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Abstract

This paper considers panel data models with cross-sectional dependence arising from both

spatial autocorrelation and unobserved common factors. It derives conditions for model identi-

fication and proposes estimation methods that employ cross-sectional averages as factor proxies,

including the 2SLS, Best 2SLS, and GMM estimations. The proposed estimators are robust to

unknown heteroskedasticity and serial correlation in the disturbances, unrequired to estimate the

number of unknown factors, and computationally tractable. The paper establishes the asymp-

totic distributions of these estimators and compares their consistency and efficiency properties.

Extensive Monte Carlo experiments lend support to the theoretical findings and demonstrate

the satisfactory finite sample performance of the proposed estimators. The empirical section

of the paper finds strong evidence of spatial dependence of real house price changes across 377

Metropolitan Statistical Areas in the US from 1975Q1 to 2014Q4. The results also reveal that

population and income growth have significantly positive direct and spillover effects on house

price changes. These findings are robust to different specifications of the spatial weights matrix

constructed based on distance, migration flows, and pairwise correlations.
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1 Introduction

The past decade has seen a growing attention to panel data models with cross-sectional dependence,

which refers to the interaction between cross-section units such as households, firms, regions, and

countries. Researchers have become increasingly aware that ignoring cross-sectional dependence in

panel data analysis could lead to inconsistent estimates and misleading inferences. The interdepen-

dence among individual units is prevalent in all kinds of economic activities. It could arise from

common factors that influence a large number of economic agents, such as technological change and

oil price fluctuations. It could also originate from certain explicit correlation structures formed by

spatial arrangements, production networks, and social interactions. Accordingly, two main model-

ing approaches have been proposed to characterize this phenomenon: the common factor models

and the spatial econometric models. In the former, cross-sectional dependence is captured by a

number of observable or latent factors (or common shocks); in the latter, it is represented by spatial

weights matrices typically based on physical, economic, or social distance. Although describing the

same phenomenon, these two strands of literature have been developing separately, with different

sets of assumptions and emphases. Therefore, efforts are called for to investigate the connections

and differences between these two modeling approaches.

This paper aims to bring together factor and spatial models for a unified characterization of

cross-sectional dependence. The main contributions of the paper are twofold. First, it considers

a joint modeling of the two sources of cross-sectional dependence in panel data models: common

factors and spatial interactions. It establishes identification conditions and proposes estimation

methods for the joint model. Second, the paper provides a detailed empirical application to house

price changes in the US and finds strong evidence of spatial effects. The empirical findings are

robust and could carry important policy and business implications.

Specifically, our model specifications allow the common effects to be unobservable and the

spatial dependence to be an inherent property of the dependent variable. We begin by deriving the

identification conditions for the joint model. In particular, a simple necessary condition is provided,

which is both verifiable and of practical relevance, especially for large sparse networks. We then

propose a number of estimators for the model and establish their asymptotic distributions. We are

faced with two major challenges in devising an estimation strategy. One is related to the unobserved

factors, and the other is associated with the endogenous spatial lags of the dependent variable. The

estimators developed in this paper approximate the unobserved factors by cross-sectional averages

of the dependent and independent variables, and then utilize instrumental variables and other

moment conditions to resolve the endogeneity problem. These estimators do not require estimating

the number of factors, which is well known to be a challenging task. Moreover, they are robust to

both heteroskedasticity and serial correlations in the disturbances, and they are computationally

attractive. We show that the proposed estimators, including the two-stage least squares (2SLS),

Best 2SLS, and generalized method of moments (GMM) estimators, are consistent as long as the

cross-section dimension (N) is large, irrespective of the size of the time series dimension (T ).

Furthermore, they are asymptotically normally distributed without nuisance parameters, provided
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that T is relatively smaller than N , as both N and T tend jointly towards infinity. The Monte

Carlo simulation results support the identification conditions. A series of detailed experiments also

demonstrate the satisfactory finite-sample properties of the proposed estimators.

The proposed estimation methods are applied in order to analyze changes in real house price

the US across 377 Metropolitan Statistical Areas (MSAs) from 1975Q1 to 2014Q4. The study

demonstrates the importance of the effective removal of common effects in evaluating the strength

of spatial connections. It documents significant spatial dependence in house price changes. It

also shows that population and income growth significantly increase house price growth through

both direct effect and spillover effect. These findings are fairly robust to various specifications

of the spatial weights, including weights based on distance, on migration flows, and on pairwise

correlations of the de-factored observations.

Related Literature The theoretical analysis in this paper belongs to a recent and growing

literature on panel data models with cross-sectional dependence (CSD). Chudik et al. (2011) intro-

duce the notions of weak and strong CSD. Applying these concepts, a spatial model can be shown

to be a form of weak CSD, whereas the standard factor model represents a form of strong CSD

(Pesaran and Tosetti, 2011; Bailey, Holly, and Pesaran, 2016). Bailey, Kapetanios, and Pesaran

(2016) propose measuring the degree of CSD by an exponent of dependence, which captures how

fast the variance of the cross-sectional average declines with the cross-section dimension, N . Using

this exponent of cross-sectional dependence, Pesaran (2015) further discusses testing for weak CSD

in large panels.1

The characterization of CSD is divided into two areas of writing. On the one hand, there is a

large body of literature on common factor models. Recent contributions on large panel data models

with common factors include Pesaran (2006), Bai (2009), Bai and Li (2012), and Moon and Weidner

(2015), just to name a few. Our study is particularly related to an influential paper by Pesaran

(2006), who develops Common Correlated Effects (CCE) estimators for panel data models with

multifactor error structure. The basic idea behind the CCE estimators is to filter the unobserved

factors with cross-sectional averages. In follow-up studies, Kapetanios et al. (2011) show that the

CCE estimators are still applicable if the unobserved factors follow unit root processes; Chudik and

Pesaran (2015a) extend the estimation approach to models with lagged dependent variables and

weakly exogenous regressors.

On the other hand, the present paper also draws from the spatial econometrics literature.2 Two

main classes of methods have been developed to estimate spatial models: the maximum likelihood

(ML) techniques (Anselin, 1988; Lee, 2004; Yu et al., 2008; Lee and Yu, 2010a; Aquaro et al., 2015),

and the instrumental variables (IV)/GMM approaches (Kelejian and Prucha, 1999, 2010; Lee, 2007;

Lin and Lee, 2010; Lee and Yu, 2014). The estimation strategy in the current article is related to

and builds on the GMM framework. Regarding the identification conditions of spatial models, a

1For overviews of the literature on panel data models with error cross-sectional dependence, see Sarafidis and
Wansbeek (2012) and Chudik and Pesaran (2015b).

2Comprehensive reviews of spatial econometrics can be found in books including Anselin (1988) and Elhorst (2014).
Also see the survey article by Lee and Yu (2010b) for the latest developments in spatial panel data models.
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systematic discussion is provided in a recent study by Lee and Yu (2016) under the assumption

that the sample size is finite. Aquaro et al. (2015) also conduct a detailed investigation of the

identifiability of spatial models with heterogeneous coefficients. The present paper sheds new light

on the identification of spatial models with factors, and it shows that the conditions in Lee and Yu

(2016) cannot be applied when N tends to infinity.

The current paper is most closely related to a number of more recent studies that consider

both common factors and spatial effects. Pesaran and Tosetti (2011) consider models where the

idiosyncratic errors are spatially correlated and subject to common shocks. Bai and Li (2014) specify

the spatial autocorrelation on the dependent variable while assuming the presence of unobserved

common shocks. They advocate a pseudo-ML method that simultaneously estimates a large group

of parameters, including the heterogeneous factor loadings and heterogeneous variances of the

disturbances. A similar approach is considered by Bai and Li (2015) for dynamic models. Other

studies within the ML framework include Shi and Lee (2017), and Lu (2017). However, besides

computational complexities, the ML methods are not robust to serial correlation in the errors, and

they require knowing or estimating the number of latent factors.3 Instead of estimating the two

effects jointly, Bailey, Holly, and Pesaran (2016) propose a two-stage approach that extracts the

common factors in the first stage and then estimates the spatial connections in the second stage.

Nonetheless, a formal distribution theory that takes into account the first-stage sampling errors is

not yet available.

The empirical investigation in the present paper is concerned with the spatial dependence in

house prices. The phenomenon that house price variations tend to exhibit spatial correlations has

received increasing attention from economists over the past two decades, although little consensus

has been reached regarding the spatial transmission mechanism. Possible explanations include

migration, equity transfer, spatial arbitrage, and spatial patterns in the determinants of house

prices (Meen, 1999). Researchers have obtained evidence on the spatial spillovers of house prices

in the US at different levels of aggregation using various methods.4 For example, Pollakowski and

Ray (1997) examine nine US Census divisions as well as the New York metropolitan area using a

vector autoregressive (VAR) model. Brady (2011) focuses on the diffusion of house prices across

a panel of California counties by means of impulse response functions. Holly et al. (2010) analyze

US house prices the State level using a spatial error model, where the importance of spatial effects

is evaluated by fitting a spatial model to the residuals from a CCE estimation procedure. Brady

(2014) also consider State level house prices but utilize spatial impulse response functions from a

single-equation spatial autoregressive model. The current paper focuses on the extent to which

house prices are interdependent among near 400 Metropolitan Statistical Areas (MSAs) in the US.

Little research has investigated this issue at the MSA level. One exception is the study undertaken

by Cohen et al. (2016), who incorporate geography into an autoregressive model via cross-lag effects

3Much is written on estimating the number of unobservable factors. See, for example, Bai and Ng (2002) (2007),
Kapetanios (2010), and Stock and Watson (2011).

4International evidence on the spatial interconnections of house prices are provided by Luo et al. (2007) for
Australia, Shi et al. (2009) for New Zealand, and Holly et al. (2011) for the UK, just to name a few.
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and do not employ a spatial econometric approach.5 Our empirical analysis is closely related to the

inquiry by Bailey, Holly, and Pesaran (2016), who examine MSA level house price changes with a

two-stage procedure. In comparison, besides using more recent data on updated MSA delineations,

the present paper adopts a different estimation approach that jointly considers common factors

and spatial dependence. It also explores the direct and indirect effects of possible determinant

variables on house price growth. Another contribution of this paper involves the specification of

spatial weights matrix based on migration flows.

Outline of the Paper The rest of the paper is organized as follows. Section 2 specifies

the model and describes the idea of approximating the unobserved factors with cross-sectional

averages. Section 3 investigates the identification conditions. Section 4 establishes the asymptotic

distributions of the 2SLS, Best 2SLS, and GMM estimators. Section 5 reports the Monte Carlo

experiments for the identification and estimation experiments. Section 6 presents an empirical

application to US house prices, and finally, Section 7 concludes. The Appendix provides proofs of

the main theorems and further details on data sources and variable transformations. The Online

Supplement contains a list of lemmas used in the main proofs, and derivations of the identification

conditions. The Supplement also gives additional results of Monte Carlo experiments and further

empirical findings.

Notations

For an N × N real matrix A = (aij), ||A|| =
√

tr(AA′), ||A||∞ = max
1≤i≤N

∑N
j=1 |aij,N | and

||A||1 = max
1≤j≤N

∑N
i=1 |aij | denote the Frobenius norm, the maximum row sum norm and maximum

column sum norm of matrix A, respectively. We say that the row (column) sums of a (sequence

of) matrix A are uniformly bounded in absolute value, or A has bounded row (column) norm for

short, if there exists a constant K, such that ||A||∞ < K < ∞ (||A||1 < K < ∞) for all N . vec(A)

is the column vector obtained by stacking the columns of A. Diag (A) = Diag (a11, a22, . . . , aNN )

represents an N × N diagonal matrix formed with the diagonal entries of A, whereas diag(A) =

(a11, a22, . . . , aNN )′ denotes an N × 1 vector. λmax(A) and λmin(A) are the largest and smallest

eigenvalues of matrix A, respectively. tr(A) denotes the trace of matrix A, and det(A) denotes

the determinant of A. ⊙ stands for the Hadamard product, and ⊗ is the Kronecker product.

(N,T )
j→ ∞ denotes joint convergence of N and T . Let {xN}∞N=1 be any real sequence and {yN}∞N=1

be a sequence of positive real numbers; we adopt the Landau’s symbols and write xN = O (yN )

if there exists a positive finite constant K such that |xN | ≤ KyN for all N , and xN = o (yN ) if

xN/yN → 0 as N → ∞. Op(.) and op(.) are the equivalent stochastic orders in probability. ⌊x⌋
denotes the integral part of a real number x. K is used generically for a finite positive constant.

5Cohen et al. (2016) also use a house price index different from ours. Specifically, the authors adopt the consolidated
house price index by the Office of Federal Housing Enterprise Oversight (OFHEO) that covers 363 MSAs over the
period of 1996-2013.
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2 The Model and Assumptions

Consider the following spatial autoregressive (SAR) model with common factors,

yit = ρy∗it + β
′xit + γ

′
ift + eit,

xit = A′
ift + vit,

(1)

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where yit is the dependent variable of unit i at time t, and

y∗it =
∑N

j=1wijyjt, which represents the endogenous interaction effects (or spatial lag effects) among

the dependent variable. The matrix W = (wij)N×N is a specified spatial weights matrix of known

constants. It characterizes neighborhood relations, which are typically based on a geographical

arrangement or on socio-economic connections of the cross-section units. The parameter ρ captures

the strength of spatial dependence across observations on the dependent variable and is known

as the spatial autoregressive coefficient. The k × 1 vector xit = (xit,1, xit,2, . . . , xit,k)
′ contains

individual-specific explanatory variables, and β is the corresponding vector of coefficients, where k

is assumed to be a known fixed number. The variables eit and vit = (vit,1, vit,2, . . . , vit,k)
′ are the

idiosyncratic disturbances associated with yit and xit processes, respectively. The m×1 vector ft =

(f1t, f2t, . . . , fmt)
′ represents unobserved common factors, where m is fixed but possibly unknown.

The factor loadings γi and Ai capture heterogeneous impacts from the common effects on cross-

section units.6 Overall, the term ρy∗it captures the spatial effect, while γ ′
ift captures the common

factor effect. The latter is also referred to in the literature as an interactive effect, since it can

be viewed as a generalization of the traditional additive fixed effect. The parameters of interest

throughout this paper are δ =
(

ρ,β′)′.

In model (1), the explanatory variables are specified so that they can be influenced by the same

factors that affect the dependent variable. Such a specification is reasonable in practice and has

been considered in studies including Pesaran (2006) and Bai and Li (2014). Also note that this

model can be readily extended without additional complication to include observable factors such

as intercepts, seasonal dummies, and deterministic trends;7 here we focus on unobservable factors

to facilitate exposition.

To cope with the unknown factors in model (1), we replace them with cross-sectional averages

of the dependent and individual-specific independent variables, following the idea pioneered by

Pesaran (2006). To see why this approximation works for the SAR model, we begin by rewriting

model (1) as follows:
(

yit − ρ
∑N

j=1wijyjt − β′xit

xit

)

= Φ′
ift + uit, (2)

where Φi = (γi,Ai), uit = (eit,v
′
it)

′ . Then, stacking (2) by individual unit for each time period,

6The heterogeneity in factor loadings may arise, for example, from differences in endowment, technical rigidities,
or innate ability.

7See Remark 2 of Pesaran (2006).
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the model can be expressed more compactly as

∆ (ρ,β) z.t = Φft + u.t, for t = 1, 2, . . . , T, (3)

where z.t = (z′1t, z
′
2t, . . . , z

′
Nt)

′ is an N (k + 1)-dimensional vector of observations, with zit =

(yit,x
′
it)

′, Φ = (Φ1,Φ2, . . . ,ΦN )′, u.t = (u′
1t,u

′
2t, . . . ,u

′
Nt)

′, and ∆ = ∆ (ρ,β) is a square ma-

trix, of which the (i, j)th subblock of size (k + 1), for i, j = 1, 2, . . . , N , is given by

∆ii =

(

1 −β′

0 Ik

)

, if i = j; and ∆ij =

(

−ρwij 0

0 0

)

, if i 6= j.

The way of stacking the equations in (2) follows that in Bai and Li (2014), who show that ∆−1 =

∆−1 (ρ,β) exists and its (i, j)th subblock is given by8

∆−1
ii =

(

šii šiiβ
′

0 Ik

)

, if i = j; and ∆−1
ij =

(

šij šijβ
′

0 0

)

, if i 6= j, (4)

where šij denotes the (i, j)th element of S−1 (ρ), and S (ρ) = IN − ρW. The inverse of S (ρ) exists

under certain regularity conditions, which will be discussed later. It then follows from (4) that (3)

is equivalent to

z.t = ∆−1 (Φft + u.t) = C′ft + ǫ.t, (5)

where C =
(

∆−1Φ
)′

and ǫ.t = ∆−1u.t = (ǫ′1t, ǫ
′
2t, . . . , ǫ

′
Nt)

′ are the transformed new error terms.

Now letting Θa = N−1τ ′
N ⊗ Ik+1, where τN is an N × 1 vector of ones, it is easily verified that

z̄.t = Θaz.t = (ȳ.t, x̄
′
.t)

′, where ȳ.t = T−1
∑N

i=1 yit and x̄.t = T−1
∑N

i=1 xit. As shown,Θa is a matrix

that operates on any N (k + 1)-dimensional vector that is stacked in the same order as z.t and

produces an k×1 vector of cross-sectional averages. Similarly, we have ǭ.t = Θaǫ.t = T−1
∑N

i=1 ǫit.

Premultiplying both sides of (5) with Θa yields

z̄.t = C̄′ft + ǭ.t, (6)

where

C̄ =
(

ΘaC
′) ′ = N−1





N
∑

i=1

N
∑

j=1

šij
(

γj +Ajβ
)

,

N
∑

j=1

Aj



 , (7)

Assuming that C̄ has full row rank, namely, Rank
(

C̄
)

= m ≤ k + 1, for all N including N → ∞,

we obtain

ft =
(

C̄C̄′)−1C̄ (z̄.t − ǭ.t) . (8)

The task now is to show that ǭ.t diminishes for sufficiently large N . We establish in Lemma A2

that ǭ.t converges to zero in quadratic mean as N → ∞, for any t. It follows from (8) that ft can be

8See Lemma A.1 of Bai and Li (2014).
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approximated by the cross-sectional averages z̄.t with an error of order Op(1/
√
N). More formally,

we have

ft
p→
(

C0C
′
0

)−1C0z̄.t, as N → ∞, (9)

where

C0 = lim
N→∞

C̄ = [E (γi) , E (Ai)]

(

¯̌s 0

¯̌sβ Ik

)

,

¯̌s = N−1τ ′
NS−1 (ρ) τN = N−1

N
∑

i=1

N
∑

j=1

šij .

It is clear from (9) that z̄.t serve fairly well as factor proxies as long as N is large.9 Note that the

use of equal weights in constructing the cross-sectional averages is nonessential to the asymptotic

analysis, which can be readily carried through with other weighting schemes satisfying the granu-

larity conditions.10 Thus, the current paper will focus on simple cross-sectional averages for ease

of exposition.

To facilitate formal analysis, it is convenient to define the infeasible de-factoring matrices (or

residual maker) as follows:

Mf = IT − F
(

F′F
)−

F′, Mb
f = Mf ⊗ IN , (10)

where F = (f1, f2, . . . , fT )
′ is a T×m matrix of unobserved common factors, and (F′F)− denotes the

generalized inverse of F′F. The observable counterparts of (10) that utilize cross-sectional averages

are given by

M̄ = IT − Z̄
(

Z̄′Z̄
)−

Z̄′, Mb = M̄⊗ IN , (11)

where Z̄ = (z̄.1, z̄.2, . . . , z̄.T )
′. Note that Mb

f and Mb are de-factoring matrices of NT dimension that

operate on the observations stacked as successive cross sections, namely, Y = (y′
.1,y

′
.2, . . . ,y

′
.T )

′

and X = (X′
.1,X

′
.2, . . . ,X

′
.T )

′, where y.t = (y1t, y2t, . . . , yNT )
′ and X.t = (x1t,x2t, . . . ,xNt)

′, for

t = 1, 2, . . . , T . Throughout this paper, K is used generically to denote a finite positive constant.

In order to formally analyze model (1), we will make the following assumptions:

Assumption 1. The unobserved common factors ft are covariance stationary with absolutely

summable autocovariances, and they are distributed independently of eit′ and vit′ for all i, t, t′.

Assumption 2. The idiosyncratic errors, uit = (eit,v
′
it)

′, are such that

(i) For each i, eit and vit follow linear stationary processes with absolutely summable autoco-

variances: eit =
∑∞

l=0 ailζi,t−l and vit =
∑∞

l=0Ξilς i,t−l, where (ζit, ς
′
it)

′ ∼ IID (0k+1, Ik+1)

with finite fourth-order moments. The errors eit and vjt′ are distributed independently of

9In practice, it may also worth including ȳ∗

t as factor proxies if ȳ∗

t is not highly correlated with ȳt, where ȳ∗

t =
N−1∑N

i=1 y
∗

t .
10See Assumption 5 in Pesaran (2006).
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each other, for all i, j, t, t′. In addition, V ar (eit) =
∑∞

l=0 a
2
il = σ2

i < K and V ar (vit) =
∑∞

l=0ΞilΞ
′
il = Σv,i < K, where σ2

i > 0 and Σv,i is positive definite.

(ii) The error term eit has absolutely summable cumulants up to the fourth order.

Assumption 3. The factor loadings, γi and Ai, are independently and identically distributed

across i, and independent of ejt, vjt, and ft, for all i, j, and t. Both γi and Ai have fixed means,

which are given by γ and A, respectively, and finite variances. In particular, for all i, γi = γ+ηi,

ηi ∼ IID (0,Ωη), where Ωη is a symmetric non-negative definite matrix, ‖γ‖ < K, ‖A‖ < K, and

‖Ωη‖ < K.

Assumption 4. The true parameter vector, δ0 =
(

ρ0,β
′
0

)′
, is in the interior of the parameter space,

denoted by ∆sp, which is a compact subset of the (k + 1)-dimensional Euclidean space, Rk+1.

Assumption 5. The matrix C̄, given by (7), has full row rank for all N , including N → ∞.

Assumption 6. The N × N nonstochastic spatial weights matrix, W = (wij), has bounded row

and column sum norms, namely, ||W||∞ < K and ||W||1 < K, respectively, and

|ρ| < max {1/||W||1, 1/||W||∞}

for all values of ρ. In addition, the diagonal entries of W are zero, that is, wii = 0, for all

i = 1, 2, . . . , N .

Assumption 7. The N × q matrix of instrumental variables, Q.t, for t = 1, 2, . . . , T , is composed

of a subset of the columns of
(

X.t,WX.t,W
2X.t, . . .

)

, and its column dimension q is fixed for all

N and t. The matrix Q = (Q′
.1,Q

′
.2, . . . ,Q

′
.T )

′ represents the IV matrix of dimension NT × q.

Assumption 8. (i) There exists N0 and T0, such that for all N > N0 and T > T0, the matrices

(NT )−1
Q′MbQ and (NT )−1

Q′Mb
fQ exist and are nonsingular.

(ii) The matrix p limN,T→∞ (NT )−1
(

Q′Mb
fL0

)

is of full column rank, where L0 =
(

Gb
0Xβ, X

)

,

Gb
0 = IT ⊗G0, and G0 = WS−1 (ρ0).

(iii) E|xit,p|2+δ < K, for some δ > 0, and for all i = 1, 2, . . . , N , t = 1, 2, . . . , T , and p =

1, 2, . . . , k.

Remark 1. An attractive feature of the model is that it allows for the presence of both het-

eroskedasticity and serial correlation in the disturbance processes, as stated in Assumption 2.11

The asymptotic analysis in the current paper is conducted under this fairly general configura-

tion, and the theoretical findings are corroborated by Monte Carlo evidence. Note that Assump-

tion 2(ii) is only made for the limit theory of the GMM estimator. Under Assumption 2, we

have V ar (u.t) = Σu = Diag (Σu,1,Σu,2, . . . ,Σu,N ) and V ar (uit) = Σu,i = Diag
(

σ2
i ,Σv,i

)

, for

i = 1, 2, . . . , N ; both Σu and Σu,i are block-diagonal matrices.
11This model can be further extended to accommodate spatial correlations in the error processes.
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Remark 2. The assumptions on the factors and factor loadings (Assumptions 1 and 3) follow the

specifications in Pesaran (2006). The compactness of the parameter space in Assumption 4 is a

condition to facilitate the theoretical analysis of the GMM estimation. This condition is usually

assumed when the objective function for an estimator is highly nonlinear. The rank condition in

Assumption 5 is imposed for analytical convenience and can be relaxed following similar arguments

as in Pesaran (2006).12

Remark 3. Assumption 6 ensures that S(ρ) is nonsingular for all possible values of ρ, where S(ρ) =

IN −ρW. To see this, note that S(ρ) is invertible if |λmax (ρW) | < 1. Since λmax (ρW) < |ρ|||W||1
and λmax (ρW) < |ρ|||W||∞, therefore S(ρ) is invertible if |ρ| < max {1/||W||1, 1/||W||∞}. As-

sumption 6 also implies that S−1(ρ) is uniformly bounded in row and column sums in absolute

value for all values of ρ, since

||S−1||1 = ||IN + ρW + ρ2W2 + . . . ||1 ≤ 1 + |ρ|||W||1 + |ρ|2||W||21 + . . . =
1

1− |ρ|||W||1
< K,

and similarly, it can be shown that ||S−1||∞ < K. The uniform boundedness assumption is standard

in the spatial econometrics literature. It essentially imposes sparsity restrictions on W so that the

degree of cross-sectional correlation is manageable. As we shall see, this assumption plays an

important role in the asymptotic analysis. Also note that W need not to be row-standardized so

that each row sums to unity, which is often performed in practice for ease of interpretation. If all

the elements of W are non-negative, row-standardization implies that y∗it is a weighted average of

neighboring values. Lastly, the zero diagonal assumption for the W matrix is innocuous and only

for notational convenience in discussing the GMM estimation. No unit has self-influence under this

assumption, which is clearly satisfied if W represents geographical distance or social interactions.

