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Abstract: This paper investigates whether the effects of a cash transfer program

persist or wear off in the long-run. I study the first two phases of Bono de Desarrollo

Humano (BDH) in Ecuador, each of which lasted about five years. I use a regression-

discontinuity design and a change in the eligibility rule at the beginning of the

second phase of the program to disentangle the effects of a short- versus long-

exposure to the program. Most of the gains in enrollment and schooling were

achieved in the short-run among children that started treatment when they were

about to start elementary school, eleventh grade or Baccalaureate. However, an

extended exposure to BDH was not enough to keep raising children’s education.

Regarding labor market outcomes, BDH had a negative (not statistically significant)

impact on the probability of working among young children but did not increase

job opportunities among young adults in the long-run.
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1 Introduction

It has been widely accepted in the literature that factors operating during early

childhood play a more important role than tuition, school reforms, job training or

family credit constraints in explaining gaps in socioeconomic attainment (Carneiro

et al., 2002; Cunha et al., 2010; Heckman, 2000). Cash transfers targeted to the

poor have become the most popular tool in developing countries to encourage in-

vestment in the health and education of young children. These programs range

from pure unconditional cash transfers to fully monitored and enforced conditional

cash transfers (CCTs) (Baird et al., 2014).

This paper studies the effects on young people’s education and labor market out-

comes of a continuous exposure to Bono de Desarrollo Humano (BDH), the main

unconditional cash transfer program in Ecuador. While the previous literature on

the long term effects of cash transfers, study how well the original treatment and

control groups perform on several dimensions of interest after several years of a

program’s implementation. The question I address in this paper is whether cash

transfers continue to be effective after several years targeting the same population.

Several studies have shown that CCTs are effective in increasing enrollment rates

among beneficiary children in the short run (see Fiszbein et al. (2009) for a re-

view and Saavedra and Garcia (2012) for a meta-analysis). However, large gains on

school participation have also been found as a result of unconditional cash transfer

programs like the ones documented by Benhassine et al. (2015) in Morocco for an

unconditional cash transfer labeled as an education support program. The impact of

cash transfers is overall much stronger on schooling than it is on child work (de Jan-

vry et al., 2006). In fact, there is mixed evidence regarding the latter, with some

studies finding significant reductions on child work among children most vulnerable

to transitioning from schooling to work (Edmonds and Schady, 2012; Skoufias and

Parker, 2001; Baird et al., 2014) and others finding no effects (de Janvry et al.,

2006).

BDH targets women with young children aged 0 to 18 years old using a proxy

means test score called “Selben”, which is built using principal components anal-

ysis. In Ecuador, BDH has been subject to many short-term evaluations, showing

important improvements in enrollment, cognitive and socio-emotional development,

and reductions in child labor among treated children (Edmonds and Schady, 2012;

Schady et al., 2008). However, improvements in enrollment may not be enough to
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take these children out of poverty if they do not complete more years of schooling.

Furthermore, it is not clear that the short-term gains will persist through time.

While there is sufficient evidence of the impact of cash transfers in the short run,

evidence about their impacts on the long run is sparse. In a recent study, (Aizer

et al., 2016) analyzed the long-term impact of the Mothers’ Pension program in

the US on longevity, educational attainment, nutritional status, and income in

adulthood. In the study, the boys of mothers whose application to the program was

accepted lived one year longer than boys of mothers whose application was rejected.

They also accumulated one third more years of schooling and had a higher income

in adulthood. Also for the US, Hoynes et al. (2016) used the roll-out of the most

important near cash safety net program in the US, the Food Stamp Program (now

SNAP), to evaluate its long-term impact. They found that access to food stamps in

utero and in early childhood leads to significant increases in educational attainment

and earnings.

In developing countries, the few existing papers that examine long-term effects focus

mainly on Latin America. Since most of these programs are relatively young (the

oldest CCT program, PROGRESA /Oportunidades, started in 1997), the anal-

ysis has focused on the study of outcomes measured at the end of high school

or during early adulthood. Most of the experimental evidence comes from PRO-

GRESA /Oportunidades (Behrman et al., 2011, 2005; Kugler and Rojas, 2018), and

Nicaragua’s CCT program Red de Protección Social (Barham et al., 2013b,a). For

both countries, there is consistent evidence of impacts on schooling as well as some

evidence for Nicaragua of impacts on learning, off-farm employment and income.

Other studies have also used short-term estimates to extrapolate to long-run pro-

gram impacts (Behrman et al., 2005; Todd andWolpin, 2006; Attanasio et al., 2012).

However, there are some concerns about the results that stem from extrapolations;

one is that short-term evaluations may reveal only temporary improvements in the

outcomes of interest, which may vanish as time goes by. Another concern is that

they may fail to detect any impact because the time span between the treatment

and follow-up may be too short (King and Behrman, 2009).

On the other hand, non-experimental evidence about the long-term impacts of cash

transfers is relatively scarce. One example is the study by Baez and Camacho

(2011) about Colombia’s CCT program Familias en Acción 2, that studies the ef-

2Some differences between BDH and Familias en Acción are that Familias en Acción is a CCT
while BDH is not. Furthermore, the size of the transfer in Familias en Acción is smaller (17
dollars) and varies with the age and number of children in the household.
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fects of Familias en Acción on school completion and learning outcomes at the end

of high school using matching techniques and regression discontinuity design for

identification. The authors found that treated children were on average between 4

and 8 percentage points more likely to graduate from high school but no significant

effects were found on cognitive tests. In addition to this study, a contemporaneous

paper by Araujo et al. (2016) studies the impact of Ecuador’s Bono de Desarrollo

Humano (BDH) after 10 years of its implementation. The authors used data from

a randomized evaluation in 2003 and survey data collected in 2014 to test the im-

pacts of BDH on various cognitive tests and found no effects on those tests. They

also used administrative data and a RD design to evaluate the effects of BDH on

school attainment and employment status of young adults, aged 19-25 years old in

2013/14. They found a modest impact on high school completion, between 1 and

2 percentage points for young adults living in treated households and no effect on

employment amongst young adults.

This paper differs from that of Araujo et al. (2016) because I am not interested in

knowing how well the original treatment and control groups performed after 10 years

of BDH’s implementation. The question I address in this paper is whether children

who are treated for a longer period of time continue achieving better outcomes

compared to children who were treated for a shorter period of time. In other

words I study whether treatment continues being effective in the long-run. My

identification strategy relies on the fact that at the threshold of eligibility, the second

assignment to treatment (in 2008/9) was independent of the first assignment (in

2003). This allows me to disentangle the short term effects of BDH measured at the

end of phase one from the additional effect from being treated also during phase

two. Consequently, I estimate the differential effect of a short exposure to BDH

(treatment during phase one) versus a long exposure (treatment during phases one

and two).

I build a unique dataset that follows individuals (not households) through the three

waves of the Registro Social (RS), which allows me to control for transitions in and

out of the program and account for family dynamics that may also introduce bias

to the estimates. More importantly, I assigned the eligibility status to households

according to the Selben score that was in effect in each phase of the program and

assigned the “treated” status to children living with women who actually claimed

the transfer each year. This generates the variation in lengths of exposure to the

program that I exploit in this paper.

The results show that treated children experienced important short-term gains in

3



enrollment and high school graduation by the end of phase one. Most of the gains

in enrollment and schooling were achieved among children that started treatment

when they were about to start elementary school, eleventh grade or Baccalaureate.

However, an extended exposure to BDH was not enough to keep raising children’s

education. This explains why 18 year olds that were treated during the two phases

of the program were not more likely to finish high school when compared to similar

children that were only treated during the first phase of the program. Regarding

labor market outcomes, BDH had a negative yet not statistically significant im-

pact on the probability of working among young children and did not increase job

opportunities among young adults in the long-run.

This paper contributes to fill the gap in the literature about the long-term effects of

cash transfers with emphasis on long duration programs and investigates whether

these programs loose their effectiveness after several years targeting the same pop-

ulation. It highlights the use of individual panel data to produce reliable quasi-

experimental evidence of the differential effects of long exposure to social programs

that use a proxy means test (that may change over time) to target beneficiaries, an

approach that is very common in social programs in developing countries.

In the next section, I explain the institutional background and operational aspects

of BDH since its implementation. Section 3 discusses the three sources of admin-

istrative data used in this paper and the methodology used to build the panels.

Section 4 presents the empirical strategy used to identify the different impacts of

BDH. Section 5 presents evidence on the validity of the identification strategy. Sec-

tion 6 presents the results from the RD design. Section 7 discusses some robustness

checks using administrative data from a standardized exam taken at the end of high

school and Section 8 concludes.

2 Institutional Background

Ecuador is a middle-income country that has experienced significant progress in

terms of poverty reduction in the last decade. In 2005, Ecuador’s GNI per capita

was $7,310 in PPP-adjusted current U.S. dollars.3 At that time 84.3% of the rural

population lived in poverty as well as 35.1% of the urban population.4. By 2013,

3Source: World Bank World Development Indicators.
4Source: Sistema Integrado de Indicadores Sociales del Ecuador (SIISE)

(http://www.siise.gob.ec)
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Ecuador’s GNI per capita was US$10,720 in PPP-adjusted current U.S. dollars.5

However, poverty remained a major concern for policy makers with 57.8% of the

rural population and 24.8% of the urban population living in poverty.6

The reduction in poverty has been accompanied by a marked improvement in the

main educational indicators as well as in a more modest reduction of child labor.

