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Abstract

We propose a double mixed Poisson autoregression in which the intensity, scaled by

a unit mean independent and identically distributed (iid) mixing process, has di¤erent

regime speci�cations according to the state of a �nite unobserved iid chain. Under

some contraction in mean conditions, we show that the proposed model is strictly

stationary and ergodic with a �nite mean. Applications to various count time series

models are given.

Keywords: Double mixed Poisson autoregression, negative binomial mixture IN-

GARCH model, ergodicity, weak dependence, contraction in mean.

1. Introduction

Count time series analysis has recently seen an "explosive" interest (see e.g. Davis and Liu,

2016) where numerous models and methods have been introduced. Zhu et al. (2010) proposed

a Poisson (�nite) mixture integer-valued ARCH (Mixture INARCH : MINARCH(q)) model

with an independent and identically distributed (iid) mixing sequence. In this model, the

�Faculty of Mathematics, University of Science and Technology Houari Boumediene, Algeria.
yMathematics Department, Qassim University, Saudi Arabia.
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conditional distribution is a �nite mixture of Poisson distributions where the intensity of each

component (or regime) is a linear function of the q lagged observations. The MINARCH

model essentially aims at accounting for multimodality of the marginal distribution, a fact

that is frequently observed in real applications. It turns out that this model may also

represent other well-known characteristics of count time series frequently observed in practice

such as conditional overdispersion and asymmetry. To gain in model parsimony, Diop et al.

(2016) generalized Zhu et al.�s (2010) model so as to include lagged values of each regime

intensity. The generalization (Mixture INGARCH : MINGARCH(p; q)) was made in the

spirit of Haas et al. (2004) so that each regime-speci�c has its own INGARCH dynamic.

Speci�cally, all lagged intensities in each regime are conditioned on the current value of the

regime process. This device, called by Aknouche and Rabehi (2010) the present mixture,

avoids the model to have the well-known path dependence problem (see e.g. Haas et al.

2004 in the mixture real-valued GARCH case). In particular, it easily allows to estimate

the parameters using the EM algorithm. Zhu et al. (2010) and Diop et al. (2016) studied

the properties in mean and the autocovariance structure of their models. However, some

important path-properties such as strict stationarity and ergodicity, which are essential for

asymptotic inference, have not been considered.

In this paper we study the ergodicity of a double mixed Poisson autoregression that gen-

eralizes Zhu et al.�s (2010) model in three directions: i) Firstly, the conditional distribution

of the proposed model is a superposition of two mixtures of Poisson distributions. The �rst

mixture allows for �nitely many regime speci�cations for the intensity. It is described by a

�nite-valued iid sequence called the regime process. The second mixture, which is a scaling

factor of the intensity, controls the conditional distribution of each regime (Poisson, nega-

tive binomial, Poisson-inverse Gaussian...). ii) Secondly, the model permits the inclusion of

lagged values of the intensity in each regime which are rather driven by the lagged values

(in the respective order) of the regime sequence (see Example 2.4 below). Our speci�cation

is then di¤erent from the one of Diop et al. (2016) and is characterized by the path depen-

dence of the intensity. iii) Thirdly, the intensity of each regime is a general function of its
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lagged values and of the observations. In particular, in�nite linear or nonlinear INARCH(1)

representations are allowed.

Thus the model we propose is quite general and appears to have a great potential �exi-

bility compared to the Poisson mixture case at the cost of just a few additional parameters.

From the statistical point of view, while this model has the path dependence problem which

makes the maximum likelihood estimation infeasible, it may in principle be estimated by

other quite comparable estimation methods such as the generalized method of moment and

Bayesian MCMCmethods (see Francq and Zakoïan, 2008 and Bauwens et al., 2010 for similar

real-valued mixture GARCH cases).

Under some contraction in mean conditions we show that the proposed model admits a

strictly stationary and ergodic solution with a �nite mean. In some cases, the su¢cient con-

ditions are also necessary for ergodicity. Our analysis follows the weak dependence approach

by Doukhan and Wintenberger (2008) and Doukhan et al. (2012); see also Aknouche et al.

(2018).