Remark 4. The spatially lagged dependent variable, y∗it, is in general correlated with the error

term. The selection of the instrumental variables in Assumption 7 originates from Kelejian and

Prucha (1998) for cross-sectional SAR models. This choice is motivated by the spatial power series

expansion of the expectation of the spatial lag (see Kelejian and Prucha, 1998, p.104).

Remark 5. Assumptions 8(i) and 8(ii) are the standard rank conditions for the 2SLS and GMM

estimators analyzed below to be well defined asymptotically. The existence of higher-than-second

moments in Assumption 8(iii) is required for the GMM estimation to apply a central limit theorem

(CLT) for the linear and quadratic form, which is an extension of Theorem 1 in Kelejian and Prucha

(2001). For the 2SLS estimations, the existence of the second moments would be sufficient.

3 Identification

Before discussing how to estimate the joint model (1), it is important to make sure that the pa-

rameters are identified. Since we are only interested in estimating δ =
(

ρ,β′)′, we will derive the

12Also see Kapetanios et al. (2011) and Chudik and Pesaran (2015a) for discussions about the Common Correlated
Effects (CCE) estimators in the rank deficiency case.
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identification conditions of δ assuming the factors are known.13 It should be noted that whether the

factors are observable will not affect the identification conditions. If there are unobserved factors,

replacing them with certain proxies will only affect the consistency and efficiency properties of an

estimator. Furthermore, as has been seen from (9), the unknown factors can be well approximated

by cross-sectional averages for all values of ρ and β under the given assumptions, with an approx-

imation error of order Op(1/
√
N). Hence, the following analysis on the identification problem is

undertaken conditional on observable factors. We will begin by examining SAR models with factors

but without exogenous explanatory variables, xit, and return to models with xit afterwards.

Now let us consider the following model,

yit = ρy∗it + γ
′
ift + eit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (12)

where ft is an m × 1 vector of observable factors, and the errors eit are assumed to be inde-

pendently and normally distributed with zero means and constant variances for all i and t, i.e.,

eit ∼ IIDN(0, σ2), where 0 < σ2 < K. Writing (12) in stacked form, we have

y.t = ρy∗
.t + Γft + e.t, t = 1, 2, . . . , T,

where y∗
.t = Wy.t = (y∗1t, y

∗
2t, . . . , y

∗
Nt)

′, Γ = (γ1,γ2, . . . ,γN )′ is an N×m matrix of factor loadings,

and e.t = (e1t, e2t, . . . , eNt)
′. Define γ = (γ ′

1,γ
′
2, . . . ,γ

′
N )′, and let ϕ0 =

(

ρ0,γ
′
0, σ

2
0

)′
denote the

true value of ϕ =
(

ρ,γ ′, σ2
)′

. We adopt the most general identification framework based on the

likelihood function proposed by Rothenberg (1971). The (quasi) log-likelihood function of (12) is

given by

l (ϕ) = −NT

2
ln(2π)− NT

2
lnσ2 + T ln|S(ρ)| − 1

2σ2

T
∑

t=1

[S(ρ)y.t − Γft]
′ [S(ρ)y.t − Γft] ,

and it follows that

1

NT
E0l (ϕ) =− 1

2
ln(2π)− 1

2
lnσ2 +

1

N
ln|S(ρ)|

− 1

2σ2

{

[

ρ− ρ0, (γ − γ0)
′]Hf

(

ρ0,γ
′
0

) [

ρ− ρ0, (γ − γ0)
′]′ +

σ2
0

N
tr
[

S−1
0 S(ρ)S′(ρ)S−1′

0

]

}

,

1

NT
E0l (ϕ0) =− 1

2
[ln(2π) + 1]− 1

2
lnσ2

0 +
1

N
ln|S0|,

where

Hf

(

ρ0,γ
′
0

)

= (NT )−1E0

T
∑

t=1

(

J ′
0,tJ0,t

)

, J0,t =
(

G0Γ0ft, Ft

)

, (13)

G(ρ) = WS−1(ρ), G0 = G(ρ0) = WS−1
0 , Ft = IN ⊗ f ′t , and for the discussion of identification, we

use E0 to emphasize that the expectation is calculated using the true values of the parameters.

13The factor loadings are identified up to a rotation if factors are unobserved.
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Letting QNT (ψ) = (NT )−1E0 [l(ϕ0)− l(ϕ)], where ψ = (d, ζ′, ϑ)′, d = ρ− ρ0, ζ = γ−γ0, and

ϑ = (σ2 − σ2
0)/σ

2 < 1, we obtain

QNT (ψ) =− 1

2
[ln(1− ϑ) + ϑ]− 1

N
ln|IN − dG0| −

1

N
(1− ϑ)dtr (G0) +

1

2
(1− ϑ)d2

tr (G0G
′
0)

N

+
1

2
σ2
0(1− ϑ)

(

d, ζ′
)

Hf (ρ0,γ
′
0)
(

d, ζ′
)′
. (14)

Then, by a mean value expansion, and noting that ∂QNT (0)/∂ψ = 0, we have QN (ψ) = 1
2ψ

′Λf,NT

(

ψ̄
)

ψ,

where Λf,NT (ψ) = ∂2QNT (ψ)/∂ψψ
′, a detailed expression of which is given by (S.15) in the Online

Supplement. ψ̄ =
(

d̄, ζ̄
′
, ϑ
)′

=
[

ρ̄− ρ0, γ̄
′ − γ ′

0, (σ̄
2 − σ2

0)/σ̄
2
]′
, where ρ, γ̄, and σ̄2 lie between 0

and ρ0, γ0, σ
2
0, respectively. It follows immediately that for all N (including N → ∞) and all T ,

the parameters ψ0 are locally identified if and only if λmin [Λf,NT (0)] > 0, where Λf,NT (0) is given

by (S.16) in the Online Supplement. This condition can be further simplified after some algebra.14

We formally state the results in the following proposition.

Proposition 1. Consider the model given by (12). For all N (including N → ∞) and all T , the

true parameter values ρ0, γ0, and σ2
0 are locally identified if and only if

hg ≡ tr
(

G2
0 +G0G

′
0

)

N
− 2 [tr (G0)]

2

N2
> 0, (15)

and T−1E0 (ftf
′
t) is positive definite.

Notice that model (12) reduces to a pure SAR model if there are no common factors; the iden-

tification condition would become hg > 0, for all N (including N → ∞). This condition is in line

with the findings in a recent study by Aquaro et al. (2015), who investigate the identification of

a spatial model with heterogeneous spatial coefficients without factors. By replacing the hetero-

geneous coefficients in their identification condition with homogeneous ρ, one would arrive at the

same inequality given by (15). To further our understanding of (15), we make the following four

observations.

First, it is worth pointing out that a necessary condition for (15) is that there exists an ε > 0

such that

N−1tr
(

G0G
′
0

)

> ε > 0, for all N, including N → ∞. (16)

To see this, using Schur’s inequality, tr(G2
0)/N ≤ tr(G0G

′
0)/N , we have

tr
(

G2
0 +G0G

′
0

)

N
− 2 [tr (G0)]

2

N2
=

{

tr (G0G
′
0)

N
− [tr (G0)]

2

N2

}

+

{

tr
(

G2
0

)

N
− [tr (G0)]

2

N2

}

≤ 2

{

tr (G0G
′
0)

N
− [tr (G0)]

2

N2

}

.

14See the theory section of Online Supplement for details.
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Therefore, for (15) to hold it is necessary that

tr (G0G
′
0)

N
>

[tr (G0)]
2

N2
. (17)

However, by the Cauchy-Schwarz inequality, we have tr(G0G
′
0)/N ≥ [tr(G0)]

2 /N2. To exclude

the equality, (16) is needed because tr(G0G
′
0)/N = 0 implies tr(G0)/N = 0 for all N , including

N → ∞. Also required for the strict inequality is that G0 cannot be proportional to IN , namely,

G0 6= cIN for all c 6= 0.

Second, under Assumption 6, a necessary and sufficient condition for (16) is that there exists

an ε > 0 such that

N−1tr
(

W′W
)

> ε > 0, for all N, including N → ∞. (18)

To see why, we note that λmin [S
′(ρ)S(ρ)] > 0, which immediately follows from the non-singularity

of S(ρ), and also

λmax

[

S′(ρ)S(ρ)
]

≤ ||S(ρ)||1||S(ρ)||∞ ≤ (1 + |ρ|||W||1) (1 + |ρ|||W||∞) < K < ∞.

Therefore, we have λmax

{

[S′(ρ)S(ρ)]−1
}

< K < ∞ and λmin

{

[S′(ρ)S(ρ)]−1
}

> 0. It then follows

that15

tr (G0G
′
0)

N
=

tr
[

(S′
0S0)

−1
W′W

]

N
≤ λmax

[

(

S′
0S0

)−1
] tr (W′W)

N
< K

tr (W′W)

N
,

which establishes necessity, and

tr (G0G
′
0)

N
=

tr
[

(S′
0S0)

−1
W′W

]

N
≥ λmin

[

(

S′
0S0

)−1
] tr (W′W)

N
,

which establishes sufficiency. As a simple necessary condition for identification, (18) does not

depend on any unknown parameters and can be easily employed to check identifiability in practice.

Third, (16) is both a necessary and a sufficient identification condition if ρ0 = 0. This can be

seen by replacing G0 with W in (15) and by using tr(G0) = 0.

Finally, it should be noted that the condition (18) requires N−1tr (W′W) to be strictly positive

for N → ∞. This is an important consideration because the distinction between strong and weak

cross-sectional dependence relies on N approaching infinity (Chudik et al., 2011). Notice that model

(12) can be seen as a special case of the spatial Durbin models if there are no common factors. Lee

and Yu (2016) investigates the identification conditions of these models but restrict their attention

to finite sample sizes. The authors conclude that the parameter ρ0 is identifiable if IN , W +W′,

and W′W are linearly independent. However, it is possible that this condition is met whereas

15For real symmetric matrix A and real positive semidefinite matrix B of the same size, we have λmin(A)tr(B) ≤
tr(AB) ≤ λmax(A)tr(B).
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(18) is violated as N → ∞. In such a case, our findings suggest that ρ0 cannot be identified. An

example is provided in Section 5.1 to demonstrate the necessity of (18) for identification.

We now proceed to include exogenous regressors xit in (12) and consider the following model,

yit = ρy∗it + β
′xit + γ

′
ift + eit. (19)

In contrast with model (1), here we assume that xit are uncorrelated with ft for all i and t, and eit ∼
IIDN(0, σ2). With a slight abuse of notation, we use the same letter ϕ to denote the parameters

of this model, ϕ =
(

ρ,β′,γ ′, σ2
)′

, and their true values are denoted by ϕ0 =
(

ρ0,β
′
0,γ

′
0, σ

2
0

)′
.

By similar reasoning, we proclaim the following identification proposition, the proof of which is

provided in the Online Supplement.

Proposition 2. Consider the model given by (19), where xit are exogenous and uncorrelated with

ft for all i and t. For all N (including N → ∞) and all T , the true parameter values ρ0 and σ2
0

are locally identified if hg > 0, or/and if H
(

ρ0,β
′
0

)

is positive definite, where hg is given by (15),

H
(

ρ0,β
′
0

)

= (NT )−1E0

(

L′
0L0

)

, (20)

L0 =
(

Gb
0Xβ0, X

)

, and Gb
0 = IT ⊗G0. (21)

Provided that ρ0 is identifiable, the parameter vector β0 is identified if (NT )−1E0 (X
′X) is positive

definite. The vector γ0 is identified if T−1E0 (ftf
′
t) is positive definite.

Remark 6. Note that if H
(

ρ0,β
′
0

)

is positive definite, both ρ0 and β0 are identified; if it is not,

the identification of ρ0 can be achieved by hg > 0. Comparing with the identification conditions for

the pure SAR model, including individual-specific exogenous variables xit introduces an additional

means to identify ρ0; however, including common factors does not help. This is not surprising,

because common factors do not contain information regarding cross-sectional variations.

Remark 7. If there were no common factors, model (1) would reduce to a SAR model with

exogenous regressors. Proposition 2 provides the identification conditions of parameters ρ0, β0 and

σ2
0. Note that these conditions are valid even if N → ∞.

Finally, let us return to model (1). Writing it in stacked form for each time period, we obtain

y.t = ρy∗
.t +X.tβ + Γft + e.t, t = 1, 2, . . . , T. (22)

Supposing that we are only interested in identifying ρ0 and β0, as is the case in the following

analysis, we can remove the effects of ft by premultiplying (22) with Mf . The identification

conditions can be established as a corollary to Proposition 2.

Corollary 1. Consider the model given by (1). For all N (including N → ∞) and all T , the true

parameter value ρ0 is locally identified if hg > 0, or/and if H̊
(

ρ0,β
′
0

)

is positive definite, where hg

13



is given by (15) and H̊
(

ρ0,β
′
0

)

is defined by

H̊(ρ0,β
′
0) = (NT )−1E0

(

L′
0M

b
fL0

)

. (23)

Provided that ρ0 is identifiable, the parameter vector β0 is identified if (NT )−1E0

(

X′Mb
fX
)

is

positive definite, which is ensured if H̊
(

ρ0,β
′
0

)

is positive definite.

4 Estimation

Having established the identification conditions, we now turn to considering the estimation of model

(1). We suggest three estimation methods, including the 2SLS, Best 2SLS, and GMM estimations.

This section formally establishes the asymptotic distributions of these estimators.

4.1 2SLS Estimation

The first estimation method we propose is the 2SLS estimation using the instrumental variables,

Q, as specified in Assumption 7. As before, δ0 = (ρ0,β
′
0)

′ denotes the true parameter vector. The

2SLS estimator of δ0, denoted by δ̂2sls, is defined as

δ̂2sls =
(

L′PQL
)−1

L′PQY, (24)

where PQ = MbQ
(

Q′MbQ
)−1

Q′Mb, L = (Y∗,X) and Y∗ = (IT ⊗W)Y. There are two ways to

interpret (24). One way is to de-factor the data with cross-sectional averages, namely, Y̊ = MbY

and L̊ = MbL, and then apply the standard 2SLS procedure to the de-factored observations Y̊ and

L̊. Alternatively, the matrix MbQ can be directly considered as instruments.

We begin by showing that the 2SLS estimator, δ̂2sls, is consistent as N → ∞, for T fixed or

T → ∞. To see this, note that

δ̂2sls − δ0 =
(

L′PQL
)−1

L′PQ [(IT ⊗ Γ0) f + e] ,

and then

√
NT

(

δ̂2sls − δ0
)

=

[

1

NT
L′MbQ

(

1

NT
Q′MbQ

)−1 1

NT
Q′MbL

]−1

×
{

1

NT
L′MbQ

(

1

NT
Q′MbQ

)−1 1√
NT

Q′Mb [(IT ⊗ Γ0) f + e]

}

.
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Applying Lemma A6, we have

1

NT
Q′MbQ =

1

NT
Q′Mb

fQ+Op

(

1

N

)

+Op

(

1√
NT

)

,

1

NT
Q′MbL =

1

NT
Q′Mb

fL0 +Op

(

1

N

)

+Op

(

1√
NT

)

,

where L0 is given by (21), and it follows that

1

NT
L′PQL =

1

NT
L′
0PQ,fL0 +Op

(

1

N

)

+Op

(

1√
NT

)

,

where PQ,f = Mb
fQ
(

Q′Mb
fQ
)−1

Q′Mb
f . Under Assumption 8, plim

N→∞
(NT )−1

L′
0PQ,fL0 exists and

is nonsingular. Furthermore, we have shown in Lemma A6 that plim
N→∞

(NT )−1
Q′Mb

f [(IT ⊗ Γ0)f + e] =

0. As a result, δ̂2sls is consistent for δ0, as N → ∞.

For the asymptotic distribution of δ̂2sls, we show in Appendix A that as (N,T )
j→ ∞ and T/N →

0, the term (NT )−1/2
Q′Mb [(IT ⊗ Γ0) f ] converges in probability to zero, and (NT )−1/2

Q′Mbe

tends toward a normal distribution. The relative rate of expansion of T and N is imposed to

eliminate the nuisance parameters from the limiting distribution.

The following theorem summarizes the limiting distribution of the 2SLS estimator.

Theorem 1. Consider the panel data model given by (1) and suppose that Assumptions 1, 2(i),

and 3–8 hold. The 2SLS estimator, δ̂2sls, defined by (24), is consistent for δ0, as N → ∞, for T

fixed or T → ∞. Moreover, as (N,T )
j→ ∞ and T/N → 0, we have

√
NT

(

δ̂2sls − δ0
)

d→ N (0,Σ2sls) , (25)

where

Σ2sls = Ψ−1
LPLΩLPeΨ

−1
LPL, (26)

ΨLPL = plim
N,T→∞

(NT )−1
L′
0PQ,fL0, ΩLPe = Ψ′

QMLΨ
−1
QMQΩQMeΨ

−1
QMQΨQML, (27)

ΨQMQ = plim
N,T→∞

(NT )−1
Q′Mb

fQ, ΨQML = plim
N,T→∞

(NT )−1
Q′Mb

fL0, (28)

ΩQMe = lim
N→∞

(

N−1
N
∑

i=1

ΩiQMe

)

, ΩiQMe = plim
T→∞

T−1Q′
i.MfΩe,iMfQi., (29)

Ωe,i = E (ei.e
′
i.), and Qi. = (Qi1,Qi2, . . . ,QiT )

′.

A consistent estimator for the asymptotic variance matrix, Σ2sls, is given by

Σ̂2sls =

(

1

NT
LPQL

)−1

Ω̂LPe

(

1

NT
LPQL

)−1

, (30)
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where Ω̂LPe can be obtained by a Newey-West type robust estimator as follows:

Ω̂LPe = N−1
N
∑

i=1

Ω̂iLPe, (31)

Ω̂iLPe = Ω̂iLPe,0 +

Ml
∑

h=1

(

1− h

Ml + 1

)

(

Ω̂iLPe,h + Ω̂
′
iLPe,h

)

,

Ω̂iLPe,h = T−1
T
∑

t=h+1

êitêi,t−hl̂itl̂
′
i,t−h,

where Ml is the the window size (or bandwidth) of the Bartlett kernel, ê = Mb
(

Y − Lδ̂2sls

)

=

(ê′.1, ê
′
.2, . . . , ê

′
.T )

′, êit is the tth element of ê.t, L̂ = PQL =
(

L̂′
.1, L̂

′
.2, . . . , L̂

′
.T

)′
, and l̂

′
it is the ith

row of L̂.t.

Remark 8. Although our interest lies in the parameters δ, we can gain insight into the variability

of the factor loadings after obtaining estimates of δ. This can be done by regressing yit − l′itδ̂ on

z̄.t and an intercept for each cross-section unit i, where lit = (y∗it,x
′
it)

′, and z̄.t = (ȳ.t, x̄
′
.t)

′.

4.2 Best 2SLS Estimation

Having established the asymptotic distribution of the 2SLS estimator, the question then naturally

arises whether optimal instrumental variables are available for model (1). An instrument is consid-

ered optimal or “best” if it produces an estimator that has the smallest asymptotic variance among

all the IV estimators for the model. For cross-sectional spatial models, Lee (2003) suggests a best

generalized spatial 2SLS estimator, and he shows that it is asymptotically optimal under a set of

regularity conditions. In this section, we generalize this estimation procedure to spatial models

with common factors. Specifically, let δ̂ =
(

ρ̂, β̂
)

denote some consistent initial estimate of δ0,

possibly obtained by the 2SLS estimation described in the previous section. We will investigate if

the IV estimator, δ̂b2sls can achieve the smallest asymptotic variance for model (1), where

δ̂b2sls =
(

Q̂∗′L
)−1

Q̂∗′Y, (32)

Q̂∗ = Mb
[(

IT ⊗ Ĝ
)

Xβ̂, X
]

, (33)

and Ĝ = G(ρ̂). We refer to δ̂b2sls as the best 2SLS (B2SLS) estimator and Q̂∗ as the (feasible)

best IV.

The intuition behind the formulation of Q̂∗ is to exploit the part of Y∗ that is uncorrelated with

the errors. To see this, suppose for simplicity that there are no common factors. The structural

equation (22) implies the following reduced form equation: y.t = S−1
0 X.tβ0+S−1

0 e.t, which further

leads to y∗
.t = G0X.tβ0 + G0e.t. It is readily seen that the term G0X.tβ is correlated with y∗

.t

but uncorrelated with e.t given that X.t is exogenous. Since G0X.tβ0 depends on the unknown
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parameters ρ0 and β0, a feasible IV for y∗
.t can be constructed as ĜX.tβ̂. Accordingly, the B2SLS

estimation can be implemented in two steps: first obtaining some preliminary consistent estimates

of the parameters, and then conducting an IV estimation using the best IV based on the first-step

estimates. A similar argument applies to model (1) with common factors. Equation (33) indicates

that in constructing the best IV, we need to filter out the common effects from the observations

using the de-factoring matrix Mb.

The following theorem states the asymptotic properties of the B2SLS estimator and shows

that it is the best IV estimator provided that the error terms are independently and identically

distributed. The proof is given in Appendix A.

Theorem 2. Consider the panel data model given by (1). Suppose that Assumptions 1, 2(i), and

3–8 hold and H̊(ρ0,β
′
0) is positive definite, where H̊(ρ0,β

′
0) is given by (23). Then, the best 2SLS

(B2SLS) estimator, δ̂b2sls, defined by (32), is consistent for δ0, as N → ∞, for T fixed or T → ∞;

as (N,T )
j→ ∞ and T/N → 0, it has the following distribution:

√
NT

(

δ̂b2sls − δ0
)

d→ N (0,Σb2sls) , (34)

where

Σb2sls = Ψ−1
LMLΩLMeΨ

−1
LML, (35)

ΨLML = plim
N,T→∞

(NT )−1
L′
0M

b
fL0,

ΩLMe = lim
N→∞

(

N−1
N
∑

i=1

ΩiLMe

)

, ΩiLMe = plim
T→∞

T−1L′
0,i.MfΩe,iMfL0,i., (36)

L0 is given by (21), L0,i. = (l0,i1, l0,i2, . . . , l0,iT )
′, and l′0,it is the [N (t− 1) + i]th row of L0. The

B2SLS estimator is the best IV estimator if the disturbances {eit} are independently and identically

distributed with mean zero and variance σ2
e .

Note that under Assumption 6, (IN − ρ0W)−1
X.tβ0 =

∑N
s=1 ρ

s
0W

sX.tβ0. Hence, the term

G0X.tβ0 can be approximated by linear combinations of X.tβ, WX.tβ, W
2X.tβ, . . .. Clearly, the

higher the power of W included, the better the approximation. However, the efficiency gain by in-

cluding more instruments may not be significant. In practice, the 2SLS estimator with instruments
(

X.t,WX.t,W
2X.t

)

is often found to perform well enough. The finite sample properties of δ̂b2sls

will be compared with that of δ̂2sls using Monte Carlo techniques in Section 5.

4.3 GMM Estimation

The third estimator we propose is the GMM estimator that utilizes quadratic moment conditions

based on the properties of the idiosyncratic errors in addition to the 2SLS-type linear moments.

The use of the quadratic moments for SAR models is proposed by Lee (2007) and later extended

by Lin and Lee (2010) and Lee and Yu (2014). The advantages of adopting the quadratic moments

lie both in improving efficiency and in making it possible to estimate the spatial autoregressive
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coefficient when there are no exogenous regressors. In this section, we show that this idea can be

extended to spatial models with common factors.

Specifically, we consider the following sample moment conditions, which consist of r quadratic

moments and q linear moments:16

gNT (δ) =













ξ′(δ)MbPb
1M

bξ(δ)
...

