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Abstract 

This paper presents a two-step procedure to derive a credit crunch indicator for the Italian 

manufacturing sector. Using qualitative firm-level data over the years 2008-2018, nonlinear 

discrete panel data techniques are first applied in order to identify the loan supply curve 

controlling for firm-specific observable characteristics. In the subsequent step, the variation of the 

estimated supply curve that cannot be explained by proxies for loan demand is interpreted as the 

degree of credit squeeze prevailing in the economy at a given point in time. The empirical 

evidence shows that credit crunch episodes are less likely to occur during periods of sustained 

economic growth, or when credit availability for the manufacturing sector is relatively abundant. 

In contrast, a tight monetary policy stance or a worsening of the quality of banking balance sheets 

tend to increase the likelihood of experiencing a credit squeeze. 
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1. Introduction 

During periods of financial distress, troubles affecting the credit system are likely to spread to the 

real sector, especially in countries where the banking sector is the most relevant financing channel 

to the business sector and/or the productive structure is predominantly based on small and 

medium enterprises (Ferrando et al., 2014; Berger and Udell, 2006). In this respect, the Italian case 

looks particularly interesting not only because of the historical reliance of its productive structure 

on banks' external funds (Manaresi and Pierri, 2018) but also in view of the widely documented 

existence of credit rationing for most of the Italian firms (Guiso, 1998; Finaldi Russo and Rossi, 

2001; Becchetti and Trovato, 2002; Trovato and Alfo, 2006; Minetti and Zhu, 2011). It therefore 

comes as no surprise that the financial turmoil in the aftermath of the Global Recession and the 

sovereign debt crisis has stimulated a lively debate on the existence of credit crunch for the case 

of the Italian economy over the most recent years (see, among others, Presbitero et al., 2016). 

From a theoretical perspective, credit crunch episodes are commonly defined as significant shifts 

in the supply curve for loans when a tightening of credit conditions occurs (Bernanke and Lown, 

1991; Udell, 2009). In such circumstances seemingly eligible borrowers find hard to be financed 

due to asymmetric information and agency problems, forcing firms that rely on bank lending as a 

source of external finance to alternative funding channels (for instance, corporate debt issuances) 

or, when this is not a viable option, to insolvency. During bad times, however, it might also be the 

case that firms tend to demand less credit because investment plans are likely to be postponed, so 

that identifying whether the contraction in bank lending originates from a shift in supply or 

demand is a key empirical issue (Bernanke and Gertler, 1995; Oliner and Rudebusch, 1996). 

Accordingly, a proper identification of credit crunch episodes calls for identifying variations in the 

loan supply curve that cannot be explained by determinants of loan demand, including the 

creditworthiness of borrowers or the banks’ opportunity costs of providing risky loans. 

Against this backdrop, this work presents a micro-macro econometric approach to construct a 

credit crunch indicator for the Italian economy by exploiting the information content of firm-level 

(qualitative) data inquiring on their appraisal of the prevailing lending policy of the banking sector. 

The proposed approach has proved itself well suited to the purpose, as firstly documented by the 

work of Borensztein and Lee (2002) on the effects of the financial crisis and the ensuing credit 

crunch in Korea. Using German data, instead, Rottman and Wollmershauser (2013) have estimated 

the probability of a restrictive loan supply policy, while Fidrmuc and Hainz (2013) have studied 

how differences in regulation influence competition between domestic and foreign banks. For the 

case of Italy, Pigini et al. (2016) have used a sample of manufacturing firms to document state 

dependency in access to credit, that is the occurrence that firms having faced a credit contraction 

in the past may suffer from a negative impact on the outcome of a subsequent loan application. 

Using the same dataset of Pigini et al. (2016), Presbitero et al. (2016) have tried to address the 

question whether troubles in the banking system reflected in the bankruptcy of Lehman Brothers 

in September 2008 have spurred a credit crunch.  

Here we build on an updated version of the estimation sample of Pigini et al. (2016) and 

Presbitero et al. (2016) to derive a credit crunch indicator by following a two-step procedure along 
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the lines of Rottman and Wollmershauser (2013). Specifically, we apply nonlinear discrete 

outcome panel-data model to regress the responses to firms' assessment about the access to 

credit on a large set of observable firm-specific characteristics (like firm size, current and expected 

liquidity conditions, ability to operate abroad, current domestic and foreign order books, demand 

expectations) and regional controls (namely, export propensity, quality of credit markets, 

efficiency of the judicial system). The regression model also allows for a set of quarterly time 

dummies whose coefficients (and in particular the associated average probability effects) are 

interpreted as (unobserved) factors determining banks' loan supply unrelated to the 

creditworthiness of borrowers. Subsequently, the estimated time dummies are regressed on a 

synthetic indicator, which distils information about firms' demand for banking loans, including the 

opportunity costs of providing risky loans or the corporate spread (i.e. the difference between the 

corporate borrowing rate and the Euribor rate). As in Rottman and Wollmershauser (2013), the 

residuals of the second-stage are interpreted as shifts of the loan supply curve: the more positive 

the contribution of the residual term to the firms’ perception of a restrictive willingness to lend 
(holding constant the determinants of loan demand), the higher the likelihood that the economy 

has experienced a credit crunch episode. 

Using monthly data covering the period from March 2008 to June 2018, we document that the 

proposed credit crunch indicator flags the Global Recession of 2008-2009 as a period of credit 

crunch for the Italian economy followed by a relatively accommodating intermezzo coming to a 

halt with the eruption of the second recessionary episode in 2012-2014. In the most recent period, 

the unconventional monetary interventions by ECB seem to have somewhat improved banks’ 
willingness to lend as witnessed by the sizeable retracement of the indicator from its historical 

maxima, although signs of less favorable credit conditions emerge towards the end of the 

estimation sample. In order to identify the most relevant factors that might affect the evolvement 

over time of the proposed indicator, we have also conducted some scenario analyses under 

realistic data-availability conditions in order to cope with the publication calendar of the series 

involved in the regression (Leduc and Sill, 2013; Girardi, 2014). The empirical evidence based on 

fractional logit and probit regression models shows a negative and statistically significant effect of 

GDP growth and (relative) credit availability for the manufacturing sector on the probability of an 

episode of credit crunch. In contrast, rising interest rates or a worsening of the quality of banking 

balance sheets increase the likelihood of experimenting a credit squeeze. All in all, the model is 

able to capture a large share of total variability of the target series, with the GDP dynamics being 

by far the most relevant determinant of credit squeeze. These conclusions are robust with respect 

to a number of alternative specifications and estimation techniques. 

The rest of paper is organized as follows. Section 2 presents the data and the empirical framework 

of reference. The proposed credit crunch indicator and the scenario analyses are discussed in 

Sections 3 and 4. Robustness checks and extensions with respect to the baseline specification are 

presented in Section 5. Concluding remarks follow. 
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2. Firm heterogeneity and access to credit: a micro-econometric perspective 

2.1 Firm-specific conditions to access to credit 

Our analysis relies on the monthly firm-level data drawn from the manufacturing tendency survey 

carried out by the Italian National Institute of Statistics (ISTAT) within the Joint Harmonized EU 

Programme of Business and Consumer Surveys (European Commission, 2017). The survey covers 

non-financial firms with at least five employees, operating in the manufacturing sector. Data are 

typically qualitative, meaning that the survey conveys firms' opinions and the respondent firms 

have usually to choose among three possible answers arranged on a Likert scale. The sample has a 

longitudinal structure and it is stratified upon three dimensions: firm size, sectors of economic 

activity (NACE Rev. 2) and geographical areas (NUTS I level). The sample size is of about 4,000 

statistical units each month and embraces the period from March 2008 to June 2018. In particular, 

our estimation sample covers both the global financial crisis and the subsequent turmoil related to 

the sovereign debt crisis, when credit constraints were particularly important and had huge impact 

on economic outcomes (see, for instance Chodorow-Reich, 2014). 

A specific credit section - added to the survey since March 2008 - provides detailed information on 

firms’ assessment of recent short-term developments regarding their access to finance and covers 

bank-firm relationships. It is worth noticing that firms’ assessment about banks’ loan supply 
conditions cannot be considered a-priori as a valid proxy of credit constraints because firms’ 
answers to the questionnaire refer to a change in the credit conditions and are not informative 

about the intensity (that is the level) of the credit restrictions. Nonetheless, they may be 

conceived as a proxy for credit access, capturing in this way both formal and informal constraints 

(Ferrando et al. 2015). From a theoretical perspective, it is possible to interpret firms’ appraisal of 
banks’ loan supply conditions as informative about the location of the loan supply curve 

(Rottmann and Wollmershauser, 2013). In turn, working solely on the loan supply curve makes it 

possible to establish a direct link to the concept of credit crunch, which is typically defined as a 

significant contraction in the credit supply reflected in a tightening of credit conditions (Udell, 

2009)
1
.  

Qualitative information is collected at the level of the 𝑗-th firm (with 𝑗 = 1, … , 𝐽) doing business in 

the 𝑠-th sector (with 𝑠 = 1, … , 𝑆), located in region 𝑙 = 1, … , 𝐿 and observed at time 𝑡 = 1, … , 𝑇. 

In particular, firms’ assessment on credit conditions (𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡) - that constitutes the response 

variable along our empirical investigation - takes values 1, 2 and 3 according to whether firm’s 
evaluations of credit conditions are considered as ‘getting better’, ‘stable’ or ‘worsening’ with 
respect to the previous three months, respectively. 

 

2.2 Observable firms heterogeneity: candidate explanatory variables 

In addition to firms' self-reported evaluation of the credit conditions, the survey also collects some 

qualitative information about the developments of businesses’ economic activity, some of which 

                                                           
1
 On this issue, see also Costa et al. (2012).  
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may be used as explanatory variables in the analysis. In particular, the set of regressors includes 

variables aimed at capturing: (I) borrowing and liquidity conditions, (II) the degree of export 

orientation, (III) idiosyncratic demand shocks
2
. The survey also reports some structural 

information on the respondents (number of employees, economic branch and location of the 

economic activity); in this way, it is possible to estimate a credit crunch indicator through the lens 

of the firm’s heterogeneity by size, sector, and location. 