The rest of this note is outlined as follows. Section 2 de�nes the model and gives some

important examples. Section 3 proposes contraction in mean conditions for ergodicity of

two important subclasses: the double mixed generalized INARCH(1) model and the double

mixed generalized INGARCH(1; 1) model. Applications to certain important subclasses of

count time series models are considered. Section 4 concludes while proofs of the main results

are postponed to Section 5.

2. Double mixed Poisson autoregression: structure and

examples

Consider an iid sequence of unobservable random variables, f�t; t 2 Zg, valued in the �nite

set f1; :::; Kg (K 2 N� = f1; 2; :::g) with probability mass function P (�t = k) = � (k), where

� (k) � 0 and
PK

k=1 � (k) = 1. The values taken by �t are called regimes or components

whereas the probabilities (� (k))1�k�K are referred to as the mixing proportions. Assume also
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that for all 1 � k � K, fZt (k) ; t 2 Zg is an iid sequence of positive random variables with

unit mean and variance �2 (k) � 0. In contrast with the regime variable �t which should be

�nite, the mixing variables (Zt (k))1�k�K may be discrete or absolutely continuous, although

they are frequently taken to be absolutely continuous.

Let fNt (:) ; t 2 Zg be an independent sequence of homogeneous Poisson processes with

unit intensity. An integer-valued stochastic process fYt; t 2 Zg is said to be a double mixed

Poisson autoregressions with an independent regime switching if it is a solution to the

following equation

Yt = Nt (Zt (�t)�t) , �t = f�t (Yt�1; :::; Yt�q; �t�1; :::; �t�p; � (�t)) ; t 2 Z; (2:1)

where p; q 2 N [ f1g and f� (1) ; :::; � (K)g is a set of real parameter vectors with � (k) 2

�k � R
mk (mk 2 N

�). The function fk : N�(0;1)��k ! (0;1) is measurable and positive

real-valued (1 � k � K). It is assumed that fNt (:) ; t 2 Zg, f�t; t 2 Zg and fZt (k) ; t 2 Zg

(1 � k � K) are independent. Two particular cases of the orders in (2:1) are emphasized.

The �rst one is the in�nite generalized INARCH(1) form for which p = 0 and q =1, i.e.

Yt = Nt (Zt (�t)�t) , �t = f�t (Yt�1; Yt�2; :::; � (�t)) ; t 2 Z; (2:2)

and the second one is the generalized INGARCH(1; 1) speci�cation corresponding to p =

q = 1, i.e.

Yt = Nt (Zt (�t)�t) , �t = f�t (Yt�1; �t�1; � (�t)) ; t 2 Z: (2:3)

The term "generalized" is introduced in order to point out the general functional form of

(fk)1�k�K . Letting Ft be the �-algebra generated by f(Yt;�t) ; (Yt�1;�t�1) ; :::g, model (2:1)

may be written in the following conditional distribution form

P (Yt = yt=Ft�1) =
KX

k=1

� (k)

+1Z

�1

e�z(k)�t(k) (z(k)�t(k))
yt

yt!
dFZt(k) (z (k)) ; yt 2 N; (2:4a)

�t (k) : = fk (Yt�1; :::; Yt�q; �t�1; :::; �t�p; � (k)) ; (2:4b)

where FZt(k) (:) is the cumulative distribution of Zt (k).
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It turns out that model (2:4) consists of a "composition" of two mixtures of Poisson dis-

tributions with intensities (�t (k))1�k�K satisfying K speci�c-regime generalized INGARCH

representations. This is why model (2:1) is called double mixed Poisson autoregression. The

�rst mixture, driven by �t, governs the intensity �t while allowing for regime switching. The

second one, materialized by Zt (k), is a scaling factor for the k-th component intensity and is

designed to control the distribution of that component. As will be seen, the distribution of

Zt (k) does not in�uence neither the conditional mean of the model (cf. (2:5a)) nor the ergod-

icity conditions for the model (cf. (3:1) and (3:5)). In contrast with the one-regime Poisson

autoregression (e.g. Doukhan et al., 2012; Davis and Liu, 2016), �t in (2:1), which may also

be written as �t (�t), is not Ft�1-measurable. In fact, provided that �t is non-degenerate,

equation (2:1) is a subclass of parameter-driven models in the sense of Cox (1981).

