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Abstract
We consider the relation between Sion’s minimax theorem for a continuous function
and Nash equilibrium in a multi-players game with two groups which is zero-sum and
symmetric in each group. We will show the following results.

1. The existence of Nash equilibrium which is symmetric in each group implies a
modified version of Sion’s minimax theorem with the coincidence of the maximin
strategy and the minimax strategy for players in each group.

2. A modified version of Sion’s minimax theorem with the coincidence of the maximin
strategy and the minimax strategy for players in each group implies the existence of
Nash equilibrium which is symmetric in each group.

Thus, they are equivalent. An example of such a game is a relative profit maximization
game in each group under oligopoly with two groups such that firms in each group have
the same cost functions and maximize their relative profits in each group, and the demand
functions are symmetric for the firms in each group.
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1 Introduction

We consider the relation between Sion’s minimax theorem for a continuous function and the existence
of Nash equilibrium in a multi-players game with two groups which is zero-sum and symmetric in each
group. There are n players. Players 1, 2, ..., m are in one group, and Players m+ 1, m+ 2, ..., n are
in the other group. We assume n > 4 and 2 < m < n — 2. Thus, each group has at least two players.
Players 1, 2, ..., m have the same payoff functions and strategy spaces, and they play a game which is
zero-sum in this group, that is, the sum of the payoffs of Players 1, 2, ..., m is zero. Similarly, Players
m+ 1, m+2, ..., nhave the same payoff functions and strategy spaces, and they play a game which is
zero-sum in this group, that is, the sum of the payoffs of Players m + 1, m + 2, ..., n is zero.
We will show the following results.

1. The existence of Nash equilibrium which is symmetric in each group implies a modified version
of Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax
strategy for players in each group.

2. A modified version of Sion’s minimax theorem for players with the coincidence of the maximin
strategy and the minimax strategy in each group implies the existence of Nash equilibrium which
is symmetric in each group.

Thus, they are equivalent.

An example of such a game is a relative profit maximization game in each group under oligopoly
with two groups such that firms in each group have the same cost functions and maximize their relative
profits in each group, and demand functions are symmetric for the firms in each group. Assume that
there are six firms, A, B, C, D, E and F. Let 74, 7B, ¢, Tp, 7g and Tr be the absolute profits of,
respectively, Firms A, B, C, D, E and F. Firms A, B and E have the same cost function, and the demand
functions are symmetric for them. Firms C, D and F have the same cost function, and the demand
functions are symmetric for them. However, the firms in different groups have different cost functions,
and the demand functions are not symmetric for firms in different groups.

The relative profits of Firms A, B and E are

_ 1 _ _
TA =T — z(ﬂB +7TEp),

_ 1 _ _
g =7p— E(ﬂA +7Tg),

_ 1 _ _
g =TTE — 5(71’,4 +7TB).
The relative profits of Firms C, D and F are

_ 1 _ _
e =TMc — E(”D + 7TF),

_ 1 _ _
p =7p — E(ﬂc +7TF),

_ L _
g =TT — E(ﬂ'c +7TD).

We see
7TA+7TB+7TE:0,



7Tc+7l'D+7TF=0.

Firms A, B, C, D, E and F maximize, respectively, 74, 75, 7tc, 1p, 7g and 7rr. Thus, the relative profit
maximization game in each group is a zero-sum game!. In Section 4 we present an example of relative
profit maximization in each group under oligopoly with two groups.

2 The model and Sion’s minimax theorem

Consider a multi-players game with two groups which is zero-sum and symmetric in each group. Our
analysis can be easily extended to a case with more than two groups. However, since notation is very
complicated, we will present arguments of a two groups case. There are n players. Players 1,2, ..., m
are in one group, and Players m + 1, m + 2, ..., n are in the other group. We assume n > 4 and
2 < m < n - 2. Thus, each group has at least two players. Players 1, 2, ..., m have the same payoff
functions and strategy spaces, and they play a game which is zero-sum in this group, that is, the sum of
the payoffs of Players 1, 2, ..., m is zero. Similarly, Players m + 1, m + 2, . . ., n have the same payoff
functions and strategy spaces, and they play a game which is zero-sum in this group, that is, the sum
of the payofts of Players m + 1, m + 2, ..., n is zero. The strategic variables for the players are s, s»,
.o, Sp,and (81, 82, ..., Sp) € S| X Sp X +-- X Sy. S1,8,, ..., Sy are convex and compact sets in linear
topological spaces.
The payoff function of each player is u;(s, 82, ..., Sp), i = 1,2, ..., n. We assume

u;’sfori=1,2,...,nare continuous real-valued functions on S; X S, X - -+ X S;, quasi-
concave on S; for each s; € Sj, j # i, and quasi-convex on S; for j # i for each s; € S;.

