8 557.7 552.2 562.4 537.2

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.
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Table 20: Regression results (Dependent variable: lnkD
it

)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.743∗∗∗ 1.764∗∗∗ 1.743∗∗∗ 1.722∗∗∗ 1.730∗∗∗ 1.727∗∗∗ 1.722∗∗∗

(0.0748) (0.0706) (0.0784) (0.0847) (0.0799) (0.0815) (0.0847)

(2) lnkit -0.0355 -0.0397 -0.0359 -0.0313 -0.0310 -0.0342 -0.0313
(0.0635) (0.0655) (0.0659) (0.0638) (0.0647) (0.0654) (0.0638)

(3) (lnkit)
2 0.266∗∗∗ 0.271∗∗∗ 0.266∗∗∗ 0.261∗∗∗ 0.262∗∗∗ 0.262∗∗∗ 0.261∗∗∗

(0.0226) (0.0241) (0.0243) (0.0233) (0.0250) (0.0241) (0.0233)

(4) lnaINV
it

1km 0.0800 0.0820 0.0849 0.0800
(0.103) (0.112) (0.106) (0.103)

5km 0.0170
(0.132)

10km -0.208
(0.150)

20km 0.00578
(0.208)

(5) lnaR&D
it

1km 0.0177∗∗ 0.0186∗ 0.0177∗∗ 0.0172∗

(0.00874) (0.00989) (0.00861) (0.00896)

5km 0.0172∗

(0.00896)

10km -0.00246
(0.0159)

20km 0.0285
(0.0177)

(6) lnaMNFe
it

1km -0.0451∗∗∗ -0.0307∗ -0.0441∗∗ -0.0436∗∗ -0.0442 -0.0464∗∗

(0.0172) (0.0159) (0.0195) (0.0219) (0.0276) (0.0218)

5km -0.0436∗∗

(0.0219)

(7) lnaMNFo
it

1km -0.0133 -0.0134 -0.0132 -0.0133 -0.00819 -0.0142 -0.0133
(0.00886) (0.00828) (0.00945) (0.00922) (0.00928) (0.0101) (0.00922)

(8) lnaPOP
it

20km 1.361 1.429 1.365 1.332 0.966 1.594∗ 1.332
(1.039) (0.896) (1.030) (1.050) (1.078) (0.895) (1.050)

I2000 0.820∗∗∗ 0.850∗∗∗ 0.821∗∗∗ 0.814∗∗∗ 0.780∗∗∗ 0.821∗∗∗ 0.814∗∗∗

(0.0324) (0.0283) (0.0333) (0.0285) (0.0390) (0.0280) (0.0285)

(10) H. J p-value 0.358 0.348 0.363 0.363 0.352 0.363 0.363

(11) F 266 258.3 249.5 237.7 238 239.6 237.7

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table 20: Regression results continued (Dependent variable: lnkD
it

)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.719∗∗∗ 1.734∗∗∗ 1.720∗∗∗ 1.724∗∗∗ 1.717∗∗∗ 1.728∗∗∗ 1.711∗∗∗

(0.0840) (0.0892) (0.0827) (0.0786) (0.0817) (0.0811) (0.0761)

(2) lnkit -0.0339 -0.03 49 -0.0293 -0.0278 -0.0305 -0.0333 -0.0337
(0.0627) (0.0624) (0.0647) (0.0628) (0.0642) (0.0618) (0.0605)

(3) (lnkit)
2 0.261∗∗∗ 0.264∗∗∗ 0.260∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.262∗∗∗ 0.259∗∗∗

(0.0234) (0.0224) (0.0235) (0.0237) (0.0234) (0.0232) (0.0238)

(4) lnaINV
it

1km 0.0832 0.0902 0.0800 0.0935 0.0811 0.0756 0.0647
(0.103) (0.102) (0.106) (0.0974) (0.102) (0.114) (0.108)

(5) lnaR&D
it

1km 0.0165∗ 0.0156∗ 0.0187∗ 0.0348∗∗ 0.0156 0.0143 0.0125
(0.00931) (0.00926) (0.0107) (0.0154) (0.0104) (0.00888) (0.00974)

(6) lnaMNFe
it

1km -0.0511 -0.114 -0.0338∗ -0.0512∗ -0.0425∗

(0.0434) (0.0779) (0.0192) (0.0272) (0.0221)

10km -0.107∗

(0.0572)

20km -0.148∗∗

(0.0729)

(7) lnaMNFo
it

1km -0.0147∗ -0.00892 -0.0138 -0.0108
(0.00890) (0.00783) (0.00843) (0.0109)

5km -0.0346
(0.0540)

10km -0.219
(0.156)

20km -0.00425
(0.0639)

(8) lnaPOP
it

5km 0.494
(0.529)

10km 1.445
(1.530)

20km 1.287 1.390 1.178 -0.112 1.461
(1.112) (1.129) (1.043) (1.348) (1.194)

(9) τ1 0.819∗∗∗ 0.834∗∗∗ 0.817∗∗∗ 0.856∗∗∗ 0.807∗∗∗ 0.795∗∗∗ 0.809∗∗∗

(0.0296) (0.0348) (0.0330) (0.0489) (0.0301) (0.0177) (0.0318)

(10) H. J p-value 0.361 0.359 0.361 0.359 0.362 0.356 0.348

(11) F 238.6 241.1 238.8 239.2 238.4 242.9 230.5

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed
effects are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.
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