As for (I), there is wide consensus about the close relationship between firm size and access to 

external credit (Bernanke and Gertler, 1995; Carlino and DeFina, 1998; Ehrmann, 2005). In fact, 

firms of different size are differently exposed to credit squeeze: given a lower value of assets and a 

higher amount of required collateral, small firms are likely to be more credit constrained than 

large ones. In the balance-sheet view, given asymmetric information problems, access to credit 

depends on the value of firms’ assets, acting as collateral. Size matters also for the bank-lending 

view. A tighter monetary policy reduces the amount of credit for borrowers implying that small 

firms, that are likely to be more dependent on intermediated credit, are more adversely affected 

than large firms, which can rely on easier access to other forms of external finance. Accordingly, 

the (logarithm of the) number of employees (𝑒𝑚𝑝𝑗,𝑙,𝑠,𝑡) as a proxy for access to capital market 

(ability to borrow) is used. Internal liquidity may act as a key channel to finance firms’ investment 
decisions. In this case, different liquidity degrees of equities may affect differently entrepreneurs' 

investments (Kiyotaki and Moore, 2012). Liquidity conditions are captured by two dummy 

variables indicating whether the respondent evaluates its level of liquidity with respect to 

operational needs (𝑙𝑖𝑞𝑗,𝑙,𝑠,𝑡) as good, neither good or bad, or bad (reference category). Moreover, 

as firms’ production decisions might also be forward looking (Galí and Gertler, 1999; Galí et al., 

2001, among others), expectations are also taken into account: firms’ expectations about liquidity 
conditions are captured by dummy variables indicating whether the firm expects over the next 

three months liquidity conditions will improve, remain unchanged or deteriorate (reference 

category) (𝑙𝑖𝑞_𝑓𝑤𝑑𝑗,𝑙,𝑠,𝑡).  

Concerning (II), several studies show that firm heterogeneity in export propensity occurs in each 

industry (for instance, Bernard and Jensen, 2004; Melitz and Ottaviano, 2008). For this reason, the 

incidence of firm’s exports on total turnover (only available on a quarterly basis) is included in the 
model to measure the capacity to operate abroad (𝑒𝑥𝑝𝑗,𝑙,𝑠,𝑡). In a small open economy like Italy, 

where the domestic cycle has a closer link with the world one, being an intense exporter gives 

more opportunities to raise production activity during expansions and provides greater chances 

for a smooth production reduction over recession phases (thanks to market diversification).  

Finally, with reference to (III), it is well known that heterogeneity of firms along the cycle may also 

be caused by demand variations across producers (Foster et al., 2008).  In the present context, we 

exploit information concerning domestic (𝑜𝑟𝑑_𝑑𝑜𝑚𝑗,𝑙,𝑠,𝑡) and foreign (𝑜𝑟𝑑_𝑓𝑜𝑟𝑗,𝑙,𝑠,𝑡) orders to 

control for the cyclical demand conditions at home and abroad, respectively. More specifically, 

firms are asked to indicate whether the domestic and foreign demand level is high, normal or low 

                                                           
2
 Appendix A offers a detailed overview of the questions from the manufacturing survey used in this paper. For further details on 

the survey, see European Commission (2017). 
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over the reference period. Operationally, two dummies for both 𝑜𝑟𝑑_𝑑𝑜𝑚𝑗,𝑙,𝑠,𝑡 and 𝑜𝑟𝑑_𝑓𝑜𝑟𝑗,𝑙,𝑠,𝑡 

have been introduced, with the respective low levels being used as reference categories. As for 

the expected sign, they are likely to affect negatively the outcome variable. Information on 

demand expectations (𝑑𝑒𝑚_𝑒𝑥𝑝𝑗,𝑙,𝑠,𝑡) is also exploited: in detail, dummy variables indicating 

whether the firm expects that in the near future its demand level will increase, remain unchanged 

or decrease (reference category), respectively are used.  

2.3 Further controls: regional characteristics 

Firm-specific variables have been complemented with NUTS-3 data aimed at capturing the quality 

of local credit markets as well as other relevant factors characterizing the socio-economic context 

in which firms operate. It is widely understood that local characteristics such as financial 

development and institutions are likely to influence the long-term averages of the firm-level 

variables (Basile et al., 2014). If these local characteristics are not controlled for, the effect of firm 

level variables will be likely to reflect unobserved local factors that systematically affect the 

observed individual heterogeneity in the access to credit. As for local credit market conditions, for 

instance, a commonly held view is that firms, notably small and medium ones as those 

characterizing the Italian manufacturing sector, can only borrow locally (Petersen and Rajan, 

2002). Firms’ ability to access to external finance is thus directly tied to the degree of local credit 

market development (Guiso et al., 2013). Accordingly, the set of regressors has been extended so 

as to include covariates aimed at capturing the degree of local financial backwardness (𝑏𝑤𝑑) and 

the quality of local lending policies proxied by the ratio between bad loans and overall bank loans 

(𝑞𝑙𝑝).  

At the same time, firms’ productive levels are likely to reflect local market conditions, especially 
for the case of those selling (part of their production) abroad, as firms’ export propensity (𝑜𝑝𝑛) is 

typically found to be highly affected by local spillovers, i.e. by the export decisions of nearby firms 

(Koenig et al., 2010). In particular, following Basile et al. (2014) a local measure of trade openness 

based on the export shares in sectors characterized by high dynamic world demand (namely, 

chemical products and pharmaceutics, computer and electronics, electrical tools, and transport) is 

constructed in our context. Moreover, the contractual environment in which firms operate, the 

local judicial system (𝑖𝑢𝑠) may affect firms’ choices regarding investments, employment, 
organizational models, contractual relationships with counterparts and, thus, firms’ size 
(Giacomelli and Menon, 2012; Boschi et al., 2014).  

 

2.4 Dealing with non-observable heterogeneity: an Ordered Probit Model (OPM) approach 

Given the qualitative nature of the response variable, we resort to the OPM framework with 

individual Random Effects (RE-OPM). The basic notion underlying this approach is the existence of 

a latent or unobserved continuous variable, in our case 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗  representing firms’ opinion on 
credit conditions, ranging from − to +, which is related to a set of explanatory variables by the 

standard linear relationship: 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ = 𝛽′𝑥𝑗,𝑙,𝑠,𝑡 + 𝛾′𝑤𝑙 + 𝑧𝑠 + 𝜏𝑡 + 𝑢𝑗,𝑙,𝑠,𝑡      (1) 
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for 𝑗 = 1, … , 𝐽, 𝑙 = 1, … , 𝐿, 𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇, and where 𝑥𝑗,𝑙,𝑠,𝑡 is a vector of time-varying 

regressors of firm j, operating in sector s, located in region l at time t. 𝑤𝑙 is a vector of time-

invariant regional covariates, 𝛽’s and 𝛾’s denote the associated conformable parameter vectors, 𝑧𝑠 

stands for a vector of sector fixed effect, 𝜏𝑡  is a (quarterly) time fixed effect, while 𝑢𝑗,𝑙,𝑠,𝑡 is a 

random error term (McKelvey and Zavoina, 1975). In order to fully capture the effect of individual 

heterogeneity, the RE-OPM approach assumes that both time-invariant, 𝜐𝑗,𝑙,𝑠, and time-varying, 𝜀𝑗,𝑙,𝑠,𝑡, unobserved factors may contribute to explain firms’ assessments on access to credit. If we 

express the random error term as 𝑢𝑗,𝑙,𝑠,𝑡 = 𝜐𝑗,𝑙,𝑠 + 𝜀𝑗,𝑙,𝑠,𝑡, model (1) can be written as: 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ = 𝛽′𝑥𝑗,𝑙,𝑠,𝑡 + 𝛾′𝑤𝑙 + 𝑧𝑠 + 𝜏𝑡 + 𝜐𝑗,𝑙,𝑠 + 𝜀𝑗,𝑙,𝑠,𝑡     (2) 

where both error components are assumed to be normally distributed and orthogonal to the set 

of predictors. Since the underlying variance of the composite error, 𝜎𝑢2 = 𝜎𝜐2 + 𝜎𝜀2, is not 

identified, we normalise 𝜎𝜀2 = 1, so that 𝜌𝑢𝑗,𝑙,𝑠,𝑡1 ,𝑢𝑗,𝑙,𝑠,𝑡2 = 𝜎𝜐2(𝜎𝜐2 + 𝜎𝜀2)−1 = 𝜎𝜐2/(𝜎𝜐2 + 1), and, 

thus, 𝜎𝜐 = [𝜌/(1 − 𝜌)]1/2. Assuming a standard normal distribution for the error term yields the 

OPM
3
.  

Although 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗  is unobserved, it is related to the integer index 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 through the relationship 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 𝑚 ↔  𝜆𝑚−1 < 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ < 𝜆𝑚, with 𝑚 = 1, … , 𝑀, and 𝜆1 through 𝜆𝑚−1, are the 

unobserved thresholds defining the boundaries between different levels of 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡. Given the 

relationship between 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 and 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗  and indicating by Γ the set of all parameters and by 𝑍𝑗,𝑙,𝑠,𝑡 the model matrix, we can express the conditional cell probabilities (that is, the probability of 

observing a firm having a 𝑚 value of 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡) as: Pr(𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 𝑚|𝑍𝑗,𝑙,𝑠,𝑡) = Pr(𝜆𝑚−1 ≤ 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ ≤ 𝜆𝑚)  

                                = F (𝜆𝑚−1−Γ′𝑍𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 ≤ 𝜐𝑗,𝑙,𝑠+𝜀𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 ≤ 𝜆𝑚−Γ′𝑍𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 )    

                                = F (𝜆𝑚−Γ′𝑍𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 ) -F (𝜆𝑚−1−Γ′𝑍𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 )    (3) 

where 𝐹(. ) is the cdf for 
𝜐𝑗,𝑙,𝑠+𝜀𝑗,𝑙,𝑠,𝑡√1−𝜎𝜐2 .  Note that for 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 1, the second term on the right hand 

side of (3) drops out and for  𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 𝑀 the first term equals 1. Estimations are performed using 

maximum likelihood. Individual heterogeneity is unobserved; therefore, to obtain the 

unconditional log-likelihood we need to integrate the conditional log-likelihood. The integration is 

done with the Gauss–Hermite quadrature (25 points were chosen; Greene, 2005). 

Condition (3) implies that the RE-OPM is equivalent to 𝑀 − 1 binary regressions with the critical 

assumption (known as the parallel regression assumption, PRA) that Γ is identical across each 

regression. Should the PRA not hold, however, estimates may be biased and standard errors may 

                                                           
3
 Alternative distributions are the logit, log-logistic and the complementary log-log. 
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be inconsistent. Furthermore, it may be the case that the covariates have asymmetric effects 

within different categories, implying that the analysis based on the PRA may reveal no net effect. 

Extending to longitudinal data the modelling strategy of Maddala (1983) and Terza (1985), where 

the hypothesis of fixed threshold parameters is relaxed by making them dependent on the 

predictors, Boes and Winkelmann (2010) introduce time-invariant individual effects to vary across 

ordinal categories. Under the hypothesis of equal slope parameters for both time-varying and time 

invariant regressors, that is when the systems of equalities 𝛽1 =. . . = 𝛽𝑀−1 and 𝛾1 =. . . = 𝛾𝑀−1 

hold, the standard RE-OPM is nested into the generalized RE-OPM. The (implicit) restrictions 

embedded in the former can be tested against the latter by performing a 𝜒2-distributed LR test. 

Summing up, the RE-OPM gives consistent estimates under PRA. The generalized RE-OPM does 

not impose such a restriction, thus a test of RE-OPM consistency can be carried out by comparing 

the two models. 