Since the game is zero-sum in each group, we have

u1(S1, 82, .., Sn) +U(S1, 825 ooy Sp) vy, Um(S1, 82, ..., Sp) =0, (D)
um+l(sl, S29 e ey Sn) +um+2(sla 829 ce ey Sl’l)+ ey un(sl, S29 ] Sn) = 0’ (2)
for given (sy, 82, .. ., Sx).

Sion’s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) for a continuous function
is stated as follows.

Lemma 1. Let X and Y be non-void convex and compact subsets of two linear topological spaces,
and let f : X XY — R be a function, that is continuous and quasi-concave in the first variable and
continuous and quasi-convex in the second variable. Then

max min f(x = minmax f(x, y).
xeX yeY f( ’y) yeY xeX f( ’y)

We follow the description of this theorem in Kindler (2005).
Letsp’sforh # 1, j; i, j € {1,2, ..., m} be given; then, u;(s, s, .. ., 8,) is a function of s; and s;.
We can apply Lemma 1 to such a situation, and get the following equation.

max min u;(Sy, 2, . . ., Sy) = min max u;(sy, S2, . . ., Sp). 3)
S; €5; SjESj SjESj S; €S;

! About relative profit maximization under imperfect competition please see Matsumura, Matsushima and Cato
(2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka (2013a),
Tanaka (2013b) and Vega-Redondo (1997)



By symmetry

max minu;(sy, 82, .. ., Sp) = min max u;(si, $2, . . ., Sn).
SjESjSiESi SiESiSjESj

Similarly, let sj,’sfor h # k, I; k,l e {m+1,m+2, ..., n} be given; then we obtain
max min Ui (Sy, So, . . ., Sp) = min max u;(sq, So, . . ., Sp). 4)
Sk €Sk S1€S) S1€S] Sk €Sk

By symmetry
max min u(sy, 2, .. ., Sp) = min max u;(sy, 82, . . ., Sp).
S1E€S] Sk €Sk Sk €Sk S1€S)

We assume that arg maxg,es; ming;es; Ui(S1, 82, - - -, Sn), arg Ming; es; Maxges; Ui(S1, 82, - . ., $p) and so

on are unique, that is, single-valued. By the maximum theorem they are continuous in sy’s, h # i, j or
in sp’s, h # k, I. Also, throughout this paper we assume that the maximin strategy and the minimax
strategy of players in any situation are unique, and the best responses of players in any situation are
unique.

Let us consider a point such that s; = sfori € {1,2, ..., m}and sy = s’ fork € {m+1, m+2, ..., n},
and consider the following function.

s\ _, (argmaxses; min; es; ui(si, 85, 8, ..., 8,8, ...,8)
s’ arg maxg, s, Minges, Uk(S, ..., S, Sk, S, 8, ..., 8"))’
for ie{l,2,...,m}, ke {m+1,m+2,...,n}. Since u; and uy are continuous, S; = S; is compact

and Sy = S; is compact, these functions are also continuous. Thus, there exists a fixed point of (s, §).
Denote it by (§, ). It satisfies

§ = argmax min u;(s;, 55,5, ...,58,5,...,8), i € {1,2,...,m}, 5)
S;i€S; Sj€S;
§=argmax minug(s, ..., 5 Sk, 5,8, ...,8), ke{m+1,m+2,...,n}. (6)
Sk €Sk S1€S]

Now we assume

Assumption 1. About § and § which satisfy (5) and (6),

arg max min u;(s;, 55, 8, ..., 5,8, ..., §) = arg min max u;(s;, 5, 5, ..., 5,8, ..., 9),
s; €S; SjESj SjGSj s; €S;

arg max minug(§, ..., §, S, S, S, ..., §) = argmin max ug(§, ..., §, S, S, S, ..., 8),
Sk €Sk 81 ESl S| ES[ Sk €Sk

forie{l,2,...,m},ke{m+1, m+2,...,n}, thatis, the maximin strategy and the minimax strategy
coincide.

