
Munich Personal RePEc Archive

On the gamma-core of asymmetric

aggregative games

Stamatopoulos, Giorgos

11 August 2018

Online at https://mpra.ub.uni-muenchen.de/88722/

MPRA Paper No. 88722, posted 02 Sep 2018 22:49 UTC



On the γ-core of asymmetric aggregative games

Giorgos Stamatopoulos∗

Department of Economics,
University of Crete,

Greece

August 11, 2018

Abstract

This paper analyzes the core of cooperative games generated by asymmetric aggrega-
tive normal-form games, i.e., games where the payoff of each player depends on his
strategy and the sum of the strategies of all players. We assume that each coalition
calculates its worth presuming that the outside players stand alone and select individ-
ually optimal strategies (Chander & Tulkens 1997). We show that under some mild
monotonicity assumptions on payoffs, the resulting cooperative game is balanced, i.e.
it has a non-empty γ-core. Our paper thus offers an existence result for a core notion
that is considered quite often in the theory and applications of cooperative games
with externalities.
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1 Introduction

The core is one of the most widely used solution concepts in cooperative games. This
notion describes all the ways of splitting the benefits created by the entire set of players
that are immune to coalitional rejections. To define the core, one needs to first define
the characteristic function of a coalition, i.e., its worth. For a cooperative game with
externalities, namely a game where the worth of a coalition depends on the actions of
the players outside the coalition, the specification of the characteristic function requires
a forecast or a belief about the behavior of the outsiders, and in particular about their
coalition structure.

One of the most often encountered beliefs (in theoretical and applied works) is provided
by the so called γ-beliefs. According to this approach the members of a coalition postulate
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that the outsiders play individual best replies to the formation of the coalition, i.e., they
form singleton coalitions. These beliefs, the origins of which go back to Hart & Kurz
(1983) and also to Chander & Tulkens (1997), give rise to the γ-characteristic function of a
coalition. The γ-core is the set of all allocations of the worth of the grand coalition that no
other coalition has incentive to block, given that its worth is defined by the γ-characteristic
function.1

Chander & Tulkens (1997) defined the γ-core for the case of an economy where agents
produce private goods. The production processes in this economy generate externalities,
the total value of which affects the agents negatively. Chander & Tulkens showed that,
under certain assumptions, a specific allocation of the worth of the grand coalition is in the
core. Helm (2001) extended their result by showing that the cooperative game defined by
this economy is balanced, which means its core is non-empty. Helm’s balancedness result
silently relies on the aggregative structure of the model.2

Since then, the γ-core formulation has been studied in various contexts. Currarini &
Marini (2003) analyzed the γ-core for symmetric cooperative games. They showed that
the core is non-empty under the assumption of strategic complementarity, positing also
that each coalition acts as a Stackelberg leader. Lardon (2012, 2014) applied the γ-core
framework to various Cournot and Bertrand oligopolistic markets and derived conditions
under which the corresponding cooperative games have non-empty core. Chander & Wood-
ers (2012) went one step further by defining and analyzing the γ-core for extensive-form
cooperative games. In another interesting extension, Lardon (2017) defined the γ-core of
interval oligopolistic cooperative games, i.e., games where each coalition is assigned an
interval of possible worths. Finally we note that Chander (2017) justified the use of the
concept by showing that each allocation in the γ-core corresponds to an equilibrium of an
underlying infinitely repeated coalition formation game.

One important gap in the literature has to do with the lack of general existence results
of γ-core, as most of the works focus on either applications or on symmetric general games.
The goal of the current paper is to make a step towards filling this gap. In particular it
examines the non-emptiness of γ-core for cooperative games generated by an important
class of normal-form games that are encountered frequently in applications: the class of
asymmetric aggregative games. Many economic models fit this class, such as oligopolic
markets, economies with public goods, economies with environmental externalities, contest
games, cost-sharing games, etc.