 

3. Estimation results: the baseline case 

3.1 Controlling for unobserved heterogeneity 

When estimating model (2), one should bear in mind some intricacies related to the assumption of 

orthogonality between error components and the set of predictors. If the explanatory variables 

and the individual specific effects are correlated, the RE-OPM may lead to inconsistent estimates. 

A possible route to overcome this issue consists in including time averages of the time-varying 

variables (𝑥̅𝑗,𝑙,𝑡) as additional time-invariant regressors, commonly referred to as level effects, 

estimating in this way the so-called Mundlak-Chamberlain’s RE-OPM (Wooldridge, 2002). 

Modelling the expected value of the firm-specific error as a linear combination of the elements of 𝑥̅𝑗,𝑙,𝑡: 𝐸(𝜐𝑗,𝑙,𝑠|𝑥𝑗,𝑙,𝑠,𝑡) = 𝜓′𝑥̅𝑗,𝑙,𝑡         (4) 

so that 𝜐𝑗,𝑙,𝑠 = 𝜓′𝑥̅𝑗,𝑙,𝑡 + 𝜉𝑗,𝑙,𝑡, where 𝜓 is a conformable parameter vector and 𝜉𝑗,𝑙,𝑡 is an 

orthogonal error with respect to 𝜓′𝑥̅𝑗,𝑙,𝑡.  Accordingly, we may recast model (2) as: 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ = 𝛽′(𝑥𝑗,𝑙,𝑠,𝑡 − 𝑥̅𝑗,𝑙,𝑡)𝑥̇𝑗,𝑙,𝑠,𝑡 + (δ + 𝛽)′𝑥̅𝑗,𝑙,𝑡 + 𝛾′𝑤𝑙 + 𝑧𝑠 + 𝜏𝑡 + 𝜉𝑗,𝑙,𝑡 + 𝜀𝑗,𝑙,𝑠,𝑡  or 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡∗ = 𝛽′𝑥̇𝑗,𝑙,𝑠,𝑡 + 𝜓′𝑥̅𝑗,𝑙,𝑡 + 𝛾′𝑤𝑙 + 𝑧𝑠 + 𝜏𝑡 + 𝜉𝑗,𝑙,𝑡 + 𝜀𝑗,𝑙,𝑠,𝑡     (5) 

with δ + 𝛽 = 𝜓 and 𝑥̇𝑗,𝑙,𝑠,𝑡 = 𝑥𝑗,𝑙,𝑠,𝑡 − 𝑥̅𝑗,𝑙,𝑡 representing the so called shock effect. Also, we 

assume both errors 𝜉𝑗,𝑙,𝑡 and 𝜀𝑗,𝑙,𝑠,𝑡 to be normally distributed conditionally on 𝑍. Under these 

conditions, the same estimation procedure as discussed for the standard RE-OPM can be 

employed. Notice that the specification (2) is nested into (5) under the hypothesis that all the 

parameters collected in vector 𝜓 are statistically equal to zero. This assumption can be tested 

through a conventional 𝜒2-distributed likelihood ratio (LR) test. 

 

3.2 Empirical evidence 
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Column A of Table 1 presents the estimation results from a pooled-OPM specification. Overall, we 

find that borrowing and liquidity constraints (𝑙𝑖𝑞 and 𝑙𝑖𝑞_𝑓𝑤𝑑, respectively) exert a statistically 

significant role on the response variable. The same conclusion holds true when considering 

idiosyncratic demand factors (𝑜𝑟𝑑_𝑑𝑜𝑚 and 𝑜𝑟𝑑_𝑓𝑜𝑟). In contrast, firms’ appraisal of access to 
credit turns out to be weakly affected by export propensity (𝑒𝑥𝑝), as well as the regional control 

concerning the quality of local lending policies (𝑞𝑙𝑝).  

Controlling for unobserved time-invariant heterogeneity [Column (B)] gives qualitatively similar 

results, with a sizeable increase of the likelihood function. Nonetheless, RE-OPM estimates 

confirm that a number of important covariates have only marginally statistical effect on the 

response variable. A possible piece of explanation of these findings may be a specification error in 

the empirical framework owing to the PRA, according to which the effects of the predictors on the 

response variable are identical across categories. We assess empirically such a conjecture by 

relaxing the PRA for those covariates that turned out to be weakly significant or statistically 

insignificant in the RE-OPM specification (namely, export propensity along with local time-

invariant controls). Testing for PRA produces a LR test statistics (40.48) above the critical values of 

a distribution with 6 degrees of freedom at any significance level.  

Consequently, Column (C) presents the estimation results of the generalized RE-OPM model, 

where Equation 1 (Equation 2) refers to the probability that the response variable moves from 

improving to stable (from stable to worsening) firms’ assessment of access to credit. While the 
impact of borrowing and liquidity conditions as well as idiosyncratic demand factors remain 

unchanged with respect to the previous specifications, the split reveals some interesting 

asymmetric effects for the remaining classes of predictors. Export propensity and local controls 

have a significant impact on firms’ assessment on access to credit in Equation 1 only. In Equation 

2, instead, these predictors play no role except for the degree of openness (𝑜𝑝𝑛), which turns out 

to be marginally significant. 

Table 1 

As the parameters of a latent model do not have a direct interpretation per se, we refer to average 

probability effects (𝑎𝑝𝑒) to summarize what outcome value would be expected given the patterns 

observed between covariates and the outcome itself. By averaging the slope of the regression 

surface with respect to a given covariate across every individual firms in the data, 𝑎𝑝𝑒's can be 

conceived as the average (or typical) outcome we would expect to observe were the model an 

accurate representation of the data-generating process for the response variable. For inference 

purposes, we compute standard errors of the 𝑎𝑝𝑒's using the Delta method. 

Specifically, we use the estimation results from Column (C) of Table 1 to compute the 𝑎𝑝𝑒's for 

both the deviations from the individual average (shock effects) and the differences between 

individuals (level effects). In the discussion of the results collected in Table 2, we focus on the 𝑎𝑝𝑒's relative to Pr(𝑐𝑟𝑒 = 3), as we are primarily interested on the determinants of firms' 

appraisal of worsening conditions to external financing. It follows that the 𝑎𝑝𝑒’s for Equation 3 

corresponds to the (negative) sum of the 𝑎𝑝𝑒’s relative to Equation 1 and 2. Furthermore, we 
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concentrate the discussion of the results on the shock effects, as they mimic the typical within 

effects in panel models
4
. 

Table 2 

As for firm size (𝑒𝑚𝑝) the results document a negative and statistically significant effect, 

suggesting that more productive (larger) firms tend to have a relatively less negative assessment 

of credit conditions than the one reported by smaller productive units. The magnitude of the 𝑎𝑝𝑒's 

indicates that for an increase of 1 per cent in firm size, the average predicted probability of firms 

facing worsening credit access falls by around 1 per cent (see the column labelled “Shock effect” 
under “Equation 3”). As expected, both current and expected liquidity conditions (i.e. the rows of 
the Table referring to 𝑙𝑖𝑞 and 𝑙𝑖𝑞_𝑓𝑤𝑑) have a remarkable negative effect on the response 

variable, with the estimated magnitude of the 𝑎𝑝𝑒's falling in the range of 7-13 percentage points. 

By contrast, export intensity (𝑒𝑥𝑝) does not exert a statistically significant impact, while an 

increase of (both domestic and foreign) orders or expected demand conditions (namely, 𝑜𝑟𝑑_𝑑𝑜𝑚, 𝑜𝑟𝑑_𝑓𝑜𝑟 and 𝑑𝑒𝑚_𝑒𝑥𝑝) tends to reduce the probability of worsened credit conditions 

of about 1-3 percentage points. Finally, trade openness (𝑜𝑝𝑛) is found to have a statistically 

negative impact, suggesting that firms located in relatively more open regions (and thus more 

oriented to foreign competition) tend to exhibit better access to external finance. Overall, the 

evidence from the 𝑎𝑝𝑒's relative to the level effects yields to similar conclusions, with magnitudes 

typically larger than the corresponding shock effects; the only exception is given by firm size 

(although the effect remains negative and statistically significant). Moreover, we find a remarkable 

similarity between the 𝑎𝑝𝑒's for Pr(𝑐𝑟𝑒 = 1) and Pr(𝑐𝑟𝑒 = 2), suggesting that respondent firms 

tend to discriminate between worsening credit conditions vis-à-vis improving or stable conditions 

to access external sources of funding. 

The 𝑎𝑝𝑒's of the quarterly time dummies on Pr(𝑐𝑟𝑒 = 3) (the probability of a worsening in firms' 

self-reported assessment of their access to external credit) is plotted in Figure 1 (continuous black 

line) along with the 95 per cent confidence intervals (grey area). Interestingly, the evolution over 

time of the aggregate indicator of worsening access to external finance conditional on the 

individual level of creditworthiness of firms, 𝑎𝑝𝑒𝑡(𝑅𝐸)
, signals two main spikes in correspondence of 

the two crisis periods included in the estimation sample, namely the global recession of 2008-2009 

and the ensuing debt crisis of 2012-2014.  

Figure 1 

 

 

 

                                                           
4
 As pointed out by Caporale et al. (2012), among others, the parameters of the linear regression model are similar to those for a 

probit model if the distances between the thresholds are nearly identical. In the present context, the fixed thresholds 𝜆's in 

condition (3) are statistically significant at the 1 per cent level and different from one, indicating that the three ordinal categories 

are not equally spaced. 
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4. Deriving the credit crunch indicator 

4.1 Matching supply and demand 

Economic theory posits that credit squeezes generally arise as the result of asymmetric 

information between the borrower and the lender or because of exogenous factors like the 

implementation of more stringent regulatory rules. As for information asymmetry problems, 

borrowers may have incentives to withhold information when asking for credit. Lenders seek to 

tackle this issue by practicing screening (Allen, 1990) and monitoring (Rajan and Winton, 1995) so 

as to mitigate their exposure to counterparty risk. Besides controlling for the creditworthiness of 

borrowers, the identification of credit crunch episodes calls for controlling for banks’ opportunity 
costs of providing risky loans (Bernanke and Lown, 1991) which is commonly epitomized by a 

measure of safe real interest rate. At the same time, it is well known that the implementation of 

some risk-based regulatory rules governing lenders’ allocation of resources may have a significant 
negative impact on the supply of credit (Berger and Udell, 1994). The reduction in credit may thus 

coincide with banks having difficulties in meeting the minimum regulatory capital requirements in 

periods associated with a deterioration in asset quality (Pazarbasioglu, 1996). In particular, we use 

the real long-term interest rate (deflated by the annualized rate of change of the headline price 

index excluding energy, 𝑟𝑙𝑟𝑡, as in Holston et al., 2017, among others) as a proxy for changes in the 

banks’ opportunity costs of providing risky loans. An increase in the safe real interest rate would 
make banks prone to invest more of their funds in risk-free assets, thus reducing the aggregate 

loan supply, ceteris paribus (Bernanke and Blinder, 1988). Hence, a positive relationship between 𝑟𝑙𝑟𝑡 and 𝑎𝑝𝑒𝑡(𝑅𝐸)
 is expected. 