Based on Assumption 1 we present a modified version of Sion’s minimax theorem.

Lemma 2 (Modified version of Sion’s minimax theorem). Let j # i, i, j € {1, 2, ..., m}, and S; and
S; be non-void convex and compact subsets of two linear topological spaces, and Let | # k, k,1 €
{m+1,m+2,...,n}, and Sy and S; be non-void convex and compact subsets of two linear topological
spaces. Let u; : S; X Sj — R given the strategies of all other players and uy. : S X S — R given the
strategies of all other players be functions that is continuous on Sy X Sy X - -+ X Sy, quasi-concave on
Si (or S) and quasi-convex on Sj (or S;). Then, there exist § and 8 which satisfy (3), (4), (5), (6) and
Assumption 1.

As we will show in the Appendix, without Assumption 1 we may have a Nash equilibrium which is
asymmetric in each group.



3 The main results

Consider a Nash equilibrium which is symmetric in each group. Let s;’s and s,’s be the values of s;’s
fori € {1,2,...,m}and si’sfork € {m+1,m+2,..., n} which, respectively, maximize u;’s and
uy’s, that is,

Ui(S), S5y s Si oo s Sp) = Ui(SY, 85, ..., Si, ..., Sy) forany s; € S,

and
U(S], S3s - oy Spr -+ 5 Sy) 2 UK(S], S5, - . -, Sk, - - ., 8y,) for any s, € S,

If the Nash equilibrium is symmetric in each group, s’f sforalli e {l,2,..., m} are equal, and s;;’s for
alke{m+1,m+2,...,n} are equal.
Notations of strategy choice by players are as follows.

(s, 8%, ..., 8% 8™, ..., §")is a vector of strategy choice by players such that Players 1, . . .,
m other than i choose s* and Players m + 1, . .., n choose s**. (s*, ..., s", Sk, %, ..., §")
is a vector such that Players 1, ..., m choose s* and Players m + 1, ..., n other than k
choose s™*. (s, sj, 8%, ..., %, 8", ..., s*") is a vector such that Players 1, . . ., m other than
i and j choose s* and Players m + 1, ..., n choose s**. (s*, ..., 8%, Sk, 8, 8, ..., ) is a
vector such that Players 1, ..., m choose s* and Players m + 1, ..., n other than k and [
choose s**.

(si, 8, ...,8 8, ...,38) is a vector of strategy choice by players such that Players 1, ..., m
other than i choose § and Players m + 1, ..., n choose 8. (3, ..., 3, Sk, S, ..., §) is a vector
such that Players 1, ..., m choose § and Players m + 1, ..., n other than k choose 3.
(si, 85,8, ...,58,...,8)is a vector such that Players 1, ..., m other than i and j choose §
and Players m + 1, ..., nchoose 8. (§, ..., 5, Sk, S;, S, ..., §) is a vector such that Players
1, ..., mchoose § and Players m + 1, .. ., n other than k and [ choose §.

The same applies to other similar notations.
We show the following theorem.

Theorem 1. The existence of Nash equilibrium which is symmetric in each group implies Sion’s minimax
theorem with the coincidence of the maximin strategy and the minimax strategy.

Proof. Let (S, ..., Sms Smals -+ +»Sn) = (8%, ..., 8%, 8%, ..., ) be a Nash equilibrium which is sym-
metric in each group. Since the game is zero-sum in each group.

m
* * %k *% * * %k k%
ui(si, 85, ..., 85,8, ., 8T+ Z uj(si, s, ...,8, 8, ...,57) =0,
j=1, j#i
and
n
3k k kok kok * 3k skok sk
ur(s™, ..., 8, Sk, ST, L, ST+ Z w(s, ...,8, 8,8 ,...,85)=0
l=m+1,k+k
imply
£ ES ok kok + * Sk Sk
wi(si, 8%, ..., 85,87, 8T = —(m = Duy(s, s%, ..., 87,8, ..., 87),
and
£ sk Sk sk ES sk Sk sk
u(s®, ..., 8, S s, .., 8T)=—(m-m—-Du(s*, ..., 8", S, S, ..., 8.