ξ′(δ)MbPb
rM

bξ(δ)

Q′Mbξ(δ)













, (37)

where Mb is the de-factoring matrix defined by (11), ξ(δ) is the vector of residuals given by

ξ(δ) = [IT ⊗ S(ρ)]Y −Xβ, (38)

and δ = (ρ,β′)′ represents the unknown parameters in the parameter space,∆sp. For l = 1, 2, . . . , r,

we define Pb
l = IT ⊗Pl, where Pl = (pl,ij) is an N -dimensional square matrix with zero diagonal,

namely, diag (Pl) = (pl,11, pl,22, . . . , pl,NN )′ = 0.

Intuitively, the idea behind the quadratic moments is to use some matrix Pl to eliminate the

correlations among the elements of the idiosyncratic error e.t in order to achieve zero expectations.

To see this, consider the simpler scenario where there are no common factors: the lth population

quadratic moment at δ0 will be reduced to

E
(

e′Pb
le
)

=
N
∑

i=1

N
∑

j=1

pl,jiE
(

e′i.ej.
)

=
N
∑

i=1

pl,iiE
(

e′i.ei.
)

= 0,

where pl,ji is the (j, i)th element of matrix Pl, and the last equality follows from the assumption

that diag(Pl) = 0. It is worth noting that the moment conditions are built on the key assumption

of the cross-sectional uncorrelatedness between eit and ejt′ , i 6= j, for all t and t′. Also note that

since we allow for unknown heteroskedasticity, we need all diagonal elements of Pl to be zero in

order to remove the variances of eit from the moments. By contrast, imposing tr(Pl) = 0 would be

sufficient if eit are homoskedastic (see, for example, Lee, 2007, and Lee and Yu, 2014).

The GMM estimator, δ̂GMM , is then defined as

δ̂GMM = argmin
δ∈∆sp

g′
NT (δ)Aw′

NTA
w
NTgNT (δ) , (39)

where gNT (δ) is given by (37), and Aw
NT is a constant full row rank matrix of ka×(r+q) dimension,

where ka ≥ k + 1, and Aw′
NTA

w
NT is assumed to converge to a positive definite matrix Aw′A. The

following additional assumption is needed for the asymptotic analysis of the GMM estimator.

16We use the aggregated moment conditions over time instead of a moment condition for each period separately,
since the latter approach may induce the many-moment bias problem and is beyond the scope of the current paper.
See Lee and Yu (2014) for a discussion of this issue for spatial models.
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Assumption 9. The matrices Pl, for l = 1, 2, . . . , r, used in the moment conditions given by (37),

are nonstochastic and have bounded maximum row and column sum norms, namely, ||Pl||∞ < K

and ||Pl||1 < K.

Theorem 3. Consider the panel data model given by (1) and suppose that Assumptions 1–9 hold.

The GMM estimator, δ̂GMM , defined by (39), is consistent for δ0 as N → ∞, for T fixed or

T → ∞. Furthermore, as (N,T )
j→ ∞ and T/N → 0, we have

√
NT

(

δ̂GMM − δ0
)

d→ N (0,ΣGMM ) , (40)

where

ΣGMM =
(

D′Aw′AwD
)−1

D′Aw′AwΣgA
w′AwD

(

D′Aw′AwD
)−1

, (41)

D =
(

D′
p,Ψ

′
QML

)′
, Dp =

(

dp, 0r×k

)

, (42)

dp = lim
N→∞

N−1

(

N
∑

i=1

g̃sii,1σ
2
i ,

N
∑

i=1

g̃sii,2σ
2
i , . . . ,

N
∑

i=1

g̃sii,rσ
2
i

)′

, (43)

Σg =

(

Σp 0r×(k+1)

0(k+1)×p ΩQMe

)

, (44)

Σp = lim
N→∞

N−1









tr [(P1 ⊙Ps
1)Σe] · · · tr [(P1 ⊙Ps

r)Σe]
...

...

tr [(Pr ⊙Ps
1)Σe] · · · tr [(Pr ⊙Ps

r)Σe]









, (45)

where g̃sii,l (l = 1, 2, . . . , r) is the ith diagonal element of matrix G̃l (ρ0) = Ps
lG0, P

s
l = Pl+P′

l, Σe =

(ςe,ij) is an N ×N matrix of which the (i, j)th element is given by ςe,ij = limT→∞ T−1tr (Ωe,iΩe,j),

ΨQML and ΩQMe are given by (28) and (29), respectively, and ⊙ denotes the Hadamard (or

entrywise) product.

The (infeasible) efficient GMM estimator can be obtained using the optimal weighting matrix,

Σ−1
g , in the usual fashion, namely,

δ̂
∗
GMM = argmin

δ∈∆sp

g′
NT (δ)Σ−1

g gNT (δ) . (46)

The asymptotic distribution of δ̂
∗
GMM is formally stated in the next theorem.

Theorem 4. Under the same assumptions as in Theorem 3, the efficient GMM estimator, δ̂
∗
GMM ,

defined by (46), has the following asymptotic distribution as (N,T )
j→ ∞ and T/N → 0:

√
NT

(

δ̂
∗
GMM − δ0

)

d→ N (0,Σ∗
GMM ) , (47)

where Σ∗
GMM =

(

D′Σ−1
g D

)−1
.
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A consistent estimator of ΣGMM can be obtained by replacing D and Σg in (41) with D̂ and

Σ̂g, respectively, where

D̂ =
(

D̂′
p, Ψ̂

′
QML

)′
, D̂p =

(

d̂p 0r×k

)

, Ψ̂ = (NT )−1
Q′MbL,

d̂p = (NT )−1

(

N
∑

i=1

ˆ̃gsii,1ê
′
i.êi.,

N
∑

i=1

ˆ̃gsii,2ê
′
i.êi., . . . ,

N
∑

i=1

ˆ̃gsii,rê
′
i.êi.

)′

,

Σ̂g =
1

NT













∑N
i=1

∑N
j=1 p1,ji (p1,ij + p1,ji) ŝe,ij ∗ · · · 0

∑N
i=1

∑N
j=1 p2,ji (p1,ij + p1,ji) ŝe,ij ∗ · · · 0

...
...

...

0 0 · · · Ω̂QMe













,

ê = Mb
(

Y − Lδ̂GMM

)

, ˆ̃gsii,l is the ith diagonal element of G̃l(ρ̂),

ŝe,ij = T γ̂e,i(0)γ̂e,j(0) + 2

Ml
∑

h=1

(T − h)

(

1− h

Ml + 1

)

γ̂e,i(h)γ̂e,j(h),

γ̂e,i(h) = T−1
∑T

t=h+1 êitêi,t−h, and Ml is the maximum lag length (or window size). Similarly, we

can estimate Σ∗
GMM by Σ̂

∗
GMM =

(

D̂∗′Σ̂
∗−1
g D̂∗

)−1
, where D̂∗ and Σ̂

∗
g would be computed using

ê∗ = Mb
(

Y − Lδ̂
∗
GMM

)

instead of ê.

It is straightforward to see that the 2SLS estimator δ̂2sls is asymptotically less efficient than

δ̂GMM , since the latter makes use of quadratic moments in addition to the linear moments. Turning

to the choice of Pl for the quadratic moments, note that the precision matrix of the efficient GMM

estimator is given by

D′Σ−1
g D =

(

d′
pΣ

−1
p dp 01×k

0k×1 0k×k

)

+
1

NT

(

Q′Mb
fL0

)′
ΩQMe

(

Q′Mb
fL0

)

. (48)

It can be seen from (48) that, ideally, one should choose Pl (l = 1, 2 . . . , r) to maximize d′
pΣ

−1
p dp.

However, this term depends on the unknown variance structure of the disturbances. If the distur-

bances are independent and identically distributed (i.i.d.), it is known in the spatial literature that

the best Pl within the class of matrices with zero diagonal is given by P∗ = G0 −Diag(G0) (Lee,

2007; Lee and Yu, 2014). Using similar arguments, the results can be extended to our model with

common factors. To put it more clearly, provided that the disturbances are i.i.d., a best GMM

(BGMM) estimator can be obtained by minimizing the optimally weighted moments (37), where

P is set to P̂∗ = G(ρ̂)−Diag (G(ρ̂)), and Q is replaced by Q̂∗ given in (33). Nonetheless, in the

presence of unknown heteroskedasticity and serial correlations, the BGMM estimator in general

will not be the most efficient. This conclusion can be drawn by applying similar reasoning as in

the proof of Theorem 2 for the B2SLS estimator. The present paper omits further discussions on
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the BGMM estimator in view of the strong assumption required for it to have optimal properties.

5 Monte Carlo Experiments

This section first provides Monte Carlo evidence in support of the identification conditions, then

documents the finite sample properties of the proposed estimators under various specifications of

the disturbance process and under different intensities of spatial dependence. It also compares the

performance of the proposed estimators with that of alternative estimators.

5.1 Identification Experiments

We now construct an example to show that the condition given by (18), namely,

N−1tr
(

W′W
)

> ε > 0, for all N, including N → ∞, (49)

is indeed necessary for identification. Consider the following data generating process (DGP),

yit = ρy∗it + eit, (50)

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where y∗it =
∑N

j=1wijyjt and eit ∼ IIDN(0, σ2). Suppose

that N1 = ⌊Nα⌋ rows of W are nonzero and that the other N2 = N − N1 rows are all zeros, in

which ⌊Nα⌋ denotes the integer part of Nα, and α is a constant that does not depend on N and lies

in the range[0, 1]. In other words, we allow the number of nonzero rows of W to rise more slowly

than the sample size, N , and the rate at which it rises with N is measured by α.

Note that the identification condition, (18), fails to hold if α < 1. To see this, there is no loss

of generality in assuming that the first N1 rows of W are nonzero, and it follows that

tr (W′W)

N
=

∑N
i=1

∑N
j=1w

2
ij

N
=

∑N1
i=1 Ki+

∑N
i=N1+1 0

N
≤ K

⌊Nα⌋
N

≤ KNα−1,

where the second equality follows from
∑N

j=1w
2
ij = Ki < ∞, for all i. Hence, N−1tr(W′W) → 0,

as N → ∞, if α < 1, and it approaches zero faster for smaller α.

In the Monte Carlo experiments, we consider the q-ahead-and-q-behind circular neighbors spa-

tial weights, which are commonly employed in the literature. An m-ahead-and-m-behind matrix is

motivated to capture spatial relations in which all units are located in a circle; the q units immedi-

ately ahead of and behind a particular unit are considered “neighbors” and assigned equal weights.

For example, for the 2-ahead-and-2-behind spatial matrix, the ith row of W has nonzero elements

in the positions i− 2, i− 1, i+1, i+2, and each weigh 1/4 due to row normalization. Without loss

of generality, we adopt the 5-ahead-and-5-behind spatial weights in the first N1 rows of W, and we

set the remaining rows to zeros.

It is worth noting that the identification condition for model (50) proposed by Lee and Yu (2016),

which states that the matrices, IN , W + W′, and W′W are linearly independent, is satisfied in
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this case. To see this, let c1, c2, and c3 be constants such that

c1 + 2c2wii + c3

N
∑

k=1

w2
ki = 0, for all i = 1, 2, . . . , N, (51)

c2 (wij + wji) + c3

N
∑

k=1

wkiwkj = 0, for all i, j = 1, 2, . . . , N, and i 6= j. (52)

Then IN , W +W′, and W′W are linearly independent if and only if c1 = c2 = c3 = 0. Suppose

first that c3 = 0. From (52) we must have c2 = 0, since wij +wji > 0 exists for some i and j. Then,

using (51), we obtain c1 = 0. If, on the other hand, c3 6= 0, then it can be easily verified that there

are no constants c̃1 > 0 and c̃2 6= 0, such that







∑N
k=1w

2
ki = c̃1, for all i

∑N
k=1wkiwkj = c̃2(wij + wji), for all i, j, and i 6= j

. (53)

This establishes the linear independence of IN , W +W′, and W′W.

In sum, we have shown that the W matrix as described above meets the independence condition

by Lee and Yu (2016), but it violates the necessary condition for identification given by (18) if α < 1.

Using this spatial weights matrix, we generate data following (50) for combinations of N = 20, 50,

100, 500, 1, 000, and T = 1, 20, 50, 100, under α = 1, 1/2, 1/3, 1/4, respectively. The true values

of the parameters are set to ρ = 0.2 and σ2 = 1. Each experiment is replicated 2, 000 times.

Model (50) can be estimated by the standard maximum likelihood approach for SAR models,17

and Table 1 reports the bias, root mean squared error (RMSE), size, and power of the MLE

under different values of α. We first observe that when α = 1, the MLE performs properly with

declining bias and RMSE as N and/or T increases, and with correct empirical size and good power.

Nonetheless, as expected, the bias and RMSE are substantial when α < 1, and they are especially

severe if T is small. Even when both N and T are large, there is considerably greater variation in

the estimates when α < 1 as compared to α = 1. For instance, for N = 1, 000 and T = 100, the

bias (×100) is −1.10 when α = 1/4, whereas it is 0 when α = 1; in addition, the RMSE (×100)

is 11.19 when α = 1/4, which by contrast is only 0.68 when α = 1. It is also evident that the

smaller the value of α, the greater the RMSE. Overall, these results corroborate our finding that

tr (W′W) /N > ε > 0 for all N (including N → ∞) is essential for the identification of the spatial

autoregressive models.

17See, for example, Anselin (1988), Chapter 6.
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5.2 Estimation Experiments

For the estimation experiments, we follow the Monte Carlo design of Pesaran (2006) and consider

the following DGP:

yit =ρy∗it + β1xit1 + β2xit2 + γ
′
y,ift + eit, (54)

xitp =γ
′
x,ipft + υitp, p = 1, 2,

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T . The unobserved factors are generated by

flt =ρflfl,t−1 + ςflt , l = 1, 2, . . . ,m; t = −49,−48, . . . , 0, 1, . . . , T,

ςflt ∼IIDN
(

0, 1− ρ2fl
)

, ρfl = 0.5, fl,−50 = 0,

where the first 50 observations are discarded. The factor loadings are assumed to be γy,i1 ∼
IIDN (1, 0.2), γy,i2 ∼ IIDN (1, 0.2), and

(

γx,i11 γx,i12

γx,i21 γx,i22

)

∼ IID

(

N(0.5, 0.5) N(0, 0.5)

N(0, 0.5) N(0.5, 0.5)

)

.

The idiosyncratic errors of the xitp processes, (υit1, υit2)
′, are generated as

υit,p =ρυipυit−1,p + ϑit,p, t = −49,−48, . . . , 0, 1, . . . , T,

ϑit,p ∼N
(

0, 1− ρ2ϑip

)

, υip,−50 = 0,

ρϑip
∼IIDU (0.05, 0.95) , p = 1, 2,

where the first 50 observations are discarded.

We consider two different designs for the idiosyncratic errors of yit:
18

• The errors eit are generated from IIDN(0, 1). The main goal of this baseline setup is to

compare the efficiency properties of the competing estimators. In particular, it is of interest

to examine if the B2SLS and GMM estimators are more efficient than the 2SLS estimator.

• The errors eit are serially correlated and heteroskedastic. In particular, they are specified as

AR(1) processes for the first half of individual units and as MA(1) processes for the remaining

18We have also examined the case where the errors are independent over time and heteroskedastic across individual
units. The results are presented in the Online Supplement.
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half:

eit =ρieei,t−1 + σi
(

1− ρ2ie
)1/2

ζit, i = 1, 2, . . . , ⌊N/2⌋ , (55)

eit =σi
(

1 + θ2ie
)1/2

(ζit + θieζi,t−1) , i = ⌊N/2⌋+ 1, ⌊N/2⌋+ 2, . . . , N, (56)

ζit ∼IIDN (0, 1) , σ2
i ∼ IIDU (0.5, 1.5) ,

ρie ∼IIDU (0.05, 0.95) , ei,−50 = 0.

The spatial weights matrix is specified as the q-ahead-and-q-behind circular neighbors weights

matrix; without loss of generality, we set q = 1. In all experiments, the true number of factors is

set to m = 2; the true values of slope coefficients are β1 = 1 and β2 = 2; the true value of the

spatial autoregressive coefficient is ρ = 0.4.19 The sample sizes are N = 30, 50, 100, 500, 1, 000;

and T = 20, 30, 50, 100. Each experiment is replicated 2, 000 times.

The parameters of interest for model (54) are (ρ, β1, β2)
′, which are estimated by the following

methods:

• The naive 2SLS estimator, which ignores the latent factors and applies a standard 2SLS esti-

mation procedure directly with instruments Q
(2)
.t =

(

X.t,WX.t,W
2X.t

)

, for t = 1, 2, . . . , T,

where the superscript of Q.t denotes that the highest power of W used in constructing the

instruments.

• The infeasible 2SLS estimator, which assumes the factors are known and utilizes instruments

Q
(2)
.t , for t = 1, 2, . . . , T .

• The 2SLS estimator given by (24) with instruments Q
(2)
.t , for t = 1, 2, . . . , T .

• The B2SLS estimator given by (32), which is implemented in two steps. In the first step,

we compute a preliminary 2SLS estimate following (24) using instruments Q
(2)
.t , for t =

1, 2, . . . , T . In the second step, the B2SLS estimate is obtained by using the estimated best

IV matrix Q̂∗ in (32), where

Q̂∗ = Mb
[(

IT ⊗ Ĝ
)

Xβ̂2sls, X
]

, (57)

and Ĝ = G (ρ̂2sls).

• The efficient GMM estimator given by (46) that uses P1 = W and P2 = W2−Diag
(

W2
)

in

the quadratic moments and Q
(2)
.t as IVs in the linear moments. It is obtained by a two-step

procedure. In the first step, we take the identity matrix as the moments weighting matrix

and compute a preliminary GMM estimate. In the second step, the estimated inverse of the

covariance of moments is used as the weighting matrix, and the model is re-estimated using

the same P1, P2, and IVs.

19We have also considered ρ = 0.8, which represents high intensity of spatial dependence, and the results are
provided in the Online Supplement.
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• The MLE developed by Bai and Li (2014). This procedure assumes that the disturbances

of the model are independently distributed with heteroskedastic variances and explicitly es-

timates all of the heteroskedasticity and factor loadings. It is important to note that the

asymptotic distribution of the MLE was derived under the assumption that N,T → ∞ and√
N/T → 0. The incidental parameters in the time dimension are avoided by estimating

the sample variance of the factors rather than individual factors.20 We compute the MLE

following the Expectation-Maximization (EM) algorithm suggested by Bai and Li (2014).

The number of factors is assumed known in the experiments to reduce the computational

burden.21 The size and power properties of the MLE are not reported in their paper.

For the robust variance estimation of the above methods (except the MLE), the Bartlett window

width is chosen to be
⌊

2
√
T
⌋

.22

Tables 2a to 3b collect the results of the estimation experiments. Each table reports the esti-

mates of bias, root mean squared error (RMSE), size, and power for the aforementioned estimators.

Sub-table a reports the estimates of the spatial coefficient, ρ, and Sub-table b reports the estimates

of the slope coefficient, β1. We omit the results of β2 to save space, as they are similar to those of

β1. The results of the naive estimator are only presented in the first two tables, since ignoring the

factors produces enormous biases and variances in all experiments, as expected.

We first observe that the 2SLS estimator exhibits very small biases and declining RMSEs as N

and/or T increase. A comparison between the 2SLS and the infeasible 2SLS estimators suggests

that the efficiency loss from using cross-sectional averages to approach the unobserved factors is

quite small, almost indiscernible when the sample size is large. The B2SLS estimator is only

marginally more efficient than the 2SLS estimator for the spatial parameter ρ when N is small, and

it provides little or no improvement for the slope parameter β. This implies that the IV matrix

Q
(2)
.t =

(

X.t,WX.t,W
2X.t

)

used in computing the 2SLS estimates approximates the best IV quite

well in our experimental designs. The GMM estimator for ρ outperforms the 2SLS and B2SLS

estimator in reducing the RMSEs, and it even beats the infeasible 2SLS estimator for modest to

large sample size (N ≥ 100). Finally, the MLE developed by Bai and Li (2014) produces the

smallest RMSEs among all estimation methods, and the improvement for ρ is especially notable.

Nonetheless, its computation for large values of N and T is rather strenuous, and its performance

could be weakened if the number of factors is estimated, especially when the estimated number of

factors is smaller than the true value.

Turning to size and power properties, as anticipated by the theoretical findings, the proposed

estimators have good power and empirical sizes that are close to the 5% nominal size for large N

and small to modest T , irrespective of whether the errors are heteroskedastic and serially correlated.

20Bai and Li (2014) point out that one could switch the role of N and T if T is much smaller than N . We do not
report results under this interchange, since it involves different stringent assumptions on the disturbances and does
not improve the performance of MLE under our Monte Carlo designs.

21Bai and Li (2014) propose using an information criterion to estimate the number of factors in their Monte Carlo
experiments.

22We have also considered
⌊

T 1/3
⌋

as the window size. The results are close, but using
⌊

2
√
T
⌋

has slightly better

size properties.
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Table 1: Small sample properties of the maximum likelihood estimator of the spatial autoregressive coefficient, ρ, for the identification
experiments under different values of α

Bias(×100) RMSE(×100) Size(×100) Power(×100)

N\T 1 20 50 100 1 20 50 100 1 20 50 100 1 20 50 100

α = 1
20 -19.63 -1.35 -0.61 -0.38 51.24 9.85 6.17 4.36 3.50 5.30 4.95 5.25 6.25 17.05 37.20 60.60
50 -9.51 -0.59 -0.34 -0.08 31.42 6.25 3.92 2.77 4.85 5.50 5.05 5.50 7.45 38.40 69.75 94.05

100 -4.87 -0.41 -0.14 0.01 21.27 4.41 2.78 1.95 5.40 5.30 5.10 5.15 10.10 59.50 93.40 99.90
500 -0.97 0.03 0.06 0.03 8.84 1.95 1.24 0.90 5.00 5.15 5.10 6.45 21.60 99.90 100.00 100.00

1,000 -0.64 0.06 0.04 0.00 6.21 1.38 0.90 0.68 5.30 5.10 6.10 6.65 37.80 100.00 100.00 100.00

α = 1/2
20 -31.73 -4.64 -2.28 -1.13 85.60 31.07 19.83 13.80 0.00 5.80 5.80 6.00 0.00 7.30 9.10 12.00
50 -30.17 -3.10 -1.27 -0.59 73.08 20.45 12.56 8.71 0.00 5.60 5.55 4.75 0.00 8.70 12.95 19.70

100 -26.41 -2.64 -1.14 -0.60 64.30 15.76 9.82 7.01 1.90 5.25 5.25 6.00 3.55 9.85 16.80 28.90
500 -17.32 -0.89 -0.23 -0.05 47.67 9.74 6.17 4.34 2.35 5.20 5.40 4.90 4.55 17.95 39.25 64.65

1,000 -13.43 -0.84 -0.36 -0.20 39.93 8.39 5.19 3.56 5.05 6.00 6.15 5.30 7.00 23.30 48.10 78.70

α = 1/3
20 -25.27 -4.63 -2.09 -1.01 91.58 46.45 31.01 21.58 0.00 3.40 6.15 6.20 0.00 6.65 7.15 8.20
50 -28.33 -4.65 -1.87 -0.54 87.65 37.21 23.65 16.54 0.00 6.00 6.00 5.20 0.00 6.60 8.45 10.85

100 -28.66 -5.13 -1.96 -1.10 82.56 30.50 19.34 13.30 0.00 4.70 5.55 5.20 0.00 6.20 8.55 11.05
500 -30.78 -2.71 -0.73 -0.19 72.72 19.92 12.46 8.74 0.00 5.35 5.25 4.55 0.00 9.20 13.90 23.10

1,000 -28.90 -2.27 -0.89 -0.63 68.08 17.35 10.70 7.43 2.15 5.75 5.40 4.90 3.70 11.55 18.20 25.05

α = 1/4
20 -25.27 -4.63 -2.09 -1.01 91.58 46.45 31.01 21.58 0.00 3.40 6.15 6.20 0.00 6.65 7.15 8.20
50 -22.18 -4.42 -1.38 -0.41 90.22 46.33 30.66 21.17 0.00 3.25 5.80 4.80 0.00 7.20 6.95 7.80

100 -27.96 -5.64 -2.03 -1.23 87.23 37.53 23.76 16.27 0.00 4.85 5.15 5.65 0.00 6.65 8.25 9.10
500 -30.66 -3.97 -1.26 -0.58 83.89 30.54 18.91 13.30 0.00 5.65 5.40 5.80 0.00 6.85 8.45 11.60

1,000 -31.69 -3.58 -1.59 -1.10 80.58 26.16 16.11 11.19 0.00 6.20 5.65 5.15 0.00 7.55 10.10 13.85

Notes: The DGP is given by (50). The true value of ρ is 0.2, and ρ is estimated by the maximum likelihood method. The spatial weights matrix W is constructed
such that the first N1 = ⌊Nα⌋ rows contain the 5-ahead-and-5-behind spatial weights, where α ∈ [0, 1], and the rest N2 = N −N1 rows of W are all zeros. The
number of replications is 2, 000. The 95% confidence interval for size 5% is [3.6%, 6.4%]. The power is calculated under the alternative H1 : ρ = 0.1.
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Table 2a: Small sample properties of estimators for the spatial parameter ρ (ρ = 0.4, i.i.d. errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Naive 2SLS estimator (excluding factors)
30 16.06 16.21 16.34 16.41 16.58 16.61 16.65 16.66 99.40 99.65 99.95 99.95 99.65 99.85 99.95 100.00
50 16.04 16.23 16.34 16.38 16.44 16.52 16.55 16.55 99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00