The relationship between the (perceived) credit availability and interest rates might also be 

affected by a contraction of the overall volume of credit available for the economy, regardless of 

the corporate borrowing rate on loans charged by banks. In keeping with this argumentation, 

financial intermediaries are expected to be reluctant in extending credit lines with compressed 

credit spread levels (defined as the difference between the corporate borrowing rate and the 

Euribor rate, 𝑐𝑠𝑝𝑡). Accordingly, we include that measure of credit spread to control for potential 

macroeconomic effects on the estimated 𝑎𝑝𝑒𝑡(𝑅𝐸)
 indicator. The assumption that banks are more 

willing to lend as the margins on corporate borrowing rate increase implies an expected negative 

relationship with the dependent variable. Moreover, we have also included a more direct control 

for the overall level loan demand of enterprises by resorting to the index of loan demand (𝑖𝑙𝑑𝑡) 

from the Bank Lending Survey carried by Bank of Italy. As an increase of 𝑖𝑙𝑑𝑡 signals a rise in the 

maximum amount which enterprises are entitled to borrow (in the form of either new credit lines 

or credit lines previously granted but not yet used) from the banking sector at any given time, an 

inverse relationship between 𝑖𝑙𝑑𝑡 and the evolution of 𝑎𝑝𝑒𝑡(𝑅𝐸)
 is expected to hold. 

Following Rottmann and Wollmershauser (2013), we derive an indicator of credit crunch by 

regressing the indicator capturing a worsening in the access to external funds conditional on the 

individual level of creditworthiness of firms, 𝑎𝑝𝑒𝑡(𝑅𝐸)
 reported in Figure 1, on the above discussed 

controls. In other words, we take the ape of 𝜏𝑡 in equation (3), whose estimates are reported in 

Table (2) Equation (3), and regress on: long term interest rate, 𝑟𝑙𝑟𝑡, a measure of credit spread, 
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𝑐𝑠𝑝𝑡, and on the loan demand index, 𝑖𝑙𝑑𝑡. The residual term of this second stage regression, 𝑐𝑐𝑖𝑡, 

is likely to capture the mismatch between firms' appraisal of banks' lending policies and their 

determinants from the demand side. The resulting mismatch between supply and demand is 

expected to measure the degree of credit squeeze prevailing in the economy at a certain period 𝑡. 

Owing to the limited temporal extension of our estimation sample, we distil the information 

content conveyed by the candidate explanatory variables into a synthetic indicator by following a 

“nonmodel based” aggregation scheme as discussed in Marcellino (2006). Specifically, 𝑟𝑙𝑟𝑡, as well 

as 𝑐𝑠𝑝𝑡 and 𝑖𝑙𝑑𝑡 (with the inverted sign) are standardised so as to have zero mean and unit 

standard deviation. This step helps avoiding that the resulting (simple) average index of demand 

factors (𝑖𝑑𝑥𝑡), which is calculated in the subsequent step, is dominated by variables with a 

particularly pronounced degree of volatility and/or an incomparably high absolute mean.  

 

4.2 Estimation results 

Estimation results from a standard linear regression model 𝐸[𝑎𝑝𝑒𝑡(𝑅𝐸)] = 𝜙0 + 𝜙1𝑡𝑟𝑛𝑑 + 𝜙2𝑖𝑑𝑥𝑡       (6) 

are reported in Table 3 (Equation A.), where the deterministic component includes an intercept 

and a linear trend (𝑡𝑟𝑛𝑑). We document a positive relationship between the response variable and 

the synthetic indicator 𝑖𝑑𝑥𝑡: the estimated parameter is statistically significant at the 1 per cent 

nominal level of significance (or even better) according to the corresponding heteroskedasticity 

and autocorrelation consistent standard errors as devised by Newey and West (1987). Moreover, 

the linear regression is able to explain about three-fourth of the temporal variation of firms’ 
perception of a restrictive banks’ willingness to lend. For comparison purposes, we also report the 
estimation results for the regressions of the response variable on each standardized individual 

component of our synthetic supply index (Equation B., C., and D., respectively). Overall the results 

from these alternative specifications turn out be less satisfactory in terms of both log-likelihood 

and adjusted R-square with respect to our preferred specification (Equation A.), giving support to 

the choice of using a synthetic supply factor measure rather than a specific individual component 

of 𝑖𝑑𝑥𝑡.  

Table 3 

As in Rottmann and Wollmershauser (2013), the residual term from the regression given by 

Equation (6), 𝑐𝑐𝑖𝑡, that is the distance between the observed value of 𝑎𝑝𝑒𝑡(𝑅𝐸)
 and its predicted 

value, can be interpreted as loan supply shocks.  Specifically, the more positive the contribution of 

loan supply shocks to the firms’ perception of a restrictive willingness to lend, ceteris paribus, the 

higher the probability that the economy is affected by a credit squeeze. On the other hand, 

negative values of 𝑐𝑐𝑖𝑡 would signal relatively favourable credit conditions, while the residual is 

expected to be zero in equilibrium. In order to ease economic interpretability, we project 𝑐𝑐𝑖𝑡 

onto the [0,1] interval according to the following monotonic transformation:  𝑐𝑐𝑖̃𝑡 ≡ (tanh(𝑐𝑐𝑖𝑡) + 1)/2, where tanh (. ) stands for the hyperbolic tangent function, which plots 

the transformed values in the [-1,+1] interval. It is worth noticing that the proposed 
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transformation makes 𝑐𝑐𝑖̃𝑡’s readings comparable to those of popularly monitored diffusion 

indexes like the Purchasing Manager Index (PMI) series, with the value of 0.5 representing the 

critical threshold to discriminate between periods of credit squeeze (𝑐𝑐𝑖𝑡 > 0) and those when 

credit constraints are not binding (𝑐𝑐𝑖𝑡 < 0)5.  Given the latent character of the concept of credit 

crunch, there is no track record of "known" credit squeeze in the past. One can therefore only 

inquire whether an indicators' evolvement is plausible. As Figure 2 shows, the 𝑐𝑐𝑖̃𝑡 indicator flags 

the global recession of 2008-2009 as the most severe episode of credit crunch experienced by the 

Italian economy over the last decade (with a peak of 0.57 in 2008q4). In the ensuing mild recovery, 

the loan supply of banks was laxer until the second recessionary episode in 2012-2014 related to 

the eruption of the sovereign debt crisis and the subsequent fiscal policy measures that 

compressed domestic demand. In the most recent period, dominated by the unconventional 

monetary interventions by ECB, the indicator is found to stand far away from its maxima. This 

evidence suggests that banks’ willingness to lend was perceived as relatively accommodating 

although traces of less favourable credit conditions emerge at the very end of the sample when 

macroeconomic conditions have shown signs of slackening. 

Figure 2 

 

4.3 Using the credit crunch indicator for scenario analyses 

In an effort to sharpen our understanding of how macroeconomic developments affect credit 

availability in the economy, this Section presents a scenario analysis to assess the extent to which 

factors like economic growth, the stance of monetary policy or the domestic money supply, as well 

as the quality of banks’ balance sheet may influence the evolvement over time of the proposed 

credit crunch indicator (see, among others, Laker, 1999). 

Operatively, 𝑐𝑐𝑖̃𝑡 is modelled as a function of: (a) the log-level of GDP (in first differences), 𝑞𝑡𝑔𝑑𝑝
; 

(b) the short-term euro repo rate, 𝑞𝑡𝑠ℎ𝑟; (c) the share of credit supply to the manufacturing sector 

over the overall lending to the private sector, 𝑞𝑡𝑚𝑎𝑛; (d) the growth rate of bad debts of non-

financial corporations, 𝑞𝑡𝑛𝑝𝑙
. The estimation exercise is performed under realistic data-availability 

conditions so that the current values of our credit crunch indicator are regressed on lagged values 

of the explanatory variables in order to cope with the publication calendar of the series involved in 

the regression (Leduc and Sill, 2013; Girardi, 2014). Specifically, the estimation sample covers the 

period from 2008q2 to 2018q2. The latest available information for our credit crunch indicator is 

available around two weeks after the end of the quarter of reference (when the first quarter’s 
Bank Lending Survey release is disseminated). At that date, we have information on the evolution 

of GDP up to the previous calendar quarter; likewise, quarterly figures for credit supply and non-

performing loans (NPL) reflect lagged data availability, while contemporaneous data on interest 

                                                           
5
 The chosen monotonic transformation yields virtually identical results to the logit function, [ 11+exp(−𝑐𝑐𝑖𝑡)], while it looks preferable 

to alternative like those based on the standardized normal distribution Φ(𝑐𝑐𝑖𝑡/𝑠𝑑𝑐𝑐𝑖), where 𝑠𝑑𝑐𝑐𝑖  indicates the sample standard 

deviation of 𝑐𝑐𝑖𝑡, or the normalization (𝑐𝑐𝑖𝑡 − 𝑐𝑐𝑖min)/(𝑐𝑐𝑖max − 𝑐𝑐𝑖min), where 𝑐𝑐𝑖min and 𝑐𝑐𝑖max denote the sample minimum 

and maximum value, respectively, because it turns out to be less dependent on possible outliers in the sample. 
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rates may be used. Table 4 presents summary statistics of the observable market characteristics in 

our sample.  

Table 4 

As Table 4 shows 𝑐𝑐𝑖̃𝑡 is constrained by construction within the interval between 0 and 1. Because 

of the bounded nature of the dependent variable, we cannot implement an ordinary least squares 

(OLS) regression, 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) = 𝜃0 + 𝜃1𝑞𝑡𝑔𝑑𝑝 + 𝜃2𝑞𝑡𝑠ℎ𝑟 + 𝜃3𝑞𝑡𝑚𝑎𝑛 + 𝜃4𝑞𝑡𝑛𝑝𝑙 = 𝑄𝑡𝜃    (7) 

since the predicted values from the OLS regression cannot be guaranteed to lie in the unit 

interval
6
.  An alternative to the standard OLS specification is 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) = 𝐺(𝑄𝑡𝜃) where 𝐺(. ) 

satisfies 0 < 𝐺(𝑧) <  1, for all 𝑧 ∈ ℜ, ensuring that the predicted 𝑐𝑐𝑖̃𝑡 lies in [0, 1] interval. The 

most common functional forms for 𝐺(. ) are the standard cumulative normal distribution (i.e. the 

fractional-probit model case) and the logistic function (i.e. the fractional-logit model case)
7
.  Given 

the non-linearity of the functions 𝐺(𝑄𝑡𝜃), the partial effects of the explanatory variables on 𝑐𝑐𝑖̃𝑡 

are not constant, in contrast to the standard OLS case. Table 5 reports the 𝑎𝑝𝑒's relative to both 

specifications (fractional-logit and fractional-probit regression models). 