These equations hold for any s; and sj. Therefore,

argmax u;(si, s, ..., 87,87, ..., 87) =argminu;(s;, 57, ..., 8, 8, L, 8T,
S; €S; S; €S;

arg max ug(s*, ..., s, sk, 8%, ..., ") = arg min u(s*, ..., s, Sk, s, ..., 87).
Sk €Sk Sk €Sk

By the assumption of uniqueness of the best responses, they are unique. By symmetry for each group

argmax u;(s, s, ..., 8, 87, ..., 87) =arg min w;(sj, 5%, ..., 8, 57, L., 8T),
Si €S} Sj€S;

arg max ug(s*, ..., s, g, 8, ..., 87) = argmin ug(s*, ..., s%, s, s, ..., 8).
S €Sk NN

Therefore,

* ok * ek

ui(s*, ..., 8%, 8", ..., 8) = miélui(sj,s*,...,s,s' e ST <u(sy, st L 8T 8T, 8T,
5j €S;

3k 3k sk ok . * 3k kk kok k k kok sk
ue(s*, ..., 8% 8%, ...,8 )=In€1§1uk(S,...,S,Sl,S s ST < w(st, L, 8 s, 8T, L, 8.
S] 1
We get
sk K sk kok sk sk sk kK . sk sk sk 3k sk
max u;(s;, 8, ..., 8,87, .., 8T) =w(st, ..., 8, 8T, L, 8T) = minu(sy, ST, L., 8T, 8T, L 8T,
Si €S; SjESj
* * kk kok * * kok kok . * * skok kok
Fssxuk(s,...,s,sk,s R T 77 ( JR U P | )zglelguk(s,...,s,sl,s ey 8T,
k Sk 1=9]
They mean
min max u;(s;, sj, 87, ..., 85,8, ..., 87) <maxu(s;, s, ..., 8T, 8T, L 8T 7
Sj€Sj si€S; s; €S;
=min w;(sj, s, ..., 8%, 87, ..., §7) < max min w(s;, sj, 8, ..., 8, 8T, L, 8T,
Sj€S; S;i€S; sj €S
and
min max ug(s*, ..., s, Sk, S5, 8, ..., 87) < max ur(s*, ..., 8", S, 5, ..., 8 ®)
S| €S Sk €Sk Sk €Sk

=minug(s™, ..., s, s, 85, ..., §) < max minui (s, ..., s", Sk, S, 87, ..., 87).
NEM Sk €Sk S1€S)

On the other hand, since

. * £ kk Sk * ¥ kk sk
Smégui(si,sj,s,...,s,s oo 8T) S u(si, S5, 87, L, 8, 8T, 8T,
j€Sj

min u(s*, ..., 8%, Sk, S5, 8, ., 8) < w(st, L., S Sk, s, 8T, L., 8T,

Sk €Sk
we have
. * 3k ok kok * * kok kok
max min u;(s, 5, 8%, ..., 8,8, ..., 87) < maxu(s;, 55,87, ..., 8,8, ., 8T),
s;i€S; sj€S; S; €S;
max min ug(s*, ..., 5%, Sk, S, S, ..., $7) < max ug(s®, ..., s, Sk, 8, 8, ..., 8.
Sk €Sk S1€S) S €Sk



These inequalities hold for any s; and s;. Thus,

min max u;(s;, sj, 8%, ..., 8%, 8, L, 87,
SjESj Si €S;

IA

max min u;(s;, sj, 85, ..., 8%, 87, ., 8)
si€S; SjESj

min max ug(s*, ..., s, Sk, 8, 8, ..., §),
s1€S] Sk €Sk

IA

max min u(s*, ..., s%, Sk, S, 7, ..., 8)
Sk €Sk S1€S]

