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Summary

In this paper, we revisit the well-known UK inflation model by Hendry (Journal of Applied Econometrics 2001,

16:255-275. doi: 10.1002/jae.615). We replicate the results in a narrow sense using the gretl and PcGive programs.

In a wide sense, we extend the study of model uncertainty using the Bayesian averaging of classical estimates (BACE)

approach to compare model reduction strategies. Allowing for the investigation of other specifications, we confirm the

same set of significant determinants but find that Hendrys’ model is not the most probable.

Keywords: BACE, gretl, model uncertainty, reduction strategy

1 Introduction

This paper concerns a replication of a model of UK inflation, 1875–1991, by Hendry (2001) based on data provided by JAE

services at (http://qed.econ.queensu.ca/jae/2001-v16.3/hendry). To replicate Hendrys’ procedure for modeling

inflation in the UK in a narrow sense, we used the gretl1 (see Cottrell & Lucchetti, 2018) and PcGive/Autometrics (see

Doornik, 2009) program2. Our extension, in a wide sense, of Hendrys’ work employed the Bayesian averaging of classical

estimates (BACE) approach proposed by Sala-i-Martin, Doppelhofer, and Miller (2004) to compare model reduction

strategies and the variable selection procedure.

When we consider the large number of variables, it is difficult to decide which model is the most appropriate for

analyzing the dependencies, i.e., to find the optimal set of variables in terms of goodness of fit measures. Using BACE,

we can obtain the most probable set of determinants along with posterior parameter estimates based on the whole model

∗Correspondence to: Wyższa Szkoła Bankowa w Toruniu, Marcin Błażejowski, ul. Młodzieżowa 31a, 87-100 Toruń. Email:

marcin.blazejowski@wsb.torun.pl. Phone: +48566609245.
1Gretl is an open-source software for econometric analysis available at http://gretl.sf.net.
2We used gretl version 2018b and PcGive version 14.2 with Ox Professional version 7.20 on a PC with 8 x Intel(R) Core(TM) i7-8550U

CPU@1.80GHz, 16.0 Gb of RAM running under Debian GNU/Linux ”buster/sid” 64 bit.
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space instead of making decisions based only on a single model. This approach is an alternative to the earlier and familiar

Bayesian model averaging (BMA) (see Fernández, Ley, & Steel, 2001; Ley & Steel, 2012), from which it differs, first of

all, by having less restrictive prior assumptions of parameters. Sala-i-Martin et al. (2004) showed that the BMA approach

may be understood as limiting case of Bayesian analysis in the situation where prior information is ”dominated” by the

data. The parameter estimates are averaged across all possible combinations of models obtained by means of OLS. In our

case, the BACE analysis was performed in the BACE 1.0 package for the gretl program3 (see Błażejowski & Kwiatkowski,

2018).

The remainder of the paper is structured as follows. In section 2, we discuss issues related to data transformation,

section 3 presents the research scenario for the replication in a narrow sense, section 4 presents the BACE results together

with similarities in the inconclusive inference on the relevance of excess labor demand (replication in a wide sense), and

section 5 concludes.

2 Data

In our paper and replication files, we used the same data definitions as in Hendry (2001) with the following exceptions:

1. Profit markup (π∗
t ) was taken directly from the jaedfh4.dat file (part of the dfhdata.zip archive); this variable

exists as ”pistarn” in the JAE archive.

2. Short-long spread (Rs,t −Rl,t +0.006) was named St , similar to Clements and Hendry (2008, pp. 11).

3. Excess demand
(

yd
t

)

was taken directly from the jaedfhm.dat file (part of the dfhdata.zip archive); this variable

exists as ”gdpd” in the JAE archive.

4. The real exchange rate was defined as er,t = pt − p£,t − 0.52. We found an inaccuracy in the paper by Hendry

(2001) and data definitions in the JAE archive. The calculation of er,t = pt − p£,t + 0.52 (equation (3) in Hendry

(2001, pp. 263)) is misleading with the form of calculating er,t in the formula for ”pistarn” (readme.h.txt file)

and refers to subtracting (not adding) the intercept value (0.52).

5. According to formulas in the JAE archive (readme.h.txt file), the variable Unit labor costs in constant prices was

defined as c∗t = ct − pt + 0.006× (trend − 69.5)+ 2.37. This exception was due to an inconsistency between the

JAE archive and Hendrys’ paper, where it was defined as c∗t = (ct − pt)
∗.