Table 5 

The estimation results show a negative and statistically significant effect of GDP growth and 

(relative) credit availability for the manufacturing sector on the dependent variable, while rising 

interest rates or a worsening of the quality of banking balance sheets tend to increase the 

likelihood of experimenting a credit squeeze. Specifically, a GDP increase of 1 per cent is expected 

to reduce the level of the indicator of 1.6 percentage points. The magnitude (in absolute terms) of 

the 𝑎𝑝𝑒’s relative to the short interest rate and the share of loans in manufacturing over the total 

private sector turn out to be broadly similar (+2.6 and -2.2 percentage points, respectively), while 

a less relevant effect emerges for the dynamics of bad loans. All in all, both the fractional-logit and 

fractional-probit model specifications are able to capture about 60 per cent of the overall deviance 

of the response variable, with the GDP dynamics being by far the most relevant determinant of 

credit squeeze, as the decomposition of the explained deviance shows. 

To assess how the predicted 𝑐𝑐𝑖̃𝑡 varies over the business cycle, we present in Figure 3 (Panel A.) a 

simulation exercise (based on the fractional-logit regression model) where the response 

predictions 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) are computed under the assumption that GDP growth moves progressively 

from its maximum (corresponding to quarterly growth rate of about +1.1 per cent) to its minimum 

(corresponding to roughly -2.8 per cent), by keeping the remaining regressors fixed to their sample 

averages. The bold squares plot the resulting partial effects, while the grey lines identify the 

amplitude of the corresponding 95 per cent confidence region. The reported evidence is largely 

consistent with the idea that a relatively favorable economic environment tends to lower the 

                                                           
6
 See, among others, Bastos (2010) and Caporale and Girardi (2013) for a similar application of fraction regression models. 

7
 Note that with the identity function the fraction regression model collapses to the standard OLS regression. The quasi-maximum 

likelihood estimator of 𝜃 in condition (7) is consistent regardless of the distribution of 𝑐𝑐𝑖̃ conditional on the 𝑄’s (Papke and 
Wooldridge, 1996). 
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counterparty risk, thereby making banks more inclined to extend loans. During boom times, firms 

(as well as households) are likely to commit larger proportions of their income flows to debt 

servicing, thus establishing a counter-cyclical relationship between credit squeeze and economic 

activity dynamics (Lowe and Rohling 1993). 

Figure 3 

In Panel B., C. and D. of Figure 3 we replicate the same exercise, by moving the interest rate, the 

share of total loans to the manufacturing sector, and the NPL dynamics, alternatively. The effects 

exerted by variables proxying the stance of monetary policy (the short-term interest rate) and the 

degree of (sector) credit availability (the ratio of loans to the manufacturing sector over the total 

loans to the private sector) on the response variable are largely consistent with both the bank 

lending and the balance sheet channels of monetary policy transmission, as Panel B. and Panel C. 

of Figure 3 show
8
. In both cases, worsened monetary and credit conditions (corresponding to 

interest rate increases and manufacturing to total loans ratio decreases, respectively) tend to 

affect negatively the aggregate loan supply and thereby favoring the occurrence of credit squeeze 

episodes. At the same time, the supply of credit may be crucially affected by the level of bad loans 

in the economy. Panel D. documents that the degree of credit squeeze gets progressively more 

severe when the degree of credit quality tends to deteriorate. This finding is in line with the idea 

that an increased NPL burden implies higher risk weights on bank loan portfolios in the calculation 

of regulatory capital ratios. Consequently, banks are likely to reduce the size of their balance sheet 

to cope with increased risk weights and capital absorption, eventually leading to a decline in loan 

supply (Froot and Stein, 1998; Van den Heuvel, 2008). 

 

5. Extensions 

5.1 Logit-FE and linear-TSLS specifications 

So far, we have controlled for unobserved heterogeneity by introducing long-term averages of 

firm-level variables in the RE-OPM because, within a panel data Fixed Effect OPM (FE-OPM), there 

is no way to solve the incidental parameter problem and the cut-off parameters cannot be 

distinguished from the fixed effect parameters (identification problem). A possible alternative to 

the specification based on Wooldridge (2002) builds on the dichotomization of the ordered 

responses so as to apply the logit fixed effect (logit-FE) model proposed by Chamberlain (1980). 

We argue that the logit-FE specification is well-suited for the issue at stake in the light of the 

evidence of a clear dichotomous pattern as discussed in Section 3.2. Accordingly, we have 

                                                           
8 

Specifically, the bank lending channel operates through banks' liability side. It posits that a monetary contraction, by draining 

reserves from the banking system, tends to leave banks with fewer loanable funds, thereby reducing lending (Bernanke and Blinder 

1988). At the same time, a less accommodative monetary policy increases banks’ external finance premium pushing banks to 
respond by reducing the total amount of credit they are willing to supply (Stein 1998). When considering the balance sheet 

channel, a tight monetary policy operates through banks' asset side by reducing the net worth of borrowers with weaker 

fundamentals (Bernanke et al, 1996; Bernanke and Gertler 1989). Furthermore, a less accommodative monetary stance tends to 

increase the real value that banks must pay to retain deposits, which causes banks to fund fewer long-term projects (Diamond and 

Rajan, 2006).
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generated a dummy variable 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 taking value of 0, if 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 1 or 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 2, and 1, if 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 = 3. 

It is worth noticing that the logit-FE framework does not solve the issue related to the potential 

simultaneity between the dependent variable (firms’ appraisal of the access to external finance) 

and the right-hand side regressors. In our context, the problem looks quite complex because of 

the discrete (or limited) nature of both the dependent and the independent endogenous variables. 

Luckily, the seminal work by Angrist (2001) has shown that in the case of a discrete (or limited) 

dependent variable the 𝑎𝑝𝑒's can be consistently estimated by means of a linear two stage least 

squares (linear-TSLS). This result holds true even when the discrete or limited endogenous 

regressors are concerned because only the OLS estimation of the first-stage is guaranteed to 

produce first-stage residuals that are uncorrelated with fitted values and covariates. When the 

model is not correctly specified, indeed, the prediction of a nonlinear first-stage (like the one 

based on logit or probit models) can yield to inconsistent estimates. Accordingly, a nonlinear first-

stage is not necessary, or even not desirable, to the point that is called as the "forbidden 

regression" (Angrist and Pischke 2009, p. 143). 

In operative terms, we have regressed 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 on the same set of explanatory variables as in the 

logit-FE regression equation, instrumenting the potentially endogenous variable, the 𝑥𝑗,𝑙,𝑠,𝑡’s (i.e. 
from 𝑒𝑚𝑝𝑙 to 𝑑𝑜𝑚_𝑒𝑥𝑝_2 in Table 1) with each first lag, plus the second lag for 𝑙𝑖𝑞_1 . The choice 

of the instruments is motivated by the fact that 𝑥𝑗,𝑙,𝑠,𝑡−1 is correlated with 𝑥𝑗,𝑙,𝑠,𝑡, and the second 

order lag has been included in order to make computable the Sargan-J statistic, checking for the 

quality of the entire set of instruments
9
. To assess the relevance of the instruments, we report in 

Table 6 the correlation between each potentially endogenous variable 𝑥𝑗,𝑙,𝑠,𝑡 with its own 

instrument, 𝑥𝑗,𝑙,𝑠,𝑡−1 (as well as 𝑥𝑗,𝑙,𝑠,𝑡−2 for the case of 𝑙𝑖𝑞_1). As the Table shows, each 𝑥𝑗,𝑙,𝑠,𝑡 is 

strongly correlated with its lag 𝑥𝑗,𝑙,𝑠,𝑡−1 and the same holds true for 𝑙𝑖𝑞_1𝑡−2 with 𝑙𝑖𝑞_1𝑡, validating 

the relevance of the instruments. 

Table 6 

The second step regression is reported in Table 7 along with some additional tests about the 

quality of the estimates. The Sargan-J does not reject the null of validity of the instruments at the 

usual confidence levels (p-value of 0.28); both the tests for weak- and under-identification reject 

the null hypothesis, while the F-test rejects the null of irrelevance of the entire set of regressors. 

 

Table 7 

 

 

 

                                                           
9
 Since a large number of instruments can overfit the instrumented variables, leading to inaccurate estimations and wrong 

inference in the Sargan-J test (Roodman, 2009) we have kept the number of over-identifying restrictions to its minimum, i.e. one. 

For this reason, only one second order lag has been included in the set of regressors. 
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5.2 Credit squeeze and macroeconomic fundamentals: a re-assessment 

Before using 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 as a dependent variable in a model matching supply and demand of banking 

loans, we must assess whether it can be considered as a valid proxy for credit constraint perceived 

by firms, so that collapsing answers one and two into a single one does not engender losses of 

useful information. As an initial step, we have plotted in Figure 4 the 𝑎𝑝𝑒's of the time dummies of 

the baseline Generalized RE-OPM specification (𝑎𝑝𝑒𝑡(𝑅𝐸)
, continuous black line) against those from 

the logit-FE alternative (𝑎𝑝𝑒𝑡(𝐹𝐸)
, dashed line). The two series show very similar dynamics 

(correlation coefficient of 0.96), suggesting that no relevant information is wasted. A similar result 

is obtained when considering the temporal evolution of the 𝑎𝑝𝑒's relative to the temporal 

dummies for the linear-TSLS specification (𝑎𝑝𝑒𝑡(𝑇𝑆𝐿𝑆)
, dotted line), which shows a degree of 

association with its baseline counterpart of about 95 per cent. 

Figure 4 

Against this backdrop, we have re-estimated equation (6) by using 𝑎𝑝𝑒𝑡(𝐹𝐸)
 and 𝑎𝑝𝑒𝑡(𝑇𝑆𝐿𝑆)

 in place 

of 𝑎𝑝𝑒𝑡(𝑅𝐸)
, alternatively. Estimation results are reported in Table 8, while Figure 5 plots the 

resulting residual terms of the regression that have been normalised as detailed in Section 4.2 

(dashed and dotted lines, respectively). In both cases, the credit crunch indicator is found to be at 

its height during the quarters of the 2008-2009 recession. Subsequently, a temporary retracement 

of the indicator can be detected until the eruption of the 2012-2014 debt crisis. After then, the 

degree of credit squeeze prevailing in the Italian economy turns out to be comfortably below the 

peaks occurred in the occurrence of the two recessionary episodes, pointing to a relatively positive 

firms' appraisal of their access to banking loans.  