With (7) and (8), we obtain

max min w;(s;, sj, s, ..., 8%, 87, ..., §7) = min max u;(s;, 55, 8, ..., 8,8, L, 8T,
5;€S; Sj€S; Sj€S; s;i€S;
max min u(s*, ..., %, S, 85, 8%, ..., §) = min max uc(s, ..., s, Sk, S, 7, ..., 87).
Sk €Sk S1€S] SpESp Sc €Sc
From
mi? ui(si, Sj, 8%, ..., 85, 87, 0L 8T Susg, 8T, L., 8T 8T, L ST,
$j€Sj
. * * kk kk * * kk kk
rneléluk(s,...,s,sk,s R R I 71 (Y R P S A A
] 1
. * * kok kok * 3k kok kok
mgsxrnelglui(si,sj,s,...,s,s sy S ):mgsxui(si,s,...,s,s s s 8,
S; €S Sj€S; Si €0;
and
. * * skok sk 3k 3k kok kok
Smggxgnelguk(s,...,s L Sks S, ST, ..., 8 ):Srnélguk(s,...,s,sk,s s 8T,
k SOk SISO k SOk
we have
argmax min u;(s;, sj, 8, ..., 8%, 87, ..., 87 = argmax u(s;, s, ..., 80, 8T, L, 8T) =5
S;€S; S €S S; €S;
arg max min ug (s, ..., s, Sk, i, %, ..., 8) = arg max ui(s*, ..., s, S, 8, ..., 8) =5
Sk €Sk S1€S] Sk €Sk
From
* 3k kok kok * * kok skk
mg;cui(si,sj,s,...,s,s N I 1= 7717 T LR L R ) X
Si i

* 3k kok skok k 3k sk ok
max ur(s*, ..., 8, Sk, S5, 8, ..., 8T) > u(s, ..., 8T, s, 8, L., 8T,

Sk €S

min max u;(s;, Sj, S°, . ..

* kk Kk . k * kk kk
8,8, L, 8T) = minu(s), 8T, ..., 8T, 8T, L, 8T,
SjESj si€S; SjESj

and

. * 3k kk kok . * * kk kok
min max Ui (s, ..., 8, Sk, S, S, ..., S ) =minug(s", ..., 8, 8,8,...,8),
S1E€S] SkESk NI
we get
arg min max u;(s;, sj, 8*, ..., 8%, 87, ..., 8") = arg min u;(sj, 5%, ..., 8%, 8, ..., 87) =57,
SjESj SiESi SjESj
arg min max ug (s, ..., s, Sk, $;, 8, ..., 87) = argmin u(s*, ..., 85, 5, 8, ..., 87) =8

S1€S] Sk €Sk S1€S;

Therefore,

arg max min u;(s;, sj, 8%, ..., 8,87, ..., 87)
S;i€S; sj€S;)
=arg min max u;(s;, sj, 8, ..., s, 87, ..., §7) =57,
Sj€Sj si€S;

©)

(10)

(11)



arg max min ug(s*, ..., s, Sk, 8, 8, ..., $) (12)
Sk €Sk SIE€S)

=arg min max ug(s*, ..., s, Sk, 8, 8, ..., $) =8,
SlESl Sk €Sk

Next we show the following theorem.

Theorem 2. Sion’s minimax theorem with the coincidence of the maximin strategy and the minimax
strategy implies the existence of a Nash equilibrium which is symmetric in each group.

Proof. We denote a state such that Players 1, 2, . . ., m choose §, and Players m+1, m+2, ..., n choose
Sby(§,...,538...,9).
Let § and § be the values of 5;’s fori € {1,2,...,m}and si’sfork € {m+1, m+2, ..., n} such that

§ = argmax min u;(s;, 5, 5, ..., 5 8, ..., §) = arg min max u;(s;, 55, 5, ..., 58, ...,9),
s;€S; sj€S; Sj€S) 8;i€S;

§ = arg max minug(§, ..., §, S, 81, 8, ..., §) = argmin max ui (3, ..., §, Sk, 5., S, ..., §),
Sk €Sk S1€S] S1E€S] Sk €Sk

max min u;(s;, 5, 5, ..., 5,8, ..., 8) = min u;(s;, 5, ...,58,...,9)
S; €S; SJ'GSJ‘ SjGSj

= min max u;(s;, 55, 5, ..., 8 8, ..., 8) = maxu(s, 5, ..., 58, ..., %),

Sj€S;j $;i€S; S; €S;
and
max minug (S, ..., 8, Sk, S, 8, ..., 8) =minu(, ..., 8, 8,8, ...,8)
Si €Sk S1€S] NEM
= min max ug(s, ..., 5, Sk, 51, 8, ..., 8) = max ug(5, ..., 5, Sk, S, ..., 8).
S| €S| Sk €Sk Sk €Sk
Since
ui(sj, 5...,83, ...,8) < max u;(s;, Sj, 5....,8358 ...,%),
SiESi
min u;(s;, §, ..., 38,8, ..., 8) = min max u;(s;, 55,5, ...,8,5,...,3),
SjESj SjESj s; €S;
we get

arg min u;(sj, §, ..., 8,5, ..., 8) = arg min max u;(s;, 55,5, ..., 8,5, ...,8) =5
SjESj SjESj S; €S;