The Ecuadorian educational system has three phases: (i) initial education, for chil-

dren ages 3 to 5 is not compulsory; (ii) basic general education, is compulsory and

lasts 9 years for children ages 5 to 15 years, and (iii) the Baccalaureate lasts 3 years

for children ages 15 to 18 years and is not compulsory. Since 2012, at the end of the

Baccalaureate, students have to pass a standardized exam (ENES exam) to apply

to university. Until October 2008, public education was free only up to the tenth

year of Basic General Education for children aged 5 to 15 years7. In October 2008,

the new constitution declared that public education should be free from the first

year of basic education up to the undergraduate level from the 2008-2009 school

year onwards.

Primary education is almost universal and most of the recent efforts of the gov-

ernment have focused on raising the secondary education enrollment rates. Gender

differences in educational attainment are small when compared for all males and

all females (Garćıa-Aracil and Winter, 2006). By 2003, the net enrollment rate for

basic general education was 84.1% and increased up to 90.4% in 2008 and up to

95.7% in 2014. While the net enrollment rate for baccalaureate was 42.1% in 2003;

53.6% in 2008 and 65.1% in 2014.8

Despite the progress made in terms of schooling since 2003, youth unemployment,

among individuals between 15 and 24 years of age, remained the highest among

all the age groups even though it decreased from 22.6% in 1998 (Tokman, 2000)

to 9.7% in 2014 (Garćıa et al., 2016). On the other hand, the rate of child work

for children ages 5 to 14 years has decreased significantly since 2007, when 8% of

children in said age range reported having a job, compared to 2014, when only 3%

of children ages 5 to 14 worked9.

5Source: World Bank World Development Indicators
6Source: SIISE (http://www.siise.gob.ec)
7Education was free at public schools, however most schools charged so called ”voluntary

contributions” at the beginning of the school year. Those contributions were eliminated after the
reform in 2008.

8Source:http://www.siise.gob.ec/agenda/index.html?serial=13
9Source:Compendio Estad́ıstico INEC, 2014. Using data from the labor force survey ENEMDU.

http://www.ecuadorencifras.gob.ec/compendio-estadistico-2014/
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BDH was implemented in 2003, when the incumbent government merged two ex-

isting cash transfer programs: Bono Solidario (BS) and Beca Escolar (BE) and

became the first program to use a proxy means test to target the poorest families

in Ecuador.10 BDH uses a proxy means test called “Selben index”, which correctly

predicts that 95% of households in the poorest quintile are eligible for the benefits

and erroneously excludes 5 percent of them (Fiszbein et al., 2009). The Selben index

is computed every five years using the information contained in a Social Registry

called “Registro Social” (RS), which is a census of poor households that contains

individual level data of all potential BDH beneficiaries. The index is computed

using a principal components analysis that assigns numerical values to categorical

variables. After obtaining the weights for each variable, the values are added using

a linear transformation, and a score ranging from 0 to 100 is computed. To make

sure that BDH targets only the population in the bottom 40% of the Selben dis-

tribution, the same process is reproduced using a nationally representative survey.

Once the cutoff is chosen; it is applied to select beneficiaries in the RS.11

The amount of the monthly transfer was US$15 in 2003 for individuals with families

in the lowest 20% of the Selben distribution, and US$11.50 for those located in the

next 20% of the distribution (equivalent to 12% and 9% of the minimum wage in

2003 respectively). Since then, the amount has increased progressively. In 2007,

the transfer increased to US$30 (18% of the minimum wage) for individuals in the

bottom 40% of the Selben distribution. In 2009, the transfer was raised to US$35

(16% of the minimum wage) and in 2013 it was set at US$50 per month (16% of

the minimum wage).

BDH was initially publicized as a CCT; eligible women with children aged 0 to 18

years were required to take their children for health checkups and to enroll them

in school.12 Compliance with the conditions was supposed to be monitored every

two months; however, due to lack of administrative capacity, this did not happen.

Nevertheless, the program used radio and television spots to explicitly link transfers

10BS was an unconditional transfer to compensate poor families for the elimination of gas and
electricity subsidies in 1998, and targeted mothers with earnings below 40 USD per month, people
with disabilities, and senior citizens. By 2003, it had about 1 million beneficiary households (World
Bank, 2005). The program had an open inscription process that relied on the identification of
needy families by parish priests, who were considered to have reliable knowledge of whom among
their parishioners was poor. BE was a CCT program that started in the late 1990s and consisted of
monthly transfers of 5 USD per child (up to two children per household), conditional on children’s
enrollment in school and a 90% attendance rate (Carrillo and Ponce Jarŕın, 2009).

11This is why more than 40% of the population in the RS fall below the chosen cutoffs.
12The amount of the transfer does not depend on the age or number of other eligible children in

the household, which may lead parents to choose the child in whom they want to invest the most.

6



with the conditions, and some BDH administrators stressed the importance of school

enrollment at the implementation stage (Schady et al., 2008). Furthermore, in 2008,

the Ministry of Social Inclusion (MIES) started a process of notifying some mothers

who were not satisfying the conditions; however, no further action was taken to

sanction non-compliance.13

By 2014, BDH had 10 years of operation and people who were eligible during the

two phases of the program could have received the transfer for a maximum of 10

years. From 2003 until 2008, hereafter the first phase of the program, BDH targeted

women with children aged 0-18 years scoring less than 50.65 points (Ponce and

Bedi, 2010). In 2009 a new Selben score was computed (Selben II), using most of

the variables used in the estimation of the previous score and the information from

the second wave of the RS (Ministerio Coordinador de Desarrollo Social, 2009).

From August 2009 until March 2013, the new eligibility cutoff was set at 36.5

points(Buser, 2015).14

Figure 1 shows the chronology of BDH implementation and, specifically, the change

in the targeting rule in 2009 that coincided with the collection of the second wave

of the RS and marked the beginning of the second phase of the program. Figure 1

also shows the different lengths of treatment that exist and the children of interest

in this study. Regarding the former, a short exposure means that individuals were

eligible during one of the phases of the program either phase one or two; while long

exposure means that individuals were eligible during the two phases of the program.

Finally, individuals who were not eligible for the transfer may remain in this state

during phase one, phase two or both.

The group of interest in this study are children aged 0-18 years when the program

was launched in 2003, who grew up being exposed to BDH during phase one, phase

two or both. At the end of phase one, these children were approximately 5 years

older and by the end of phase two, they were approximately 10 years older. Their

exact age depends on the date they were surveyed in the first, second and third wave

of RS. It is worth noting that for the analysis of the differential effects of BDH, the

minimum age at the end of phase two is 10 years and the maximum age is 23 years

because older children would not be eligible for treatment at the beginning of phase

two.

13See Executive Decree No. 347-A of April 25 of 2003 published in the Official Registry No. 76
on May 7 of 2013.

14Another change in the eligibility rule happened on March 2013 (according to the ministerial
agreement No. 197 of 28 March 2013), when the beneficiaries whose score was between 32.5 and
36.5 points were excluded from the program.
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Figure 1: Timeline of the implementation of BDH

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Selben I cutoff: 50,65 Selben II cutoff: 36,5 New cutoff: 32,5

First Phase Second Phase

Age 0-18 Age 5-23

Short exposure 1

Age 0-18 Age 10-23

Long exposure

Age 0-18 Age 5-23

Short exposure 2

3 Data and descriptive statistics

3.1 Description of the Data

Three sources of administrative data were used in this study, the Registro Social

(RS), BDH payment data, and administrative data on the ENES exam (Examen

Nacional para la Educación Superior). The RS is considered a census of the poor

because the first wave was conducted in 215 cantons of the 223 registered in the

census of 2010, and therefore covers most of the poor areas of the country. Fur-

thermore, by 2008 the total number of households in Ecuador was estimated to

be 3,392,851 and the second wave of the RS covers 2,393,377 of those households

(Ponce and Falcońı, 2011). It contains relevant information about BDH recipients

and potential recipients, namely, individual socio-economic information at the fam-

ily and individual level, the ID number of the members (when available) and the

Selben score assigned to each household.

To date, there have been three waves of the RS. The first wave covered 6,303,352

individuals and was collected between 2001 and 2007; however, most of the infor-

mation was collected before 2003.15 The second wave covered 8,068,957 individuals

and was collected between 2007 and 2013 with most of the surveys completed in

2008. The third wave was mostly collected in 2014, but data collection started in

2013 covering a total of 6,930,701 individuals.

15Ecuador’s population was 12,628,596 inhabitants by the year 2000, 14,447,600 inhab-
itants by 2008 and 15,661,312 inhabitants by 2013 according to the World Bank data
(http://databank.worldbank.org/data/reports)
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The steps taken to build a panel that follows individuals across the three waves of

RS using probabilistic record linkage is described in detail in the Appendix. The

three-waves panel allows me to identify the individuals that were treated only during

phase one, two or both and to track the trajectory of the individuals in terms of

their educational attainment. By following the children instead of the mothers in

the RS panel, I make sure that I will not estimate the long-term impacts of BDH on

children that recently joined the household of a woman who was treated since 2003,

but on children who lived with a treated woman since 2003 and may be currently

living or not with her.