Table 8 

Figure 5 

As a final step of our robustness check, we have replicated the scenario analysis discussed in 

Section 4.3. Specifically, model (7) has been estimated by regressing, alternatively, the 

(standardised) residuals of the logit-FE and the linear-TSLS specifications on the same set of 

covariates (namely, GDP growth, the short-term euro repo rate, changes of the share of credit 

supply to the manufacturing sector over the overall lending to the private sector and the growth 

rate of bad debts of non-financial corporations), with the 𝑎𝑝𝑒's (computed from a fractional-logit 

specification) are reported in Table 9
10

. Overall, we find confirmation of the sign of the 𝑎𝑝𝑒's 

discussed in Section 4.3, although the goodness of fit measure tends to be slightly smaller than the 

share of explained deviance for the baseline specification. Nonetheless, GDP growth remains the 

most relevant factor when explaining the temporal evolution of the credit squeeze measure.  

Table 9 

                                                           
10

 For the sake of brevity, we do not report the empirical evidence from the fractional-probit alternative. The estimated 𝑎𝑝𝑒's as 

well as the conclusions from the scenario analysis exercises are virtually identical to those reported in the main text. The complete 

set of results is available from the authors upon request. 
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Panel A. and Panel B. of Figure 6 plot how the response variable varies when each predictor moves 

progressively from its maximum to its minimum by keeping the remaining regressors fixed to their 

sample averages. As in Figure 3, the bold squares indicate the resulting partial effects, while the 

grey lines refer to the amplitude of the corresponding 95 per cent confidence region. In both 

Panels, the upper left graph confirms the existence of a clear counter-cyclical relationship 

between credit crunch and economic activity dynamics. In contrast, the degree of credit squeeze 

gets progressively more severe when stance of monetary policy gets progressively more restrictive 

(the short-term interest rate, upper right graph) or when the amount of (sector) credit availability 

(the ratio of loans to the manufacturing sector over the total loans to the private sector, lower left 

graph) tends to decline.  

Figure 6 

 

6. Concluding remarks 

This work presents a credit crunch indicator for the Italian economy by exploiting firm-level 

information drawn from a representative sample of manufacturing firms over the years from 2008 

to 2018. The proposed empirical procedure consists in two main steps. Firstly, we apply nonlinear 

discrete outcome panel-data model to regress the responses to firms' assessment about the 

access to credit on a large set of observable firm-specific and regional characteristics. The 

regression model also allows for a set of quarterly time dummies whose estimated coefficients are 

interpreted as (unobserved) factors determining banks' loan supply once structural characteristics 

of the borrowers have been controlled for. Subsequently, the temporal profile of the stance of the 

bank lending policies perceived by firms has been regressed on a synthetic indicator that distils 

information relative to loan demand factors, including proxies for banks’ opportunity costs of 
providing risky loans. The residuals of this second-stage are thus interpreted as shifts of the loan 

supply curve: the more positive the contribution of the residual term to the firms’ perception of a 
restrictive willingness to lend, the higher the likelihood that the economy has experienced an 

episode of credit crunch. 

The empirical evidence shows that the probability of credit crunch episodes lowers during periods 

of sustained economic growth and or when credit availability for the manufacturing sector is 

relatively abundant. In contrast, rising interest rates or a worsening of the quality of banking 

balance sheets tend to increase the likelihood of experimenting a credit squeeze. We also 

document that these results are robust to a number of alternative specifications and estimation 

techniques. From an operative viewpoint, the proposed methodology relies on timely available 

data, so that it might have useful applications for institutional purposes and policy analyses. 

Admittedly, no attempt has been made in this paper to investigate whether and to what extent 

the severity of credit crunch has affected in an asymmetric way large and small-medium 

enterprises or firms located in the Centre-North with respect to those operating in Southern 

regions. In this respect, further research would be desirable by splitting the sample according to 

firm employment, as in Criscuolo et al. (2012), or to the spatial location of the productive units, as 
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proposed in Basile et al. (2014). These issues are beyond the scope of the present study, and will 

be the subject of future research. 
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Appendix 

Our analysis uses data collected within the Joint Harmonised EU Programme of Business and 

Consumer Surveys, which inquires every month about 120,000 enterprises, as well as 40,000 

consumers, across Europe (see European Commission, 2017). As for the business sectors, 

enterprises are asked to assess the development of concepts like production, order books, or 

employment. Data are typically qualitative in nature, in the sense that they convey firms' opinions 

- rather than quantitative information - on production, demand, inventories and other variables 

relevant at the firm level. Questions usually ask the firm to choose among three possible answers 

arranged on a Likert scale. As for the temporal horizon, survey questions refer to the present 

situation, developments over the past three months or expectations for the next three months. 

Table A.1 reports the questions of the manufacturing survey and the associated firm-specific 

variables that have been used in the empirical analysis. 

Table A.1 - Survey questions 

Variable Definition Survey question 

𝑒𝑚𝑝 
Number of employees 

(quantitative question) 
What is the number of employees in the current month? 

𝑙𝑖𝑞 
Liquidity (level), with respect 

to operational needs 

In comparison with the previous month, do you consider the current 

level of your liquidity conditions as good, mediocre or bad? 

𝑙𝑖𝑞_𝑓𝑤𝑑 
Liquidity (level), next 3 

months 

Do you expect your liquidity conditions to improve, remain unchanged 

or deteriorate over the next three months? 

𝑒𝑥𝑝 
Export turnover ratio 

(quantitative question) 

What is the export turnover ratio (in percentage terms) in the current 

quarter? 

𝑜𝑟𝑑_𝑑𝑜𝑚 
Domestic order books (level), 

current 

Excluding seasonal changes, do you consider the current level of your 

domestic order book as high, normal or low? 

𝑜𝑟𝑑_𝑓𝑜𝑟 
Export order books (level), 

current 

Excluding seasonal changes, do you consider the current level of your 

export order book as high, normal or low? 

𝑑𝑒𝑚_𝑒𝑥𝑝 
Total order books (level), next 

3 months 

Do you expect your total order books to increase, remain unchanged or 

decrease over the next three months? 

For the case of Italy, the National Institute of Statistics (ISTAT) collects information in the form of 

panels stratified by geographical location, sector and size. Respondents are extracted from the 

official register of active firms. As for the manufacturing sector, the samples size is about 4,000 

firms. Interviews are conducted through Computer Assisted Telephone Interviewing (CATI) in the 

first two weeks of each month and the results are typically published before the end of the 

reference month and not revised afterwards.  

Since March 2008, a specific section focusing on the bank-firm relationship has been added to the 

manufacturing survey in order to collect some information about credit access conditions. 
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Specifically, firms are asked to report their perceptions on credit conditions, with three possible 

answers arranged on a Likert scale (getting better, stable, getting worse). This question 

corresponds to the variable discussed in Section 2.1. Subsequently, firms have to indicate whether 

or not their appraisal is based on a formal contact with a credit institution. 

If it is the case, respondents are asked to specify whether: 

a) their request for credit has been obtained at the same conditions as three months before;  

b) their request for credit has been obtained at worsening conditions. 

If it is the case, a question is additionally asked about its determinants by allowing for the 

following possible answers: (a) higher interest rates, (b) higher collateral (real or personal 

guarantees), (c) limits to the amount of loans, (d) higher costs; 

c) their request for credit has been denied. 

If it is the case, a question is additionally asked about whether credit is due to (a) an 

explicit denial by the financial institution or (b) withdraw by the firm due to excessively 

unfavorable conditions imposed by the financial institution;  

d) the contact with the bank was only motivated by a request of information. 
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Tables 

Table 1 – Ordered probit estimation results 

 
(A) Pooled-OPM (B) RE-OPM 

(C) Generalized RE-OPM 

 Equation 1 Equation 2 

 
Shock 

effect 

Level 

effect 

Shock 

effect 

Level 

effect 

Shock 

Effect 

Level 

effect 

Shock 

effect 

Level 

effect 𝑒𝑚𝑝 
-0.047*** -0.007** -0.046** -0.012** -0.046** -0.013** -0.046** -0.013** 

(0.016) (0.003) (0.018) (0.006) (0.018) (0.006) (0.018) (0.006) 𝑙𝑖𝑞_1 
-0.546*** -0.953*** -0.598*** -1.160*** -0.598*** -1.159*** -0.598*** -1.159*** 

(0.015) (0.019) (0.016) (0.039) (0.016) (0.039) (0.016) (0.039) 𝑙𝑖𝑞_2 
-0.391*** -0.700*** -0.428*** -0.799*** -0.428*** -0.799*** -0.428*** -0.799*** 

(0.013) (0.019) (0.013) (0.040) (0.013) (0.040) (0.013) (0.040) 𝑙𝑖𝑞_𝑓𝑤𝑑_1 
-0.428*** -1.011*** -0.465*** -1.208*** -0.465*** -1.206*** -0.465*** -1.206*** 

(0.016) (0.038) (0.016) (0.080) (0.016) (0.079) (0.016) (0.080) 𝑙𝑖𝑞_𝑓𝑤𝑑_2 
-0.281*** -0.551*** -0.315*** -0.677*** -0.315*** -0.676*** -0.315*** -0.676*** 

(0.011) (0.025) (0.011) (0.060) (0.011) (0.060) (0.011) (0.060) 𝑒𝑥𝑝 
-0.000 -0.000 -0.000 -0.000 -0.001* -0.001* 0.000 -0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 𝑜𝑟𝑑_𝑑𝑜𝑚_1 
-0.094*** -0.310*** -0.101*** -0.418*** -0.101*** -0.419*** -0.101*** -0.419*** 

(0.017) (0.038) (0.017) (0.076) (0.017) (0.076) (0.017) (0.080) 𝑜𝑟𝑑_𝑑𝑜𝑚_2 
-0.077*** -0.089*** -0.085*** -0.080* -0.085*** -0.080* -0.085*** -0.080* 

(0.010) (0.020) (0.010) (0.044) (0.010) (0.044) (0.010) (0.044) 𝑜𝑟𝑑_𝑓𝑜𝑟_1 
-0.078*** -0.108*** -0.088*** -0.128** -0.088*** -0.131** -0.088*** -0.131** 

(0.015) (0.031) (0.015) (0.058) (0.015) (0.058) (0.015) (0.058) 𝑜𝑟𝑑_𝑓𝑜𝑟_2 
-0.034*** 0.012 -0.043*** -0.035 -0.043*** -0.036 -0.043*** -0.036 

(0.010) (0.020) (0.010) (0.038) (0.010) (0.038) (0.010) (0.038) 𝑑𝑒𝑚_𝑒𝑥𝑝_1 
-0.129*** -0.277*** -0.147*** -0.230*** -0.147*** -0.229*** -0.147*** -0.229*** 

(0.013) (0.034) (0.013) (0.074) (0.013) (0.074) (0.013) (0.074) 𝑑𝑒𝑚_𝑒𝑥𝑝_2 
-0.089*** -0.266*** -0.102*** -0.203*** -0.102*** -0.203*** -0.102*** -0.203*** 

(0.011) (0.031) (0.011) (0.067) (0.011) (0.067) (0.011) (0.066) 𝑏𝑤𝑑 
0.016*** 0.023* 0.048*** 0.011 