Similarly, from
uk(S', .8, 8,8, ,§) < maxuk(S', oo 8, 8K, 8, 8, ...,§),

Sk €Sk
minug (8, ..., 8§ 5,8, ...,8) = min max ug (S, ..., 8, Sk, S, 8, ..., §),
NI ESl NI ESl Sk €Sk
we get
argminug(5, ..., 5, 8,8, ..., 8) = argmin max ug(3, ..., 8§, S, 8., 8, ...,8) =3.
SIES] NN Sk ESk
Since

ui(s;, §,...,58,...,8) > rr1€i§1ui(si,sj,§,...,§,§,...,§),
$j €S;



and

max u;(s, 8, ..., 58, ..., §) = max min u;(s;, 55,3, ..., 538, ..., %),
Si €9 S; €S SjESJ'
we obtain
arg max u;(s;, §, ..., S, 8, ..., §) = argmax min (s, 55,8, ...,8,8,...,8) =5.
si€S; Si €S; SjGSj
Similarly, from
uk(S', e 88K, S, L .,§) > minuk(S', e 88Kk, 8L S, L, §),
NEN
and
max U5, ..., 5 Sk, 8, ..., 8) = max minug (S, ..., 5 8,8, ...,8),
Sk €Sk Sk €Sk SZESl
we obtain
arg max ug(s, ..., S, Sk, §, ..., 8) = argmax minu (8, ..., 8§, Sk, S, 8, ..., 8) =4.
Sk €Sk Sk ESk S1€S]
Therefore,
ui(sj,S,...,§,§,...,§) Zui(E,...,i,ﬁ,...,§) > ui(s;, §,...,88,...,9),
uk(§,...,§,sl,§,...,§) Zuk(i,...,§,§,...,§) Zuk(S,...,S,sk,S,...,ﬁ).
Thus, (5, ..., 8§, 8...,3)is a Nash equilibrium which is symmetric in each group. O

4 Example of relative profit maximization in each group of
six-firms oligopoly

Consider a six-players game. The players are A, B, C, D, E and F. Suppose that the payoff functions of
Players A, B and E are symmetric, and those of Players C, D and F are symmetric. The payoff functions
of the players are

g =(a—Xx4—XxXgp—Xg —bxc—bxp—bxp)xs—caxa
1
- 5[(a —Xa—Xg—Xg —bxc —bxp —bxp)xp —caxp

+(a—-x4—Xg—Xg —bxec —bxp — bxp)xg —caxg],

g =(@ —Xa —Xg — Xg — bxc — bxp — bxp)xp —caXp
1

2
+(a—xa—Xxg—Xg —bxc —bxp — bxp)xg —caxg],

[(@a=x4—xp—XxXg —bxc—bxp —bxp)xas—caxa

TE :(a — XA —XB—XE — be - be - bxF)xB — CAXB
1

2
+(a—x4—Xxg—Xg — bxc —bxp)xg — caxgl,

[(a=x4—xp—xg —bxc—bxp —bxp)xg —caxp



Tc :(a —Xc —Xp — XfF — be - bXA - be)xc — CcXc
1
- 5[(a —Xc —Xp — Xp —bxg — bxa — bxg)xp — ccXxXp

+(a—Xxc—Xp — Xp —bxg —bxs — bxg)xr — ccXr],

mp =(a — X¢c — Xp — Xp — bxg — bx4 — bxg)xp — ccxp
1

2
+(a—xc—XxXp—Xp —bxg —bxa —bxg)xr — ccxr],

[(a=xc—xp—xp—bxg —bxa — bxg)xc — ccxc

mr =(a — Xc — Xp — Xp — bxg — bxs — bxp)Xp — ccXF
1
- 5[(a — Xc —Xp — Xp —bxg — bx4 — bxg)xc — ccxc

+(a—-xc—XxXp —Xp—bxg —bxs—bxg)xp —ccxpl.