Table 1 shows the number of individuals who changed their eligibility status after the

introduction of Selben II in 2009. Given that the cutoff point for eligibility moved

from 50.65 to 36.5, I expected to see a substantial number of beneficiaries leaving the

program. In fact, 20% of the people on the panel who were initially eligible to receive

the transfer left the program by 2009 because they no longer met the selection

criteria, and 28% of ineligible individuals became eligible. Looking specifically

at the individuals around the Selben threshold established in 2003 (namely +/-

5 points from the 50.65 points cutoff), almost 35% of the individuals who were

originally ineligible changed their status to eligible and 45% of those who were

eligible became ineligible, which points to significant contamination of the original

assignment groups.

The second source of administrative data is data on BDH payments. This infor-

mation is collected on a monthly basis and gives an account of the amount and

periodicity with which beneficiaries collect their transfers from the different finan-

cial institutions. Compliance rates are high, over 90 percent every year. This means

that 90% of the people assigned to treatment cashed the transfer at least once per

year. I merged the RS panel and payments data and assigned the actual “treated”

status to children who were living with women who claimed the transfer each year.

It is worth mentioning that since the last wave of the RS contains around 1.1 million

fewer observations due to attrition and because, during the data collection period,

the last 2,458 sectors to be visited were excluded (leaving 735,479 individuals out

of the survey). As a robustness check, I use administrative data from the ENES

exam for the years 2013 and 2014,16 to estimate the impact of different lengths of

exposure to BDH on the likelihood of taking the exam, which is a good proxy for

high school graduation, and compare these results with the ones obtained using the

16The ENES standardized exam did not exist before 2012. Data is only available from 2012.
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Table 1: Eligibility status for individuals after the the introduction of Selben II in
2009

2009

Ineligible Eligible Total
20
03

Ineligible 148,417 58,274 206,691
72% 28% 100%

Ineligible +/- 5p 88,642 47,529 136,171
65% 35% 100%

Eligible 433,123 1,735,492 2,168,615
20% 80% 100%

Eligible +/- 5p 173,275 213,518 386,793
45% 55% 100%

Total 581,540 1,793,766 2,375,306
24% 76% 100%

Total +/- 5p 261,917 261,047 522,964
50% 50% 100%

Notes: The table shows the transition matrix of the eligibility status to BDH before and after the
introduction of Selben II. The total is 2,375,306 individuals instead of 2,961,043 because in the
first wave not all the households had kids below age 18.

three-waves panel of the RS.

4 Empirical Strategy

4.1 Regression discontinuity design

The discontinuity in the assignment rule allows me to recover the local causal effects

of exposure to BDH by comparing the outcomes of similar individuals who are just

below the threshold (hence eligible for the transfer) and just above the threshold

(not eligible for the transfer). Given that the Selben score predicts substantial but

not perfect changes in the probability of treatment, meaning that the probability of

treatment does not jump from 0 to 1 when the forcing variable crosses the threshold,

I use a Fuzzy RD design. In the Fuzzy RD design, the treatment effect is obtained

by dividing the jump in the outcome variable (Y) at the threshold to the jump in

the treatment probability at the threshold as in an instrumental variable approach

or the analogous Wald estimator. The different graphs in Figure 2 show the jump

in the treatment probability at the Selben I threshold (50.65 points) and at the

Selben II threshold (36.5 points) for each year starting in 2005, the first year for

which payment data is available.
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Figure 2: Proportion of treated households with respect to the threshold by year

(a) 2005 (b) 2006 (c) 2007

(d) 2008 (e) 2009 (f) 2010

(g) 2011 (h) 2012 (i) 2013

Notes: The graphs use RS data merged with administrative payments data. The sample is in-
dividuals that were surveyed before 2003 in the first wave and before 2009 in the second wave.
The graphs show the proportion of households that received the treatment each year. The cutoff
for the years 2005-2008 is 50.65 points and the cutoff for the years 2009-2013 is 36.5 points. The
change in the assignment rule happened in August 2009 but the 2008 graph also exhibit some
adjustment. In particular the 2008 payments dataset contains 676,068 individuals while the 2007
and 2009 datasets contain 1,127,909 and 1,280,367 individuals respectively.
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In the next section, I explain how I estimate the impact of BDH at the end of each

phase of the program, as well as the differential impact of a long exposure (during

phases one and two) versus a shorter exposure to BDH (during phase one).

4.2 Estimation

Several non-parametric methods have been proposed in the literature to estimate

the local average treatment effect (LATE). One corresponds to the series estimation

approach, which consists of the inclusion of polynomial functions of the forcing

variable and provides estimates of the regression function over all the values of

the forcing variable. The other non-parametric approach is kernel regressions. In

the simplest case of the rectangular kernel, one computes the local average of the

outcome (Y) in the closest bin to the left and right of the cutoff point and compare

those means to get the RD estimate. However, Hahn et al. (2001) argue that if the

true model is upward sloping on both sides of the threshold, the RD estimate from

kernel regression would be biased; moreover, any attempt to reduce the bias by

reducing the bandwidth size would lead to very imprecise estimates in the absence

of a large number of observations near the cutoff. To solve this problem Hahn et al.

(2001) suggest running local linear regressions at each side of the threshold instead

of computing local averages within the closest bins. Hahn et al. (2001) also proved

that this approach reduces bias by one order of magnitude.

In the case of BDH, eligible individuals are located on the left-hand side of the

cutoff, meaning that only people with a lower Selben score can benefit from the

transfer. Following Lee and Lemieux (2010), the regression model on the left-hand

side of the cutoff point (S ≤ c) is:

Y = αl + fl(S − c) + ǫ (1)

Y is the outcome variable, fl(.) and fr(.) are functional forms of the Selben score

(S) that measures the distance to the cutoff c, αl is the intercept. The regression

model at the right hand side of the cutoff point (S > c) is:

Y = αr + fr(S − c) + ǫ (2)

It is preferable to estimate the treatment effect with a pooled regression on both

sides of the threshold. The advantage of this approach is that it directly yields

12



estimates and standard errors of the treatment effect τ :

Y = αr + τT + f(S − c) + ǫ (3)

where τ = αl − αr and f(S − c) = fr(S − c) + T [fl(S − c) − fr(S − c)] . The

treatment status T is instrumented by D, which is a binary variable that takes a

value of 1 when the Selben score is below the cutoff and 0 otherwise. It is important

to let the regression function differ on both sides of the cutoff point by including

interaction terms between T and S. In the linear case where fl(S − c) = βl(S − c)

and fr(S − c) = βr(S − c), the pooled regression is:

Y = αr + τT + βr(S − c) + (βl − βr)T (S − c) + ǫ (4)

The simplest fuzzy RD estimator uses only D as instrument without polynomial

interactions of f(S − c) with D. In this case, I allow for interaction terms in the

first and second stage.

4.3 Short exposure

I first estimated the effects of a short exposure to BDH at the end of phase one. For

that, I compare the outcomes (observed at the end of phase one) of children who

were marginally eligible or not based on their proximity to the Selben score cutoff

of 50.65 points set on 2003. Likewise, to estimate the effects of a short exposure

to BDH, during phase two only, I restrict the sample to children who were not

treated during phase one and compare the outcomes of children observed at the

end of phase two with a Selben II score close to the cutoff for eligibility fixed at

36.5 points in 2009.

The analysis of the effects of each phase of the program is particularly important

in this setting because BDH was publicized as a CCT. However, due to lack of

administrative capacity the conditions were never enforced so it is likely that most

of the impact was achieved in the first phase of the program when the transfer was

believed to be conditional at least for a short period of time (De Brauw and Hod-

dinott, 2011; Baird et al., 2014; Benhassine et al., 2015). Furthermore, in October

2008, education became free in all public schools and universities in Ecuador, which

may have caused the transfer to cease to have an effect on eligible children, since

education became free for all eligible and ineligible children. It is important to
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contrast the results obtained in each of the phases separately to be able to identify

the possible reasons why the effects of BDH may be different during phase one and

two.

To estimate the effects of a short exposure to BDH, I estimate equation 4, where

Y is the outcome variable observed at the end of phase one or at the end of phase

two depending on the case. I instrument treatment with individual eligibility using

the corresponding cutoff depending on whether I am evaluating the effects at the

end of phase one or at the end of phase two. I try several bandwidths (+/-2.5,

+/-5 and +/-7.5 points with respect to the cutoff) and test the robustness of the

estimates to the inclusion of higher order polynomial terms. I estimate regressions

for different age groups and include county fixed effects, a gender dummy and school

year dummies because each wave of the RS was collected over more than one year.

It is worth noting that given that each wave of the RS was collected over several

years, in the analyses of the short term effects at the end of phase one, I restrict the

sample to individuals that appear in the first and second wave of the RS but were

surveyed before 2003 in the first wave. Similarly, for the analysis of the short term

effects at the end of phase two, I restrict the sample to individuals that I follow

across the second and third wave of the RS that were surveyed before 2009 in the

second wave. This is important because this is the sample on which I perform the

balance tests of pretreatment characteristics and also because in this way I avoid

having cases where people respond to the first survey very late and shortly after

respond to the following survey or cases where the information on the contrary is

widely spaced.