Under the properties given above, the conditional mean and conditional variance of model

(2:1) are given as follows:

E (Yt=Ft�1) =
KX

k=1

� (k)�t (k) ; (2:5a)

Var (Yt=Ft�1) =

KX

k=1

� (k)
�
�t (k) + �

2 (k)�2t (k)
�
+

KX

k=1

� (k)�2t (k)�

 
KX

k=1

� (k)�t (k)

!2
(2:5b)

where �t (k) is given by (2:4b). Note that model (2:1) is quite general because of the wide

range of possible conditional distributions of Yt given Ft�1. These distributions can be

given explicitly for some speci�c laws of (Zt (k))1�k�K and �t. For example, when both �t

and (Zt (k))1�k�K are degenerate at 1, model (2:1) is just the Poisson autoregression (e.g.

Doukhan et al., 2012). When �t is degenerate at 1 (i.e. K = 1), Zt (k) is simply written as

Zt and model (2:1) reduces to the mixed Poisson autoregression proposed by Christou and

Fokianos (2014). Other notable particular cases of (2:1) are given as follows.

Example 2.1 (Poisson (�nite) mixture autoregression) When Zt (k) is degenerate at 1

for all k, the conditional distribution of model (2:1) reduces to a (�nite) mixture of Pois-

son distributions (see Zhu et al., 2010 for the particular mixture INARCH(q) model), i.e.

Yt=Ft�1 �
PK

k=1 � (k)P (�t (k)), where �t (k) is given by (2:4b) and P (�) stands for the Pois-

5



son distribution with parameter � > 0. The conditional mean and conditional variance of Yt

are given by (2:5) while taking �2 (k) = 0 for all k. This model also allows for conditional

overdispersion provided that K > 1. �

Example 2.2 (Negative binomial mixture autoregression)When Zt (k) � G(�
�2 (k) ; ��2 (k))

(�2 (k) > 0; 1 � k � K), the conditional distribution of model (2:1) reduces to a �nite mix-

ture of negative binomial distributions, i.e. Yt=Ft�1 �
PK

k=1 � (k)NB
�
��2 (k) ; ��2(k)

��2(k)+�t(k)

�
,

where NB (r; p) and G (a; b) denote respectively the negative binomial distribution with pa-

rameters r > 0 and p 2 (0; 1), and the Gamma distribution with shape a > 0 and rate

b > 0. The conditional mean and conditional variance of Yt are given by (2:5), so this model

is conditionally overdispersed even when K = 1. �

In view of (2:5), it turns out that in the general case where both Zt (k) and �t are non-

degenerate, model (2:1) allows for conditional overdispersion with an order of magnitude

greater than the one obtained by both the mixed Poisson autoregression (Christou and

Fokianos, 2014) and the Poisson mixture autoregression (Example 2.1). This shows the

great �exibility of model (2:1).

Other well-known conditional distributions of Yt may be obtained from the speci�cation

of the distribution of the mixing variable Zt (k). For instance, if Zt (k) is distributed as

an inverse-Gaussian then Yt=Ft�1 follows a �nite mixture of Poisson-inverse Gaussian (cf.

Dean et al., 1989). Moreover, if the distribution of Zt (k) is log-normal then the conditional

distribution of Yt is a mixture of Poisson-log-normal (cf. Hind, 1992). Beside the wide

range of allowed conditional distributions, the generality of model (2:1) also stems from the

general form of the regime functional forms (fk)1�k�K which may be linear or nonlinear.

Some important cases of these forms are as follows.

Example 2.3 (Double mixed Poisson INARCH(1)) When (p; q) = (0;1) and fk (1 �

k � K) are linear in Yt�1; Yt�2:::; we get the following double mixture in�nite INARCH(1)

speci�cation

�t = �0 (�t) +
1X

j=1

�j (�t)Yt�j; t 2 Z; (2:6a)

where �0 (k) > 0 and �j (k) � 0 (1 � k � K).
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i) When Z (k) is degenerate at 1 for all 1 � k � K, model (2:6a) is just the Pois-

son mixture INARCH(1) model which is an in�nite-order version of the Poisson mixture

INARCH(q) model

�t = �0 (�t) +

qX

j=1

�j (�t)Yt�j; t 2 Z; (2:6b)

introduced by Zhu et al. (2010).

ii) When Zt (k) � G (��2 (k) ; ��2 (k)) (�2 (k) > 0; 1 � k � K) we call the resulting

model negative binomial mixture INARCH(1). �

Example 2.4 (Double mixed Poisson INGARCH(1; 1) model) A leading example of (2:3)

is the double mixed Poisson INGARCH(1; 1) model given by the linear forms: fk = f

(1 � k � K) with p = q = 1 and f (y; �; � (k)) = ! (k) + � (k) y + � (k)�; (1 � k � K), i.e.