This is a model of relative profit maximization in each group in a six firms oligopoly with two groups.
XA, XB, XC, Xp, Xg and X are the outputs of the firms, and p4, ps, Pc, Pp, PE and pr are the prices
of their goods. The demand functions are symmetric for Firms A, B and E, and they have the same cost
functions, also the demand functions are symmetric for Firms C, D and F, and they have the same cost
functions. However, the demand function for Firm A (or B or E) is not symmetric for Firm C (or D or
F), and the demand function for Firm C (or D or F) is not symmetric for Firm A (or B or E). Firm A’s
(or Firm B’s or Firm E’s) cost function is different from the cost function of Firm C (or Firm D or Firm
F). The cost functions of the firms are linear and there is no fixed cost.

We assume that Firm A (or B or E) maximizes its profit relatively to the profit of Firm B and E (or
A and E, or B and E), and Firm C (or D or F) maximizes its profit relatively to the profit of Firm D and
F (or C and F, or D and F). Note that

7TA+7TB+7TE:0, 7fc+7TD+7TF:0.

Thus, this is a model of zero-sum game in each group with two groups.
Under the assumption of Cournot type behavior, the equilibrium outputs are

bcc —ca—ab+a

AT 30 b1 +b)
X = bcc—cA—ab+a’
3(1-b)(1+Db)
e = bcA—cc—ab+a,
3(1 - b)(1+b)
Xp = bcA—cc—ab+a’
3(1 = b)(1+b)
g = bcc—cA—ab+a,
3(1-b)(1+b)
Xp = bcy —cc—ab+a

3(1 - b)(1+b)
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The equilibrium prices of the goods are

PaA = Ca,
PB =Ca,
bc = cc,
Pbp = Cc,
DE = Ca,
Pbc =cc.

Therefore, the prices of the goods are equal to the marginal costs in each group.
The maximin and minimax strategies between Firms A and B are

arg max min 74, arg minmax 7 4.
XA XB XB XA

Similarly, we can define the maximin and minimax strategies between Firms A and E, those between
Firms B and E, Firms E and A, Firms E and B.
Those between Firm C and D are

arg max min 77¢, arg minmax 7c.
Xc XD Xp Xc

Similarly, we can define the maximin and minimax strategies between Firms C and F, those between
Firms D and F, Firms F and C, Firms F and D.
In our example, under the assumption that xg = x4, we obtain

bcc —ca—ab+a

argmaxminzmy =

X4 XB 31-b)(1+b) °
areminmax 74 = bec —ca—ab+a
e X AT 3 T py(1+b)
arg max min ¢ = bea —cc —ab+a
¢ = 30— b)(1+b)

bcy —cc—ab+a
31-b)1+b) ’

becc—ca—ab+a

argmin max 77¢ =
XD Xc

A T = 30— by(1+b)
ArG Min max 7 bcy —cc—ab+a

i X = s
T = 30 " b)(1+b)

and so on. They are the same as Nash equilibrium strategies.

5 Concluding Remark

We have analyzed the relation between Sion’s minimax theorem for a continuous function and Nash
equilibrium in a multi-players game with two groups which is zero-sum and symmetric in each group.
Our analysis can be easily extended to a case with more than two groups.
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Appendix: Note on the case where Assumption 1 is not
assumed.

Let (8, 8, s', 5?) be the solution (fixed point) of the following equations.

§ = argmax min u;(s;, 5, 5, ..., §, s%8, ..., 3),
S; €S; SjESj

1 _ . ~ ~ 2 A A

s' = arg min max u;(s;, 5, §, ..., 5,558, ..., 3),
Sj€Sj si€S;