4.4 Differential effect of a long exposure vs a short exposure

A significant number of individuals changed their eligibility status after the intro-

duction of Selben II in 2009. As a consequence, comparing the outcomes of children

from treated households versus untreated households ten years later using the origi-

nal assignment in 2003 would lead to underestimation of the treatment effect of the

program, since both groups were exposed to the treatment at some point in time.

There are two other ways to estimate the long term effects of BDH. The first mea-

sures the impact ten years later of being treated only during phase one versus never

being treated. However, this case is problematic because to avoid contamination

of the original groups, transfers would have to be withheld from everyone during
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phase two (akin to a phase in design) which did not happen with BDH. The other

way to estimate long-term effects is to measure the differential impact of a long

exposure (during phases one and two) versus a short exposure to BDH (during

phase one). To do this, I compare the outcomes observed at the end of phase two

of children who were marginally treated (or not) during phase two among children

who were treated during phase one. Since most of these individuals were eligible

during phase one, and at the same time were very close in terms of their outcomes

in 2008, I would be comparing two groups of people that are very similar in terms

of observable and unobservable characteristics as shown on the balance tests (see

Table 5 on the Appendix).

To estimate the differential impact of a long exposure (during phases one and two)

versus a short exposure to BDH (during phase one), I restrict the sample to individ-

uals who were treated during the first phase of the program and estimate equation

4, where Y is the outcome variable observed at the end of phase two and (S − c) is

a function of the Selben II score (S) that measures the distance to the cutoff (36.5

points).

As with the short term effects, I instrument treatment with individual eligibility and

try several bandwidths (+/-2.5, +/-5 and +/-7.5 points with respect to the cutoff)

as well as low polynomials of the distance to the cutoff to check the robustness

of the RD estimates to different specifications. I estimate separate regressions for

different age groups and include county fixed effects, a gender dummy and school

year dummies in the regressions. I restrict the sample to individuals that I follow

across the second and third wave of the RS that were surveyed before 2009 in the

second wave.

5 Assessing the validity of the identification strat-

egy

For the identification strategy to be valid, individuals should not be able to pre-

cisely manipulate their Selben score. This is unlikely in this setting because the

Selben index is a complex “composite index” and its methodology has never been

disclosed. People do not know the weights associated with their responses when

they are surveyed, making it very difficult for them to determine which answers will

make them end up on the left side of the cutoff. Furthermore, the change in the

methodology in 2009, which involved the use of new variables to build the index,

15



Figure 3: Frequency distribution of Selben I and Selben II score

Table 2: Density tests for Selben I and Selben II

Left of
Selben I
cuttof

Right of
Selben I
cuttof

Left of
Selben II
cuttof

Right of
Selben II
cuttof

Observations 651103 171121 555666 244332
Effective Observations 43763 36769 39043 40559
Bias corrected density 0.03 0.03 0.02 0.02
Standard error 0.00 0.00 0.00 0.00
Bandwidth values 1.54 1.55 2.00 2.27
Standard error test 0.00 0.00
p-value 0.64 0.94

Notes: Density tests based on Cattaneo et al. (2016). This local polynomial density estimator
does not require pre-binning of the data as opposed to McCrary’s test.

made cheating even more difficult. Figure 3 shows that there is no evidence of

bunching or manipulation of the Selben I or Selben II scores. Moreover, the density

tests shown in Table 2 fail to reject the hypothesis that the difference in densities

on the two sides of the cutoff is zero.17 These results rule out possible self-selection

or non-random sorting of units into eligible or ineligible groups.

For identification, it is also important that there are no imbalances in baseline char-

acteristics. To test for balance in the pre-treatment characteristics, I use a regression

discontinuity approach and estimate local regressions of different polynomial orders

using the observations within +/-2.5 points of distance to the cutoff. The variables

were chosen from the list of variables used to estimate the Selben score.

I did this with the people who were surveyed before 2003 in the first wave of the RS,

and with the people who became eligible for phase two, who were surveyed before

2009 in the second wave. I also tested whether among the former eligible children,

17Cattaneo et al. (2016) propose a set of manipulation tests based on a novel local polynomial
density estimator, which does not require pre-binning of the data as opposed to McCrary’s test.
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Table 3: Balance tests for pre-treatment characteristics (2002) for the analysis of a
short exposure during phase one

Linear specification Quadratic specification
Variables Pt. Est Std. Err Pt. Est Std. Err

Does the household own land -0.0117** (0.00546) -0.0180** (0.00818)
Electricity 0.00138* (0.000731) 0.000621 (0.00110)
Does not have exclusive shower 0.00343 (0.00300) 0.00270 (0.00459)
Overcrowding 0.000363 (0.00630) -0.000143 (0.00950)
Household members 0.00916 (0.0188) 0.00474 (0.0283)
Total earners 0.000235 (0.0106) -0.0111 (0.0159)
Members who work 0.00771 (0.00701) 0.000952 (0.0105)
Members below 18 years 0.00678 (0.0132) 0.0286 (0.0199)
Members studying 0.0114 (0.0119) 0.0271 (0.0179)
Education level of the head 0.0190* (0.0109) 0.0105 (0.0164)
Does the head have a job 0.00901** (0.00451) 0.00267 (0.00677)
Does the head speaks native languages -0.000442 (0.00223) 5.01e-05 (0.00334)
Is the head retired -0.000450 (0.000859) 0.000284 (0.00122)
Years of education of the head 0.0471 (0.0463) 0.0434 (0.0694)

Joint F-test 19.50 10.32
P-value 0.1467 0.7386
Observations 94,965 94,965

Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample is
households surveyed before 2003 in the first wave of RS that have an adult woman and children
below age 18.

those who were considered eligible or not for the second phase of the program had

balanced characteristics. Results of the linear and quadratic specifications as well

as the omnibus joint F-tests are reported in Tables 3, 4 and 5. In all the cases,

at least for one of the specifications, the p-value on the omnibus F test was not

statistically significant.

Table 3 shows that the pre-treatment characteristics of marginally eligible children

in 2002 (around +/-2.5 points of the cutoff) present some minor imbalances in the

linear specification that disappear in the quadratic specification. The quadratic

specification performs better in terms of the omnibus joint F-test, but the linear

specification was preferred in terms of the Akaike information criterion (AIC) and

the goodness of fit test performed by jointly testing the significance of a set of

bin dummies included as additional regressors in the model in order to select the

optimal order of the polynomial.

Table 4 shows that among people who were not treated before 2009, the pre-

treatment characteristics of the two comparison groups were balanced, including

in terms of the Selben I score for both the linear and quadratic specifications. The
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Table 4: Balance tests for pre-treatment characteristics (2008) for the analysis of
short exposure during the second phase of the program

Linear specification Quadratic specification
Variables Pt. Est Std. Err Pt. Est Std. Err

Selben I score -0.0977 (0.192) 0.122 (0.289)
Land -0.00466 (0.00706) -0.0116 (0.0107)
Electricity 0.000447 (0.00140) 0.00167 (0.00212)
Does not have exclusive shower 0.00153 (0.00847) -0.00725 (0.0126)
Overcrowding -0.00290 (0.00856) -0.00510 (0.0128)
Household members 0.0220 (0.0382) 0.0683 (0.0575)
Total earners -0.00413 (0.0159) 0.0280 (0.0234)
Members who work -0.00189 (0.0140) 0.0120 (0.0211)
Members below 18 years 0.0238 (0.0287) 0.0357 (0.0431)
Members studying 0.0161 (0.0268) 0.00128 (0.0402)
Education level of the head -0.0176 (0.0387) 0.0198 (0.0583)
Does the head have a job -0.000451 (0.00970) 0.0203 (0.0147)
Does the head speaks native languages -0.000207 (0.00365) -0.000543 (0.00540)
Is the head retired -0.00123 (0.00126) -0.00281* (0.00163)
Years of education of the head 0.0240 (0.0966) 0.133 (0.145)

Joint F-test 4.77 12.88
P-value 0.9939 0.6113
Observations 22,811 22,811

Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.Sample is
households surveyed before 2009 in the second wave of RS that have an adult woman and children
below age 18.

omnibus joint F-test favors the linear specification, which is also preferred based on

the AIC criterion and the goodness of fit tests.