100 16.01 16.24 16.32 16.38 16.33 16.46 16.47 16.48 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
500 15.95 16.14 16.27 16.33 16.21 16.30 16.37 16.39 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1,000 15.95 16.14 16.27 16.34 16.20 16.30 16.37 16.40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Infeasible 2SLS estimator (including factors)
30 -0.10 -0.04 0.00 0.01 2.40 1.91 1.47 0.99 5.10 4.95 5.15 4.45 13.50 18.15 29.10 52.10
50 0.04 0.05 0.00 0.00 1.85 1.48 1.11 0.77 5.75 5.40 5.25 5.15 20.45 29.70 43.00 72.25

100 0.01 0.01 0.01 0.01 1.30 1.03 0.78 0.55 5.25 4.35 4.35 4.40 34.75 48.50 71.15 95.20
500 -0.02 -0.01 0.00 0.00 0.59 0.46 0.35 0.25 5.60 4.85 4.65 4.50 92.60 98.75 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.42 0.33 0.25 0.18 4.90 5.65 5.30 5.70 99.80 99.95 100.00 100.00

2SLS estimator
30 -0.08 -0.01 0.00 0.01 2.75 2.16 1.64 1.15 6.10 6.45 7.30 8.10 12.40 18.35 28.30 48.30
50 0.02 0.05 0.01 0.00 1.99 1.58 1.20 0.83 5.35 5.95 5.30 5.70 18.05 26.15 41.55 71.00

100 0.01 0.00 0.01 0.01 1.38 1.08 0.81 0.56 4.50 5.10 4.45 5.20 30.25 45.30 69.40 94.10
500 -0.02 -0.01 0.00 0.00 0.62 0.48 0.36 0.25 5.00 4.55 4.95 4.75 89.05 97.95 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.44 0.34 0.26 0.18 4.70 4.90 5.20 5.40 99.45 99.95 100.00 100.00

B2SLS estimator
30 -0.12 -0.03 -0.01 0.00 2.74 2.16 1.63 1.15 6.00 6.40 7.10 8.00 12.25 18.40 27.90 48.05
50 0.00 0.03 0.00 0.00 1.99 1.58 1.19 0.83 5.30 6.10 5.25 5.45 18.10 25.75 41.30 70.90

100 -0.01 -0.01 0.01 0.01 1.38 1.08 0.80 0.56 4.75 5.05 4.45 5.20 29.75 45.10 69.20 94.15
500 -0.02 -0.01 0.00 0.00 0.62 0.48 0.36 0.25 4.95 4.55 4.85 4.60 88.65 98.05 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.44 0.34 0.25 0.18 4.50 4.65 5.05 5.60 99.45 99.95 100.00 100.00

GMM estimator
30 -1.25 -1.11 -1.07 -1.02 2.60 2.11 1.76 1.41 10.30 11.45 16.00 24.20 8.75 10.85 14.10 23.15
50 -0.69 -0.64 -0.64 -0.60 1.86 1.52 1.22 0.94 8.50 9.80 12.15 16.00 15.80 21.95 32.10 54.25

100 -0.33 -0.32 -0.31 -0.29 1.24 0.98 0.75 0.57 6.90 6.85 7.05 9.95 33.60 47.30 69.85 94.85
500 -0.08 -0.07 -0.07 -0.06 0.52 0.41 0.31 0.22 6.00 5.20 6.00 6.65 96.15 99.80 100.00 100.00

1,000 -0.03 -0.03 -0.04 -0.03 0.36 0.29 0.22 0.15 5.25 5.60 5.65 6.25 100.00 100.00 100.00 100.00

MLE
30 0.30 0.23 0.18 0.16 2.32 1.79 1.36 0.92 11.80 10.20 8.65 7.85 30.65 34.95 46.80 71.20
50 0.35 0.23 0.14 0.11 1.79 1.39 1.02 0.70 12.45 10.00 8.30 7.30 41.45 49.05 64.00 88.70

100 0.29 0.17 0.11 0.09 1.26 0.95 0.70 0.49 11.55 9.25 7.00 6.95 59.75 71.85 89.05 99.25
500 0.22 0.11 0.05 0.04 0.59 0.43 0.31 0.22 13.40 9.30 7.20 7.70 99.00 100.00 100.00 100.00

1,000 0.20 0.11 0.06 0.04 0.42 0.32 0.23 0.16 14.40 11.10 8.40 7.00 100.00 100.00 100.00 100.00

Notes: The DGP is given by (54), where eit ∼ IIDN(0, 1). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of factors is 2. The spatial
weights matrix is the 1-ahead-and-1-behind circular neighbors matrix. The naive estimator ignores latent factors, and the infeasible estimator treats factors as known.
The naive 2SLS, infeasible 2SLS, and 2SLS estimators are computed using instruments Q

(2)
.t =

(

X.t,WX.t,W
2X.t

)

, for t = 1, 2, . . . , T . The best 2SLS (B2SLS) estimator

is computed using Q̂∗ given by (57). The efficient two-step GMM estimator utilizes P1 = W and P2 = W2 − Diag
(

W2
)

in the quadratic moments and Q
(2)
.t in the

linear moments. The MLE is computed by the Expectation-Maximization (EM) algorithm described in Bai and Li (2014), assuming the number of factors is known. The
number of replications is 2, 000. The 95% confidence interval for size 5% is [3.6%, 6.4%], and the power is computed under H1 : ρ = 0.38.
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Table 2b: Small sample properties of estimators for the slope parameter β1 (β1 = 1, i.i.d. errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Naive 2SLS estimator (excluding factors)
30 8.82 9.09 9.11 9.24 11.71 11.56 11.23 11.10 53.55 63.40 72.35 83.00 76.15 83.80 90.45 95.65
50 8.77 8.88 9.05 9.25 10.91 10.60 10.45 10.40 65.15 74.30 84.40 91.25 87.45 92.60 96.50 99.05

100 9.03 9.13 9.22 9.42 10.43 10.28 10.11 10.14 79.90 86.45 93.35 97.80 96.70 98.60 99.70 99.90
500 9.15 9.27 9.34 9.53 9.93 9.85 9.73 9.78 97.00 98.90 99.80 100.00 99.85 100.00 100.00 100.00

1,000 9.17 9.30 9.36 9.55 9.87 9.80 9.69 9.74 98.15 99.70 99.95 100.00 100.00 100.00 100.00 100.00

Infeasible 2SLS estimator (including factors)
30 0.05 0.02 -0.01 -0.01 4.50 3.57 2.73 1.88 5.50 5.20 5.40 5.10 21.80 30.45 47.85 75.95
50 -0.19 -0.17 -0.11 -0.09 3.45 2.66 2.01 1.40 5.45 4.40 4.65 4.50 28.55 42.75 66.25 92.75

100 -0.13 -0.04 -0.05 -0.05 2.46 1.92 1.48 1.01 5.65 5.65 5.35 5.05 52.45 73.75 91.90 99.85
500 -0.06 -0.04 -0.02 -0.01 1.07 0.84 0.66 0.47 4.85 4.35 5.20 5.80 99.80 100.00 100.00 100.00

1,000 0.01 0.01 0.01 0.00 0.79 0.62 0.47 0.33 6.10 6.00 5.30 5.30 100.00 100.00 100.00 100.00

2SLS estimator
30 0.06 0.04 0.03 0.03 4.73 3.77 2.91 2.05 5.75 6.30 7.35 7.35 20.00 29.20 47.00 75.60
50 -0.19 -0.18 -0.09 -0.09 3.61 2.76 2.08 1.45 4.70 5.10 4.75 4.85 26.05 39.60 65.80 92.60

100 -0.13 -0.05 -0.06 -0.05 2.54 1.96 1.51 1.03 5.40 5.05 4.75 5.05 46.85 70.70 90.80 99.85
500 -0.07 -0.05 -0.02 -0.01 1.12 0.86 0.67 0.48 4.15 4.30 5.00 5.30 99.25 100.00 100.00 100.00

1,000 0.02 0.01 0.01 0.00 0.82 0.64 0.48 0.33 5.45 5.20 5.25 5.25 100.00 100.00 100.00 100.00

B2SLS estimator
30 0.07 0.04 0.04 0.03 4.73 3.77 2.91 2.05 5.75 6.25 7.40 7.35 19.95 29.25 47.20 75.45
50 -0.19 -0.18 -0.09 -0.09 3.61 2.76 2.08 1.45 4.70 5.10 4.70 4.85 26.10 39.75 65.75 92.70

100 -0.13 -0.05 -0.06 -0.04 2.54 1.96 1.51 1.03 5.35 5.10 4.75 5.10 46.90 70.75 90.75 99.85
500 -0.07 -0.05 -0.02 -0.01 1.12 0.86 0.67 0.48 4.15 4.25 5.00 5.30 99.25 100.00 100.00 100.00

1,000 0.02 0.01 0.01 0.00 0.82 0.64 0.48 0.33 5.45 5.30 5.25 5.25 100.00 100.00 100.00 100.00

GMM estimator
30 0.16 0.17 0.17 0.17 4.79 3.80 2.92 2.06 5.70 6.95 7.30 7.55 21.35 30.70 49.25 77.55
50 -0.09 -0.08 0.01 0.01 3.64 2.77 2.07 1.45 4.75 4.90 4.80 4.85 27.90 41.60 67.25 93.55

100 -0.08 0.01 0.00 0.01 2.54 1.96 1.50 1.03 5.45 5.05 4.80 4.45 47.70 71.95 90.95 99.85
500 -0.06 -0.04 -0.01 0.00 1.11 0.86 0.67 0.47 4.10 4.30 5.00 5.30 99.20 100.00 100.00 100.00

1,000 0.02 0.02 0.02 0.01 0.81 0.64 0.48 0.33 5.30 5.40 5.50 5.40 100.00 100.00 100.00 100.00

MLE
30 -0.01 -0.01 -0.06 -0.04 5.05 3.85 2.86 1.93 11.45 9.30 7.70 6.10 29.80 35.10 48.45 75.80
50 -0.20 -0.16 -0.13 -0.11 3.76 2.79 2.06 1.43 10.20 7.00 5.95 5.55 36.20 47.15 68.15 93.15

100 -0.14 -0.05 -0.07 -0.06 2.68 2.01 1.52 1.04 10.60 8.00 6.80 6.05 58.45 76.55 91.85 99.90
500 -0.02 -0.01 -0.01 -0.01 1.18 0.88 0.67 0.48 10.70 6.50 5.90 7.00 99.60 100.00 100.00 100.00

1,000 0.04 0.00 0.02 -0.01 0.84 0.65 0.47 0.33 10.40 8.40 6.30 5.50 100.00 100.00 100.00 100.00

Notes: The DGP is given by (54), where eit ∼ IIDN(0, 1). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of factors is 2. The power is
computed under H1 : β1 = 0.95. See the notes to Table 2a for other details.
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Table 3a: Small sample properties of estimators for the spatial parameter ρ (ρ = 0.4, serially correlated and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 -0.16 -0.08 -0.01 0.00 2.85 2.34 1.81 1.26 5.85 7.00 6.65 5.85 13.60 16.95 23.20 37.55
50 0.07 0.05 -0.01 0.01 2.18 1.77 1.39 0.97 6.75 6.00 5.70 5.90 19.30 25.05 34.70 56.65

100 0.05 0.03 0.03 0.02 1.58 1.28 0.98 0.70 6.70 5.90 5.45 5.85 30.50 40.05 57.35 83.00
500 -0.04 -0.03 -0.02 -0.02 0.70 0.56 0.44 0.31 6.15 5.90 5.45 5.05 81.30 94.70 99.65 100.00

1,000 -0.01 -0.01 -0.01 0.00 0.50 0.40 0.31 0.22 6.05 5.95 6.40 6.75 98.45 99.95 100.00 100.00

2SLS estimator
30 -0.14 -0.07 -0.02 0.00 3.10 2.51 1.95 1.39 6.55 7.05 7.35 7.90 12.65 17.80 23.30 36.15
50 0.07 0.06 0.01 0.02 2.27 1.85 1.44 1.01 6.00 6.95 6.20 6.00 17.00 23.60 35.05 55.90

100 0.04 0.03 0.03 0.02 1.62 1.30 0.99 0.71 6.10 5.90 5.55 5.95 26.65 37.30 56.65 83.00
500 -0.04 -0.03 -0.02 -0.02 0.71 0.57 0.44 0.31 5.45 5.70 5.90 5.40 78.90 93.10 99.65 100.00

1,000 -0.01 -0.01 -0.01 0.00 0.51 0.40 0.31 0.23 5.65 5.25 6.05 6.55 97.65 99.95 100.00 100.00

B2SLS estimator
30 -0.19 -0.10 -0.04 -0.01 3.10 2.52 1.94 1.39 6.85 7.30 7.45 8.05 12.30 17.10 22.90 35.85
50 0.03 0.04 0.00 0.01 2.27 1.84 1.44 1.01 5.90 6.70 6.20 5.90 16.90 23.10 34.95 55.50

100 0.02 0.02 0.03 0.02 1.61 1.30 0.99 0.71 6.35 5.90 5.45 5.65 26.85 37.00 56.35 82.85
500 -0.05 -0.03 -0.02 -0.02 0.71 0.57 0.45 0.31 5.50 6.05 6.25 5.40 78.60 93.15 99.70 100.00

1,000 -0.01 -0.01 -0.01 0.00 0.51 0.40 0.31 0.23 5.60 5.15 5.95 6.30 97.70 99.95 100.00 100.00

GMM estimator
30 -1.11 -1.01 -0.97 -0.97 2.85 2.38 1.96 1.54 9.70 11.00 13.45 17.40 9.20 11.95 14.55 19.10
50 -0.54 -0.52 -0.55 -0.55 2.04 1.69 1.37 1.03 8.00 8.30 8.90 11.00 14.25 20.25 27.25 42.50

100 -0.24 -0.25 -0.25 -0.26 1.41 1.14 0.88 0.66 6.85 6.70 6.95 8.35 27.40 38.30 57.70 82.70
500 -0.08 -0.08 -0.07 -0.07 0.61 0.49 0.38 0.27 5.85 5.15 5.95 5.60 89.30 98.25 100.00 100.00

1,000 -0.04 -0.03 -0.04 -0.03 0.43 0.34 0.27 0.19 4.90 5.05 5.80 6.25 99.50 99.95 100.00 100.00

MLE
30 0.38 0.22 0.19 0.15 2.63 2.08 1.59 1.09 21.20 19.20 17.50 16.15 39.90 42.15 50.30 71.25
50 0.45 0.25 0.14 0.13 2.02 1.57 1.19 0.84 22.10 18.05 15.50 15.70 50.95 55.55 65.05 86.25

100 0.39 0.22 0.14 0.10 1.46 1.13 0.85 0.59 22.55 18.80 15.80 15.35 66.60 74.95 87.60 98.50
500 0.27 0.12 0.05 0.03 0.69 0.50 0.36 0.26 23.20 17.00 14.60 13.10 99.40 99.80 100.00 100.00

1,000 0.26 0.20 0.04 0.03 0.50 0.46 0.26 0.19 28.50 24.50 14.90 14.80 100.00 100.00 100.00 100.00

Notes: The DGP is given by (54), where eit are given by (55) and (56). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of factors is
2. The power is computed under H1 : ρ = 0.38. The maximum lag of the robust variance estimator is set to be 2

√
T . See also the notes to Table 2a.
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Table 3b: Small sample properties of estimators for the slope parameter β1 (β1 = 1, serially correlated and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 0.10 0.04 -0.02 -0.02 5.35 4.43 3.41 2.38 7.40 7.55 7.30 6.80 21.00 25.75 36.75 59.35
50 -0.23 -0.17 -0.09 -0.12 4.11 3.32 2.53 1.77 6.40 6.45 5.35 5.55 25.55 36.05 51.35 77.65

100 -0.18 -0.07 -0.04 -0.04 2.95 2.37 1.86 1.30 7.05 6.75 7.15 5.70 42.25 60.20 79.90 97.55
500 -0.03 -0.02 -0.01 0.00 1.26 1.04 0.82 0.59 6.00 5.55 6.15 5.90 97.70 99.80 100.00 100.00

1,000 0.02 0.01 0.02 0.00 0.94 0.76 0.60 0.42 7.10 6.70 6.55 6.05 100.00 100.00 100.00 100.00

2SLS estimator
30 0.12 0.07 0.05 0.04 5.45 4.49 3.51 2.52 6.65 7.10 8.25 8.45 19.70 26.15 37.15 60.20
50 -0.21 -0.16 -0.06 -0.11 4.17 3.34 2.54 1.79 5.75 6.45 6.05 4.95 24.30 34.00 51.40 78.50

100 -0.14 -0.06 -0.05 -0.04 2.93 2.37 1.86 1.30 5.70 6.85 6.70 5.85 39.85 57.05 78.80 97.50
500 -0.05 -0.04 -0.02 -0.01 1.29 1.05 0.83 0.59 5.30 5.15 5.80 5.95 96.65 99.70 100.00 100.00

1,000 0.02 0.00 0.02 0.00 0.95 0.76 0.60 0.42 6.25 6.35 6.55 5.95 100.00 100.00 100.00 100.00

B2SLS estimator
30 0.13 0.07 0.05 0.04 5.45 4.49 3.51 2.51 6.65 7.10 8.30 8.45 19.65 26.20 37.25 60.10
50 -0.20 -0.15 -0.06 -0.11 4.17 3.34 2.54 1.79 5.75 6.50 6.05 5.00 24.40 34.00 51.40 78.55

100 -0.14 -0.06 -0.05 -0.03 2.93 2.37 1.86 1.30 5.75 6.75 6.55 5.90 39.85 57.10 78.85 97.50
500 -0.05 -0.04 -0.02 -0.01 1.29 1.05 0.83 0.59 5.30 5.15 5.80 5.95 96.70 99.65 100.00 100.00

1,000 0.02 0.00 0.02 0.00 0.95 0.76 0.60 0.42 6.35 6.35 6.40 5.95 100.00 100.00 100.00 100.00

GMM estimator
30 0.21 0.19 0.17 0.18 5.55 4.55 3.55 2.55 7.80 8.25 8.95 8.75 22.00 28.40 39.35 63.40
50 -0.15 -0.08 0.01 -0.02 4.21 3.34 2.53 1.79 6.40 6.75 6.20 5.40 26.00 35.65 53.40 80.95

100 -0.11 -0.01 0.01 0.02 2.94 2.38 1.86 1.30 6.00 6.70 7.10 5.75 40.90 58.45 79.40 98.05
500 -0.05 -0.03 -0.01 0.00 1.29 1.05 0.82 0.59 5.40 4.95 5.75 5.80 96.75 99.70 100.00 100.00

1,000 0.02 0.01 0.03 0.01 0.95 0.76 0.60 0.42 6.00 6.60 6.85 6.10 100.00 100.00 100.00 100.00

MLE
20 0.09 0.02 0.09 0.06 6.94 5.36 4.18 2.95 22.00 16.90 17.55 16.15 34.65 36.45 45.05 62.15
30 0.10 -0.01 -0.05 -0.03 5.61 4.47 3.41 2.35 20.80 18.25 17.10 14.60 38.15 42.60 53.20 74.20
50 -0.16 -0.11 -0.11 -0.12 4.17 3.25 2.43 1.74 18.65 16.15 12.95 13.00 45.10 54.15 68.85 89.95

100 -0.10 -0.06 -0.06 -0.06 2.99 2.32 1.82 1.26 19.85 17.15 16.00 14.10 64.50 77.25 89.60 99.40
500 0.03 0.02 -0.01 -0.00 1.32 1.04 0.79 0.56 19.60 15.40 15.40 14.50 99.50 99.90 100.00 100.00

1,000 0.07 0.01 0.04 0.01 0.96 0.73 0.57 0.40 20.50 17.00 16.60 13.50 100.00 100.00 100.00 100.00

Notes: The DGP is given by (54), where eit are given by (55) and (56). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of factors is
2. The power is computed under H1 : β1 = 0.95. The maximum lag of the robust variance estimator is set to be 2

√
T . See also the notes to Table 2a.
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In cases where N is much smaller than T , the rejection frequencies under the null of the 2SLS and

B2SLS estimators are slightly higher than 5%, and the GMM estimator is more oversized than

the 2SLS estimators. It is also evident that the size distortion is more pronounced for the spatial

parameter than for the slope coefficients. In view of these results, it is worthwhile to bear in mind

that the variance estimators cannot be applied to the small N large T scenarios. In contrast, the

MLE performs well when the errors are independent; it has higher power than the other estimators

and proper sizes close to the 5% nominal level when N is not too large relative to T . However,

as its theory does not permit the presence of serial correlation in the errors, the MLE based tests

are significantly over-sized in this case. For the combinations of N and T considered, the empirical

sizes of the MLE range from 13% to 29%.

In summary, the proposed estimators exhibit robust performance to unknown heteroskedasticity

and serial correlation in the errors. Furthermore, the estimators are also robust to different intensity

of spatial dependence, as supported by the additional simulation results in the Online Supplement.

6 An Empirical Application to US House Prices

In this section, we apply the proposed estimation methods to analyzing the spatial dependence of

real house price changes in the US at the level of Metropolitan Statistical Areas. Since neighboring

regions are often influenced by the same aggregate supply and demand shocks, it is the purpose of

this exercise to properly assess the strength of the spatial interconnections while netting out the

effects of common factors. As we will see, the degree of spatial dependence will be exaggerated

if the unobserved common effects are not effectively removed. In addition, we are also interested

in the effects of possible determinant variables on house price growth, including both direct and

indirect (spillover) effects.23

A Metropolitan Statistical Area (MSA) is defined by the United States Office of Management

and Budget (OMB) as a core area with a relatively high population density (50, 000 people or

more), including surrounding territory displaying a high level of economic and social integration

with the core, as measured by commuting ties. We consider a total of 377 MSAs using the Febru-

ary 2013 delineations, excluding two MSAs in Alaska and two in Hawaii.24 For the house price

data, we use the Freddie Mac House Price Index (FMHPI) at the MSA level covering the period

of 1975Q1–2014Q4. The FMHPI is constructed using a repeat-transactions methodology and pub-

lished by Freddie Mac every quarter. The nominal house prices are deflated by the Consumer Price

Index (CPI) for each MSA, and the following analysis is centered on the quarterly rate of changes

in real house prices. For the explanatory variables, we are interested in examining the impact of

population growth and real per capita income growth on house price growth. See Appendix B for

a detailed description of the data sources and transformations.

23Cohen et al. (2016) and Bailey, Holly, and Pesaran (2016) focus on house price series itself and do not consider
any explanatory variables.

24The Office of Management and Budget (OMB) periodically revises the MSA delineations to reflect the changes
in population counts and commuting patterns. There are 381 MSAs in the US as of February 2013. The terms “area”
and “MSA” are used interchangeably in the following discussions.
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As a preliminary examination of the data, we conduct the cross-sectional dependence (CD) test

developed by Pesaran (2015) on the rate of changes in deseasonalized real house prices. The desea-

sonalization is performed by regressing the nominal house price changes on seasonal dummies and

an intercept for each MSA. The CD statistic turns out to be 1364.110 (with the estimated average

of the pairwise correlation coefficient being 0.406), which substantially exceeds the critical value of

1.96 at the 5% level and strongly rejects the null hypothesis of weak cross-sectional dependence.

Additionally, we compute the exponent of cross-sectional dependence proposed by Bailey, Kapetan-

ios, and Pesaran (2016) and obtain a value of 1.000 (with a standard error 0.024). The value of the

exponent, if it lies within the range [3/4, 1], would suggest that the cross-sectional dependence is

fairly strong; lying in [1/2, 3/4), it would imply weak dependence of different degrees. Accordingly,

the values of both the CD statistic and the estimated exponent clearly indicate the existence of

strong cross-sectional dependence in real house price changes; hence, it is imperative to incorpo-

rate common factors into the standard spatial models, which capture only weak cross-sectional

dependence.

6.1 The Model

Let yit denote the rate of changes in real house prices for area i at time t, which is computed by

yit = log (Pit/CPIit) − log (Pi,t−1/CPIi,t−1), where Pit is the house price index and CPIit is the

Consumer Price Index. We consider the following model for house price changes written in stacked

form:

y.t = ρWy.t + (β1 + θ1W)%∆Population.t + (β2 + θ2W)%∆Income.t +Υdt + Γft + e.t, (58)

for t = 1, 2, . . . , T , where y.t = (y1t, y2t, . . . , yNT )
′ is a vector of observations on house price growth

rates for all MSAs at period t; dt signifies an md × 1 vector of observed factors that includes

quarterly dummies and an intercept; ft represents an mf × 1 vector of unobserved factors; Υ =

(υ1,υ2, . . . ,υN )′ and Γ = (γ1,γ2, . . . ,γN )′ are corresponding individual-specific factor loading

matrices; and e.t is a vector of idiosyncratic error terms. It should be noted that this model

accommodates individual fixed effects by including a constant term in dt and letting its loadings

be heterogeneous. %∆Population.t represents an N × 1 vector of percentage changes in population

at time t, and %∆Income.t denotes a vector of percentage changes in real per capita income.