To derive our results we impose basically two conditions on the underlying aggregative
normal-form game: (i) the payoff function of each player is monotonic in the sum of the
strategies of all players; (ii) the marginal payoff of each player is decreasing in own strategy
and in the sum of the strategies of all players. The first condition allows us to analyze both
the decreasing and increasing monotonicity cases. A typical example in the first case is a
Cournot oligopoly; and a typical example in the second case is a public goods economy.
The second condition is the so called ”strong concavity” assumption (Corchon 1994) and
it helps us to compare the equilibrium strategies of the players in environments with and

1Other well-known assumptions on beliefs give core notions such as the α and β-core (Aumann 1959);
the δ-core (Hart & Kurz 1983); the sequential γ-core (Currarini & Marini 2003); the recursive core (Huang
& Sjostrom 2003; Koczy 2007); or the core of games with multiple externalities (Nax 2014).

2We shall return to this paper later on in the introduction.
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without coalition formation (this comparison plays significant role in our analysis). Under
these assumptions we show that the resulting cooperative game is balanced and thus its
core is non-empty.

We note that among the papers discussed earlier in the introduction, the work of Helm
(2001) is the closest to the current paper, even though Helm deals with a specific appli-
cation. Essentially our paper shows that the tools and the balancedness result of Helm
go beyond the simple model of economies with production externalities. What allows for
this generalization is the aggregative structure that exists in both papers (and the sim-
plifications that this structure carries with it). Finally, Stamatopoulos (2015) uses also
aggregative games, but it restricts attention to the symmetric case only. That paper shows
that the γ-core is non-empty by showing that the equal split of the worth of the grand
coalition is a core allocation.

The paper is organized as follows. Section 2 introduces the framework and Section
3 present and proves the results. Finally, the last section concludes by offering a brief
discussion of the paper.

2 Framework

Consider the collection of objects {N, (Xi, ui)i∈N}, where N = {1, 2, . . . , n} is a set of
players, Xi is the strategy set of player i and ui is i’s payoff function. We assume an
aggregative payoff structure, i.e., the payoff of each player depends on his strategy and the
sum of the strategies of all players. Hence i’s payoff is of the form ui(xi, x), where xi ∈ Xi

and x =
∑

k∈N

xk.

We examine environments where players can form coalitions by signing contracts and
transferring utilities among themselves. Our focus is on the formation of the grand coalition,
N . This event may be blocked by the formation of smaller coalitions. Denote by S such
a coalition. Should S deviate from the rest of the society, its payoff (i.e., the sum of the
payoffs of its members) will depend on the partition of the outsiders. So S needs a forecast
about the partition that the outsiders will form. Once such forecast was proposed by Hart
& Kurz (1983) and Chander and Tulkens (1997) according to which S believes that the
outsiders will all stay separate and will select individual best strategies. Let us denote the
resulting normal form game (where the members of S act as a coalition and all outsiders
form singleton coalitions) by ΓS.

The optimization problems in ΓS are described by

max
{xi}i∈S

∑

i∈S

ui(xi, x) (1)

max
xj

uj(xj, x), j /∈ S (2)

The equilibrium strategies3 of i ∈ S and j /∈ S in ΓS are denoted by xS
i and xS

j ; denote
xS =

∑

k∈N

xS
k . The worth of S is then given by the γ-characteristic function,

3In the next paragraphs we discuss the issue of existence of equilibrium.
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vγ(S) =
∑

i∈S

ui(x
S
i , x

S) (3)

The worth of N , v(N), is defined in the standard way. All the above result into the
cooperative game (N, vγ). The core of this game is the set of all allocations of v(N) that
no coalition S can block given the characteristic function in (3). This core is known as the
γ-core and it is defined by the set

Wγ = {(w1, w2, . . . , wn) ∈ R
n :

∑

i∈N

wi = v(N) and
∑

i∈S

wi ≥ vγ(S), all S}

To analyze the non-emptiness of Wγ we will frequently compare the equilibrium outcome
of ΓS with the equilibrium outcome of the game where no coalitions form and all players
act alone. We denote the latter game by Γ. The equilibrium strategies of players4 i ∈ S
and j /∈ S in Γ will be denoted by xN

i and xN
j respectively; moreover xN =

∑

k∈N

xN
k .

Our analysis rests on certain assumptions. The first assumes that payoffs are differen-
tiable and that equilibrium strategies lie in the interior of the strategy sets (Xi is, as usual,
a convex and compact subset of R, i ∈ N).