3 Research scenario

To replicate the Hendry (2001) results in a narrow sense, we proceed as follows. In the case of the initial model for

all 52 variables, we received identical output to that in the original model (Model: GUM52; residual standard deviation

σ̂ = 1.21%, Schwartz Criterion SC = −7.3). After excluding indicators from the initial model, we also received exact

results (Model: GUMnoIndicators; σ̂ = 2.5%, SC = −6.63). In the next step, we added dummy variables Ib, Il , Im

3The BACE 1.0 package is available at http://ricardo.ecn.wfu.edu/gretl/cgi-bin/gretldata.cgi?opt=SHOW FUNCS.
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concerning outliers in particular years to (Model: GUMnoIndicators), and we obtained the same results as in the paper

(Model: GUMfirstReduction; σ̂ = 1.16%, SC =−8.08). In the next step, the dummy variables Ib, Il , Im were substituted

by one overall index, Id , and once again, we obtained the same results (Model: GUMsecondReduction; σ̂ = 1.15%, SC =

−8.16). Finally, we expressed the general model in terms of π
∗
t−1 with indicators restricted to Id (Model: GUMfinal;

σ̂ = 1.15%, SC =−8.33). At this point, we had the following specification:

∆pt = f (∆pt−1,y
d
t−1,m

d
t−1,n

d
t−1,U

d
t−1,St−1,Rl,t−1,∆pe,t ,∆pe,t−1,∆Ur,t−1,

∆wt−1,∆ct−1,∆mt−1,∆nt−1,∆Rs,t−1,∆Rl,t−1,∆po,t−1, Id,t ,π
∗
t−1;εt) (1)

After the reduction of model (1) at a 1% significance level4, we obtained model (6) in Hendry (2001) and (Model: FinalModel;

σ̂ = 1.14%, SC =−8.66) in our notation. Detailed results are available in the table 1.

Table 1: Comparison of Hendrys’ and the replication results

Hendry (2001) Replicationa

yd
t−1 0.180

(0.032)
0.184
(0.032)

∆mt−1 0.187
(0.028)

0.182
(0.028)

St−1 −0.834
(0.088)

−0.834
(0.087)

∆Rs,t−1 0.618
(0.106)

0.619
(0.106)

π
∗
t−1 −0.186

(0.024)
−0.186
(0.024)

∆pe,t 0.265
(0.025)

0.265
(0.025)

Id,t 0.038
(0.002)

0.038
(0.002)

∆po,t−1 0.041
(0.010)

0.041
(0.010)

∆pt−1 0.267
(0.027)

0.268
(0.026)

R2 0.975 0.975

σ̂ 1.14% 1.14%

SC −8.66 −8.66

aReplication was performed in two programs: gretl

and PcGive/Autometrics.

Standard errors in parentheses.

According to results in table 1, we found minor differences in the coefficient estimates for four variables—yd
t−1,

∆mt−1, ∆Rs,t−1, and ∆pt−1—and two differences in standard errors for St−1 and ∆pt−1. The remaining coefficients and

the model statistics were identical. In his paper, Hendry used the PcGets automatic model selection procedure with a

1% significance level for the model (1) to check the correctness of the simplification5. We repeated this automatic model

selection procedure using Autometrics for model (1), and we obtained exactly the same estimates as in Model: GUMfinal

in gretl (i.e., with slight differences compared to model (6) in Hendrys’ paper). We suppose that these differences are due

to different computer architectures (64 bit and 32 bit).

4Hendry and Krolzig (2001) classified simplification at a 1% significance level as a ”conservative” strategy and at a 5% significance level as a

”liberal” strategy. Currently these strategies are renamed the ”small” and ”standard” target size (see Doornik & Hendry, 2013).
5See subsection 4.3 in Hendry (2001).
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4 BACE results

To verify the correctness of Hendrys’ variable selection strategy, we used the BACE approach (replication in a wide

sense). This procedure enables searching the whole model space and selecting the most probable regressions. The BACE

analysis was performed for the set of k = 20 variables (including the intercept) defined in Model: GUMfinal (model (1)),

and so the total number of possible models was 2k = 1,048,576. The following parameters for the MC3 algorithm were

set:

• Total number of Monte Carlo iterations: 1,000,000, including 25% burn-in draws,

• Model prior distribution: binomial with prior average model size equal to k/2 = 10, which means that all possible

specifications are equally probable,

• Significance level for the initial model α = 60%, which means that we dropped the most statistically insignificant

variables in the initial model at the beginning of the procedure.