§ = arg max min uk(sl, 5 ...,8 S, 8,8, ...,8).
Sk €Sk S1E€S]

and

s = arg min max uk(sl, 5 ....8 Sk, 8,8, ...,9),
51€S] Sk €Sk

with s; = s and s; = s>. By (3) and (4)

maxminui(si,sj,E,...,§,s2,§,...,§):minui(sj,§,...,§,s2,§,...,§)
SiESi SjESj SJ'GSj
. < « 2 a o 1 & « 2 4 "
= min max u;(s;, 5, 5, ..., 8,55, 8, ..., 8) = maxu;(s;, 57,3, ...,555,5,...,9),
Sj€S; S;€S; S; €S;
and
. 1 =~ ~ ~ A 1 =~ ~ A ~
max min Ui (s, S, ..., 8 Sk, S, S, ..., 8) =minuk(s',§,...,5 8,8, ...,8)
Sk €Sk S1€S) NEM
o 1 & < a a 1 & < 2 & A
=min max ug(s, 3, ..., 8 Sk, S, 8, ..., 8) = max u(s, 8, ..., § S 55,5, ..., 8).
NI ES[ Sk €S Sk €Sk
Since
~ ~ 2 A o ~ ~ 2 A
max u;(si, 5, 8, ..., 8,858, ...,8) > u(s;, 8§, ..., 5 55,5,...,3),
s; €S;
minmaxui(si,sj,E,...,§,s2, §,...,8) = min u;(s;, 3, ..., 3, s%,8, ..., 8),
Sj GSj Si€S; Sj ESj
we have
. < « 2 & a . < < 2 5 A ol
arg min max u;(s;, 5, S, ..., §, 55,8, ..., 8) = arg min u;(sj, 3, ..., 5, 55,5, ...,8) =5,
SjESj S; €S; SjGSj

Similarly, from

1 & < a a 1 o o o« & a
max ug(s', S, ..., 8 S, 5,8, ..., 8) >u(s,S,...,5 8,8, ...,%),

Sk €Sk
. 1 = ~ A A 1 ~ ~ ~ o
min max Ui (s, §, ..., 8 Sk, S, 8, ..., 8) = minu;(s, S, ..., 88,8, ...,8),
51€S] Sk €Sk NEM
we have
arg min max uk(sl, 5 ...,8 Sk, 8,8, ...,8) = argminuk(sl, 5...,8s8,8...,8)= %,
S1€S] Sk €Sk NEM
Since
mi;l ui(si, S5, 8, ..., 5, 8 .., 8) <ulsi,sh,5...,58%8 ..., 8),
8 €S;
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minug(s', 3, ..., 5 Sk, s, 8, ..., 8

NEN
max min u;(s;, 5, 5, ..., § s2, 8, ..., 8) = maxu(s;, s, 5, ...,5 558, ..., 8),
s;€S; Sj€S; Si €S;
and
. 1« = o o 1« = 2 4 o
max minug(s, S, ..., 8 Sk, S, 8, ..., 8) = max ur(s’, 8§, ..., 5 Sk 55,8, ...,8),
Sk ESk S1€S] Sk €Sk
we have

arg max min u;(s;, sj, 5, ..., §, $58 ..., §) = arg max u;(s;, L5 ..., 588 ...
s; €S; SjESj S;€S;

arg max minuk(sl, 5 ....8 Sk 8,8, ..., 8) = arg max uk(sl, 5,...,8 Sk S
Sk €Sk 81 ESl Sk €Sk

Because the game is zero-sum in each group,

m
- ~ 2 A N ~ . 2 A N
Z ui(sj, 8, ...,585%8,...,8) +u(s;,§5,...,85%,8,...,8 =0,
i=1,i#j
n
1 1 a
ug(s’, 8 ..., 8,858, ..., 8+u(s, 8 ..., 58,8 ...,8 =0
k=m+1,k+1
By symmetry for each group
~ ~ 2 A ~ ~ 2 A A
(m - Du(sj, 5, ..., 858, ...,8) +u;(s;, 5, ...,58s5%,5...,8) =0,

(n—m—l)uk(sl,E,...,§,s1,§,...,

Thus,
(m - Du;(sj, §, ..., §, s>

(n—m—Du(s, 5, ...

They mean
. ~ ~ 2 A AN ~ ~ 2 a a) — ol
arg min u;(sj, §, ..., §, 55,8, ..., 8) = argmax u;(s;, 5, ..., §,55,8,...,8) =5,
sj€S; 8j€S;
. 1 ~ ~ n A 1 ~ ~ ~ a2
argminug(s, 5, ..., 5 8,8, ...,8) =argmaxw(s, 5, ..., 5 8,5,...,8) =s
S1€S; S1€S;

Therefore, if s' # § or s> # §, there may exist a Nash equilibrium denoted as follows;

We may have s' = §or s? = 3.
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