B0 ui(xi, x) is continuously differentiable in each argument; further, the equilibrium strate-
gies in ΓS and Γ satisfy the standard first-order conditions.

To state the second assumption, define the function

ai(xi, x) =
∂ui(xi, x)

∂xi

+
∂ui(xi, x)

∂x

B1 ai(xi, x) strictly decreases in each argument, for all i.

The above is the strong concavity assumption of Corchon (1994) and it will help us to
perform comparisons between the equilibrium strategies in ΓS and Γ. Notice, finally, that
the above conditions jointly ensure that a unique Nash equilibrium exists in both ΓS and
Γ.

3 Analysis

Assumptions B0-B1 will hold throughout the paper. Our analysis will also use a mono-
tonicity assumption of ui(xi, x) over x. In particular, we will show that Wγ is non-empty
if ui(xi, x) is either decreasing or increasing in x. In accordance to this we will break the
analysis into two cases. Subsection 3.1 will cover the decreasing case and subsection 3.2
will cover the case the increasing case.

4Although all players in Γ stand alone, we continue to categorize them in accordance to ΓS to facilitate
the comparisons that will follow.
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3.1 Decreasing case

The following holds throughout the current subsection.

B2 ui(xi, x) is decreasing in x, for all i.

Given the above, the first result compares the equilibrium strategies of the players in ΓS

and Γ.

Lemma 1 The following hold:

(i) xS
j ≥ xN

j j /∈ S.

(ii)
∑

i∈S

xS
i ≤

∑

i∈S

xN
i .

Proof (i) We’ll first show that xN ≥ xS. Observe first that for j /∈ S we have the first-order
conditions in ΓS and Γ

∂uj(x
S
j , x

S)

∂xj

+
∂uj(x

S
j , x

S)

∂x
= 0 (4)

∂uj(x
N
j , x

N)

∂xj

+
∂uj(x

N
j , x

N)

∂x
= 0 (5)

Assume momentarily that xN < xS. Then from (4) and B1 we get

∂uj(x
S
j , x

N)

∂xj

+
∂uj(x

S
j , x

N)

∂x
> 0 (6)

The above expression combined with (5) and B1 imply that xN
j > xS

j , for all j /∈ S.
Observe next that for i ∈ S we have

∂ui(x
S
i , x

S)

∂xi

+
∂ui(x

S
i , x

S)

∂x
+
∑

k∈S
k 6=i

∂uk(x
S
k , x

S)

∂x
= 0 (7)

∂ui(x
N
i , x

N)

∂xi

+
∂ui(x

N
i , x

N)

∂x
= 0 (8)

Condition B2 combined with (7) implies

∂ui(x
S
i , x

S)

∂xi

+
∂ui(x

S
i , x

S)

∂x
> 0 (9)

Hence by the momentary assumption that xS > xN and by B1 we get

∂ui(x
S
i , x

N)

∂xi

+
∂ui(x

S
i , x

N)

∂x
> 0 (10)
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Hence to restore (8) we need by B1 the inequality xN
i > xS

i . But then all the above imply
that

∑

j /∈S

xN
j +

∑

i∈S

xN
i ≥ xS, which contradicts the momentary assumption xS > xN . We

conclude that xN ≥ xS (this inequality will cause no further contradictions). We can then
use the latter inequality and repeat the argument after expressions (4)-(5) to conclude that
xS
j ≥ xN

j , for all j /∈ S.

(ii) Since xN ≥ xS and
∑

j /∈S

xS
j ≥

∑

j /∈S

xN
j it must be that

∑

i∈S

xN
i ≥

∑

i∈S

xS
i .

To show the non-emptiness of the core we will utilize the Shapley-Bondareva balancedness
theorem. Let C be the set of all coalitions that can be formed by the players in N ; and let
Ci be the set of all coalitions that include i. The vector (δS)S∈C, where δS ∈ [0, 1] for all S,
is a balanced collection of weights if for all i ∈ N ,

∑

S∈Ci

δS = 1.

Proposition (Bondareva 1963, Shapley 1967) Let (N, v) be a cooperative game, where v
denotes its characteristic function. The core of (N, v) is non-empty iff for every balanced
collection of weights,

∑

S∈C

δSv(S) ≤ v(N).