Finally, I tested whether children who were treated in phase one, and were assigned

to be treated or not in phase two based on their Selben II score, had balanced pre-

treatment characteristics at the beginning of phase two. Results from the linear and

quadratic specification show that those characteristics are well balanced including

in terms of the Selben I score, meaning that in the neighborhood of the cutoff point,

assignment in 2009 was independent of the first assignment in 2003. As shown in

Table 5. Both specifications performed well in terms of the omnibus joint F-test,

while the linear specification was slightly preferred based on the AIC criterion and

the goodness of fit test.
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Table 5: Balance tests for pre-treatment characteristics (2008) for the analysis of
long vs short exposure to BDH

Linear specification Quadratic specification
Variables Pt. Est Std. Err Pt. Est Std. Err

Selben I score -0.0108 (0.0809) -0.0926 (0.121)
Land -0.00157 (0.00417) -0.00212 (0.00622)
Electricity 0.000776 (0.000881) 0.000221 (0.00138)
Does not have exclusive shower -0.00264 (0.00495) 0.00254 (0.00737)
Overcrowding -0.000476 (0.00548) 0.00724 (0.00818)
Household members -0.0115 (0.0251) -0.000694 (0.0375)
Total earners -0.00601 (0.0105) -0.00974 (0.0157)
Members who work -0.00797 (0.00879) 0.00444 (0.0132)
Members below 18 years -0.0155 (0.0193) -0.0133 (0.0287)
Members studying -0.00847 (0.0171) -0.0134 (0.0254)
Education level of the head -0.0236 (0.0225) -0.0424 (0.0337)
Does the head have a job -0.00344 (0.00606) -0.000756 (0.00902)
The head speaks native languages -0.000198 (0.00226) 0.000904 (0.00323)
Is the head retired 0.000573 (0.000592) 0.000565 (0.000881)
Years of education of the head -0.0445 (0.0580) -0.0849 (0.0864)

Joint F-test 7.23 5.71
P-value 0.9508 0.9842
Observations 56,872 56,872

Notes: Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample is
households surveyed before 2009 in the second wave of RS that have an adult woman and children
below age 18.
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6 Results

In this section, I present results of the 2SLS regressions in equation 4 that uses

the treatment assignment as instrument for the actual treatment. Considering that

there is some variation in treatment duration across households, I restrict the sample

to households that were treated for at least three years in each of the phases of the

program. Given that the percentage of observations that meet this requirement is

close to 99% of the sample, I present the results for this sample and checked that

the results for the complete sample are almost identical.

6.1 Effects of a short exposure to BDH measured at the

end of phase one

6.2 Education outcomes

Table 6 reports on the short term effects of BDH on enrollment and years of edu-

cation. Columns 1 and 3 show the results of the reduced form regressions (ITT),

while columns 2 and 4 show the results from the 2SLS regression in equation 4.

All the regressions include time and county fixed effects, control for gender and are

estimated on the sample of individuals that are located within +/- 2.5 points of the

Selben I cutoff.

To save space, I report the results only for children aged 10 to 21 years by the end

of phase one. These children were between 5 and 16 years old when the first phase

began in 2003. By choosing these age groups, I am able to observe the effects of

BDH on children who began treatment at all the juncture ages in their academic

progress which are age 5, 12 and 15. These are juncture ages because at age 5

parents decide to enroll their children at elementary school, at age 12 they decide

to enroll them in high school and at age 15 they decide whether or not to enroll

them in Baccalaureate. Furthermore, I study children aged 5 to 16 years in 2003,

because the analysis focuses on children who were treated for at least three years

during phase one and even when children aged 17 and 18 could benefit from the

transfer, they were only exposed to it for two years maximum.

The results of the reduced form regressions in column 1 show negative effects of

BDH on enrollment for some age groups, one reason is that the program did not

reach all the households with a Selben score below the threshold of eligibility. Figure
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Table 6: Short term effects of BDH on enrollment and years of education by
the end of phase one.

Enrollment Years of Education
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 10 year olds -0.00518 0.0130 0.00678 0.212** 5561
(0.00422) (0.00836) (0.0468) (0.0886)

Pre- treatment mean 0.992 0.992 5.160 5.160
Effect on 15 year olds -0.0201* 0.0255 0.0180 0.147 6464

(0.0121) (0.0224) (0.0662) (0.117)
Pre- treatment mean 0.886 0.886 8.863 8.863
Effect on 16 year olds 0.0172 0.0127 0.0512 -0.0454 5861

(0.0149) (0.0264) (0.0830) (0.146)
Pre- treatment mean 0.839 0.839 9.291 9.291
Effect on 17 year olds -0.00243 0.0872** -0.107 0.170 5449

(0.0183) (0.0357) (0.0911) (0.174)
Pre- treatment mean 0.723 0.723 9.791 9.791
Effect on 18 year olds 0.000474 0.0836* 0.103 0.321 5343

(0.0210) (0.0437) (0.105) (0.214)
Pre- treatment mean 0.539 0.539 10.42 10.42
Effect on 19 year olds -0.0220 0.0511 -0.110 0.296 5099

(0.0215) (0.0431) (0.111) (0.227)
Pre- treatment mean 0.433 0.433 10.54 10.54
Effect on 20 year olds 0.00882 0.111** 0.105 0.0170 4698

(0.0219) (0.0456) (0.124) (0.257)
Pre- treatment mean 0.379 0.379 10.73 10.73
Effect on 21 year olds -0.0732*** 0.0608 -0.110 0.441 4335

(0.0222) (0.0483) (0.142) (0.323)
Pre- treatment mean 0.331 0.331 10.70 10.70

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the results
of ITT and 2SLS regressions using a linear polynomial of the distance to
the cutoff. Sample is children with a score within +/-2.5 points from the
Selben I cutoff (50,65 points).
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2 shows that before 2009, take up was always below 80% in the area closer to the

threshold. Once I correct for the endogeneity of take up by instrumenting the actual

treatment with the assignment to treatment, the effects turn positive for all the age

groups.

According to the 2SLS estimates reported in column 2, BDH was effective in raising

the enrollment rates of 10 to 21 year olds. However, the effect was statistically

significant only for 17, 18 and 20 year olds who were around 12, 13 and 15 years

when the program started in 2003. Enrollment increased by 8.7 percentage points

by the end of phase one among 17 year olds and by 8.3 and 11 percentage points

for 18 and 20 year olds respectively.

Given that when the program started most people believed that one of the con-

ditions to receive the transfer was to send children to school, I expected to see

positive effects on enrollment, however, what is more important is whether these

children completed more years of schooling. Columns 3 and 4 report on the short

term effects of BDH on years of education by the end of phase one. The reduced

form specification reported in column 3 show some negative coefficients that turn

positive after instrumenting the actual treatment with the assignment to treatment.

Only 10 year olds, who were 5 years old when the first phase began experienced an

increase in their years of education by 0.21 years, for children aged 15, 17 ,18 and

19 years, the effects were positive but not statistically significant.

The observed gains in enrollment are in line with a higher probability of graduating

from high school for 18 year olds. For this group, being treated for at least three

years during phase one increased the likelihood of graduating by 8.7 percentage

points by the end on phase one (See column 2 of Table 7). This increase is equivalent

to an 18% raise relative to a 48.7% pre-treatment high school graduation rate.

Treated individuals aged 17 and 19 years by the end of phase one also experienced

a higher probability of graduating from High School, although not statistically

significant.

Furthermore, there was a positive effect of BDH on the likelihood of having some

college education among 19 year olds at the end of phase one. These young people

were 14 years old when the program started in 2003 and were old enough to benefit

from free education at college level. The likelihood of having some college education

increased by 7.4 percentage points for this group, relative to a pre-treatment rate

of 17.3%, which implies a 43% raise. For 20 and 21 year olds, the effect of BDH

was also positive but not statistically significant.
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Table 7: Short term effects of BDH on high school graduation and on the
likelihood of having some college education by the end of phase one.

High School Has some college
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 17 year olds -0.0478*** 0.0249 5449
(0.0166) (0.0306)

Pre- treatment mean 0.186 0.186
Effect on 18 year olds 0.00984 0.0870** 5343

(0.0211) (0.0441)
Pre- treatment mean 0.487 0.487
Effect on 19 year olds -0.0350* 0.0369 -0.0290 0.0737** 5099

(0.0203) (0.0419) (0.0178) (0.0355)
Pre- treatment mean 0.573 0.573 0.173 0.173
Effect on 20 year olds -0.00882 0.0323 4698

(0.0206) (0.0417)
Pre- treatment mean 0.228 0.228
Effect on 21 year olds -0.0375* 0.0482 4335

(0.0213) (0.0466)
Pre- treatment mean 0.246 0.246

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the results
of ITT and 2SLS regressions using a linear polynomial of the distance to
the cutoff. Sample is children with a score within +/-2.5 points from the
Selben I cutoff (50,65 points).
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6.3 Labor market outcomes

Table 8 shows the results of the ITT and 2SLS regressions of the effect of BDH

on the probability of having a job by the end of phase one. In line with previous

literature (Skoufias and Parker, 2001; de Janvry et al., 2006; Attanasio et al., 2012),

the sign of the job coefficients is contrary to the sign of the enrollment coefficients

for 17, 18, 20 and 21 year olds. The 2SLS estimates reported in column 2 show that

the likelihood of having a job was negative but not statistically significant for most

age groups and negative and statistically significant for 21 year olds. By the end of

phase one, BDH reduced the employment rate of this age group by 12.5 percentage

points relative to a pre-treatment rate of 56% , which implies a 22% reduction for

this group. The magnitude of this effect is comparable to the 9.9 percentage points

decrease in paid employment reported by Edmonds and Schady (2012) who evaluate

the impacts of BDH after after 17 months of BDH’s implementation on children

aged 11–16 at baseline.

6.4 Effects of a short exposure to BDH measured at the

end of phase two

6.5 Education outcomes

In terms of education outcomes, what makes the second phase of the program

different from the first phase is that there was an increase in the years of education

attained by treated children while by the end of phase one (with the exception of

the effects on 10 year olds), I only observed effects on enrollment. One possible

explanation is that the size of the transfer at the beginning was smaller, besides, it

seems that parents were only looking to meet the conditions to get the cash transfer,

but since the condition was on enrollment and not on passing the courses, there was

not effects on years of education.