Both variables are calculated as first differences of natural logarithms. W is the spatial weights

matrix. For generality, model (58) also allows for spatial lags of the explanatory variables, namely

W%∆Population.t and W%∆Income.t, which are often referred to as Durbin terms in the literature

and capture the interaction effects of exogenous variables.

When it comes to the specification of W, it is common practice to adopt distance- or contiguity-

based weighting scheme in the studies of spatial dependence in housing markets. We will follow this

tradition first and then explore other possibilities in subsequent analysis. In particular, we assume

that contiguity relations are determined by radial distance, and we define “neighbors” of an MSA
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as those units located within a threshold distance d (miles). The weights of neighbors take a value

of one, and the weights of non-neighbors take a value of zero. Then, W is row-standardized so that

the weights across each row sums to unity. The spatial weights matrix constructed in this way is

denoted by Wd. Our analysis takes d = 100 miles as a point of departure and examines potential

dependencies within commuting and transport distances around an MSA.

The parameters of interest are δ =
(

ρ,β′,θ′
)′

, where β = (β1, β2)
′ and θ = (θ1, θ2)

′. In what

follows, we will focus on the efficient GMM estimator of δ defined by (46).25 Specifically, the

estimation is implemented by utilizing P1 = W and P2 = W2 − Diag
(

W2
)

in the quadratic

moments and Q
(2)
.t =

(

X.t,WX.t,W
2X.t

)

as instruments in the linear moments, where X.t =

(∆Population.t,%∆Income.t), for t = 1, 2, ..., T.

Table 4 summarizes the estimation results of model (58) based on W = W100. Findings

using other specifications of W will be discussed later. In column (1), the Durbin terms are

excluded and the unobserved factors are proxied by cross-sectional averages of both dependent

and individual-specific regressors across all MSAs.26 The estimated spatial coefficient is positive

and highly significant, with a value of 0.730 (with a standard error of 0.004). Higher population

and income growth are found to increase house price growth, as anticipated. We then include the

Durbin terms, and we add to the list of factor proxies the cross-sectional averages of X∗
.t across all

MSAs, where X∗
.t = WX.t. As can be seen from columns (3) and (5), population growth displays

a positive and significant spatial interaction effect, but real income growth does not. Overall, the

estimates of ρ and β are very close across columns (1), (3), and (5). The CD statistics on the

residuals of these specifications range from −5.11 to −4.93, which are substantially reduced from

the previous test statistic, 1364.110, of the house price growth series itself. The exponents of cross-

section dependence of the residuals, however, are about 0.73–0.74, which suggests that a moderate

degree of cross-section dependence may be unaccounted for. Therefore, we will next consider local

(regional) unobserved factors in addition to global (national) factors, and we will investigate if

strong dependence can be more effectively eliminated.27

Suppose now that all MSAs are classified into R regions. The model can still be represented

by (58), but the observations are now ordered by regions. In specific, the N × 1 vector of house

prices changes, y.t, can be written as y.t = (y′
.1t,y

′
.2t, . . . ,y

′
.Rt)

′, where y.rt = (y1rt, y2rt, . . . , yNrrt)
′

is an Nr × 1 vector of observations for the rth region, for r = 1, 2, . . . , R. Nr is the number of

MSAs in region r, and clearly we have
∑R

r=1Nr = N . Observations on independent variables

and spatial weights are also sorted accordingly. Note that the latent factors, ft, are now assumed

to have a hierarchical structure, namely, ft =
(

f ′g,t, f
′
l,t

)′
, where fg,t denotes an mg × 1 vector of

25The 2SLS estimates are omitted to save space, since they are very close to the GMM estimates but have larger
standard errors, as expected.

26In the empirical analysis, ȳ∗

t is also included as factor proxies since it may potentially improve the small sample
properties of the estimator, where ȳ∗

t = N−1∑N
i=1 y

∗

t and y∗

it =
∑N

j=1 wijyjt. However, it turns out that ȳ∗

t and ȳt
are highly correlated for most the W matrices we considered; therefore, whether ȳ∗

t is included makes little difference
to the results.

27Bailey, Holly, and Pesaran (2016) also consider regional effects, but the authors do not show the impact of
eliminating regional factors to the estimated intensity of spatial dependence.
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Table 4: Efficient GMM estimation results of model (58)

%∆House price (1) (2) (3) (4) (5) (6)

ρ [W ×%∆House price] 0.730 0.643 0.732 0.648 0.731 0.648
(0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

β1 [%∆Population] 0.380 0.366 0.383 0.432 0.369 0.417
(0.035) (0.040) (0.037) (0.048) (0.036) (0.048)

β2 [%∆Income per capita] 0.099 0.093 0.106 0.096 0.111 0.094
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

θ1 [W×%∆Population] 0.078 0.063 0.063 0.069
(0.031) (0.036) (0.031) (0.037)

θ2 [W× %∆Income per capita] -0.006 0.019
(0.010) (0.012)

Regional unobserved factors No Yes No Yes No Yes
National unobserved factors Yes Yes Yes Yes Yes Yes
MSA FE and seasonal dummies Yes Yes Yes Yes Yes Yes

Residuals
CD test statistic -4.946 -6.532 -4.927 -6.385 -5.111 -6.365
Exponent of cross-section
dependence

0.734 0.674 0.743 0.690 0.734 0.652
(0.031) (0.019) (0.030) (0.019) (0.027) (0.019)

R̄2 0.808 0.837 0.813 0.844 0.817 0.847
Observations N = 377, T = 159

Notes: Dependent variable is the rate of changes in real house prices, which is computed by first difference of
log of real house prices. The explanatory variables are population growth rate and real per capita income growth
rate, as well as possibly their spatial lags. MSAs are classified into eight Bureau of Economic Analysis (BEA)
Regions. All estimations consider national unobserved factors and include MSA fixed effects (FE) and quarterly
dummies. To save space, factor estimates are not reported. The spatial weights matrix is W = W100. The efficient
GMM estimates are obtained by (46), using P1 = W and P2 = W2 − Diag

(

W2
)

in the quadratic moments and

Q
(2)
.t = (X.t,WX.t,W

2X.t) as IVs in the linear moments. Standard errors are in parentheses. The standard errors
for the slope estimates are heteroskedasticity and autocorrelation consistent with the maximum lag length set to
2⌊T 1/2⌋.

global factors, fl,t denotes an ml × 1 vector of local factors, and mg + ml = mf . The associated

factor loadings are partitioned as Γ = (Γg,Γl) , where Γg =
(

γg,1,γg,2, . . . ,γg,N

)′
is an N × mg

matrix of loadings for national factors, and Γl =
(

Γ′
l,1,Γ

′
l,2, . . . ,Γ

′
l,R

)′
is an N × ml matrix, with

Γl,r =
(

γl,1r,γl,2r, . . . ,γl,Nrr

)′
being the Nr ×ml factor loadings for the rth region, r = 1, 2, . . . , R.

The proposed GMM estimation procedure can easily accommodate regional unobservable factors

by replacing them with cross-sectional averages of observations on both dependent and individual-

specific independent variables for that region.

Table 4 columns (2), (4), and (6) report the estimation results when both regional and national

latent factors are taken into account. We group all 377 MSAs into R = 8 Regions based on

the geographical classification by the Bureau of Economic Analysis (BEA).28 Compared with the

28The eight BEA Regions are New England, Mideast, Great Lakes, Plains, Southeast, Southwest, Rocky Mountain,
and Far West Regions. See the BEA web page, https://www.bea.gov/regional/docs/regions.cfm, for details.
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earlier outcomes that did not assume regional factors, both the estimated spatial coefficients and

the exponents of cross-section dependence of the residuals decline, suggesting that regional common

shocks contribute to the strong cross-sectional dependence in house price changes in the US and

that the strength of spatial connections will be overestimated if strong dependence is not effectively

eliminated. In addition, after the inclusion of regional factors, the spatial interaction effect of

population growth is no longer significant at the 5% level; the spatial interaction effect of income

growth remains insignificant. Moreover, the values of R̄2 indicate that the model’s goodness of fit

improves if regional effects are considered, where R̄2 is computed by R̄2 = 1− σ̂2
res/σ̂

2
tot, with

σ̂2
tot = [N (T − 1)]−1

N
∑

i=1

T
∑

t=1

(yit − ȳi.) ,

σ̂2
res = [N (T − kcs − kd)− kz]

−1
N
∑

i=1

(

yi. − Zi.δ̂
)′

M̄
(

yi. − Zi.δ̂
)

,

ȳi. = T−1
∑T

t=1 yit, yi. = (yi1, yi2, . . . , yiT )
′, Zi. = (y∗

i.,Xi.,X
∗
i.) is a T×kz matrix of regressors, kd is

the number of observed factors, and M̄ represents the de-factoring matrix of T × kcs dimension.29

According to the above comparisons, we conclude that column (2) provides the best estimation

results among all the specifications in Table 4, which points to a significant neighborhood effect in

house price changes, with an estimated spatial coefficient of 0.643 (0.005).30

Care must be taken when interpreting the estimates of β and θ in model (58), as they do not

directly signify the marginal effects of the independent variables on house price variations. An

important feature of SAR models is that a change in an explanatory variable of a unit will affect

not only the dependent variable of that unit itself but also the dependent variables of other cross-

section units. The former is known as the direct effect, the latter as indirect effect, or spillover

effect. Also notice that both effects in general vary across cross-section units. Therefore, to find

out the marginal effects of population and income growth on house price changes, we calculate

the summary measures of direct and indirect effects proposed by LeSage and Pace (2009). The

average direct effect of the kth explanatory variable (k = 1, 2) is given by the average of the diagonal

elements of Πk, where

Πk = (IN − ρW)−1 (βkIN + θkW) , (59)

and the average indirect effect is represented by the average row sum of the non-diagonal elements

of Πk. It can be seen from (59) that imposing θ = 0 implies that the ratio of direct to indirect

effects is the same for every explanatory variable, which may be too restrictive; hence, model (58)

takes into account the Durbin terms. To test if the direct and spillover effects are significant, we

compute the standard errors by simulation, due to the complex formula for the effects in terms of

29In specific, kd = 4 because the observed factors consist of quarterly dummies and an intercept. The values of kz
and kcs vary with detailed model specifications, that is, whether Durbin terms are included and if regional factors
are considered. This measure of model fit in the presence of unobserved factors is in accordance with the suggestion
by Holly et al. (2010, p.164).

30Standard error in parentheses.
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Table 5: Average direct and indirect effects of population and income growth on house price changes

Direct Indirect Total

Considering both national and regional factors

%∆Population 0.431 0.571 1.002
(0.047) (0.063) (0.110)

%∆Income per capita 0.110 0.146 0.256
(0.009) (0.012) (0.020)

Considering national factors only

%∆Population 0.518 1.153 1.672
(0.046) (0.112) (0.149)

%∆Income per capita 0.135 0.249 0.384
(0.009) (0.017) (0.026)

Notes: The effects of explanatory variables, taking both national and regional factors into account, are computed
based on the estimates in column (2) of Table 4. When regional factors are neglected, the effects are computed
using the estimates in column (3) of the same table. Bootstrapped standard errors based on 1, 000 iterations are in
parentheses. See also the notes to Table 4.

the parameters.31

Table 5 shows the estimated average direct and spillover effects of population and income

growth on house price growth based on the estimates in Table 4. The average total effect is the

sum of average direct and indirect effects. When both national and regional unobserved factors

are considered, the specification in column (2) of Table 4 outperforms its counterpart. When

only national factors are taken into account, the preferred specification is given by column (3).

We compute the effects of the explanatory variables based on these estimates, respectively. It is

not surprising to see from Table 5 that the estimated indirect effects are much higher if regional

factors are neglected, as there is a relatively stronger degree of cross-sectional dependence in house

prices left uncontrolled for. Both population growth and per capita income growth are found to

exert both positive and significant direct and indirect impact on house price changes. Specifically,

using the estimates produced assuming a hierarchical factor structure, on average a 1% increase

in population growth in an MSA is predicted to lead to a 0.43% increase in house price growth in

the MSA itself, and a 0.57% increase in house price growth in its neighboring MSAs, while holding

other covariates fixed. In comparison, a 1% increase in income growth has much smaller direct and

indirect effects on house price growth, which are estimated to be 0.11% and 0.15%, respectively.

The spillover effect of population growth to neighboring MSAs appears to be slightly higher than

its direct effect, while both effects of income growth are of similar magnitude.

31See LeSage and Pace (2009) and Section 2.7 of (Elhorst, 2014) for detailed discussions on the computation.
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6.2 Different Spatial Weights Matrix Specifications

We now turn to inspecting the robustness of our findings to various specifications of the spatial

weights matrix. Three types of weights are considered, which are constructed based on distance,

migration flows, and pairwise correlations, respectively. In all of the following analysis, we will

control for unobserved factors at both national and regional levels, as the earlier discussion reveals

the importance of both effects on the cross-sectional dependence in house price changes.

We start with comparing the estimation results of model (58) using different radial distance

matrices, Wd. In specific, we consider three threshold values, d = 75, 100, and 125 miles. The esti-

mation results are presented in columns (1) to (3) of Table 6, respectively. Overall, the estimates are

found to be very stable as the cutoff distance varies. The estimated strength of spatial dependence

rises slightly from 0.573 (0.005) to 0.693 (0.005) as the neighborhood boundary expands from 75

to 125 miles. This change is reasonable because more units are considered as neighbors of an MSA

and their influences are taken into account. The average number of neighbors per MSA is 3.31

when W = W75, as compared to 8.65 when W = W125. In addition, the estimated coefficients of

population and income growth remain in relatively narrow ranges as d changes. Both variables are

highly significant and of reasonable magnitude.32

Since many economic and demographic factors apart from geographical proximity may con-

tribute to the cross-sectional dependence in house prices across MSAs, it is interesting to consider

spatial weights based on other measures of closeness. In particular, the MSA-to-MSA migration

flows are important indicators of the strength of interconnections. We construct a migration weights

matrix, denoted by Wm, of which the (i, j)th element represents the share of movers from area j to

area i of the total number of movers to area i. We do not consider non-movers or migration flows

from/to non-MSAs. Notice that Wm is an asymmetric matrix in which the immigration flow to

each MSA is normalized to unity. The data on inter-MSA migration flows were introduced as part

of the American Community Survey (ACS) dataset since 2009; therefore, Wm is constructed using

the migration data from the 2010–2014 ACS 5-year estimates. After dropping the estimates with

high margin of errors, each MSA ends up having an average of 4.46 “neighbors.”33 Since the most

dominant migration ties are likely to be stable over a long period of time, the time invariability of

Wm does not give cause for concern.

The estimation results of model (58) using Wm are reported in column (4) of Table 6. Not sur-

prisingly, we find strong evidence of spatial dependence based on migration relations. The estimated

spatial parameter is significantly positive, slightly higher than the estimates using distance-based

weights. The estimated coefficients of population and income growth are very close to the previous

results, and both are significantly different from zero. Both residual diagnostics and the value of

R̄2 indicate that the model is a good fit. The similarities between the results using distance and

migration weights are quite striking, given that around 65% of the migration flows occur between

32The spatially lagged population and income growth turn out to be insignificant in three cases and hence are
excluded from the regressions.

33Details on the construction of Wm and its characterization are given in Appendix B and the Online Supplement.

37



Table 6: Efficient GMM estimation results of model (58) using different spatial weights matrices

Spatial weights matrix

Distance Migration Pairwise correlations

W75 W100 W125 Wm Ŵ+, Ŵ−

%∆House price (1) (2) (3) (4) (5)

ρ [W ×%∆House price] 0.573 0.643 0.693 0.772
(0.005) (0.005) (0.005) (0.005)

ρ+ [Ŵ+ ×%∆House price] 0.715
(0.005)

ρ− [Ŵ− ×%∆House price] -0.308
(0.005)

β1 [%∆Population] 0.432 0.366 0.294 0.230 0.147
(0.052) (0.040) (0.036) (0.031) (0.023)

β2 [%∆Income per capita] 0.099 0.093 0.089 0.075 0.049
(0.008) (0.007) (0.007) (0.007) (0.005)

Natl. & Rgnl. unobserved factors Yes Yes Yes Yes Yes
MSA FE and seasonal dummies Yes Yes Yes Yes Yes

Residuals
CD test statistic -6.678 -6.532 -7.127 -3.114 -6.846
Exponent of cross-section
dependence

0.668 0.674 0.624 0.728 0.631
(0.023) (0.019) (0.017) (0.021) (0.014)

Avg. no. neighbors 3.31 5.73 8.65 4.46 11.01 [Ŵ+], 8.02 [Ŵ−]
R̄2 0.833 0.837 0.833 0.840 0.908
Observations N = 377, T = 159

Notes: All estimations consider both national and regional (Natl. & Rgnl.) unobserved factors and also include
MSA fixed effects (FE) and quarterly dummies. To save space, factor estimates are not reported. Wd denotes radial
distance weights matrix with threshold distance d, where d = 75, 100, and 125 miles. Wm denotes weights matrix
constructed from MSA-to-MSA migration flows. Ŵ+ and Ŵ− denote weights matrices constructed from significant
positive and negative pairwise correlations of de-factored house price changes, respectively. See also the notes to
Table 4.

MSAs located 100 miles apart.34

The third type of spatial weights matrix we consider is created by a data-driven approach

that detects significant bilateral relations using house price series itself. Essentially, this approach

equates significant pairwise correlations with significant connections. Bailey, Holly, and Pesaran

(2016) suggest filtering out strong cross-section dependence from a series first, then applying a

regularization or thresholding method to create sparse weights matrices. We follow this idea and

construct weights matrices based on significantly positive and negative pair-wise correlations of

de-factored house price changes, which are denoted by Ŵ+ and Ŵ−, respectively. Specifically,

the de-factoring process is conducted by regressing the house price growth rate for each MSA on

an intercept, quarterly dummies, and cross-sectional averages of the dependent and explanatory

34See Figure S.1 in the Online Supplement for the distribution of distance between the area of origin and the area
of destination.
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variables at both national and regional levels. Then, significant connections are identified by

applying the multiple testing procedure developed by Bailey et al. (2014) to the sample correlation

matrix of the first-step residuals at the 5% significance level. If the corresponding correlation

coefficient is positively significant, the element of Ŵ+ is set to one, otherwise to zero. Ŵ− is

created similarly but based on significantly negative correlations. Ŵ+ and Ŵ− are then row-

standardized so that each row sums to one.35

With the correlation-based weights matrices, we are able to distinguish between the intensity

of positive and negative spatial connections. Let us now consider the following model,

y.t = ρ+Ŵ+y.t + ρ−Ŵ−y.t + β1%∆Population.t + β2%∆Income.t +Υdt + Γft + e.t, (60)

where, as before, dt includes an intercept and quarterly dummies, and ft contains national and

regional unobserved factors.36

Table 6, column (5) presents the estimation results of model (60). The estimated ρ+ and ρ−

have the correct sign, and both are highly significant. The magnitude of the positive spatial effect is

notably greater than that of the negative effect, with a value of ρ̂+ amounting to 0.715 (0.005) and

a value of ρ̂− being −0.308 (0.005). The coefficients of population and income growth are again

found to be positive and significant, with slightly smaller magnitude than those obtained using

distance and migration weights matrices. The CD statistic is low, and the cross-section exponent

is close to the borderline case of 0.5, suggesting that only weak dependence is left in the residuals.

The model fits the data very well, as implied from the value of R̄2.

7 Concluding Remarks

This paper considers panel data models in the presence of two sources of cross-sectional depen-

dence: endogenous spatial interactions and common effects. It derives identification conditions

and proposes a number of estimators for the joint model. The estimation approach replaces the

unobserved common factors with cross-sectional averages and utilizes instrumental variables and

quadratic moment conditions in order to cope with the endogenous spatial effects. The proposed

estimators are shown to be consistent as long as N is large, irrespective of the size of T . The

asymptotic distributions of these estimators are free of nuisance parameters, provided that T is

of a smaller order of magnitude than N , as (N,T ) → ∞ jointly. Compared with the maximum

likelihood approach, the number of latent factors need not be estimated, and more general forms

of serial correlation in the disturbances are permitted. A wide range of Monte Carlo exercises lend

further support to the theoretical results regarding identification and estimation.

A detailed empirical application to real house price changes reveals that significant spatial

dependence exists across MSAs in the US, and it demonstrates the importance of adequately

35See Appendix B and the Online Supplement for a more detailed characterization and comparison of different
spatial weights matrices.

36We have also considered the Durbin terms, but they are found to be insignificant.
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removing common effects when analyzing the strength of spatial interconnections. The study

also identifies significant effects of population and income growth on house price growth. Besides

geographical proximity, we also consider spatial weights based on migration flows and on pairwise

correlations of de-factored house price changes. The main findings remain valid under the different

measures of connections. These empirical results highlight the need to consider the spatial spillover

effects in housing markets when making policy and business decisions.

An important next step for future research is to incorporate rich spatio-temporal dynamics

into the model specifications. Such extensions provide a full characterization of how an economic

phenomenon transmits across space and over time, and they enable us to distinguish between

short-term and long-term spillover effects. Another possible extension of the model is to include

slope heterogeneity, which is especially relevant for studies covering different countries, regions, and

industries. The present paper is also related to the recent study by Pesaran and Yang (2016), who

consider networks with dominant units and common factors. The identification and estimation

of these models, in which the spatial weights matrix may have unbounded column sums, are of

practical importance and worth further investigation.
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A Appendix: Proofs of Main Theorems

The proofs are based on the lemmas in the Online Supplement.

Proof of Theorem 1

For ease of notation, in this proof we omit the subscript “0” and use γi, Γ, etc., to denote the true

parameters. The key to the proof is to establish the distribution of (NT )−1/2
Q′Mb [(IT ⊗ Γ)f + e].

Applying Lemma A6, we only need to derive the distribution of (NT )−1/2∑N
i=1X

′
i.M̄(Fγi + ei.),

and then the distribution of (NT )−1/2∑N
i=1

∑N
l=1w

s
ilX

′
i.M̄(Fγi + ei.), for s = 1, 2, . . ., will readily

follow.
Let us first consider (NT )−1/2∑N

i=1X
′
i.M̄Fγi. Under Assumption 3, γi = γ + ηi, and note

that N−1
∑N

i=1X
′
i.M̄Fγ = X̄′

i.M̄Fγ = 0, we have

1√
NT

N
∑

i=1

X′
i.M̄Fγi =

1√
NT

N
∑

i=1

X′
i.M̄Fηi, (A.1)
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It is shown in Lemma A5 of the Online Supplement that37

X′
i.M̄F = −A′

i

(

C̄C̄′)−1
C̄ǭ′M̄ǭC̄′ (C̄C̄′)−1 −V′

i.M̄ǭC̄′ (C̄C̄′)−1
.

Substituting this result into (A.1) yields

1√
NT

N
∑

i=1

X′
i.M̄Fγi =

1√
NT

N
∑

i=1

[

−A′
i

(

C̄C̄′)−1
C̄ǭ′M̄ǭC̄′ (C̄C̄′)−1 −V

′

i.M̄ǭC̄′ (C̄C̄′)−1
]

ηi.

Using (S.6) and (S.7) of Lemma A5 in the Online Supplement, and noting that the norms of
C̄′(C̄C̄′)−1 are bounded, we get

1√
NT

N
∑

i=1

X′
i.M̄Fηi = − 1√

NT

N
∑

i=1

V′
i.M̄ǭC̄′ (C̄C̄′)−1

ηi +Op

(
√

T

N

)

.

Further using

V′
i.M̄ǭ

T
=

V′
i.ǭ

T
−
(

V′
i.Z̄

T

)(

Z̄′Z̄

T

)−1(
Z̄′ǭ

T

)

,

and noticing that its probability order is dominated by the first term on the right hand side by
Lemma A4, we obtain

1√
NT

N
∑

i=1

X′
i.M̄Fηi = − 1

N

N
∑

i=1

√
NV′

i.ǭ√
T

C̄′ (C̄C̄′)−1
ηi +Op

(
√

T

N

)

.

Now that it is readily seen that C̄′ (C̄C̄′)−1 − C̄′
−i

(

C̄−iC̄
′
−i

)−1
= Op

(

N−1
)

, where C̄−i is con-
structed in a similar way as C̄ but excluding Φi, and by a weak law of large numbers for martingale
difference triangular array we can establish that

1

N

N
∑

i=1

√
NV′

i.ǭ√
T

C̄′
−i

(

C̄−iC̄
′
−i

)−1
ηi

p→ 0, as N → ∞ and T/N → 0,

since ηi are i.i.d. with zero mean and are independent of all the stochastic quantities in the model,

and E
∥

∥

∥

(√
NV′

i.ǭ/
√
T
)

C̄′
−i

(

C̄−iC̄
′
−i

)−1
ηi

∥

∥

∥

2
< ∞. Hence, it follows that

1√
NT

N
∑

i=1

X′
i.M̄Fγi

p→ 0, as N → ∞ and T/N → 0.