Yt = Nt (Zt (�t)�t (�t)) ; �t = ! (�t) + � (�t)Yt�1 + � (�t)�t�1; t 2 Z; (2:7)

where � (k) = (! (k) ; � (k) ; � (k))0 2 (0;1)3 for 1 � k � K.

i) When Z (k) is degenerate at 1 for all 1 � k � K, model (2:7) reduces to a Poisson

mixture INGARCH(1; 1) model. As emphasized in the introduction, this model is di¤erent

from the Poisson mixture INGARCH proposed by Diop et al. (2016) which in the case

p = q = 1 has the following speci�cation

Yt = Nt (Zt (�t)�t (�t)) ; �t (�t) = ! (�t) + � (�t)Yt�1 + � (�t)�t�1 (�t) ; t 2 Z: (2:8)

The di¤erence between (2:7) and (2:8) is due to the term, � (�t)�t�1 = � (�t)�t�1 (�t�1),

in (2:7) which is di¤erent from the "present mixture" term, � (�t)�t�1 (�t), in Diop et al.�s

(2016) model (see also Aknouche and Rabehi, 2010).

ii) When Zt (k) � G (��2 (k) ; ��2 (k)) (�2 (k) > 0; 1 � k � K) we call the resulting

model, negative binomial mixture INGARCH(1; 1). The latter is a �nite mixture extension

of the negative binomial INGARCH (1; 1) model (e.g. Zhu, 2011; Christou and Fokianos,

2014). Note that unless K = 1, model (2:7) is not a particular case of (2:6a). Indeed, by

successive substitution in (2:7) under the requirement
PK

k=1 � (k) log � (k) < 0, we obtain

the following INARCH(1) form

�t = �0
�
�t;1

�
+ �1

�
�t;1

�
Yt�1 + �2

�
�t;2

�
Yt�1 + :::; t 2 Z; (2:9)
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where �0
�
�t;1

�
=
P1

j=0

j�1Y

i=0

� (�t�i)! (�t�j), �j
�
�t;j

�
=

j�1Y

i=0

� (�t�i)� (�t�j) (j 2 N
�),

�t;j = (�t; :::;�t�j+1)
0 and �t;1 = (�t;�t�1; :::)

0. The main di¤erence between (2:9) and

(2:6a) is that
�
�t;j; t 2 Z; j 2 N

	
is not iid, so (2:9) is not a particular case of (2:6a). �

3. Ergodicity conditions

This Section proposes su¢cient and/or necessary conditions on the functions f1; :::; fK such

that equation (2:1) with (p; q) = (1; 1) or (p; q) = (0;1) admits a strictly stationary, ergodic

and weakly dependent solution having a �nite mean (see Dedecker and Prieur, 2004 for the

de�nition of weak dependence).

3.1. Double mixed Poisson generalized INARCH (1)

For model (2:2), consider the following "contraction in mean" assumption:

A1 For all k 2 f1; :::; Kg and y = (y1; y2; :::) ; y
0 = (y01; y

0
2:::) 2 N

1;

jfk (y; � (k))� fk (y
0; � (k))j �

1X

i=1

�i (k) jyi � y
0
ij ; (3:1a)

where (�i (k))i2N;1�k�K are non-negative constants satisfying

KX

k=1

� (k)
1X

i=1

�i (k) < 1: (3:1b)

Condition (3:1a) means that the functions f1; :::; fK are Lipschitz and satisfy the contrac-

tion in mean (3:1b). It is interesting to note that in the case K > 1, it is not necessary for all

regime functional forms fk (y; � (k)) to be contracting. For the linear in�nite INARCH(1)

form (cf. Example 2.3), A1 results in

KX

k=1

� (k)

1X

i=1

�i (k) < 1. (3:2a)

Considering the �nite-order mixture linear INARCH(q) model, A1 reduces to

KX

k=1

� (k)

qX

i=1

�i (k) < 1; (3:2b)
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which is the same stationarity in mean condition given by Zhu et al. (2010) for the Pois-

son mixture INARCH(q) case. Letting �t = (Nt;�t; Zt (�t)) and F (Yt�1; Yt�2:::; ; �t) =

Nt (Zt (�t) f�t (Yt�1; Yt�2; :::; � (�t))), model (2:2) may be written as the following in�nite

chain (cf. Doukhan and Wintemberger, 2008)

Yt = F (Yt�1; Yt�2; :::; �t) ; t 2 Z; (3:3)

where f�t; t 2 Zg is iid. The following result establishes the ergodicity of model (2:2).