The BACE approach enables calculations of the averages of the posterior means and standard deviations of parameters

as well as posterior inclusion probabilities (PIP). The posterior inclusion probability is the probability that, conditional

on the data but unconditional with respect to the model space, the independent variable is relevant in explaining ∆pt (see

Doppelhofer & Weeks, 2009; Koop, Poirier, & Tobias, 2007). PIP is calculated as the frequency of appearance of a given

variable in all considered models. The BACE results, obtained after 1,000,000 Monte Carlo iterations, are presented in

table 2.

Table 2: Posterior inclusion probabilities and posterior estimates of regression coefficients obtained by BACE

PIP Avg. Mean Avg. Std. Dev.

π
∗
t−1 1.000000 −0.186844 0.025828

Id,t 1.000000 0.037903 0.001573

∆pe,t 1.000000 0.264119 0.025146

St−1 1.000000 −0.856166 0.090581

∆pt−1 1.000000 0.279046 0.033585

yd
t−1 0.999996 0.193686 0.036891

∆Rs,t−1 0.999949 0.609606 0.114351

∆mt−1 0.999936 0.173201 0.029831

∆po,t−1 0.987283 0.038862 0.011714

Ud
t−1 0.610013 −0.041815 0.040875

nd
t−1 0.194672 0.000631 0.001692

Rl,t−1 0.151855 0.006635 0.022907

∆Rl,t−1 0.126007 0.026201 0.111685

∆pe,t−1 0.105244 0.002085 0.011372

md
t−1 0.104247 −0.000513 0.004491

∆Ur,t−1 0.097311 −0.002368 0.024480

const 0.095136 0.000021 0.000643

∆ct−1 0.090481 −0.000170 0.010168

∆nt−1 0.089092 0.000461 0.004619

∆wt−1 0.085100 −0.000306 0.012303

According to the results in table 2, the set of variables used in the BACE analysis can be divided into 3 groups: highly

probable determinants (π∗
t−1, Id,t ,∆pe,t ,St−1,∆pt−1,y

d
t−1,∆Rs,t−1,∆mt−1,∆po,t−1) with PIP ≥ 0.987, medium probable

(Ud
t−1) with PIP = 0.61 and lowly probable (nd

t−1,Rl,t−1,∆Rl,t−1,∆pe,t−1,m
d
t−1,∆Ur,t−1,const,∆ct−1,∆nt−1,∆wt−1) with
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PIP ≤ 0.195. Our results were consistent with Hendrys’ paper because the highly probable determinants according to the

BACE approach were the same as in model (6). This result confirms that the ”conservative” model reduction strategy was

relevant in the case of modeling UK inflation. Moreover, our results confirmed the inconclusive inference on the relevance

of Ud
t−1, i.e., the excess labor demand (with PIP = 0.61, it could not be classified as a highly probable determinant).

In addition to the posterior characteristics presented in table 2, the BACE approach allows models to be ranked

according to their posterior probabilities. Table 3 presents the coefficient estimates and model statistics for the top 10

models. The total probability of these models was 50.8%.

Table 3: Coefficient estimates and model statistics for top 10 models

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(M j) 0.200 0.095 0.037 0.035 0.026 0.024 0.023 0.023 0.022 0.021

π
∗
t−1 −0.187

(***)

−0.186
(***)

−0.194
(***)

−0.196
(***)

−0.168
(***)

−0.177
(***)

−0.190
(***)

−0.185
(***)

−0.188
(***)

−0.188
(***)

Id,t 0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.037
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

∆pe,t 0.265
(***)

0.265
(***)

0.263
(***)

0.262
(***)

0.262
(***)

0.263
(***)

0.262
(***)

0.264
(***)

0.264
(***)

0.268
(***)

St−1 −0.857
(***)

−0.834
(***)

−0.882
(***)

−0.872
(***)

−0.833
(***)

−0.854
(***)

−0.860
(***)

−0.874
(***)

−0.850
(***)

−0.857
(***)

∆pt−1 0.287
(***)

0.268
(***)

0.288
(***)

0.272
(***)

0.264
(***)