In order to use this result we need an intermediate step. Take a balanced collection of
weights (δS)S∈C. Given this collection, we will show that the sum of the “average” equilib-
rium strategies of all players, where the average is computed with respect to all coalitions
that each players belongs to, i.e.,

∑

j∈N

∑

S∈Cj

δSx
S
j , is not higher than the sum of the “average”

equilibrium strategies with respect to all coalitions that a certain player, say i, belongs to,
i.e.,

∑

j∈N

∑

S∈Ci

δSx
S
j .

Lemma 2
∑

j∈N

∑

S∈Cj

δSx
S
j ≤

∑

j∈N

∑

S∈Ci

δSx
S
j , for any i 6= j and any balanced collection of

weights (δS)S∈C.

Proof Let N ′ be the set of all players but i. Then to prove the stated inequality we just
need to sum over all j ∈ N ′.

Notice that

∑

j∈N ′

∑

S∈Cj

δSx
S
j =

∑

j∈N ′

[

∑

S∈Cj∩Ci

δSx
S
j +

∑

S∈Cj\Cj∩Ci

δSx
S
j

]

(11)

and

∑

j∈N ′

∑

S∈Ci

δSx
S
j =

∑

j∈N ′

[

∑

S∈Ci∩Cj

δSx
S
j +

∑

S∈Ci\Ci∩Cj

δSx
S
j

]

(12)

Expressions (11) and (12) imply that
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∑

j∈N ′

∑

S∈Cj

δSx
S
j ≤

∑

j∈N ′

∑

S∈Ci

δSx
S
j ⇔

∑

j∈N ′

∑

S∈Cj\Cj∩Ci

δSx
S
j ≤

∑

j∈N ′

∑

S∈Ci\Ci∩Cj

δSx
S
j (13)

Observe next that

∑

j∈N ′

∑

S∈Cj\Cj∩Ci

δSx
S
j =

∑

S∈C\Ci

δS
∑

j∈S

xS
j ≤

∑

S∈C\Ci

δS
∑

j∈S

xN
j (14)

where the inequality is due to Lemma 1(ii). Moreover, Lemma 1(i) implies

∑

j∈N ′

∑

S∈Ci\Ci∩Cj

δSx
S
j ≥

∑

j∈N ′

∑

S∈Ci\Ci∩Cj

δSx
N
j , (15)

since, for each j, we sum over coalitions in which j is an outsider. Before continuing let us
write

∑

S∈C\Ci

δS
∑

j∈S

xN
j =

∑

j∈N ′

∑

S∈Cj\Cj∩Ci

δSx
N
j (16)

Since we work with a balanced collection of weights we have

∑

S∈Cj\Cj∩Ci

δS = 1−
∑

S∈Cj∩Ci

δS,
∑

S∈Ci\Ci∩Cj

δS = 1−
∑

S∈Ci∩Cj

δS

Hence
∑

S∈Cj\Cj∩Ci

δS =
∑

S∈Ci\Ci∩Cj

δS (17)

Expression (17) implies

∑

j∈N ′

∑

S∈Cj\Cj∩Ci

δSx
N
j =

∑

j∈N ′

∑

S∈Ci\Ci∩Cj

δSx
N
j (18)

since xN
j is independent of the weights. The combination of (13)-(18) proves the result.

We can now state and prove the following.

Proposition 1 (N, vγ) is balanced and thus Wγ is non-empty.
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Proof Take a balanced collection of weights (δS)S∈C. For i ∈ N define xC
i =

∑

S∈Ci

δSx
S
i .

Then:

v(N) ≥
∑

i∈N

ui(x
C
i ,
∑

k∈N

xC
k) =

∑

i∈N

ui(x
C
i ,
∑

k∈N

∑

S∈Ck

δSx
S
k )

≥
∑

i∈N

ui(x
C
i ,
∑

k∈N

∑

S∈Ci

δSx
S
k ) [by Lemma 2 and B2]

=
∑

i∈N

ui(
∑

S∈Ci

δSx
S
i ,
∑

k∈N

∑

S∈Ci

δSx
S
k )

≥
∑

i∈N

∑

S∈Ci

δSui(x
S
i ,
∑

k∈N

xS
k ) [by concavity (see B1)]

=
∑

S∈C

δS
∑

i∈S

ui(x
S
i ,
∑

k∈N

xS
k ) =

∑

S∈C

δSvγ(S)

We note here that the concavity assumption is not uncommon when dealing with the non-
emptiness of the core of normal-form games. For example, it is used by Zhao (1999) and
Uyanik (2015) to show the non-emptiness of the α-core of cooperative games.