Theorem 3.1Under (3:1), equation (2:2) admits a strictly stationary, ergodic and weakly

dependent solution fYt; t 2 Zg having a �nite mean. Moreover, this solution is unique and

is given by the following causal scheme

Xt = H
�
�t; �t�1; :::

�
; t 2 Z; (3:4)

for some measurable function H : (N� (0;1)� f1; :::; Kg)N ! N.

For the double mixed Poisson INARCH(1) (2:6a), Theorem 3.1 simpli�es as follows.

Corollary 3.1 Under (3:2a) (resp. (3:2b)) the double mixed Poisson INARCH(1)

process (resp. INARCH(q)) given by (2:6a) (resp. given by (2:6b)) is ergodic, weakly depen-

dent and has a �nite mean.

It easy to show that condition (3:2a) is also necessary for ergodicity of model (2:6a).

3.2. Double mixed Poisson generalized INGARCH (1; 1)

For model (2:3), consider the following conditions:

A2 The functions f1; :::; fK are Lipschitz, i.e., for all k 2 f1; :::; Kg ; y; y
0 2 N and �;

�0 2 (0;1),

jfk (y; �; � (k))� fk (y
0; �0; � (k))j � � (k) jy � y0j+ � (k) j�� �0j ; (3:5a)

where (� (k))1�k�K and (� (k))1�k�K are positive constants satisfying one of the following

contraction-type conditions

max
1�k�K

�
�(k)+�(k)
�(k)

� KX

k=1

� (k)� (k) < 1: (3:5b)

1

min
1�k�K

�

�(k)
�(k)

�

KX

k=1

� (k) (� (k) + � (k)) �(k)
�(k)

< 1: (3:5c)
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When K = 1, each one of (3:5b) and (3:5c) reduces to the standard contraction con-

dition � (k) + � (k) < 1 (Christou and Fokianos, 2014). For the double mixed Poisson

INGARCH(1; 1) model of Example 2.4, the functions f1; :::; fK being linear, conditions (3:5b)

and (3:5b) reduce respectively to

max
1�k�K

�
�(k)+�(k)
�(k)

� KX

k=1

� (k)� (k) < 1; (3:6a)

1

min
1�k�K

�

�(k)
�(k)

�

KX

k=1

� (k) (� (k) + � (k)) �(k)
�(k)

< 1; (3:6b)

where in the case p = 0, (3:6a) is the same as the stationarity in mean condition given by

Zhu et al. (2010). Letting Xt = (Yt; �t) ; �t = (Nt;�t; Zt (�t)) and

F (Xt�1; �t) = (Nt (Zt (�t) f�t (Xt�1; � (�t))) ; f�t (Xt�1; � (�t))) ;

model (2:3) may be written as the following Markov chain

Xt = F (Xt�1; �t) ; t 2 Z: (3:9)

Theorem 3.2 Under (3:5a) and (3:5b) or (3:5c), equation (2:3) admits a strictly station-

ary, ergodic and weakly dependent solution f(Yt; �t) ; t 2 Zg having a �nite mean. Moreover,

this solution is unique and is given by the following causal scheme

Xt = H
�
�t; �t�1; :::

�
; t 2 Z; (3:10)

for some measurable function H : (N� (0;1)� f1; :::; Kg)N ! N� (0;1).

UnlessK = 1, it appears that conditions (3:5a) and (3:5b) are not necessary for ergodicity

of model (2:3). Now for Example 2.4, Theorem 3.2 simpli�es as follows.

Corollary 3.2 i) Under (3:6a) or (3:6b) the double mixed Poisson INGARCH(1; 1) model

(2:7) with linear regime intensity is ergodic and weakly dependent with a �nite mean.