By contrast, in phase two, not only parents received a bigger cash transfer, but

also, education became free after tenth grade with the reform of 2008. This may

have reinforced the effect of BDH especially at the juncture ages of 12 and 15 years,

when children decide whether or not to enroll at high school and at the first year

of Baccalaureate, respectively.

Columns 1 and 2 in Table 9 report on the short term effects of BDH on enrollment
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Table 8: Short term effects of BDH on the likelihood of
having a job by the end of phase one.

Has a job
(1) (2)

Ages ITT 2SLS N

Effect on 15 year olds 0.0136 0.0195 6465
(0.00896) (0.0166)

Pre- treatment mean 0.0670 0.0670
Effect on 16 year olds -0.0142 -0.00178 5868

(0.0117) (0.0211)
Pre- treatment mean 0.101 0.101
Effect on 17 year olds 0.0177 -0.0287 5453

(0.0163) (0.0321)
Pre- treatment mean 0.200 0.200
Effect on 18 year olds 0.00423 -0.00627 5350

(0.0198) (0.0411)
Pre- treatment mean 0.337 0.337
Effect on 19 year olds 0.00693 0.0344 5105

(0.0209) (0.0418)
Pre- treatment mean 0.449 0.449
Effect on 20 year olds -0.00196 -0.0600 4703

(0.0217) (0.0455)
Pre- treatment mean 0.507 0.507
Effect on 21 year olds 0.0288 -0.125*** 4345

(0.0214) (0.0474)
Pre- treatment mean 0.562 0.562

County and time FE Yes Yes
Controls Yes Yes

Notes: Robust standard errors clustered at county
level shown in parentheses. *** p<0.01, ** p<0.05,
* p<0.1. The table reports on the results of ITT
and 2SLS regressions using a linear polynomial of
the distance to the cutoff. Sample is children with
a score within +/-2.5 points from the Selben I cutoff
(50,65 points).
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Table 9: Short term effects of BDH on enrollment and years of education
by the end of phase two.

Enrollment Years of Education
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 10 year olds 0.00597 -0.00765 -0.128 -0.899** 468
(0.0146) (0.0293) (0.151) (0.384)

Pre- treatment mean 0.988 0.988 4.960 4.960
Effect on 15 year olds 0.0347 0.0949 0.0247 0.445 1289

(0.0251) (0.0643) (0.155) (0.423)
Pre- treatment mean 0.919 0.919 9.103 9.103
Effect on 16 year olds -0.0650** -0.0694 -0.346** 0.398 1381

(0.0285) (0.0704) (0.166) (0.399)
Pre- treatment mean 0.869 0.869 9.458 9.458
Effect on 17 year olds -0.0105 0.0480 -0.0143 1.204** 1482

(0.0346) (0.0952) (0.181) (0.512)
Pre- treatment mean 0.728 0.728 10.11 10.11
Effect on 18 year olds -0.0376 -0.0708 -0.254 -0.141 1483

(0.0386) (0.110) (0.190) (0.555)
Pre- treatment mean 0.447 0.447 10.70 10.70
Effect on 19 year olds 0.0314 -0.224** 0.293 -0.267 1450

(0.0375) (0.106) (0.197) (0.521)
Pre- treatment mean 0.344 0.344 10.97 10.97
Effect on 20 year olds -0.0205 0.193 -0.347 1.882** 1334

(0.0371) (0.129) (0.223) (0.825)
Pre- treatment mean 0.279 0.279 11.12 11.12
Effect on 21 year olds -0.0421 0.0790 -0.0365 -0.158 1261

(0.0366) (0.175) (0.255) (1.204)
Pre- treatment mean 0.256 0.256 11.20 11.20

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the results
of ITT and 2SLS regressions using a linear polynomial of the distance
to the cutoff. Sample is children with a score within +/-2.5 points from
the Selben II cutoff (36.5 points).
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Table 10: Short term effects of BDH on high school graduation and on the
likelihood of having some college education by the end of phase two.

High School Has some college
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 17 year olds 0.00363 0.0240 1482
(0.0292) (0.0764)

Pre- treatment mean 0.168 0.168
Effect on 18 year olds -0.0492 -0.224* 1483

(0.0384) (0.115)
Pre- treatment mean 0.505 0.505
Effect on 19 year olds 0.0178 0.0446 0.0477 -0.0516 1450

(0.0380) (0.102) (0.0311) (0.0870)
Pre- treatment mean 0.624 0.624 0.167 0.167
Effect on 20 year olds -0.00727 0.381*** 1334

(0.0360) (0.130)
Pre- treatment mean 0.212 0.212
Effect on 21 year olds -0.0549 -0.115 1261

(0.0369) (0.177)
Pre- treatment mean 0.248 0.248

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the
results of ITT and 2SLS regressions using a linear polynomial of the
distance to the cutoff. Sample is children with a score within +/-2.5
points from the Selben II cutoff (36.5 points).

by the end of phase two. My preferred specification is in column 2 and shows that

BDH did not have a significant positive effect on enrollment for any of the age

groups. If anything, there was a significant reduction on the enrollment rate of 19

year olds by 23 percentage points.

Columns 3 and 4 show the impacts of BDH on years of education by the end of phase

two. Results from the 2SLS regressions show a positive and statistically significant

effect on years of schooling for 17 and 20 year olds. The total years of education

for 17 year olds increased by 1.2 years, relative to a pre-treatment mean of 10.11

years for this age group. While, for 20 year olds, schooling increased by 1.9 years,

relative to a pre-treatment mean of 11.12 years of education.

Table 10 shows the short term effects of BDH on high school graduation rates and

the likelihood of having some college education by the end of phase two. The 2SLS

estimates reported in column 2 show a negative and statistically significant effect

27



on the high school graduation rate among 18 year olds. Children who are close to

finishing elementary school or tenth grade are less likely to drop out of school at

least until they reach that goal. 18 year olds were around 13 years when the second

phase of the program began and they were two years away from finishing tenth

grade; so, receiving the transfer may not have been enough incentive to prevent

some of them from leaving school. I also included 17 and 19 year olds to allow for

the possibility of early and late high school graduations but the effects were not

statistically significant for these groups.

On the other hand, column 4 shows that 20 year olds in 2014, who were 15 when

the second phase began were in fact 38.1 percentage points more likely to have some

college education. This is equivalent to a 180% increase relative to the pre-treatment

rate.

6.6 Labor market outcomes

Table 11 reports on the short term effects of BDH on the employment rate of

15 to 21 year olds by the end of phase two. Column 2 shows that BDH had a

negative and statistically significant effect on the employment rate of 17 year olds.

The probability of working drops by 12.5 percentage points for this group, relative

to a pre-treatment rate of 14.3% which is equivalent to a 87% reduction. This is

consistent with the results reported in Table 9 that showed a statistically significant

increase of 1.2 years of education for this age group accompanied by a positive effect,

although not statistically significant, in enrollment.

6.7 Differential effects of a long versus a short exposure to

BDH

6.8 Education outcomes

In this section, I discuss the differential effects of a short exposure to BDH (during

phase one) versus a long exposure to BDH (during phases one and two). I focus

on children aged 10 to 23 years at the end of phase two, who were treated during

phase one and were 5 to 18 years old when they were assigned to be treated (or not)

at the beginning of phase two. Since I restrict the sample to children that received
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Table 11: Short term effects of BDH on the employ-
ment rate by the end of phase two.

Has a job
(1) (2)

Ages ITT 2SLS N

Effect on 15 year olds -0.0141 0.0528 1289
(0.0176) (0.0461)

Pre- treatment mean 0.0480 0.0480
Effect on 16 year olds 0.0163 -0.0117 1381

(0.0207) (0.0531)
Pre- treatment mean 0.0770 0.0770
Effect on 17 year olds 0.0163 -0.125* 1482

(0.0269) (0.0726)
Pre- treatment mean 0.143 0.143
Effect on 18 year olds 0.00301 -0.0260 1483

(0.0371) (0.107)
Pre- treatment mean 0.311 0.311
Effect on 19 year olds 0.0173 0.0928 1450

(0.0396) (0.107)
Pre- treatment mean 0.440 0.440
Effect on 20 year olds 0.0453 -0.165 1334

(0.0421) (0.150)
Pre- treatment mean 0.523 0.523
Effect on 21 year olds -0.0575 0.240 1261

(0.0427) (0.218)
Pre- treatment mean 0.587 0.587

County and time FE Yes Yes
Controls Yes Yes

Notes: Robust standard errors clustered at
county level shown in parentheses. *** p<0.01,
** p<0.05, * p<0.1. The table reports on the re-
sults of ITT and 2SLS regressions using a linear
polynomial of the distance to the cutoff. Sample
is children with a score within +/-2.5 points from
the Selben II cutoff (36.5 points).
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treatment for at least three years in each of the phases of the program, the final

sample contains children aged 10 to 21 years by the end of phase two.

Table 12, shows the differential effects of BDH on enrollment and years of education

by the end of phase two. Column 2 shows the results from the 2SLS regressions

in equation 4. It shows that none of the age groups were significantly more likely

to be enrolled in an educational establishment after being treated during the two

phases of the program when compared to similar children that were treated only

during the first phase.

Column 4 shows the results for years of education. The general results are not

very encouraging either. However, children who began treatment in 2008 at age 5

increased their years of education in 0.28 years, relative to a pre-treatment mean of

4.96 years for that age group, which is equivalent to a 6% increase in schooling.