(0.006) (0.013) (0.016) (0.014) 𝑖𝑢𝑠 
0.018*** 0.002 -0.020** 0.011 

(0.004) (0.007) (0.009) (0.008) 𝑜𝑝𝑛 
-0.053*** -0.090** -0.135*** -0.073* 

(0.018) (0.040) (0.048) (0.042) 𝑞𝑙𝑝 
-0.160 0.039 0.056 0.040 

(0.147) (0.286) (0.359) (0.306) 𝑂𝑏𝑠 163,077 163,077 163,077 𝐿𝐿 -111,557 -102,703.62 -102,683.38 𝜒2 [0.000] [0.000] [0.000] 𝐴𝐼𝐶 223,300.3 205,576.3 205,565.3 𝐵𝐼𝐶 224,230.5 206,516.5 206,545.5 𝜒2 − 𝑃𝑅𝐴    

Note. As detailed in Section 2.1, the dependent variable is given by firms' appraisal of the credit condition(𝑐𝑟𝑒). Time dummies, 

albeit included among the regressors, are omitted for ease of exposition. Standard errors are in parentheses. Single, double and 

triple stars indicate significance at the 10, 5 and 1 percent levels, respectively. 𝑂𝑏𝑠 indicates the number of observations. 𝜒2 is the 

test statistics for the hypothesis of null joint impact of covariates on the dependent variable. 𝐿𝐿, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 indicate the value of 

the log-likelihood function, the Akaike Information Criterion, and the Bayesian Information Criterion, respectively. 𝜒2 − 𝑃𝑅𝐴 is the 

test statistics for symmetric impact of the covariates on the dependent variable across categories, with the p-value in square 

brackets. Firm-specific regressors and regional characteristics are defined in Section 2.2 and 2.3, respectively. 
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Table 2 – Average Probability Effects 

 Equation 1 Equation 2 Equation 3 

 
Shock 

effect 

Level 

effect 

Shock 

effect 

Level 

effect 

Shock 

effect 

Level 

effect 𝑒𝑚𝑝 
0.538** 0.156** 0.476** 0.138** -1.013** -0.293** 

(0.216) (0.0726) (0.191) (0.0640) (0.406) (0.137) 𝑙𝑖𝑞_1 
7.050*** 13.67*** 6.242*** 12.11*** -13.29*** -25.78*** 

(0.195) (0.487) (0.201) (0.429) (0.348) (0.838) 𝑙𝑖𝑞_2 
5.052*** 9.431*** 4.473*** 8.350*** -9.525*** -17.78*** 

(0.155) (0.487) (0.154) (0.414) (0.278) (0.864) 𝑙𝑖𝑞_𝑓𝑤𝑑_1 
5.486*** 14.23*** 4.857*** 12.60*** -10.34*** -26.82*** 

(0.192) (0.941) (0.188) (0.859) (0.350) (1.759) 𝑙𝑖𝑞_𝑓𝑤𝑑_2 
3.721*** 7.970*** 3.294*** 7.056*** -7.015*** -15.03*** 

(0.130) (0.713) (0.126) (0.630) (0.236) (1.326) 𝑒𝑥𝑝 
0.00150 0.00255 0.00133 0.00226 -0.00283 -0.00481 

(0.00280) (0.00386) (0.00248) (0.00341) (0.00529) (0.00727) 𝑜𝑟𝑑_𝑑𝑜𝑚_1 
1.192*** 4.946*** 1.055*** 4.379*** -2.247*** -9.326*** 

(0.203) (0.892) (0.180) (0.796) (0.382) (1.683) 𝑜𝑟𝑑_𝑑𝑜𝑚_2 
1.003*** 0.938* 0.888*** 0.831* -1.892*** -1.769* 

(0.116) (0.518) (0.104) (0.460) (0.219) (0.978) 𝑜𝑟𝑑_𝑓𝑜𝑟_1 
1.040*** 1.544** 0.920*** 1.367** -1.960*** -2.911** 

(0.178) (0.684) (0.158) (0.609) (0.335) (1.292) 𝑜𝑟𝑑_𝑓𝑜𝑟_2 
0.504*** 0.419 0.446*** 0.371 -0.950*** -0.790 

(0.120) (0.447) (0.107) (0.396) (0.227) (0.842) 𝑑𝑒𝑚_𝑒𝑥𝑝_1 
1.739*** 2.704*** 1.540*** 2.394*** -3.279*** -5.097*** 

(0.155) (0.869) (0.140) (0.768) (0.292) (1.635) 𝑑𝑒𝑚_𝑒𝑥𝑝_2 
1.203*** 2.398*** 1.065*** 2.123*** -2.267*** -4.522*** 

(0.131) (0.785) (0.118) (0.692) (0.247) (1.475) 𝑏𝑤𝑑 
-0.560*** 0.277 0.283 

(0.174) (0.226) (0.289) 𝑖𝑢𝑠 
0.194* -0.518*** 0.323* 

(0.107) (0.140) (0.169) 𝑜𝑝𝑛 
1.171** 0.425 -1.596* 

(0.536) (0.704) (0.890) 𝑞𝑙𝑝 
1.785 2.503 -4.288 

(4.156) (5.628) (6.760) 

Note. As detailed in Section 2.1, the dependent variable is given by firms' appraisal of the credit condition (𝑐𝑟𝑒). Average 

probability effects (𝑎𝑝𝑒's) are defined in Section 2.4. Values are multiplied by 100. Time dummies, albeit included among the 

regressors, are omitted for ease of exposition. Standard errors in parentheses. Single, double and triple stars indicate significance at 

the 10, 5 and 1 percent levels, respectively. Firm-specific regressors and regional characteristics are defined in Section 2.2 and 2.3, 

respectively. 
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Table 3 – Second stage regression 

 Equation A. Equation B. Equation C. Equation D. 𝑐𝑛𝑠𝑡 
1.715 0.663 3.386 4.646** 

(2.618) (1.761) (2.486) (1.851) 𝑡𝑟𝑛𝑑 
-0.199** -0.121 -0.278*** -0.324*** 

(0.094) (0.073) (0.084) (0.067) 𝑖𝑑𝑥𝑡  
4.870*** 

. . . 
(0.941) 𝑟𝑙𝑟𝑡  . 

4.552*** 
. . 

(0.741) 𝑐𝑠𝑝𝑡 . . 
-3.386*** 

. 
(0.093) 𝑖𝑙𝑑𝑡  . . . 

-2.910*** 

(0.652) 𝑂𝑏𝑠 41 41 41 41 𝐿𝐿 -118.627 -121.023 -123.538 -125.950 𝑅𝑎𝑑𝑗2  0.752 0.675 0.558 0.503 

Note. As detailed in Section 3.2, the dependent variable is given by the average probability effects of the quarterly time dummies 

on Pr(𝑐𝑟𝑒 = 3), i.e. the probability of a worsening in firms' self-reported assessment of their access to external credit. The 

deterministic component is given by a time polynomial of order one, with 𝑐𝑛𝑠𝑡 and 𝑡𝑟𝑛𝑑 denoting the intercept and the linear 

trend, respectively. The regressors entering Equations A., B., C., and D. are defined in Section 4.1. Heteroskedasticity and 

autocorrelation consistent standard errors à la Newey and West (1987) are reported in parenthesis. 𝑂𝑏𝑠 indicates the number of 

observations, while 𝐿𝐿 indicates the value of the log-likelihood function. 𝑅𝑎𝑑𝑗2  is the adjusted coefficient of determination.  
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Table 4 – Credit crunch indicator and its determinants: descriptive statistics 

 𝑐𝑐𝑖̃ 𝑞𝑔𝑑𝑝 𝑞𝑠ℎ𝑟 𝑞𝑚𝑎𝑛 𝑞𝑛𝑝𝑙 𝑀𝑒𝑎𝑛 0.500  -0.112 0.777 -0.004 3.619 𝑀𝑖𝑛 0.465  -2.791 0.000 -0.817 -11.229 𝑀𝑎𝑥 0.569  1.104 4.250 0.451 20.366 𝐼 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 0.486  -0.559 0.050 -0.167 0.977 𝑀𝑒𝑑𝑖𝑎𝑛 0.497  0.220 0.580 0.012 4.296 𝐼𝐼𝐼 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 0.514  0.393 1.000 0.143 6.752 

Note. As detailed in Section 4.2, 𝑐𝑐𝑖̃  refers to the proposed credit crunch indicator which is given by the [0,1] transformation of the 

regression residual from equation (6). As for its determinants, 𝑞𝑔𝑑𝑝 denotes the first difference of the log-level of real GDP; 𝑞𝑠ℎ𝑟  is 

the short-term euro repo rate; 𝑞𝑚𝑎𝑛 stands for the quarterly change of the share of credit supply to the manufacturing sector over 

the overall lending to the private sector; 𝑞𝑛𝑝𝑙  is the growth rates of bad debts of non-financial corporations (see also Section 4.3). 
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Table 5 – Average partial effects from fractional regression model estimates  

 
 

Fractional-logit Fractional-probit 

𝑞𝑔𝑑𝑝 
-0.016*** -0.016*** 

(0.003) (0.003) 𝑞𝑠ℎ𝑟 
0.026*** 0.026*** 

(0.005) (0.005) 𝑞𝑚𝑎𝑛 
-0.022*** -0.022*** 

(0.008) (0.008) 𝑞𝑛𝑝𝑙 0.001** 0.001** 

(0.000) (0.000) 

Deviance explained 0.603 0.601 

Of which due to: 

𝑞𝑔𝑑𝑝 0.232 0.231 𝑞𝑠ℎ𝑟 0.142 0.144 𝑞𝑚𝑎𝑛 0.102 0.102 𝑞𝑛𝑝𝑙 0.127 0.124 

Note. The conditional mean of the credit crunch indicator is computed as 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) = 𝐺(𝑄𝑡𝜃), where 𝐺(. ) is either the logistic 

function (column "Fractional-logit") or the standard cumulative normal distribution (column "Fractional-probit"). The estimated 

values refer to the average partial effects. Standard errors in parentheses. Single, double and triple stars indicate significance at the 

10, 5 and 1 percent levels, respectively. See also Table 4. 
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Table 6 - First stages 

 
𝑒𝑚𝑝 𝑙𝑖𝑞_1 𝑙𝑖𝑞_2 𝑙𝑖𝑞_𝑓𝑤𝑑_1 𝑙𝑖𝑞_𝑓𝑤𝑑_2 𝑒𝑥𝑝 𝑜𝑟𝑑_𝑑𝑜𝑚_1 𝑜𝑟𝑑_𝑑𝑜𝑚_2 𝑜𝑟𝑑_𝑓𝑜𝑟_1 𝑜𝑟𝑑_𝑓𝑜𝑟_2 𝑑𝑒𝑚_𝑒𝑥𝑝_1 𝑑𝑒𝑚_𝑒𝑥𝑝_2 