We next turn to analyzing the distribution of (NT )−1/2∑N
i=1X

′
i.M̄ei.. Let Π = FC̄. It can be

shown that

1√
NT

N
∑

i=1

X′
i.M̄ei. =

1√
NT

N
∑

i=1

X′
i.Mfei. +

1

N

N
∑

i=1

X′
i.Π

T

(

Π′Π

T

)−1
(√

N ǭ′ei.√
T

)

+Op

(
√

T

N

)

.

(A.2)

37See (S.5) of Lemma A5.
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The first term on the right-hand side of (A.2) follows a distribution

1√
N

N
∑

i=1

X′
i.Mfei.√

T

d→ N(0,ΩXMe),

where ΩXMe = lim
N→∞

(

N−1
∑N

i=1 SiXMe

)

,SiXMe = plim
T→∞

[

T−1X′
i.MfE (ei.e

′
i.)MfXi.

]

, because

X′
i.Mfei.√

T
=

V′
i.ei.√
T

− 1√
T

(

V′
i.F√
T

)(

F′F

T

)−1(
F′ei.√

T

)

=
V′

i.ei.√
T

+Op

(

1√
T

)

,

and T−1/2V′
i.ei. = Op(1) under Assumption 2. For the second term on the right-hand side of (A.2),

we have

1

N

N
∑

i=1

X′

i.Π

T

(

Π′Π

T

)

−1 (√
N ǭ

′ei.√
T

)

=
1

N

N
∑

i=1

X′

i.Π

T

(

Π′Π

T

)

−1
(√

N ǭ
′

−iei.√
T

)

+Op

(

√

T

N

)

,

where we used that T−1ǭ′ei. − T−1ǭ′−iei. = Op

(

N−1
)

. Applying a weak law of large numbers for
a martingale difference triangular array with finite second moment leads to

1

N

N
∑

i=1

X′
i.Π

T

(

Π′Π

T

)−1
(√

N ǭ′−iei.√
T

)

p→ 0, as N → ∞.

Thus, as (N,T )
j→ ∞ and T/N → 0,

1

N

N
∑

i=1

X′
i.Π

T

(

Π′Π

T

)−1
(√

N ǭ′ei.√
T

)

p→ 0,

and it follows that

1√
NT

N
∑

i=1

X′
i.M̄ei.

d→ N (0,ΩXMe) .

As a result, as (N,T )
j→ ∞ and T/N → 0, we have

√
NT

(

δ̂2sls − δ0
)

d→ N (0,Σ2sls) , where

Σ2sls is given by (26).

Proof of Theorem 2

Note that
√
NT

(

δ̂b2sls − δ0
)

=

(

1

NT
Q̂∗′L

)−1 1√
NT

Q̂∗′ [(IT ⊗ Γ0)f + e] .

To establish the asymptotic distribution, it suffices to show that

plim
N,T→∞

1

NT
Q̂∗′L = plim

N,T→∞

1

NT
L′
0M

b
fL0, (A.3)

and
1√
NT

Q̂∗′ [(IT ⊗ Γ0)f + e]
d→ N (0,ΩLMe) . (A.4)
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Substituting
Y =

(

IT ⊗ S−1
0

)

[Xβ0 + (IT ⊗ Γ0) f + e]

into the definition of L yields
L = L0 + [(IT ⊗ Γ0) f + e,0] ,

and it follows that

1

NT
Q̂∗′L =

1

NT

[

(IT ⊗G(ρ̂))Xβ̂,X
]′
MbL0 +

1

NT

[

(IT ⊗G(ρ̂))Xβ̂,X
]′
Mb [(IT ⊗ Γ0)f + e,0] .

Using the first-order Taylor expansion of G(ρ̂), we have

W(IN − ρ̂W)−1 = G0 +W(IN − ρ̂W)−1G0(ρ̂− ρ0).

Applying Lemma A6, and using ρ̂ = ρ+ op(1) and β̂ = β0 + op(1), we obtain

1

NT

[

(IT ⊗G(ρ̂))Xβ̂,X
]′
MbL0 =

1

NT
L′
0M

b
fL0 + op(1),

1

NT

[

(IT ⊗G(ρ̂))Xβ̂,X
]′
Mb [(IT ⊗ Γ0)f + e,0] = op(1).

Thus, the result in (A.3) is proved. The claim in (A.4) can be established using an argument similar
to the one in the proof of Proposition 1.

Now in order to examine if Q̂∗ is the best IV, we need to compare the asymptotic variances
Σb2sls with Σ2sls. Notice that

L′
0PQ,fL0 = L′

0M
b
fQ(Q′Mb

fQ)−1Q′Mb
fL0 ≤ L′

0M
b
fL0,

and hence ΨLPL ≤ ΨLML. If the disturbances {eit} are independently and identically distributed
with mean zero and variance σ2

e , then Σb2sls = σ2
eΨ

−1
LML ≤ σ2

eΨ
−1
LPL = Σ2sls. However, in general

we cannot conclude that Q̂∗ is optimal, because Ωe,i. is unknown and ΩLPe could be greater than
ΩLMe.

Proof of Theorem 3

Consistency

Under the identification conditions for this model, it suffices to show that (NT )−1
Aw

NTgNT (δ)
converges to its mean uniformly in δ ∈∆sp and the limit equals zero at δ0. Notice that

ξ(δ) = [IT ⊗ S(ρ)]
(

IT ⊗ S−1
0

)

[Xβ0 + (IT ⊗ Γ0)f + e]−Xβ.

Since S(ρ)S−1
0 = [S0 + (ρ0 − ρ)W]S−1

0 = IN + (ρ0 − ρ)G0, where G0 = WS−1
0 , we then obtain

ξ(δ) = [INT + (ρ0 − ρ)(IT ⊗G0)] [Xβ0 + (IT ⊗ Γ0)f ]−Xβ + IT ⊗
[

S(ρ)S−1
0

]

e

=X(β0−β) + (ρ0 − ρ) (IT ⊗G0) [Xβ0 + (IT ⊗ Γ0)f ] + (IT ⊗ Γ0)f + IT ⊗
[

S(ρ)S−1
0

]

e

=d(δ) + rξ(δ). (A.5)
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where

d (δ) = X (β0−β) + J (ρ0 − ρ) (A.6)

J = (IT ⊗G0) [Xβ0 + (IT ⊗ Γ0)f ] , (A.7)

rξ(δ) = (IT ⊗ Γ0) f + IT ⊗
[

S(ρ)S−1
0

]

e. (A.8)

Let Aw
NT =

(

a(1),a(2), . . . ,a(r),A(Q)
)

, where a(l), for l = 1, 2, . . . , r, are ka × 1 vectors, and A(Q) is
a ka × q matrix. By definition, we have

1

NT
Aw

NTgNT (δ) =
1

NT

r
∑

l=1

a(l)
[

ξ′ (δ)MbPb
lM

bξ (δ)
]

+
1

NT
A(Q)Q′Mbξ (δ) . (A.9)

Expanding the first term of (A.9) produces

1

NT

r
∑

l=1

a(l)
[

ξ′ (δ)MbPb
lM

bξ (δ)
]

=̟1 + 2̟2 +̟3,

where ̟1 = 1
NT

∑r
l=1 a

(l)
[

d′ (δ)MbPb
lM

bd (δ)
]

, ̟2 = 1
NT

∑r
l=1 a

(l)
[

d′ (δ)MbPb
lM

brξ (δ)
]

, and

̟3 = 1
NT

∑r
l=1 a

(l)
[

r′ξ (δ)M
bPb

lM
brξ (δ)

]

. Note that S(ρ)S−1
0 has bounded row and column

norms, and so do the products of S(ρ)S−1
0 , Pl, and

[

S(ρ)S−1
0

]′
. Also notice that MbPb

lM
b =

M̄ ⊗ Pl. Applying Lemma A6 and A7, we obtain that ̟1, ̟2 and ̟3 converge uniformly to
their means, respectively. In addition, the second term in (A.9) converges uniformly to zero.
Hence, we establish the uniform convergence of (NT )−1

Aw
NTgNT (δ). Furthermore, its limit equals

zero at the true value δ0. This can be verified by noticing that ξ(δ0) = (IT ⊗ Γ0) f + e, and

E
(

e′Mb
fP

b
lM

b
fe
)

= tr [E (Mf ⊗Pl)E (ee′)] = 0.

Asymptotic distribution

We omit the subscript and let δ̂ denote the GMM estimator in this proof. By a mean value

expansion of
∂g′

NT (δ̂)
∂ Aw′

NTA
w
NTgNT

(

δ̂
)

= 0 around the true value, δ0, we obtain

√
NT

(

δ̂ − δ0
)

= −





1

NT

∂g′
NT

(

δ̂
)

∂δ
Aw′

NTA
w
NT

1

NT

∂gNT

(

δ̈
)

∂δ
′





−1

1

NT

∂g′
NT

(

δ̂
)

∂δ
Aw′

NT

1√
NT

Aw
NTgNT (δ0) ,

where δ̈ is a point between δ̂ and δ0. For any δ in the parameter space ∆sp, we have ∂ξ (δ) /∂δ′ =
− [(IT ⊗W)Y,X] , and it follows that

∂g (δ)

∂δ′
= −

[

MbPsb
1 Mbξ (δ) , . . . ,MbPsb

r Mbξ (δ) ,MbQ
]′
[(IT ⊗W)Y,X] ,

where Psb
l = IT ⊗Ps

l and Ps
l = Pl +P′

l , for l = 1, 2, . . . , r. Since

1

NT
ξ′ (δ)MbPsb

l Mb (IT ⊗W)Y =
1

NT
ξ′ (δ)

(

M̄⊗Ps
lG0

)

Xβ0

+
1

NT
ξ′ (δ)

[(

M̄⊗Ps
lG0

)

e+
(

M̄⊗Ps
lG0Γ0

)

f
]

, (A.10)
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by Lemma A6 and A7, at true value δ0 the above equation (A.10) can be rewritten as

1

NT
[(IT ⊗ Γ0) f + e]′MbPsb

l Mb (IT ⊗W)Y =
1

N

N
∑

i=1

g̃sii,lσ
2
i + op(1),

where g̃sii,l is the ith diagonal element of matrix G̃l(ρ0) = Ps
lG0, and (NT )−1

e′MbPs
lM

bX = op(1).
In addition, we have

1

NT
Q′Mb (IT ⊗W)Y =

1

NT
Q′ (Mf ⊗G0)Xβ0 + op(1).

It then follows that (NT )−1 ∂g′
NT (δ) /∂δ = −D+ op(1), where D is given by (42).

Finally, applying the Central Limit Theorem given by Lemma A9 for the linear and quadratic
forms establishes

1√
NT

Aw
NTgNT (δ0) =

1√
NT

[

r′ξ (δ0)

(

r
∑

l=1

a(l)MbPb
lM

b

)

rξ (δ0) +A(Q)Q′Mbrξ (δ0)

]

d→N
(

0,Aw′ΣgA
w
)

, (A.11)

where Σg is given by (44), and this completes the proof.

B Data Appendix

The house price indices for Metropolitan Statistical Areas (MSAs) at monthly frequency are ob-
tained from the website of Freddie Mac: http://www.freddiemac.com/finance/fmhpi/archive.html.
The quarterly values are computed by taking the three-month arithmetic averages.

The annual Consumer Price Index (CPI) series for all urban areas is sourced from website of
the Bureau of Labor Statistics: http://data.bls.gov/pdq/querytool.jsp?survey=cu. The CPI for
each MSA is constructed from the corresponding state CPI, and the missing observations for a few
area-year combinations are replaced by the US averages.

The data on annual income per capita and population at the MSA level are obtained from the
website of the Bureau of Economic Analysis (BEA): http://bea.gov/regional/downloadzip.cfm.

The quarterly values of CPI, income, and population are computed from annual series, following
the interpolation method given in Appendix B.3 of the Global Vector AutoRegressive (GVAR)
Toolbox User Guide, which is available at the GVAR modeling website:
https://sites.google.com/site/gvarmodelling/gvar-toolbox/download.

The geodesic distance between MSAs is calculated by the Haversine formula, using the Latitude-
Longitude of zip codes of the corresponding MSAs. The data on MSA-to-MSA migration flows are
sourced from the 2010-2014 American Community Survey (ACS) 5-year estimates by the United
States Census Bureau. The flow estimates with coefficients of variation higher than 20% are dropped
from the sample. Table B.1 reports the summary measures of different spatial weights matrices
used in the analysis. Further details about these weights matrices are provided in the Online
Supplement.
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Table B.1: Summary of the spatial weights matrices

W75 W100 W125 Wm Ŵ+ Ŵ−

Links
Mean 3.31 5.73 8.65 4.46 10.41 7.53
Max 12 20 27 59 35 35
Total 1,246 2,162 3,260 1,681 3,926 2,838

Network density 0.88% 1.53% 2.30% 1.19% 2.77% 2.00%
Isolated MSAs 39 15 10 53 3 45

Dimensions 377 × 377

Notes: Wd denotes radial distance weights matrix with threshold distance d (miles). Wm represents weights matrix
based on MSA-to-MSA migration flows. Ŵ+ (Ŵ−) is constructed from significantly positive (negative) pairwise
correlations of de-factored house price changes. The total number of links equals the number of nonzero elements in
the weights matrix. Network density is computed by dividing the sum of existing links by the number of all possible
links.
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Online Supplement to “Common Factors and Spatial Dependence:

An Application to US House Prices”

Cynthia Fan Yang†

August 20, 2018

This Online Supplement is organized into three sections. Section S1 provides supplementary
lemmas for the main proofs and derivations of the identification conditions. Section S2 reports
additional results of Monte Carlo experiments. Section S3 presents more empirical findings and
further description of the spatial weights matrices.

S1 Theory Supplement

S1.1 Supplementary Lemmas

The following lemmas summarize some useful results under Assumptions 1–7 in the main paper.

Lemma A1. Under Assumptions 4 and 6, the matrix ∆−1 has bounded row and column norms,
where the (i, j)th subblock of ∆−1, for i, j = 1, 2, . . . , N , is given by (4).

Proof. Consider first the row norm. By definition, we have

||∆−1||∞ =max







1, max
1≤i≤N





N
∑

j=1

|šij |+
N
∑

j=1

k
∑

p=1

|šijβp|











≤max







1, max
1≤i≤N





N
∑

j=1

|šij |+K
N
∑

j=1

|šij |











≤max







1,K max
1≤i≤N

N
∑

j=1

|šij |







= max
{

1,K||S−1||∞
}

,

which is bounded as ||S−1||∞ < K < ∞. Likewise, we can show that the column norm of ∆−1 is
bounded, since

||∆−1||1 ≤ max
{

||S−1||1, 1 +K||S−1||1
}

< K.

Lemma A2. Under Assumptions 2, 4 and 6, for all t,

(a) E (ǭ.t) = 0, V ar (ǭ.t) = O
(

N−1
)

, and hence ǭ.t
q.m.→ 0, as N → ∞,

(b) E||ǭ.t||2 = O
(

N−1
)

, E||ǭ.t|| = O
(

N−1/2
)

,

where ǭ.t = Θaǫ.t , Θa = N−1τ ′
N ⊗ Ik+1, and ǫ.t = ∆−1u.t.

†Department of Economics, Florida State University, 113 Collegiate Loop, 281 Bellamy Building, Tallahassee, FL
32306, USA. Email: cynthia.yang@fsu.edu. This work was carried out during my doctoral study at the University of
Southern California.
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Proof. This lemma is a direct counterpart of Lemma 1 of Pesaran (2006). Although the error terms
are defined differently, we will demonstrate that the same properties can be established.

(a) E (ǭ.t) = 0 immediately follows E (u.t) = 0. As for the variance,

V ar(ǭ.t) = Θa∆
−1E

(

u.tu
′
.t

)

∆−1′Θ′
a = Θa∆

−1Σu∆
−1′Θ′

a.

For any row vector of Θa, denoted by θa, we have

θa∆
−1Σu∆

−1′θ′a ≤
(

θaθ
′
a

)

λmax

(

∆−1Σu∆
−1′) = N−1λmax

(

∆−1Σu∆
−1′) .

Since ∆−1 has bounded row and column norms by Lemma A1, and so does Σu under Assumption
2, it follows that the product, ∆−1Σu∆

−1′, has bounded row and column norms, and consequently
λmax

(

∆−1Σu∆
−1′) is bounded, which proves that V ar (ǭ.t) is of order O

(

N−1
)

. The last statement
is readily established by the definition of convergence in quadratic mean.

(b) Note that

E||ǭ.t||2 = E
[

tr
(

Θa∆
−1u.tu

′
.t∆

−1′Θ′
a

)]

= tr
(

Θa∆
−1Σu∆

−1′Θ′
a

)

= O
(

N−1
)

,

and then, E||ǭ.t|| ≤
(

E||ǭ.t||2
)1/2

= O
(

N−1/2
)

.

Lemma A3. Under Assumptions 1, 2, 3, 4 and 6, for all i,

(a) ǭ′ǭ
T = Op

(

1
N

)

, (b) F′ǭ
T = Op

(

1√
NT

)

, (c)
V′

i.F

T = Op

(

1√
T

)

,

(d)
e′i.ǭ

T = Op

(

1
N

)

+Op

(

1√
NT

)

,
V′

i.ǭ

T = Op

(

1
N

)

+Op

(

1√
NT

)

,

(e)
X′

i.ǫ

T = Op

(

1
N

)

+Op

(

1√
NT

)

,

where ǭ = (ǭ.1, ǭ.2, . . . , ǭ.T )
′is of dimension T × (k + 1), with ǭ.t = Θaǫ.t, F = (f1, f2, . . . , fT )

′,
Vi. = (vi1,vi2, . . . ,viT )

′, ei. = (ei1, ei2, . . . , eiT )
′, and Xi. = (xi1,xi2, . . . ,xiT )

′.

Proof. Having established Lemma A2, results (a), (b), and (c) can be proved following similar
arguments as those for (A.10)-(A.12) in Lemma 2 of Pesaran (2006), so here we give only the
proofs of (d) and (e).

(d) Notice that T−1e′i.ǭ is a (k + 1)-dimensional row vector. Let T−1e′i.ǭ = (ẽ1, ẽ2, . . . , ẽk+1).
We will consider separately its first entry and the rest, due to the composition of ǭ.

Expanding ẽ1 by definition, we have

ẽ1 =
1

NT

T
∑

t=1

N
∑

h=1

N
∑

q=1

eit
(

šqheht + šqhv
′
htβ
)

=
1

NT

T
∑

t=1

N
∑

h=1

š.h
(

eiteht + eitv
′
htβ
)

,

where šij is the (i, j)th element of the matrix S−1 (ρ) = (IN − ρW)−1, and š.h =
∑N

q=1 šqh = O(1).
It follows that

E (ẽ1) =
1

NT

T
∑

t=1

N
∑

h=1

š.h
[

E (eiteht) + E
(

eitv
′
htβ
)]

=
1

NT

T
∑

t=1

s−1
.i E

(

e2it
)

=
1

NT

T
∑

t=1

s−1
.i σ2

i = O

(

1

N

)

,
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and

V ar (ẽ1) =
1

N2T 2

T
∑

t=1

T
∑

s=1

N
∑

h=1

N
∑

l=1

š.hš.lE
[(

eiteht + eitv
′
htβ
) (

eisels + eisv
′
lsβ
)]

=
1

N2T 2

T
∑

t=1

T
∑

s=1

N
∑

h=1

N
∑

l=1

š.hš.l
[

E (eitehteisels) + E
(

eiteisv
′
htβv

′
lsβ
)

+E
(

eitehteisv
′
lsβ
)

+ E
(

eiteiselsv
′
htβ
)]

,

where the last two terms are zeros due to independence between eit and vjs for all (i, j, t, s), and
the first two terms are given by

E (eitehteisels) =











E
(

e2ite
2
is

)

, if h = l = i

E (eiteis)E (eltels) , if h = l 6= i

0, otherwise

,

E
(

eiteisv
′
htβv

′
lsβ
)

=

{

E (eiteis)β
′E (vltv

′
ls)β, if h = l

0, otherwise
.

Furthermore, since eit and vjs have finite fourth-order moments and their autocovariances are
absolutely summable, we thus have

V ar (ẽ1) =
1

N2T 2

T
∑

t=1

T
∑

s=1

š2.iE
(

e2ite
2
is

)

+
1

N2T 2

T
∑

t=1

T
∑

s=1

N
∑

h=1,h 6=l

š2.hE (eiteis)E (eltels)

+
1

N2T 2

T
∑

t=1

T
∑

s=1

N
∑

h=1

š2.hE (eiteis)β
′E
(

vltv
′
ls

)

β

=O

(

1

N2

)

+O

(

1

NT

)

,

which implies that ẽ1 = Op (1/N) +Op

(

1/
√
NT

)

.

We now turn to the rest of the elements of T−1e′i.ǭ. Note that ẽr = (NT )−1∑T
t=1

∑N
q=1 eitvqt,r,

for r = 2, 3, . . . , k + 1. Clearly E (ẽr) = 0, and

V ar(ẽr) =
1

N2T 2

T
∑

t=1

T
∑

s=1

N
∑

q=1

N
∑

h=1

E (eiteis)E
(

vqt,rv
′
hs,r

)

= O

(

1

NT

)

.

Therefore, ẽr = Op

(

1/
√
NT

)

, for r = 2, 3, . . . , k+1. Together with the results for ẽ1, we conclude

that T−1e′i.ǭ = Op (1/N) + Op

(

1/
√
NT

)

. The second result in (d) can be proved in a similar
manner.

(e) Note that T−1X′
i.ǭ = A

′

i

(

T−1F′ǭ
)

+ T−1V′
i.ǭ. The claim readily follows from the results

(b), (d), and the assumption that ||Ai|| < K.

S3



Lemma A4. Let Π = FC̄. Under Assumptions 1, 2, 3, 4 and 6,

(a) Π′Π
T = Op(1), (b) Π′ǭ

T = Op

(

1√
NT

)

, (c) Z̄′Z̄
T = Op(1),

(d) Z̄′F
T = Op(1), (e) Z̄′Vi.

T = Op

(

1
N

)

+Op

(

1√
T

)

, (f) Z̄′Xi.
T = Op(1),

(g) Π′Xi.
T = Op(1), (h) Z̄′ei.

T = Op

(

1
N

)

+Op

(

1√
T

)

, (i) Z̄′ǭ
T = Op

(

1
N

)

+Op

(

1√
NT

)

.

Proof. (a) Π′Π
T = C̄′F′F

T C̄ = Op(1), since the elements of C̄ are bounded and F′F
T = Op(1).

(b) Π′ǭ
T = C̄′F′ǭ

T = Op

(

1√
NT

)

, as the elements of C̄ are bounded and F′ǭ
T = Op

(

1√
NT

)

by

Lemma A3.

(c) Since Z̄ = Π+ ǭ, we have Z̄′Z̄
T = Π′Π

T + ǭ′ǭ
T + 2Π′ǭ

T + ǭ′Π
T = Op(1) +Op

(

1
N

)

+Op

(

1√
NT

)

=

Op(1).

(d) Z̄′F
T = C̄′F′F

T + ǭ′F
T = Op(1) +Op

(

1√
NT

)

= Op(1).

(e) Z̄′Vi.
T = C̄′F′Vi.

T + ǭ′Vi.
T = Op

(

1√
T

)

+
[

Op

(

1
N

)

+Op

(

1√
NT

)]

= Op

(

1
N

)

+Op

(

1√
T

)

.

(f) Recall that Xi. = FAi + Vi., and then it follows that Z̄′Xi.
T = Z̄′F

T Ai +
Z̄′Vi.
T = Op(1) +

Op

(

1
N

)

+Op

(

1√
T

)

= Op(1).

(g) Π′Xi.
T = C̄′F′F

T Ai + C̄′F′Vi.
T = Op(1) +Op

(

1√
T

)

= Op(1).

(h) Z̄′ei.
T = C̄′F′ei.

T + C̄′ ǭ′ei.
T = Op

(

1√
T

)

+
[

Op

(

1
N

)

+Op

(

1√
NT

)]

= Op

(

1
N

)

+Op

(

1√
T

)

.

(i) Z̄′ǭ
T = Π′ǭ

T + ǭ′ǭ
T = Op

(

1√
NT

)

+Op

(

1
N

)

.

Lemma A5. Under Assumptions 1-6, for any i and j,

(a)
X′

i.M̄F

T = Op

(

1
N

)

+Op

(

1√
NT

)

,

(b)
X′

i.M̄Xj.

T =
X′

i.MfXj.

T +Op

(

1
N

)

+Op

(

1√
NT

)

,

(c)
X′

i.M̄ej.
T =

X′

i.Mfej.
T +Op

(

1
N

)

+Op

(

1√
NT

)

,

(d)
e′i.M̄ej.