The differential effects of BDH on high school graduation and on the likelihood of

having some college education are reported in Table 13. There were no statistically

significant gains in terms of the likelihood of graduating from high school for 17

to 19 year olds. The reason is that these children were between 7 and 9 years

when the first phase began and between 12 and 14 years when the second phase

began. Since children who are close to finish tenth grade are less likely to drop

out from school, I expect that most of them would remain at school despite not

receiving the transfer, hence the non-statistically significant differences reported

here, another interpretation could be that without the transfer they would have

done much worse, but after being treated during two phases, their outcomes were

at least as good as those of children treated during one phase. Likewise, there were

no significant effects on the probability of having some college. This probability

was even negative for 21 year olds, probably because households treated during the

two phases are the most vulnerable ones.

6.9 Labor market outcomes

The last wave of the RS collects information on the occupation sector in which

people work. This allows me to classify the different sectors into two general groups,

agricultural work and white collar jobs. In this way it is possible to investigate the

effects of BDH not only on the probability that young adults work but also on the

type of work they have.

In general, being treated during the two phases of the program reduced the likeli-
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Table 12: Differential effects of BDH on enrollment and years of education

Enrollment Years of Education
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 10 year olds -0.00379 0.0166 0.00307 0.280** 1787
(0.00650) (0.0110) (0.0609) (0.114)

Pre- treatment mean 0.988 0.988 4.960 4.960
Effect on 11 year olds 0.00869* -0.00686 0.0399 -0.159* 3401

(0.00447) (0.00788) (0.0479) (0.0927)
Pre- treatment mean 0.987 0.987 5.917 5.917
Effect on 12 year olds 0.00381 -0.00729 -0.0550 -0.0670 7002

(0.00447) (0.00811) (0.0406) (0.0759)
Pre- treatment mean 0.980 0.980 6.817 6.817
Effect on 13 year olds 0.00397 -0.0147 0.000286 0.0401 7470

(0.00557) (0.0103) (0.0484) (0.0890)
Pre- treatment mean 0.971 0.971 7.677 7.677
Effect on 14 year olds -0.00218 0.0119 0.0316 0.0613 7629

(0.00731) (0.0142) (0.0528) (0.100)
Pre- treatment mean 0.949 0.949 8.481 8.481
Effect on 15 year olds -0.0130 -0.00875 8.24e-05 -0.0803 6767

(0.00923) (0.0183) (0.0631) (0.117)
Pre- treatment mean 0.919 0.919 9.103 9.103
Effect on 16 year olds -0.0257** 0.0353 -0.165** -0.0312 7084

(0.0112) (0.0229) (0.0679) (0.140)
Pre- treatment mean 0.869 0.869 9.458 9.458
Effect on 17 year olds -0.0108 -0.0239 -0.0563 -0.0606 6678

(0.0156) (0.0320) (0.0752) (0.151)
Pre- treatment mean 0.728 0.728 10.11 10.11
Effect on 18 year olds 0.0139 -0.0135 -0.106 -0.217 5734

(0.0187) (0.0386) (0.0878) (0.182)
Pre- treatment mean 0.447 0.447 10.70 10.70
Effect on 19 year olds -0.0189 -0.0289 0.0275 -0.0322 5409

(0.0185) (0.0426) (0.0933) (0.211)
Pre- treatment mean 0.344 0.344 10.97 10.97
Effect on 20 year olds 0.0301* -0.0613 0.0137 -0.291 5127

(0.0176) (0.0411) (0.103) (0.234)
Pre- treatment mean 0.279 0.279 11.12 11.12
Effect on 21 year olds 0.0209 -0.0501 -0.0429 -0.182 4605

(0.0183) (0.0434) (0.118) (0.281)
Pre- treatment mean 0.256 0.256 11.20 11.20

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the results
of ITT and 2SLS regressions using a linear polynomial of the distance to
the cutoff. Sample is children with a score within +/-2.5 points from the
Selben II cutoff (36.5 points).
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Table 13: Differential effects of BDH on high school graduation and on the
likelihood of having some college education

High School Has some college
(1) (2) (3) (4)

Ages ITT 2SLS ITT 2SLS N

Effect on 17 year olds 0.0101 -0.0201 6678
(0.0122) (0.0251)

Pre- treatment mean 0.168 0.168
Effect on 18 year olds -0.0151 0.00686 5734

(0.0184) (0.0379)
Pre- treatment mean 0.505 0.505
Effect on 19 year olds -0.00511 0.0155 -0.00358 0.0206 5409

(0.0187) (0.0430) (0.0142) (0.0331)
Pre- treatment mean 0.624 0.624 0.167 0.167
Effect on 20 year olds 0.0152 -0.0444 5127

(0.0155) (0.0362)
Pre- treatment mean 0.212 0.212
Effect on 21 year olds -0.00815 -0.0845** 4605

(0.0183) (0.0426)
Pre- treatment mean 0.248 0.248

County and time FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1. The table reports on the results
of ITT and 2SLS regressions using a linear polynomial of the distance
to the cutoff. Sample is children with a score within +/-2.5 points from
the Selben II cutoff (36.5 points).
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Table 14: Differential effects of BDH on the employment rate

Has a job Agriculture job White collar job
(1) (2) (3) (4) (5) (6)

Ages ITT 2SLS ITT 2SLS ITT 2SLS N

Effect on 15 year olds 0.00515 -0.00410 0.0192 -0.183 -0.0188 -0.0783 6767
(0.00719) (0.0139) (0.0823) (0.126) (0.0900) (0.148)

Pre- treatment mean 0.0480 0.0480 0.293 0.293 0.233 0.233
Effect on 16 year olds 0.0141 -0.0109 0.0150 0.105 -0.143** -0.0461 7084

(0.00861) (0.0175) (0.0493) (0.0883) (0.0707) (0.107)
Pre- treatment mean 0.0770 0.0770 0.239 0.239 0.256 0.256
Effect on 17 year olds -0.00332 0.00744 0.00185 0.0278 -0.000628 0.0194 6678

(0.0124) (0.0251) (0.0361) (0.0730) (0.0450) (0.0913)
Pre- treatment mean 0.143 0.143 0.194 0.194 0.270 0.270
Effect on 18 year olds -0.00152 0.0275 0.0231 -0.0398 0.00414 0.0290 5734

(0.0170) (0.0353) (0.0244) (0.0452) (0.0340) (0.0614)
Pre- treatment mean 0.311 0.311 0.151 0.151 0.317 0.317
Effect on 19 year olds 0.0128 -0.00477 0.00411 0.0377 0.0313 -0.0539 5409

(0.0183) (0.0425) (0.0189) (0.0425) (0.0287) (0.0666)
Pre- treatment mean 0.440 0.440 0.144 0.144 0.337 0.337
Effect on 20 year olds 0.00931 0.0221 0.00679 -0.0381 0.0432 0.0108 5127

(0.0183) (0.0422) (0.0187) (0.0408) (0.0280) (0.0624)
Pre- treatment mean 0.523 0.523 0.129 0.129 0.362 0.362
Effect on 21 year olds -0.00188 0.0333 0.0402** 0.00300 -0.0612** 0.0633 4605

(0.0188) (0.0439) (0.0168) (0.0402) (0.0275) (0.0626)
Pre- treatment mean 0.587 0.587 0.127 0.127 0.377 0.377

County and time FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors clustered at county level shown in parentheses. *** p<0.01, **
p<0.05, * p<0.1. The table reports on the results of ITT and 2SLS regressions using a linear
polynomial of the distance to the cutoff. Sample is children with a score within +/-2.5 points
from the Selben II cutoff (36.5 points).

hood of having a job among the younger age groups. However, this effect was not

statistically significant. Similarly, there were no significant effects on the probabil-

ity of having a white collar job or a job in the agricultural sector as shown in Table

14.

These results are consistent with a recent study by Hahn et al. (2018) that examines

the long-term effects of a stipend program that made secondary education free for

rural girls in Bangladesh and find no apparent effect of the stipend on the likelihood

of women working in adulthood.
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Table 15: Short term effects of BDH by the end of phase two using ENES data

Enes exam
(1) (2)

Ages ITT 2SLS N

Effect on 17 year olds -0.0313 0.0559 1482
(0.0376) (0.100)

Effect on 18 year olds -0.0251 -0.134 1483
(0.0393) (0.112)

Effect on 19 year olds -2.21e-05 0.0478 1450
(0.0365) (0.0986)

County and time FE Yes Yes
Controls Yes Yes

Notes: Robust standard errors clustered at county level shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Table reports the coefficients of ITT and 2SLS regressions. Sample is children who took the ENES exam and has
a Selben score within +/-2.5 points from the Selben II cutoff (36.5 points) who were untreated on phase 1.

7 Robustness checks

7.1 Results using ENES exam data

Considering that an important number of counties were left out of the third wave

of the RS, in this section, I use administrative data on the ENES exam (Examen

Nacional para la Educación Superior) to test the robustness of the results regarding

high school graduation. In Ecuador, students have to pass a standardized exam

(ENES) in order to go to university. It is compulsory for all students enrolled in

the last year of high school at private and public schools; hence, taking the test is

a good predictor for high school graduation.