𝑥𝑗,𝑙,𝑠,𝑡−1 
83.04*** 29.20*** 31.35*** 16.71*** 17.39*** 77.07*** 26.73*** 25.62*** 29.91*** 24.42*** 26.76*** 17.09*** 

(1.987) (0.598) (0.799) (0.689) (0.566) (0.408) (0.782) (0.566) (0.736) (0.566) (0.587) (0.584) 

𝑥𝑗,𝑙,𝑠,𝑡−2 
 17.71***           

 (0.491)           𝑂𝑏𝑠 120,894 120,894 120,894 120,894 120,894 120,894 120,894 120,894 120,894 120,894 120,894 120,894 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 6,518 6,518 6,518 6,518 6,518 6,518 6,518 6,518 6,518 6,518  6,518 

𝑅2 0.995 0.894 0.289 0.176 0.0537 0.0693 0.132 0.189 0.205 0.123 0.0793 0.0283 

Note. The Table reports the correlation between each endogenous variable 𝑥𝑗,𝑙,𝑠,𝑡  with its own instrument, 𝑥𝑗,𝑙,𝑠,𝑡−1 (as well as 𝑥𝑗,𝑙,𝑠,𝑡−2 for the case of 𝑙𝑖𝑞_1). Columns indicate the instrumented 

variable and the first row indicates the instrument, i.e. the corresponding first lag, 𝑥𝑗,𝑙,𝑠,𝑡−1. The second row reports the second lag only for 𝑙𝑖𝑞_1. Robust standard errors in parentheses.  Values 

are multiplied by 100. Single, double and triple stars indicate significance at the 10, 5 and 1 percent levels, respectively. Other regressors, not reported for ease of exposition, are exactly the same 

as those reported in Table 7, i.e. firm-specific regressors, time dummies and regional characteristics, as defined in Section 2.2 and 2.3, respectively 
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Table 7 – Comparison between Logit and instrumental variable 

 Logit-FE Linear-TSLS 𝑒𝑚𝑝 
-1.440*** 0.244 

(0.368) (0.771) 𝑙𝑖𝑞_1 
-8.564*** -25.24*** 

(1.932) (1.599) 𝑙𝑖𝑞_2 
-6.787*** -19.79*** 

(1.528) (1.487) 𝑙𝑖𝑞_𝑓𝑤𝑑_1 
-5.344*** -18.50*** 

(1.230) (3.023) 𝑙𝑖𝑞_𝑓𝑤𝑑_2 
-5.770*** -19.23*** 

(1.301) (2.352) 𝑒𝑥𝑝 
0.00340 0.0218** 

(0.00479) (0.0103) 𝑜𝑟𝑑_𝑑𝑜𝑚_1 
-1.398*** 1.707 

(0.488) (1.936) 𝑜𝑟𝑑_𝑑𝑜𝑚_2 
-1.759*** 0.298 

(0.439) (1.366) 𝑜𝑟𝑑_𝑓𝑜𝑟_1 
-0.651* -2.846* 

(0.350) (1.661) 𝑜𝑟𝑑_𝑓𝑜𝑟_2 
-0.892*** -2.652* 

(0.283) (1.438) 𝑑𝑒𝑚_𝑒𝑥𝑝_1 
-2.169*** -0.852 

(0.541) (1.959) 𝑑𝑒𝑚_𝑒𝑥𝑝_2 
-1.968*** -1.140 

(0.480) (2.250) 𝑏𝑤𝑑 
0.929 -0.456 

(1.100) (1.477) 𝑖𝑢𝑠 
-0.303 0.228 

(0.548) (0.886) 𝑜𝑝𝑛 
-2.708 3.622 

(3.057) (5.071) 𝑞𝑙𝑝 
12.36 4.554 

(21.54) (34.05) 𝑂𝑏𝑠 131,367 120,133 𝑃(𝐹)  0.00 𝑃(𝑈𝑛𝑑𝑒𝑟)  0.00 𝑊𝑒𝑎𝑘 𝑖𝑑 𝑡𝑒𝑠𝑡 (𝐹)  142.2 𝑃(𝑆𝑎𝑟𝑔𝑎𝑛 − 𝐽)  0.275 

Note. The dependent variable is the binary dummy 𝑐𝑟𝑒𝑗,𝑙,𝑠,𝑡 defined in Section 5.1. 𝐴𝑝𝑒's in column "Logit-FE", coefficients in 

column "Linear-TSLS", robust standard errors in parentheses. Values are multiplied by 100. Single, double and triple stars indicate 

significance at the 10, 5 and 1 percent levels, respectively. Firm-specific regressors and regional characteristics are defined in 

Section 2.2 and 2.3, respectively, time dummies, albeit included among the regressors, are omitted for ease of exposition. 𝑂𝑏𝑠 

indicates the number of observations; 𝑃(𝐹) represents the p-value of the joint F-test of no relevance of the entire set of regressors; 𝑃(𝑢𝑛𝑑𝑒𝑟) refers to the p-value of the null hypothesis of under-identification; 𝑊𝑒𝑎𝑘 𝑖𝑑 𝑡𝑒𝑠𝑡 (𝐹) is the F-test of the null hypothesis 

of weak identification; 𝑃(𝑆𝑎𝑟𝑔𝑎𝑛 − 𝐽) is the p-value of the Sargan-J test of the null hypothesis of instrument validity. 
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Table 8 –Second stage regression: robustness 

 

Logit-FE Linear-TSLS 𝑐𝑛𝑠𝑡 
2.596 3.594 

(2.08) (2.247) 𝑡𝑟𝑛𝑑 
-0.288*** -0.299*** 

(0.073) (0.089) 𝑖𝑑𝑥𝑡  
3.813*** 4.027*** 

(1.097) (0.749) 𝑂𝑏𝑠 41 41 𝐿𝐿 -119.781 -122.819 𝑅𝑎𝑑𝑗2  0.709 0.544 

Note. As detailed in Section 5.2, the dependent variable is given by the average probability effects of the quarterly time dummies 

from the estimates of the Logit-FE and the Linear-TSLS. The deterministic component is given by a time polynomial of order one, 

with 𝑐𝑛𝑠𝑡 and 𝑡𝑟𝑛𝑑 denoting the intercept and the linear trend, respectively, while 𝑖𝑑𝑥 is the index of demand factors presented in 

Section 4.1. Heteroskedasticity and autocorrelation consistent standard errors à la Newey and West (1987) are reported in 

parenthesis. 𝑂𝑏𝑠 indicates the number of observations, while 𝐿𝐿 indicates the value of the log-likelihood function. 𝑅𝑎𝑑𝑗2  is the 

adjusted coefficient of determination.  
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Table 9 – Average partial effects from fractional regression model estimates  

 
 

Logit-FE Linear-TSLS 

𝑞𝑔𝑑𝑝 
-0.018*** -0.028*** 

(0.003) (0.004) 𝑞𝑠ℎ𝑟 
0.018*** 0.031*** 

(0.004) (0.007) 𝑞𝑚𝑎𝑛 
-0.016*** -0.027*** 

(0.007) (0.010) 𝑞𝑛𝑝𝑙 0.001*** 0.002*** 

(0.000) (0.001) 

Deviance explained 0.497 0.644 

Of which due to: 

𝑞𝑔𝑑𝑝 0.270 0.326 𝑞𝑠ℎ𝑟 0.078 0.111 𝑞𝑚𝑎𝑛 0.076 0.105 𝑞𝑛𝑝𝑙 0.073 0.102 

Note. As detailed in Section 5.2, the dependent variable is given by the average probability effects of the quarterly time dummies 

from the estimates of the Logit-FE and the Linear-TSLS. The conditional mean of the credit crunch indicator is computed as 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) = 𝐺(𝑄𝑡𝜃), where 𝐺(. ) is the logistic function. See also Table 4 and Table 5. 
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Figures 

Figure 1 – Generalized RE-OPM estimation results: 𝑎𝑝𝑒’s of fixed time effects 

 

Note. The continuous black line represents the average probability effects of the quarterly time dummies on Pr(𝑐𝑟𝑒 = 3), i.e. the 

probability of a worsening in firms' self-reported assessment of their access to external credit. The grey area identifies the 95 per 

cent confidence interval.  
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Figure 2 – Generalized RE-OPM estimation results: credit crunch indicator 

 

 

Note. The graph shows the normalised version of the residual term of the regression equation (6) as discussed in Section 4.2: the 

more positive (negative) the contribution of the residual term to the firms’ perception of a restrictive willingness to lend, the higher 
(lower) the likelihood that the economy has experienced an episode of credit crunch. The value of 0.5 line identifies the critical 

threshold to discriminate between periods of credit squeeze and those when credit constraints are not binding. 
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Figure 3 – Generalized RE-OPM estimation results: scenario analysis  

Panel A: 𝑞𝑔𝑑𝑝 Panel B: 𝑞𝑠ℎ𝑟 

  

Panel C: 𝑞𝑚𝑎𝑛 Panel D: 𝑞𝑛𝑝𝑙 

  

Note. The bold squares indicate how the conditional mean 𝐸(𝑐𝑐𝑖̃𝑡|𝑄𝑡) varies when a given predictor in equation (6) moves 

progressively from its maximum to its minimum, by keeping the remaining regressors fixed to their sample averages. The 

simulation exercise is computed at selected sample values (namely, maximum, 90
th

 percentile, third quartile, median, first quartile, 

10
th

 percentile, minimum). Vertical grey lines identify the amplitude of the corresponding 95 per cent confidence region. See also 

Table 4. 
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Figure 4 – 𝐴𝑝𝑒’s of fixed time effects: evidence from Logit-FE and Linear-TSLS alternatives 

 

Note. The continuous black line refers to the results for the baseline Generalized RE-OPM specification (and plotted in Figure 1), 

while the dashed and dotted lines are relative to the logit-FE and linear-TSLS alternatives, respectively.  
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Figure 5 – Credit crunch indicator: evidence from Logit-FE and Linear-TSLS alternatives 

 

 

Note. The continuous black line refers to the results for the baseline Generalized RE-OPM specification, while the dashed and 

dotted lines are relative to the logit-FE and linear-TSLS alternatives, respectively. See also Figure 2. 
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Figure 6 – Scenario analysis: evidence from Logit-FE and Linear-TSLS alternatives 

I. Logit-FE specification 

Panel A: 𝑥𝑔𝑑𝑝 Panel B: 𝑥𝑠ℎ𝑟 

  

Panel C: 𝑥𝑚𝑎𝑛 Panel D: 𝑥𝑛𝑝𝑙 

  

II. Linear-TSLS specification 

Panel A: 𝑥𝑔𝑑𝑝 Panel B: 𝑥𝑠ℎ𝑟 

  

Panel C: 𝑥𝑚𝑎𝑛 Panel D: 𝑥𝑛𝑝𝑙 

  

Note. See Figure 3 and Table 4.   