T =
e′i.Mfej.

T +Op

(

1
N
√
T

)

+Op

(

1√
NT

)

+Op

(

1
N2

)

,

(e)
e′i.M̄F

T = Op

(

1
N

)

+Op

(

1√
NT

)

,

(f) F′M̄F
T = Op

(

1
N

)

,

(g)
X′

i.M̄ǭ

T =
X′

i.Mf ǭ

T +Op

(

1
N

)

.

Proof. (a) From (8), we have
F =

(

C̄C̄′)−1C̄
(

Z̄− ǭ
)

. (S.1)
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Since M̄Z̄ = 0, it follows that

X′
i.M̄F = −

(

X′
i.M̄ǭ

)

C̄′ (C̄C̄′)−1
, (S.2)

As Xi. = FAi +Vi., we have
X′

i.M̄ǭ = A′
iF

′M̄ǭ+V′
i.M̄ǭ. (S.3)

Using (S.1) again gives

ǭ′M̄F = −
(

ǭ′M̄ǭ
)

C̄′ (C̄C̄′)−1
. (S.4)

Then substituting (S.3) and (S.4) into (S.2) yields

X′
i.M̄F = −A′

i

(

C̄C̄′)−1
C̄ǭ′M̄ǭC̄′ (C̄C̄′)−1 −V′

i.M̄ǭC̄′ (C̄C̄′)−1
. (S.5)

Since A′
i and

(

C̄C̄′)−1
C̄ have bounded norms, now we only need to establish the probability

orders of
∥

∥T−1ǭ′M̄ǭ
∥

∥ and
∥

∥T−1V′
i.M̄ǭ

∥

∥, and then the assertion in (a) will follow. Expanding M̄

by definition and applying Lemma A3(a), Lemma A4(c) and (i) leads to

ǭ′M̄ǭ

T
=
ǭ′ǭ

T
−
(

ǭ′Z̄

T

)(

Z̄′Z̄

T

)−1(
Z̄′ǭ

T

)

= Op

(

1

N

)

. (S.6)

Similarly, by Lemma A3(d), Lemma A4(c), (e) and (i), we have

V′
i.M̄ǭ

T
=

V′
i.ǭ

T
−
(

V′
i.Z̄

T

)(

Z̄′Z̄

T

)−1(
Z̄′ǭ

T

)

= Op

(

1

N

)

+Op

(

1√
NT

)

. (S.7)

Hence the result in (a) follows.
The rest of Lemma A5 can be proved by applying Lemma A4 and using similar reasoning as

that for Lemma 3 in Kapetanios et al. (2011). To save space, we only give the proof of (b) to
illustrate the main idea.

(b) Let Π = FC̄, and MΠ = Π (Π′Π)
−1

Π′. Then we have Z̄ = Π+ ǭ, and

∥

∥

∥

∥

X′
i.M̄Xj.

T
− X′

i.MΠXj.

T

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

X′
i.Z̄
(

Z̄′Z̄
)−1

Z̄′Xj.

T
− X′

i.Π (Π′Π)
−1

Π′Xj.

T

∥

∥

∥

∥

∥

≤ d1 + d2 + d3,

where

d1 ≡
∥

∥

∥T−1
(

X′
i.Z̄−X′

iΠ
) (

Z̄′Z̄
)−1

Z̄′Xj.

∥

∥

∥ ≤
∥

∥

∥

∥

X′
i.ǭ

T

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

Z̄′Z̄

T

)−1
Z̄′Xj.

T

∥

∥

∥

∥

∥

= Op

(

1

N

)

+Op

(

1√
NT

)

,

d2 ≡
∥

∥

∥T−1X′
i.Π

[

(

Z̄′Z̄
)−1 −

(

Π′Π
)−1
]

Z̄′Xj.

∥

∥

∥

≤
∥

∥

∥

∥

− ǭ
′ǭ

T
− Π′ǭ

T
− ǭ′Π

T

∥

∥

∥

∥

∥

∥

∥

∥

∥

X′
i.Π

T

(

Z̄′Z̄

T

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

Π′Π

T

)−1
Z̄′Xj.

T

∥

∥

∥

∥

∥

= Op

(

1

N

)

+Op

(

1√
NT

)

,

d3 ≡
∥

∥

∥T−1X′
i.Π

(

Π′Π
)−1 (

Z̄′Xj. −Π′Xj.

)

∥

∥

∥ ≤
∥

∥

∥

∥

∥

X′
i.Π

T

(

Π′Π

T

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

ǭ′Xj.

T

∥

∥

∥

∥

= Op

(

1

N

)

+Op

(

1√
NT

)

.
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Under the full rank condition given in Assumption 5, MΠ = Mf , and hence we have

∥

∥

∥

∥

X′
i.M̄Xj.

T
− X′

i.MfXj.

T

∥

∥

∥

∥

= Op

(

1

N

)

+Op

(

1√
NT

)

.

Lemma A6. Under Assumptions 1-7,

(a) 1
NT Q

′Mb (IT ⊗ Γ) f = Op

(

1
N

)

+Op

(

1√
NT

)

,

(b) 1
NT Q

′Mb (IT ⊗B) e = Op

(

1
N

)

+Op

(

1√
NT

)

,

(c) 1
NT Q

′Mb (IT ⊗B)X = 1
NT Q

′Mb
f (IT ⊗B)X+Op

(

1
N

)

+Op

(

1√
NT

)

,

where B = (bij) is any N ×N nonstochastic matrix with bounded row and column norms.

Proof. (a) Taking a column from Q and expressing it generically as

Qc =
[

(Wrx.1,p)
′ , (Wrx.2,p)

′ , . . . , (Wrx.T,p)
′]′ ,

where r = 0, 1, 2, . . ., p = 1, 2, . . . , k, x.t,p = (x1t,p, x2t,p, . , xNt,p)
′, and W0 ≡ IN , we have

(NT )−1
Q′

cM
b (IT ⊗ Γ) f = (NT )−1

Q′
cvec

(

ΓF′M̄′)

=(NT )−1 tr
[

Wr (x1.,p,x2.,p, . . . ,xN.,p)
′
M̄FΓ′] = (NT )−1

N
∑

i=1

N
∑

l=1

wr
ilx

′
l.,pM̄Fγi.

Evidently, the claim in (a) readily follows Lemma A5(a), and the assumptions that γi is bounded
and W has bounded row and column norms.

(b) Taking the pth column from Q, p = 1, 2, . . . , k, as in the proof of (a) we can show that

1

NT
Q′

c

(

M̄⊗B
)

e =
1

NT

N
∑

i=1

N
∑

j=1

N
∑

l=1

bijw
r
ilx

′
l.,pM̄ej.

=
1

NT

N
∑

i=1

N
∑

j=1

N
∑

l=1

bijw
r
ilx

′
l.,pMfej. +Op

(

1

N

)

+Op

(

1√
NT

)

=
1

NT

N
∑

i=1

N
∑

j=1

N
∑

l=1

bijw
r
ilv

′
l.,pej. +Op

(

1

N

)

+Op

(

1√
NT

)

, (S.8)

where the second equality follows by Lemma A5(c) and the assumption that B and W have bounded
row and column norms.

Consider the first term in (S.8). Its mean is zero and its variance is given by

1

N2T 2

N
∑

i=1

N
∑

l=1

N
∑

j=1

bijbljE
[

Wr′
i (v1.,p, . . . ,vN.,p)

′
ej.e

′
j. (v1.,p, . . . ,vN.,p)W

r
l

]

=
1

N2T 2

N
∑

i=1

N
∑

l=1

N
∑

j=1

bijblj

N
∑

m=1

N
∑

n=1

wimwlnE
(

v′
m.,pΩe,jvn.,p

)

,
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where Ωe,j is the variance-covariance matrix of ej.. Since ejt is stationary with absolutely summable
autocovariances, Ωe,j has bounded row and column norms. It follows that

T−1v′
m.,pΩe,jvn.,p ≤ T−1λmax(Ωe,j)v

′
m.,pvn.,p ≤ KT−1v′

m.,pvn.,p = O(1).

Also notice that
∑N

l=1

∑N
j=1 bijblj = O(1), since BB′ has bounded row and column norms. Hence,

we obtain

V ar





1

NT

N
∑

i=1

N
∑

j=1

N
∑

l=1

bijw
r
ilv

′
l.,pej.



 = O

(

1

NT

)

,

and consequently the order of the first term in (S.8) is Op

(

1/
√
NT

)

, which completes the proof.

(c) Let C = B′Wr = (cij). For any column of Q, we have

1

NT
Q′

cM
b(IT ⊗B)X =

1

NT
tr
[

(x1.,p, . . . ,xN.,p)
′
M̄ (x1.,p, . . . ,xN.,p)B

′Wr
]

=
1

NT

N
∑

i=1

N
∑

j=1

X′
i.M̄Xj.cji =

1

NT

N
∑

i=1

N
∑

j=1

X′
i.MfXj.cji +Op

(

1

N

)

+Op

(

1√
NT

)

.

Again, the last line follows by Lemma A5 and
∑N

j=1 cji = O(1).

Lemma A7. Under Assumptions 1-6, for any N ×N nonstochastic matrix B = (bij) with bounded
row and column norms,

(a) 1
NT e

′ (M̄⊗B
)

e− 1
N

∑N
i=1 biiσ

2
i = op(1),

(b) 1
NT f

′ (M̄⊗ Γ′B
)

e = Op

(

1
N

)

+Op

(

1√
NT

)

,

(c) 1
NT f

′ (M̄⊗ Γ′BΓ
)

f = Op

(

1
N

)

.

Proof. (a) Applying Lemma A5, we have

1

NT
e′
(

M̄⊗B
)

e =
1

NT

N
∑

i=1

N
∑

j=1

e′i.M̄ej.bji

=
1

NT

N
∑

i=1

N
∑

j=1

e′i.Mfej.bji +





1

N

N
∑

i=1

N
∑

j=1

bji





[

Op

(

1

N
√
T

)

+Op

(

1√
NT

)

+Op

(

1

N2

)]

=
1

NT
e′ (IT ⊗B) e+Op

(

1

T

)

+Op

(

1

N
√
T

)

+Op

(

1

N2

)

.

Clearly, it suffices to show that (NT )−1
e′(IT ⊗B)e converges to its mean uniformly. First,

E

[

1

NT
e′ (IT ⊗B) e

]

=
1

NT

N
∑

i=1

N
∑

j=1

bjiE
(

e′i.ej.
)

=
1

N

N
∑

i=1

biiσ
2
i = O(1), (S.9)

since eit is independent from ejt′ for any i 6= j, and obviously the mean is zero if bii = 0 for all i.
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Next, consider the second moment

E

[

(

1

NT
e′(IT ⊗B)e

)2
]

=
1

N2T 2

N
∑

i=1

N
∑

j=1

N
∑

l=1

N
∑

q=1

bjibqlE
[(

e′i.ej.
) (

e′l.eq.
)]

,

where

E
[(

e′i.ej.
) (

e′l.eq.
)]

=































E
[

(e′i.ei.)
2
]

=
∑T

t=1

∑T
s=1E

(

e2ite
2
is

)

, if i = j = l = q

E
[

(e′i.ej.)
2
]

=
∑T

t=1

∑T
s=1E (eiteis)E (ejtejs) = tr (Ωe,iΩe,j) , if i = l 6= j = q

E
[

(e′i.ej.)
2
]

, if i = q 6= j = l

E (e′i.ei.)E (e′l.el.) = T 2σ2
i σ

2
l , if i = j 6= l = q

0, otherwise

.

It follows that

V ar

[

1

NT
e′ (IT ⊗B) e

]

=
1

N2T 2

{

N
∑

i=1

b2iiE
[

(

e′i.ei.
)2
]

+

N
∑

i=1

N
∑

l=1,l 6=i

biibllE
(

e′i.ei.
)

E
(

e′l.el.
)

+
N
∑

i=1

N
∑

j=1,j 6=i

(

b2ji + bjibij
)

E
[

(

e′i.ej.
)2
]

}

− 1

N2T 2

N
∑

i=1

N
∑

l=1

biibllE
(

e′i.ei.
)

E
(

e′l.el.
)

=
1

N2T 2

N
∑

i=1

b2ii

{

E
[

(

e′i.ei.
)2
]

−
[

E
(

e′i.ei.
)]2 − 2tr (Ωe,iΩe,i)

}

+
1

N2T 2

N
∑

i=1

N
∑

j=1

bji (bji + bij) tr (Ωe,iΩe,j) . (S.10)

It is readily seen that if bii = 0, for i = 1, 2, . . . , N , then

V ar

[

1

NT
e′ (Mf ⊗B) e

]

=
1

N2T 2

N
∑

i=1

N
∑

j=1

bji (bji + bij) tr (Ωe,iΩe,j) = O

(

1

NT

)

, (S.11)

where the second equality follows from the assumption that B and Ωe,i, for all i, are uniformly
bounded in row and column sums. In general, when diag(B) 6= 0, the first term in (S.10) does not
equal zero but is of order O(N−1T−1) since

T−1
{

E
[

(

e′i.ei.
)2
]

−
[

E
(

e′i.ei.
)]2 − 2tr (Ωe,iΩe,i)

}

= T−1
T
∑

t1=1

T
∑

t2=1

cum (et1 , et1 , et2 , et2)

=
T
∑

t=1

cum (e0, e0, et, et) ≤
T
∑

t1,t2,t3=1

|cum (e0, et1 , et2 , et3)| = O (1) ,

where cum(.) denotes the cumulant, the first equality follows the definition of the fourth cumulant,
the second equality follows by the stationarity of eit, and the final result follows by Assumption 2
that the fourth-order cumulant of eit is absolutely summable. We thus establish that

V ar

[

1

NT
e′ (IT ⊗B) e

]

= O

(

1

NT

)

,
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and by the Chebyshev’s inequality (NT )−1
e′(IT ⊗B)e converges to its zero uniformly at the rate

of Op

(

1/
√
NT

)

, and this finishes the proof.

(b) Let C = Γ′B, then (NT )−1
f ′
(

M̄⊗ Γ′B
)

e = (NT )−1∑N
i=1

∑m
j=1 e

′
i.M̄Fcji. Its probabil-

ity order is immediately established by applying Lemma A5 and noting that all elements cij are
uniformly bounded.

(c) The proof is similar to that of (b).

Lemma A8. Under Assumption 2, for any two N × N nonstochastic matrices B and D with
bounded row and column norms and satisfying diag(B) = diag(D) = 0,

(a) E [e′ (IT ⊗B) e] = 0,

(b) E
{

[e′ (IT ⊗B) e]2
}

= Ttr [(B⊙Bs)ΣeT ] = T
∑N

i=1

∑N
j=1 bji(bij + bji)ςeT,ij ,

(c) E [e′ (IT ⊗B) ee′ (IT ⊗D) e] = Ttr [(B⊙Ds)ΣeT ] = T
∑N

i=1

∑N
j=1 bji(dij + dji)ςeT,ij,

where Bs = B+B′, Ds is defined similarly, and ΣeT = (ςeT,ij) is an N ×N matrix of which the
(i, j)th element is given by ςeT,ij = T−1tr (Ωe,iΩe,j).

Proof. Results (a) and (b) follow from (S.9) and (S.11) in the proof of Lemma A7(a). The result
in (c) can be verified similarly.

Lemma A9. Consider the following linear-quadratic form: h = e′ (IT ⊗B) e+ c′e, where e is an
NT × 1 vector of disturbances following the data generating process specified in Assumption 2, B is
an N×N nonstochastic matrix with bounded row and column norms and satisfies diag(B) = 0, and
c is an NT × 1 nonstochastic vector such that supN,T (NT )−1

∑N
i=1

∑T
t=1 |cit|2+δ < ∞, for some

δ > 0. Then the variance of h is given by

σ2
h =

N
∑

i=1

N
∑

j=1

bji (bij + bji) tr (Ωe,iΩe,j) +
N
∑

i=1

c′i.Ωe,ici..

If (NT )−1σ2
h is bounded away from zero, we have h/σh

d→ N(0, 1) as N → ∞ and T/N → 0.

Proof. Let hi =
∑N

j=1 bjie
′
i.ej. + c′i.ei., and then h =

∑N
i=1 hi. Note that hi, i = 1, 2, . . . , N , forms

a martingale difference array with respect to the σ−field generated by {e1., e2., . . . , ei−1.}, since

E (hi|1, 2, . . . , i− 1) =

N
∑

j=1

bjiE
(

e′i.ej.|1, 2, . . . , i− 1
)

+ E
(

c′i.ei.|1, 2, . . . , i− 1
)

=

i−1
∑

j=1

bjiE
(

e′i.
)

ej. +

N
∑

i+1

bjiE
(

e′i.ej.
)

= 0.

To apply a martingale difference central limit theorem (CLT), we only need to show that the
following two sufficient conditions hold (see, for example, Kelejian and Prucha, 2001, Theorem

A.1): (i) 1
σ2+δ
h

∑N
i=1E|hi|2+δ → 0, for some δ > 0, and (ii) 1

σ2
h

∑N
i=1E

(

h2i |1, 2, . . . , i− 1
) p→ 1.
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For (i), let q = 2 + δ and 1
p + 1

q = 1, we have

|hi|q ≤|
N
∑

j=1

bjie
′
i.ej.|q + |c′i.ei.|q ≤





N
∑

j=1

|bji|





q
p




N
∑

j=1

|bji||e′i.ej.|q


+ |c′i.ei.|q,

where the second equality follows by the Holder’s inequality, and then

N
∑

i=1

E|hi|q ≤
N
∑

i=1





N
∑

j=1

|bji|





q
p




N
∑

j=1

|bji|E|e′i.ej.|q


+
N
∑

i=1

E|c′i.ei.|q.

By the Cr inequality, E (|e′i.ej.|q) ≤ T q−1
∑T

t=1E|eit|qE|ejt|q = O
(

T q−1
)

, where the order fol-
lows by the assumption that the third cumulant of eit is absolutely summable and the third cen-
tral moment of a random variable is the same as the third cumulant. Similarly, E (|c′i.ei.|q) ≤
T q−1

∑T
t=1 |cit|qE|eit|q = O

(

T q−1
)

. As a result,
∑N

i=1E|hi|2+δ = O
(

NT 1+δ
)

, and the assertion in

(i) follows as σ2+δ
h = O

(

N1+ δ
2T 1+ δ

2

)

.

For (ii),
N
∑

i=1

E
(

h2i |1, 2, . . . , i− 1
)

− σ2
h = r1 + 2r2,

where

r1 =

N
∑

i=1

i−1
∑

j=1

bji (bij + bji)
[

E
(

e′iej.e
′
jei.|1, 2, . . . , i− 1

)

− E
(

e′iej.e
′
jei.
)]

=
N
∑

i=1

i−1
∑

j=1

bji (bij + bji)
T
∑

t=1

T
∑

s=1

E(eiteis) [ejtejs − E(ejtejs)] ,

r2 =
N
∑

i=1

E









N
∑

j=1

bjie
′
iej.





(

c′i.ei.
)

∣

∣

∣

∣

∣

∣

1, 2, . . . , i− 1



 =
N
∑

i=1

i−1
∑

j=1

T
∑

t=1

T
∑

s=1

bjicisE (eiteis) ejt.

Clearly E(r1) = E(r2) = 0, and

V ar(r1) =

N
∑

i=1

i−1
∑

j=1

N
∑

l=1

bji(bij + bji)bli(blj + bjl)

×
T
∑

t=1

T
∑

s=1

T
∑

t′=1

T
∑

s′=1

E(eiteis)E(elt′els′)
[

E(ejtejsejt′ejs′)− E(ejtejs)E(ejt′ejs′)
]

=

N
∑

i=1

i−1
∑

j=1

N
∑

l=1

bji(bij + bji)bli(blj + bjl)

×
T
∑

t,s,t′,s′=1

E(eiteis)E(elt′els′)
[

cum(ejt, ejs, ejt′ , ejs′) + E(ejtejt′)E(ejsejs′) + E(ejtejs′)E(ejsejt′)
]

.

Under Assumption 2, eit is stationary with absolutely summable autocovariance and fourth-order
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cumulant, and also in light of the boundedness of the row and column norms of B, we have
V ar(r1) = O(NT ). Next,

V ar(r2) =
N
∑

i=1

i−1
∑

j=1

b2ji

T
∑

t,s,t′,s′=1

ciscis′E(eiteis)E(eit′eis′)E(ejtejt′) = O(NT ),

where we have used the uniform boundedness of cis and the absolute summability of autocovariance
of eit. Accordingly,

1

σ2
h

N
∑

i=1

E
(

h2i |1, 2, . . . , i− 1
)

− 1 =

1
NT

[

∑N
i=1E

(

h2i |1, . . . , i− 1
)

− σ2
h

]

1
NT σ

2
h

= O

(

1√
NT

)

,

which proves (ii).

Lemma A10. Let A = (aij) be an N ×N matrix. Then,

tr
(

A2 +AA′)

N
− 2 [tr (A)]2

N2
≥ 0, (S.12)

for all N , including N → ∞.

Proof. It is clear from the definition of trace that

tr
(

A2 +AA′)

N
− 2 [tr (A)]2

N2
=

1

N

N
∑

i=1

N
∑

j=1

(

a2ij + aijaji −
2

N
aiiajj

)

= 2





1

N

∑

i

a2ii −
(

1

N

∑

i

aii

)





1

N

∑

j

ajj







+
1

N

∑

i

∑

j 6=i

(

a2ij + aijaji
)

.

By applying the Cauchy-Schwarz inequality,

1

N

∑

i

a2ii ≥
(

1

N

∑

i

aii

)





1

N

∑

j

ajj



 , (S.13)

and noting that

1

N

∑

i

∑

j 6=i

(

a2ij + aijaji
)

=
1

N





∑

i

∑

j>i

a2ij +
∑

i

∑

j<i

a2ij + 2
∑

i

∑

j>i

aijaji





=
1

N





∑

i

∑

j>i

a2ij +
∑

i

∑

j>i

a2ji + 2
∑

i

∑

j>i

aijaji





=
1

N

∑

i

∑

j>i

(aij + aji)
2 ≥ 0, (S.14)

the result given by (S.12) follows immediately. The equality in (S.12) is reached if and only if both
equalities in (S.13) and (S.14) hold true. In particular, when N is finite, (S.13) becomes an equality
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if and only if a11 = a22 = . . . = aNN , and (S.14) becomes an equality if and only if aij = −aji, for
i 6= j.

S1.2 Derivations of Identification Conditions

Model (12) in the main paper: Without exogenous variables xit

Consider QNT (ψ) as defined in (14) of the main text. The first derivatives are

∂QNT (ψ)

∂d
=

1

N
tr
[

(IN − dG0)
−1G0

]

− (1− ϑ)
tr(G0)

N

+ (1− ϑ) d
tr(G0G

′
0)

N
+

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

[

d(G0Γ0ft)
′G0Γ0ft + (G0Γ0ft)

′Ftζ
]

,

∂QNT (ψ)

∂ζi
=
σ2
0(1− ϑ)

NT
E0

T
∑

t=1

(

dftg
′
0,iΓ0ft + ftf

′
tζi
)

, for i = 1, 2, . . . , N,

∂QNT (ψ)

∂ϑ
=

ϑ

2 (1− ϑ)
− 1

2
+

1

N
dtr(G0)−

1

2
d2

tr(G0G
′
0)

N
− 1

2
σ2
0

(

d, ζ′
)

Hf

(

ρ0,γ
′
0

) (

d, ζ′
)′
,

where g′
0,i is the ith row of G0, and Hf (ρ0,γ

′
0) is given by

Hf

(

ρ0,γ
′
0

)

= (NT )−1E0

T
∑

t=1

(

J ′
0,tJ0,t

)

, J0,t =
(

G0Γ0ft, Ft

)

.

The second derivatives are given by

Λf,NT (ψ) =
∂2QNT (ψ)

∂ψψ′ =







∂QNT (ψ)
∂2d

∂QNT (ψ)
∂d∂ζ′

∂QNT (ψ)
∂d∂ϑ

. ∂QNT (ψ)
∂ζ∂ζ′

∂QNT (ψ)
∂ζ∂ϑ

. . ∂QNT (ψ)
∂2ϑ







=





Λf,11 Λf,12 Λf,13

. Λf,22 Λf,23

. . Λf,33



 , (S.15)

where

Λf,11 =
∂QNT (ψ)

∂2d
=

1

N
tr
[

(IN − dG0)
−1

G0 (IN − dG0)
−1

G0

]

+ (1− ϑ)
tr(G0G

′
0)

N
+

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

(G0Γ0ft)
′G0Γ0ft,

Λf,12 =
∂QNT (ψ)

∂d∂ζ′
=

{

∂QNT (ψ)

∂d∂ζ′i

}

=

{

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

g′
0,iΓ0ftf

′
t

}

,

Λf,13 =
∂QNT (ψ)

∂d∂ϑ
=

tr(G0)

N
− d

tr(G0G
′

0)

N
− σ2

0

NT
E0

T
∑

t=1

[

d(G0Γ0ft)
′G0Γ0ft + (G0Γ0ft)

′Ftζ
]

,
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Λf,22 =
∂QNT (ψ)

∂ζ∂ζ′
=

{

∂QNT (ψ)

∂ζi∂ζ
′
j

}

=

{

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

ftf
′
t , if i = j; and 0, if i 6= j

}

,

Λf,23 =
∂QNT (ψ)

∂ζ∂ϑ
=

{

∂QNT (ψ)

∂ζi∂ϑ

}

=

{

− σ2
0

NT
E0

T
∑

t=1

(

dftg
′
0,iΓ0ft + ftf

′
tζi
)

}

,

Λf,33 =
∂QNT (ψ)

∂2ϑ
=

1

2(1− ϑ)2
.