3.2 Increasing case

Let’s now examine the case where the payoff of each player increases in the sum of the
strategies of all players. So we assume the following throughout the current subsection.

B2 ′ ui(xi, x) is increasing in x, for all i.

We first note that under the latter assumption, Lemma 1 will be modified as follows.

Lemma 3 The following hold:

(i) xS
j ≤ xN

j j /∈ S.

(ii)
∑

i∈S

xS
i ≥

∑

i∈S

xN
i .

Proof (i) The proof is similar to the proof of Lemma 1(i), but with reverse inequalities.
This allows us to present the proof skipping some steps. We first show that xS ≥ xN . To
show this, we momentarily assume that the opposite holds, i.e., xS < xN . Then from (4)
and B1 we get

∂uj(x
S
j , x

N)

∂xj

+
∂uj(x

S
j , x

N)

∂x
< 0 (19)

Hence from (5) and B1 we need xN
j < xS

j , for all j /∈ S.
Condition B2′ and (7) imply
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∂ui(x
S
i , x

S)

∂xi

+
∂ui(x

S
i , x

S)

∂x
< 0 (20)

Hence by the momentary assumption that xN > xS and by B1 we get

∂ui(x
S
i , x

N)

∂xi

+
∂ui(x

S
i , x

N)

∂x
< 0 (21)

Hence to restore (8) we need by B1 the inequality xS
i > xN

i , for all i ∈ S. But then
∑

j /∈S

xS
j +

∑

i∈S

xS
i ≥ xN , which contradicts the momentary assumption xS < xN . We conclude

that xS ≥ xN . Then, with an argument like the one in the last part of the proof of Lemma
1(i) we have that xN

j ≥ xS
j , for all j /∈ S.

(ii) As in the proof of Lemma 1(ii) after reversing the inequalities.

Not surprisingly, Lemma 3 implies the following (which is the analogue of Lemma 2).

Lemma 4
∑

j∈N

∑

S∈Cj

δSx
S
j ≥

∑

j∈N

∑

S∈Ci

δSx
S
j , for any i 6= j and any balanced collection of

weights (δS)S∈C.

Proof Similarly to the proof of Lemma 2 after reversing the inequalities.

Finally we have the following result.

Proposition 2 (N, vγ) is balanced and thus Wγ is non-empty.

Proof Using the notation of Proposition 1 we have:

v(N) ≥
∑

i∈N

ui(x
C
i ,
∑

k∈N

xC
k) =

∑

i∈N

ui(x
C
i ,
∑

k∈N

∑

S∈Ck

δSx
S
k ) ≥

∑

i∈N

ui(x
C
i ,
∑

k∈N

∑

S∈Ci

δSx
S
k )

where the inequality follows from Lemma 4 and B2′. Then the rest of the proof is identical
to the corresponding part of the proof of Proposition 1.

4 Discussion

This paper analyzed the γ-core of asymmetric aggregative normal-form games. It pre-
sented a set of conditions under which such games are balanced and have non-empty core.
The analysis and results have taken, we believe, the literature on γ-core one step ahead:
the framework presented in the paper is general enough to encompass many frequently
encountered economic applications.

One can think of two further extensions that could take things even further. The one
is to drop the monotonicity of the payoffs over the sum of the strategies of all players (al-
though this monotonicity is natural in many economic applications). The other, and most
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interesting, extension would be to drop altogether the aggregative structure of the normal-
form game. Then to compare the two resulting games ΓS and Γ, and to reproduce results
like those of Propositions 1 and 2, we would need to compare the equilibrium strategies of
each member of S across the two games, and not just the sums of the equilibrium strategies
of all members of S, as we did in the current paper. Both tasks are left for future research.
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