The exam was first administered in 2012, so it is possible to merge the 2013 and

2014 ENES databases to the last wave of my three-wave panel using the students’

IDs. Of the 336,791 students in the ENES dataset, 168,481 were also in the RS.

As in the previous section, I run similar 2SLS regressions to the ones I estimated

before using as the outcome of interest a binary variable that takes the value of one

if the child was on the ENES dataset, which implies that she was in the final year

of high school, and zero if not.

As seen in Table 10, when the RS sample is used, being treated during the second

phase of the program significantly reduced the probability of graduating from school

among 18-year-olds by 22.4 percentage points, whereas when using the ENES exam

sample, the result was a reduction of 13.4 percentage points that was not statistically
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Table 16: Differential effects of a long versus a short exposure measured by the end
of phase two using ENES data

Enes exam
(1) (2)

Ages ITT 2SLS N

Effect on 17 year olds -0.0352** -0.0239 6678
(0.0172) (0.0352)

Effect on 18 year olds 0.0198 -0.0353 5734
(0.0188) (0.0387)

Effect on 19 year olds 0.00128 -0.0666 5409
(0.0180) (0.0421)

County and time FE Yes Yes
Controls Yes Yes

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. P-values from goodness of fit test
after standard errors. Table reports the coefficients of ITT and 2SLS regressions. Sample is children who took the
ENES exam and has a Selben score within +/-2.5 points from the Selben II cutoff (36.5 points) who were treated
on phase 1.

significant, as shown in column 2 of the Table 15.

On the other hand, Table 16 reports on the results of the differential effects of a

long versus a short exposure to BDH on the probability of high school graduation.

The results were in line to those reported in Table 13 that showed not statistically

significant effects for 17, 18 and 19 year olds.

8 Conclusions

This paper studies the short and long-term effects of a cash transfer program that

uses a proxy means test to select beneficiaries. The results provided here are more

informative from a policy perspective than those of studies that look at how well the

original treatment and control groups perform after several years. Said framework

is common in the evaluation of short-duration programs but may not be optimal

for the evaluation of long duration programs because is hard to rule out the con-

tamination of the original treatment and control groups as time goes by, which may

cause an attenuation of the program’s impact and makes it difficult to derive policy

implications regarding the optimal duration of this kind of programs.

The question I address in this paper is whether cash transfers continue to be effective

after several years targeting the same population. For this, I used individual-level

social registry data that allowed me to identify children that were treated during
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one or the two phases of the program and track their performance in terms of

education and labor market outcomes. With this information and knowing that

at the threshold of eligibility, the second assignment to treatment (in 2008/9) was

independent of the first assignment (in 2003), I was able to disentangle the impact

of a short exposure to BDH (treatment during phase one) versus a long exposure

(treatment during phases one and two).

The short term effects of BDH at the end of phase one were positive and statistically

significant on enrollment among children that began treatment at ages 12, 13, and

15 but no effects on years of education were found, except among children aged 5

years old when the first phase began. By contrast, the results by the end of phase

two (among children who were treated only during phase two) showed positive

effects on years of education among children that began treatment at ages 12 and

15, and effects in enrollment among 15 year olds. The positive effects in enrollment

observed at the end of phase one dissipated among children observed at the end of

phase two and are consistent with the fact that soon after implementation, people

realized the authorities were not monitoring the conditions. On the other hand, the

fact that BDH was effective in raising the years of education of children that were

only treated during phase two may have to do with the education gratuity in place

since 2008, which benefited children who were about to start the eleventh grade (15

years) when the second phase of the program began.

The lack of differential effects on education and labor market outcomes among

children that were treated during the two phases versus those treated during just

the first phase, is not explained by an attenuation of BDH effects for all the age

groups in phase two. In fact, the analysis of the short term effects at the end of

phase two showed positive and important effects of BDH at juncture ages. This

contradicts the hypotheses that educational gratuity or lack of monitoring of the

conditions attenuated the effects of BDH during phase two. A more plausible reason

for the lack of differential effects is that once children reach the education level they

have planned to achieve, or alternatively, once they reach certain age when working

is more profitable, the unconditional transfer does not provide enough incentive to

keep them at school.

The only group that experienced positive differential effects in years of education

after being exposed during the two phases of the program versus children that were

exposed during phase one were children aged 0 when BDH began in 2003. Children

who started treatment at an older age did not benefit from the transfers because

once cognitive gaps appear, the process can not be reversed only with the help of
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cash transfers. It is likely that these children were already lagging behind perhaps

with low grades and attendance problems, which explains why BDH did not have

positive effects on their education.

Regarding labor market outcomes in the short-run, results were not conclusive about

whether the negative effect on the likelihood of having a job among treated 17 year

olds at the end of phase two was caused by a concurrent raise in enrollment for this

age group. Moreover, being exposed to BDH for two phases versus just one did not

give treated children an advantage in the labor market by the end of phase two.

The reason could be that children exposed during the two phases of the program

did not achieve more years of education after all. It is possible that people treated

during the two phases could be more vulnerable, and that other things that are

not captured by the Selben score like social networks or lack thereof, important to

access the job market, could be attenuating the effects of BDH on labor market

outcomes.

The lack of monitoring of the conditions is one of the factors that may explain why

BDH did not achieve its goal of improving educational attainment consistently in

the long run. Had the transfer been conditioned on school registration and on grade

progression it is likely that better results would have been found in terms of years of

education. In a study for Ecuador, Schady et al. (2008) found that the short-term

gains from BDH were significantly larger among households who believed that there

was a school enrollment requirement attached to transfers. Evidence from micro-

simulation models for Mexico and Brazil also conclude that conditions attached

to transfers explain the bulk of the effect of CCT programs on school enrollment

(Bourguignon et al., 2002; Todd and Wolpin, 2006). Another reason for the lack of

lasting effects is that the transfer was not big enough to compensate for the wages

that older children could get in the labor market. Finally, when there are other

children at home, there is no way to prevent parents from spending the transfer

on the older children instead of those below 18 years. This would also cause an

attenuation of the program’s impact.

Looking strictly to the effects of BDH on education and labor market outcomes, the

results from this paper stress the need for a redesign of BDH. Attanasio et al. (2012)

argue that for the case of PROGRESA, a revenue neutral change that increases the

grants for secondary school children while eliminating it for primary school children

would have positive effects on enrollment on the latter and minor effects on the

former. I would expect similar results for the case of BDH. Transfers should also

take into account the number of children in the household and should increase with
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age in order to reduce the opportunity cost from work for children aged 15 to 18

years. Furthermore, the government should set a limit for the maximum number of

years that families can remain in the program (possibly five years).

Finally, it is worth noting that even when BDH became inefficient in the long-run in

improving the educational outcomes of children, it does not mean necessarily that

this applies also to health outcomes. Future research should look at the long-term

effects of BDH on other outcomes to inform any reform to the program.
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9 Appendix

Data Appendix

The main challenge in linking the three waves of the RS is that many people do

not report an ID (particularly children in the first wave of RS). I built two short

panels (two-waves panel) and one long panel (three-waves panel). The size of the

three-waves panel is bounded by the number of matches between waves 1 and 2

because fewer people reported an ID in wave 1. Merging the three waves of the RS

by ID renders only 1,271,538 matches. For this reason, I use probabilistic record

linkage to match the individuals in the three waves of the RS covering the period

from 2001 to 2014. For that, I used the 4 names (2 names and 2 last names) and

a common household ID as match keys. The algorithm takes into account the fact

that some family members leave or join the household as time goes by.18.

Descriptive statistics

The main panel contains 2,961,079 individuals linked throughout the three waves

of the RS. The two short panels that follow individuals through waves 1 and 2, and

through waves 2 and 3, contain 4,631,690 and 5,439,749 individuals respectively.

In each wave of the RS, the sample in the long panel reproduces quite well the

distribution of the Selben score as shown in Figures 4, 5 and 6. In general, the

curves of the total RS population and the sample follow a normal distribution that

almost overlaps, especially for the first and third wave.

It is important to bear in mind that around 30 variables were involved in the

estimation of the Selben index, among them, characteristics of the household head,

features of the house, access to services, assets, etc. This is why it is considered

a good measure in order to characterize households. The fact that the Selben

distributions of the panel and the corresponding wave are very similar means that

the panel represents households of all socio-economic backgrounds that are in the

RS. As such, on average, people who did not report an ID (and could not be matched

because of it) are not disproportionately poorer. Only in the second wave does the

panel contain a slightly greater number of poorer households.

18400,000 individuals in the three-waves panel moved to (or from) other households. For more
details on the dataset see Paredes (2016)
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Figure 4: Kernel density graphs of the Selben score in the first wave of RS and and
the corresponding panel wave

Figure 5: Kernel density graphs of the Selben score in the second wave of RS and
and the corresponding panel wave
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Figure 6: Kernel density graphs of the Selben score in the third wave of RS and
and the corresponding panel wave

To correct for the fact that people with a valid ID are more likely to be in the panel,

I constructed sample weights so that the panel’s totals on key characteristics match

the totals of the corresponding wave of the RS. This process is known as raking or

sample-balancing. I included gender, education level, highest grade completed, the

number of years of education, birth year, employment, province, county and type

of house as auxiliary variables. 19.

19 See Paredes (2016) for more details
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