4. Conclusion

This paper proposed a double mixed Poisson autoregression in which the intensity is scaled

by a unit mean iid mixing process, while having di¤erent regime speci�cations according
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to the state of a �nite unobservable iid chain. This model may account for multimodality

of the marginal distribution and the persistence in intensity which are often observed in

applications. Under the contraction in mean conditions (3:1) and (3:5) we have shown that

models (2:2) and (2:3), respectively, are strictly stationary and ergodic.

It is interesting to study the ergodicity of the general model (2:1) in the case where

the regime sequence f�t; t 2 Zg is a stationary and ergodic Markov chain, leading to a

Markov switching mixed Poisson autoregression. However, the approach by Doukhan and

Wintenberger (2008) we followed in this paper is no longer applicable since in equations (3:3)

and (3:9) the sequence f�t; t 2 Zg is non longer iid.

5. Proofs

Proof of Theorem 3.1 The proof is based on checking condition (3:1) of Doukhan and

Wintenberger (2008). Set y = (y1; y2; :::) and y
0 = (y01; y

0
2; :::) 2 R

1. In view of (3:3), the

Liptchitz property (3:1a), the fact that E (Zt (k)) = 1 for all k, the Poisson property of

the process Nt (:), and the independence of the processes fNt (:) ; t 2 Zg, f�t; t 2 Zg and

fZt (k) ; t 2 Zg, it follows that

E jF (y; �t)� F (y
0; �t)j = E (E jNt (Zt (�t) f�t (y; � (�t)))�Nt (Zt (�t) f�t (y

0; � (�t)))j =�t)

=

KX

k=1

� (k)E (jZt (k) fk (y; � (k))� Zt (k) fk (y
0; � (k))j)

�
KX

k=1

� (k)

1X

i=1

�i (k) jyi � y
0
ij . (5:1)

In view of (5:1) and (3:1b), it follows that condition (3:1) of Doukhan and Wintenberger

(2008) is satis�ed. By Theorem 3.1 of Doukhan and Wintenberger (2008), there exists

a unique causal solution of (3:3) which is strictly stationary, ergodic, weakly dependent,

having a �nite mean and whose expression is given by (3:4).

Proof of Theorem 3.2 For all x = (y; �)0 2 R2 and � > 0, let k:k� be a norm on R2

de�ned by kxk� = jyj + � j�j. In view of (3:5a) and (3:9), and using the same arguments in
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the proof of Theorem 3.1, it follows that

E kF (x; �t)� F (x
0; �t)k� = (1 + �)

KX

k=1

� (k) jfk (y; �; � (k))� fk (y
0; �0; � (k))j

� (1 + �)

KX

k=1

� (k) [� (k) jy � y0j+ � (k) j�� �0j]

�
KX

k=1

� (k) (1 + �)max
�
� (k) ; �(k)

�

�
kx� x0k� : (5:2)

Taking � = max
1�k�K

�
�(k)
�(k)

�
we have (1 + �)max

�
� (k) ; �(k)

�

�
= max

1�k�K

�
1 + �(k)

�(k)

�
� (k), 1 �

k � K; so inequality (5:2) becomes

E kF (x; �t)� F (x
0; �t)k� � max

1�k�K

�
1 + �(k)

�(k)

� KX

k=1

� (k)� (k) kx� x0k� : (5:3a)

Similarly, if we take � = min
1�k�K

�
�(k)
�(k)

�
then max

0

@� (k) ; �(k)

min
1�k�K

�

�(k)
�(k)

�

1

A = �(k)

min
1�k�K

�

�(k)
�(k)

� , 1 � k

� K. Hence, (1 + �)max
�
� (k) ; �(k)

�

�
� �(k)

��(k)
(� (k) + � (k)), so inequality (5:2) becomes

E kF (x; �t)� F (x
0; �t)k� �

1

min
1�k�K

�

�(k)
�(k)

�

KX

k=1

� (k) �(k)
�(k)

(� (k) + � (k)) kx� x0k� : (5:3b)

In view of (5:3a) and (5:3b), it follows that under (3:5a) and (3:5b) or (3:5c), condition

(3:1) of Doukhan and Wintenberger (2008) is satis�ed, so the conclusion follows for their

Theorem 3.1.
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