0.283
(***)

0.279
(***)

0.287
(***)

0.291
(***)

0.286
(***)

yd
t−1 0.188

(***)

0.184
(***)

0.216
(***)

0.223
(***)

0.191
(***)

0.192
(***)

0.188
(***)

0.177
(***)

0.187
(***)

0.189
(***)

∆Rs,t−1 0.625
(***)

0.619
(***)

0.572
(***)

0.547
(***)

0.635
(***)

0.633
(***)

0.611
(***)

0.652
(***)

0.601
(***)

0.605
(***)

∆mt−1 0.178
(***)

0.182
(***)

0.167
(***)

0.167
(***)

0.162
(***)

0.168
(***)

0.174
(***)

0.176
(***)

0.176
(***)

0.177
(***)

∆po,t−1 0.037
(***)

0.041
(***)

0.041
(***)

0.045
(***)

0.042
(***)

0.038
(***)

0.037
(***)

0.038
(***)

0.037
(***)

0.036
(***)

Ud
t−1 −0.069

(**)

−0.062
(**)

−0.062
(**)

−0.069
(**)

−0.075
(**)

−0.076
(**)

−0.064
(**)

nd
t−1 0.003

(–)

0.004
(–)

Rl,t−1 0.051
(–)

0.028
(–)

∆Rl,t−1 0.118
(–)

∆pe,t−1 0.020
(–)

md
t−1 −0.006

(–)

∆Ur,t−1 −0.043
(–)

R2 0.976 0.975 0.977 0.975 0.976 0.977 0.977 0.977 0.977 0.977

R
2

0.974 0.973 0.975 0.974 0.974 0.974 0.974 0.974 0.974 0.974

σ̂ 1.11% 1.14% 1.11% 1.13% 1.11% 1.11% 1.12% 1.12% 1.12% 1.12%

SC −8.67 −8.66 −8.65 −8.64 −8.64 −8.64 −8.64 −8.64 −8.64 −8.64

(***) significance at 1%, (**) significance at 5%, (–) insignificance at 10%, R
2

stands for the adjusted R2, and P(M j) denotes the posterior model

probability of model j.

The most probable model M1 had the posterior probability 0.2. The second probable model M2, with probability 0.095,

was model (6) in Hendry (2001) and FinalModel in our notation. In addition, M1 fit the data better then M2 based on the

following statistics: R
2
M1

> R
2
M2

, σ̂M1
< σ̂M2

and SCM1
< SCM2

. These two best models differ only by the variable Ud
t−1,

i.e., the excess labor demand. Although the posterior probability of the highest ranked model M1 was more than twice

as large as that for the second model M2, an inference based only on M1 omits 80% of the total information contained

in the entire model space. As a consequence, the average coefficient estimates presented in table 2 were different than

coefficient estimates for the FinalModel in table 1. The greatest differences were noticed for the following variables:

∆pt−1, yd
t−1, ∆mt−1 and ∆po,t−1.

Taking our results into consideration, we confirmed the simplification problem about the relevance of Ud
t−1, as in
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Hendrys’ paper. If we use all available information contained in the whole model space, Ud
t−1 will be classified as a

medium determinant variable with PIP = 0.61. The ”conservative” model reduction strategy dropped Ud
t−1, leading to

M2, while the ”liberal” strategy leads to M1, which includes Ud
t−1. Furthermore, setting the target size to ”medium” (2.5%

significance level) in Autometrics also leads to M1. The posterior probabilities of the other models P(M3), . . . ,P(M10)

were less than 0.038. These models differ from the two best models only by the least probable variables, and they did not

contribute substantial information in this case.

5 Conclusions

Replication of Hendrys’ model for UK inflation in a narrow sense was performed in two programs (gretl and Pc-

Give/Autometrics) and brought exactly the same results, although they were slightly different than the original. In the

replication in a wide sense, we used BACE as an automatic model reduction strategy. Taking into account the whole

model space, we obtained the same set of determinants as in Hendrys’ paper, although his FinalModel was the second

one in the ranking, and it was more than two times less probable then the most likely model containing the additional

variable Ud
t−1. Hendrys’ model omitted over 90% of the information contained in all possible models, which leads to

different coefficients estimates. Referring directly to the findings in Hendry (2001), inference based on just one model

may lead to slightly different conclusions than inference based on the whole model space.
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