At ψ = 0, we have

Λf,NT (0) =













































Λf,11 (0)
σ2

0

NT E0

T
∑

t=1

g′
0,1Γ0ftf

′
t

σ2

0

NT E0

T
∑

t=1

g′
0,2Γ0ftf

′
t · · · σ2

0

NT E0

T
∑

t=1

g′
0,NΓ0ftf

′
t

tr(G0)
N

. σ2

0

NT E0

T
∑

t=1

ftf
′
t 0m×m · · · 0m×m 0m×1

. 0m×m
σ2

0

NT E0

T
∑

t=1

ftf
′
t 0m×m 0m×m 0m×1

...
... 0m×m

. . .
...

...

. 0m×m 0m×m · · · σ2

0

NT E0

T
∑

t=1

ftf
′
t 0m×1

. 0 0 · · · 0 1
2













































,

(S.16)

where

Λf,11 (0) =
tr
(

G2
0 +G0G

′
0

)

N
+

σ2
0

NT
E0

T
∑

t=1

R′
0,tR0,t,

and R0,t = G0Γ0ft. The determinant of Λf,11 (0) can be computed as follows:

det [Λf,NT (0)] =
1

2
det

























tr(G2
0+G0G

′

0)
N +

σ2
0

NT E0

T
∑

t=1

R′
0,tR0,t

σ2
0

NT E0

T
∑

t=1

R′
0,tFt

σ2
0

NT E0

T
∑

t=1

F′
tR0,t

σ2
0

NT E0

T
∑

t=1

F′
tFt













− 2ḡ′0ḡ0













=
1

2
det













hg +
σ2
0

NT E0

T
∑

t=1

R′
0,tR0,t

σ2
0

NT E0

T
∑

t=1

R′
0,tFt

σ2
0

NT E0

T
∑

t=1

F′
tR0,t

σ2
0

NT E0

T
∑

t=1

F′
tFt













=
hg
2

det

(

σ2
0

NT
E0

T
∑

t=1

F′
tFt

)

,

where ḡ0 =
[

N−1tr(G0), 01×Nm

]′
and hg = N−1tr

(

G2
0 +G0G

′
0

)

− 2N−2 [tr (G0)]
2. Also note

that F′
tFt = IN ⊗ ftf

′
t . Therefore, det [Λf,NT (0)] > 0 if and only if hg > 0 and T−1E0 (ftf

′
t) is

positive definite. This establishes the identification conditions in Proposition 1 of the main paper.
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Model (19) in the main paper: With exogenous variables xit

Supposing that the disturbances eit ∼ IIDN
(

0, σ2
)

, the (quasi) log-likelihood function is given by

l(ϕ) = −NT

2
ln(2π)−NT

2
lnσ2+T ln|S(ρ)|− 1

2σ2

T
∑

t=1

[S(ρ)y.t −X.tβ − Γft]
′ [S(ρ)y.t −X.tβ − Γft] ,

where ϕ =
(

ρ,β′,γ ′, σ2
) ′. Under the assumption that xit and ft are uncorrelated, it follows that

1

NT
E0l(ϕ) =− 1

2
ln(2π)− 1

2
lnσ2 +

1

N
ln|S(ρ)| − 1

2σ2

{

[

ρ− ρ0, (β − β0)
′]H(ρ0,β

′
0)
[

ρ− ρ0, (β − β0)
′]′

+
[

ρ− ρ0, (γ − γ0)
′]Hf (ρ0,γ

′
0)
[

ρ− ρ0, (γ − γ0)
′]′ +

σ2
0

N
tr
[

S−1
0 S(ρ)S′(ρ)S−1′

0

]

}

,

1

NT
E0l(ϕ0) =− 1

2
[ln(2π) + 1]− 1

2
lnσ2

0 +
1

N
ln|S0|,

where Gb
0 = IT ⊗G0 = IT ⊗

(

WS−1
0

)

, Hf (ρ0,γ
′
0) is given by (13), and H(ρ0,β

′
0) is given by (20).

Hence, we obtain

E0l(ϕ0)− E0l(ϕ)

NT
=− 1

2

[

ln

(

σ2
0

σ2

)

+

(

1− σ2
0

σ2

)]

− 1

N

[

ln|IN − (ρ− ρ0)G0|+
σ2
0

σ2
(ρ− ρ0)tr(G0)

]

+
1

2

σ2
0

σ2
(ρ− ρ0)

2 tr(G0G
′
0)

N
+

1

2σ2

[

ρ− ρ0, (β − β0)
′]H(ρ0,β

′
0)
[

ρ− ρ0, (β − β0)
′]′

+
1

2σ2

[

ρ− ρ0, (γ − γ0)
′]Hf (ρ0,γ

′
0)
[

ρ− ρ0, (γ − γ0)
′]′ .

Denoting QNT (ψ) = (NT )−1E0[l(ϕ0)− l(ϕ)], where ψ =
(

d, ζ′,χ′, ϑ
)′

with d = ρ−ρ0, ζ = β−β0,
χ = γ − γ0, and ϑ =

(

σ2 − σ2
0

)

/σ2 < 1, we get

QNT (ψ) =− 1

2
[ln(1− ϑ) + ϑ]− 1

N
ln|IN − dG0| −

1

N
(1− ϑ)dtr(G0) +

1

2
(1− ϑ)d2

tr(G0G
′
0)

N

+
1

2
σ2
0(1− ϑ)

(

d, ζ′
)

H(ρ0,β
′
0)
(

d, ζ′
)′
+

1

2
σ2
0(1− ϑ)

(

d,χ′)Hf (ρ0,γ
′
0)
(

d,χ′)′ .

The first derivatives are given by

∂QNT (ψ)

∂d
=

1

N
tr
[

(IN − dG0)
−1G0

]

− (1− ϑ)
tr(G0)

N
+ (1− ϑ)d

tr(G0G
′

0
)

N

+
σ2

0
(1− ϑ)

NT
E0

T
∑

t=1

[

d(Gb
0
Xβ

0
)′Gb

0
Xβ

0
+ (Gb

0
Xβ

0
)′Xζ + d(G0Γ0ft)

′G0Γ0ft + (G0Γ0ft)
′Ftχ

]

,

∂QNT (ψ)

∂ζ
=
σ2

0
(1− ϑ)

NT
E0

(

dX
′

Gb
0
Xβ

0
+X′Xζ

)

,

∂QNT (ψ)

∂χi

=
σ2

0
(1− ϑ)

NT
E0

T
∑

t=1

(

dftg
′

0,iΓ0ft + ftf
′

tχi

)

, for i = 1, 2, . . . , N,

∂QNT (ψ)

∂ϑ
=

ϑ

2 (1− ϑ)
− 1

2
+

1

N
dtr(G0)−

1

2
d2

tr(G0G
′

0
)

N

− 1

2
σ2

0

(

d, ζ′
)

H(ρ0,β
′

0
)
(

d, ζ′
)

′ − 1

2
σ2

0
(d,χ′)Hf (ρ0,γ

′

0
) (d,χ′)

′

.
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The second derivatives are given by

ΛNT (ψ) =
∂2QNT (ψ)

∂ψψ′ =













∂QNT (ψ)
∂2d

∂QNT (ψ)
∂d∂ζ′

∂QNT (ψ)
∂d∂χ′

∂QNT (ψ)
∂d∂ϑ

. ∂QNT (ψ)
∂ζ∂ζ′

∂QNT (ψ)
∂ζ∂χ′

∂QNT (ψ)
∂ζ∂ϑ

. . ∂QNT (ψ)
∂χ∂χ′

∂QNT (ψ)
∂χ∂ϑ

. . . ∂QNT (ψ)
∂2ϑ













=









Λ11 Λ12 Λ13 Λ14

. Λ22 Λ23 Λ24

. . Λ33 Λ34

. . . Λ44









, (S.17)

where

Λ11 =
∂QNT (ψ)

∂2d
=

1

N
tr
[

(IN − dG0)
−1

G0 (IN − dG0)
−1

G0

]

+ (1− ϑ)
tr(G0G

′
0)

N

+
σ2
0(1− ϑ)

NT
E0

[

(Gb
0Xβ0)

′Gb
0Xβ0 + (G0Γ0ft)

′G0Γ0ft

]

,

Λ12 =
∂QNT (ψ)

∂d∂ζ′
=

σ2
0(1− ϑ)

NT
E0

[

(Gb
0Xβ0)

′X
]

,

Λ13 =
∂QNT (ψ)

∂d∂χ′ =

{

∂QNT (ψ)

∂d∂χ′
i

}

=

{

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

g′
0,iΓ0ftf

′
t

}

Λ14 =
∂QNT (ψ)

∂d∂ϑ
=

tr(G0)

N
− d

tr(G0G
′
0)

N

− σ2
0

NT
E0

[

d(Gb
0Xβ0)

′Gb
0Xβ0 + (Gb

0Xβ0)
′Xζ + d(G0Γ0ft)

′G0Γ0ft + (G0Γ0ft)
′Ftχ

]

,

Λ22 =
∂QNT (ψ)

∂ζ∂ζ′
=

σ2
0(1− ϑ)

NT
E0

(

X′X
)

,

Λ23 =
∂QNT (ψ)

∂ζ∂χ′ = 0,

Λ24 =
∂QNT (ψ)

∂ζ∂ϑ
= − σ2

0

NT
E0

(

dX′Gb
0Xβ0 +X′Xζ

)

,

Λ33 =
∂QNT (ψ)

∂χ∂χ′ =

{

∂QNT (ψ)

∂χi∂χ
′
j

}

=

{

σ2
0(1− ϑ)

NT
E0

T
∑

t=1

ftf
′
t , if i = j; and 0, if i 6= j

}

,

Λ34 =
∂QNT (ψ)

∂χ∂ϑ
=

{

∂QNT (ψ)

∂χi∂ϑ

}

=

{

− σ2
0

NT
E0

T
∑

t=1

(

dftg
′
0,iΓ0ft + ftf

′
tχi

)

}

,

Λ44 =
∂QNT (ψ)

∂2ϑ
=

1

2(1− ϑ)2
.
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At ψ = 0, we have

ΛNT (0) =











tr(G2

0
+G0G

′

0
)

N 01×k 01×Nm
tr(G0)

N
0k×1 0k×k 0k×Nm 0k×1

0Nm×1 0Nm×k 0Nm×Nm 0Nm×1
tr(G0)

N 01×k 01×Nm
1
2











+ σ2
0

(

H(ρ0,β
′
0) 0(k+1+Nm)×1

01×(k+1+Nm) 0

)

+ σ2
0









hf,11 01×k h′
f,21 0

0k×1 0k×k 0k×Nm 0k×1

hf,21 0Nm×k Hf,22 0Nm×1

0 01×k 01×Nm 0









,

(S.18)

where Hf (ρ0,γ
′
0) is partitioned as

Hf

(

ρ0,γ
′
0

)

=

(

hf,11

(

h′
f,21

)

1×Nm

(hf,21)Nm×1 (Hf,22)Nm×Nm

)

.

Notice that all three terms on the right-hand side of (S.18) are positive semidefinite, which can
be seen by applying Lemma A10 and by noting that both H(ρ0,β

′
0) and Hf (ρ0,γ

′
0) are posi-

tive semidefinite. Recall that the true parameter vector ψ0 is locally identified if and only if
λmin [ΛNT (0)] > 0. Hence, if H(ρ0,β

′
0) is positive definite, then both ρ0 and β0 are identified.

Given that ρ0 is identifiable, σ0 can be identified through the first term in (S.18). On the other
hand, if the first term is positive definite, which is equivalent to hg > 0, then both ρ0 and σ0
are identified; and if in addition (NT )−1E0(X

′X) is positive definite, the parameter vector β0 is
identified. In both cases, γ0 is identified if T−1E0 (ftf

′
t) is positive definite. These findings are

summarized in Proposition 2 in the main paper.

S2 Monte Carlo Supplement

This section provides additional simulation results of the estimation experiments. The Data Gen-
erating Process (DGP) follows the same design as in the main paper, namely,

yit =ρy∗it + β1xit1 + β2xit2 + γ
′
y,ift + eit, (S.1)

xitp =γ
′
x,ipft + υitp, p = 1, 2,

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T . The unobserved factors are generated by

flt =ρflfl,t−1 + ςflt , l = 1, 2, . . . ,m; t = −49,−48, . . . , 0, 1, . . . , T,

ςflt ∼IIDN
(

0, 1− ρ2fl
)

, ρfl = 0.5, fl,−50 = 0,

where the first 50 observations are dropped. The factor loadings are given by γy,i1 ∼ IIDN (1, 0.2),
γy,i2 ∼ IIDN (1, 0.2), and

(

γx,i11 γx,i12
γx,i21 γx,i22

)

∼ IID

(

N(0.5, 0.5) N(0, 0.5)
N(0, 0.5) N(0.5, 0.5)

)

.

S16



The idiosyncratic errors of the xitp processes, (υit1, υit2)
′, are generated as

υit,p =ρυipυit−1,p + ϑit,p, t = −49,−48, . . . , 0, 1, . . . , T,

ϑit,p ∼N
(

0, 1− ρ2ϑip

)

, υip,−50 = 0,

ρϑip
∼IIDU (0.05, 0.95) , p = 1, 2,

For the idiosyncratic errors of the yit process, in addition to the two generating processes we have
considered in the main paper, we now assume that the errors eit are independent over time and
heteroskedastic across cross-section units. Specifically,

eit =σiζit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (S.2)

ζit ∼IIDN (0, 1) , σ2
i ∼ IIDU (0.5, 1.5) .

The spatial weights matrix is specified as the 1-ahead-and-1-behind circular neighbors weights
matrix. The true number of factors is m = 2; the true values of slope coefficients are β1 = 1 and
β2 = 2; for the spatial autoregressive coefficient, we consider ρ = 0.4 and 0.8, which represent low
and high intensity of spatial dependence, respectively. The sample sizes are N = 30, 50, 100, 500,
1, 000; and T = 20, 30, 50, 100. The number of replications is 2, 000.

As in the main paper, we compare the performance of a number of estimators: the infeasible
2SLS estimator, 2SLS estimator, B2SLS estimator, GMM estimator and MLE. Tables S.1a and
S.1b show the results under a low intensity of spatial dependence; Tables S.2a and S.2b present the
results under a high intensity of spatial dependence. The results for β2 are omitted since they are
similar to those for β1. Each table reports the estimates of bias, root mean squared error (RMSE),
size, and power for the estimators. These results demonstrate that the proposed estimators have
robust performance in the presence of heteroskedastic errors when N is relatively large compared
to T . Moreover, the finite sample properties remain satisfactory even when there exists a high level
of spatial dependence (ρ = 0.8).
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Table S.1a: Small sample properties of estimators for the spatial parameter ρ (ρ = 0.4, independent and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 -0.10 -0.04 -0.01 0.00 2.40 1.91 1.48 0.99 5.55 5.15 5.65 4.50 13.50 18.25 29.20 51.75
50 0.05 0.06 0.00 0.00 1.85 1.48 1.11 0.77 5.45 5.60 5.40 5.10 20.60 30.10 43.60 72.90

100 0.02 0.01 0.01 0.01 1.30 1.03 0.78 0.55 4.80 3.95 4.40 4.10 34.90 49.10 70.95 95.50
500 -0.02 -0.01 0.00 0.00 0.59 0.46 0.35 0.25 5.15 4.95 4.30 4.70 92.55 98.85 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.42 0.33 0.25 0.18 4.70 5.55 5.35 5.75 99.80 100.00 100.00 100.00

2SLS estimator
30 -0.09 -0.01 -0.01 0.01 2.74 2.15 1.64 1.15 5.90 6.05 7.10 7.90 12.70 18.25 28.35 48.40
50 0.03 0.06 0.02 0.01 1.99 1.57 1.19 0.82 5.15 5.90 5.45 5.05 18.05 27.00 42.35 71.00

100 0.01 0.01 0.02 0.01 1.38 1.08 0.81 0.57 4.85 5.55 4.55 5.30 30.45 45.25 69.20 94.30
500 -0.02 -0.01 0.00 0.00 0.62 0.48 0.36 0.25 4.70 4.50 4.95 4.40 88.80 98.15 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.44 0.34 0.25 0.18 4.20 4.30 5.40 5.45 99.50 99.95 100.00 100.00

B2SLS estimator
30 -0.13 -0.03 -0.02 0.00 2.74 2.15 1.63 1.15 6.05 6.05 7.05 7.75 12.45 17.60 28.15 47.95
50 0.01 0.04 0.01 0.00 1.98 1.57 1.19 0.82 5.10 5.80 5.35 5.35 17.65 26.45 41.65 70.40

100 0.00 0.00 0.01 0.01 1.38 1.08 0.80 0.57 4.65 5.50 4.50 5.15 30.60 45.30 68.95 94.30
500 -0.02 -0.01 0.00 0.00 0.62 0.48 0.36 0.25 4.65 4.60 4.70 4.35 88.55 98.30 100.00 100.00

1,000 0.00 0.00 -0.01 0.00 0.44 0.34 0.25 0.18 4.35 4.40 5.05 5.60 99.55 99.95 100.00 100.00

GMM estimator
30 -1.27 -1.12 -1.08 -1.03 2.59 2.11 1.77 1.42 10.15 11.30 16.75 24.75 9.20 10.85 14.45 22.75
50 -0.69 -0.63 -0.64 -0.60 1.86 1.51 1.22 0.93 8.90 9.75 12.15 15.35 15.55 20.75 31.35 55.30

100 -0.32 -0.32 -0.30 -0.29 1.24 0.97 0.75 0.57 6.80 6.15 7.10 10.05 33.50 46.45 69.65 94.70
500 -0.08 -0.07 -0.07 -0.06 0.52 0.41 0.31 0.22 5.50 4.75 5.60 6.20 96.45 99.80 100.00 100.00

1,000 -0.03 -0.03 -0.04 -0.03 0.36 0.29 0.22 0.15 5.80 5.25 5.75 5.85 99.95 100.00 100.00 100.00

MLE
30 0.29 0.23 0.18 0.15 2.24 1.72 1.31 0.89 12.05 9.95 9.30 7.65 32.00 36.30 49.15 74.65
50 0.32 0.21 0.14 0.11 1.72 1.34 0.98 0.67 12.35 9.90 8.40 7.30 43.60 51.70 66.55 90.55

100 0.26 0.16 0.11 0.09 1.21 0.91 0.68 0.47 11.75 9.35 7.25 6.85 61.80 73.95 91.15 99.70
500 0.20 0.10 0.05 0.04 0.56 0.41 0.30 0.21 13.00 9.20 7.40 7.90 99.50 100.00 100.00 100.00

1,000 0.18 0.09 0.04 0.02 0.41 0.30 0.21 0.15 14.00 9.30 7.60 6.20 100.00 100.00 100.00 100.00

Notes: The DGP is given by (S.1), where eit are generated by (S.2). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of
factors is 2. The naive estimator ignores latent factors, and the infeasible estimator treats factors as known. The naive 2SLS, infeasible 2SLS, and
2SLS estimators are computed using instruments Q

(2)
.t =

(

X.t,WX.t,W
2X.t

)

, for t = 1, 2, . . . , T . The best 2SLS (B2SLS) estimator is computed

using Q̂∗ given by (57) in the main text. The efficient two-step GMM estimator utilizes P1 = W and P2 = W2 −Diag
(

W2
)

in the quadratic

moments and Q
(2)
.t in the linear moments. The MLE is computed by the Expectation-Maximization (EM) algorithm described in Bai and Li (2014),

assuming the number of factors is known. The number of replications is 2, 000. The 95% confidence interval for size 5% is [3.6%, 6.4%], and the power
is computed under H1 : ρ = 0.38.
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Table S.1b: Small sample properties of estimators for the slope parameter β1 (β1 = 1, independent and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 0.01 -0.01 -0.02 -0.03 4.44 3.56 2.72 1.88 5.25 5.05 5.45 5.05 21.20 30.10 46.95 75.90
50 -0.20 -0.18 -0.12 -0.10 3.45 2.68 2.03 1.40 5.60 4.70 4.85 4.25 29.70 42.55 66.60 92.85

100 -0.14 -0.05 -0.05 -0.04 2.45 1.93 1.48 1.02 6.05 6.00 5.45 4.75 52.35 73.80 91.80 99.85
500 -0.05 -0.03 -0.02 -0.01 1.07 0.84 0.66 0.47 4.50 4.10 5.15 5.60 99.90 100.00 100.00 100.00

1,000 0.01 0.01 0.02 0.00 0.79 0.63 0.47 0.33 6.15 5.90 4.95 4.70 100.00 100.00 100.00 100.00

2SLS estimator
30 0.03 0.02 0.03 0.02 4.70 3.77 2.92 2.06 5.30 6.00 7.00 7.90 20.05 28.95 47.50 75.50
50 -0.19 -0.18 -0.09 -0.09 3.62 2.77 2.09 1.46 4.85 5.25 4.90 4.90 26.75 40.15 65.80 92.55

100 -0.13 -0.05 -0.05 -0.04 2.53 1.97 1.52 1.04 5.55 5.30 5.30 5.15 46.80 70.30 90.30 99.80
500 -0.07 -0.05 -0.02 -0.01 1.12 0.86 0.67 0.48 4.25 3.95 4.80 5.55 99.15 100.00 100.00 100.00

1,000 0.02 0.01 0.02 0.00 0.82 0.65 0.48 0.33 5.50 5.60 5.00 4.80 100.00 100.00 100.00 100.00

B2SLS estimator
30 0.04 0.02 0.03 0.02 4.70 3.77 2.92 2.06 5.30 5.95 7.00 7.95 20.05 28.90 47.45 75.65
50 -0.19 -0.18 -0.09 -0.09 3.62 2.77 2.09 1.46 4.85 5.20 4.95 4.85 26.80 40.15 65.80 92.40

100 -0.13 -0.05 -0.05 -0.04 2.53 1.97 1.52 1.04 5.55 5.35 5.40 5.05 46.75 70.25 90.30 99.80
500 -0.07 -0.05 -0.02 -0.01 1.12 0.86 0.67 0.48 4.20 3.95 4.85 5.45 99.15 100.00 100.00 100.00

1,000 0.02 0.01 0.02 0.00 0.82 0.65 0.48 0.33 5.50 5.60 5.00 4.80 100.00 100.00 100.00 100.00

GMM estimator
30 0.14 0.15 0.16 0.16 4.76 3.81 2.93 2.07 5.65 6.70 7.30 8.05 21.05 30.05 49.25 77.70
50 -0.09 -0.07 0.01 0.01 3.64 2.78 2.09 1.45 5.00 5.30 5.25 5.10 28.45 41.85 68.10 93.75

100 -0.08 0.00 0.01 0.02 2.53 1.96 1.51 1.03 5.80 5.10 5.30 5.10 47.65 71.30 90.95 99.80
500 -0.06 -0.04 -0.01 0.00 1.11 0.86 0.67 0.47 3.95 3.70 5.00 5.45 99.05 100.00 100.00 100.00

1,000 0.02 0.02 0.02 0.01 0.81 0.64 0.48 0.33 5.30 5.60 5.25 5.10 100.00 100.00 100.00 100.00

MLE
30 0.02 0.00 -0.06 -0.02 4.88 3.70 2.75 1.85 11.80 8.75 7.55 6.20 31.25 37.10 52.50 79.70
50 -0.17 -0.15 -0.12 -0.10 3.59 2.66 1.95 1.37 10.05 6.55 5.45 5.55 38.45 50.95 72.65 94.85

100 -0.14 -0.05 -0.07 -0.06 2.56 1.92 1.45 0.99 10.60 7.65 6.50 5.75 61.90 79.80 94.25 99.95
500 -0.03 -0.02 -0.02 -0.01 1.13 0.85 0.65 0.46 10.60 6.70 6.10 6.90 99.60 100.00 100.00 100.00

1,000 0.03 0.01 0.02 -0.00 0.79 0.61 0.45 0.31 9.70 7.20 6.40 5.80 100.00 100.00 100.00 100.00

Notes: The DGP is given by (S.1), where eit are generated by (S.2). The true parameter values are ρ = 0.4, β1 = 1 and β2 = 2. The true number of factors is 2.
The power is computed under H1 : β1 = 0.95. See also the notes to Table S.1a.
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Table S.2a: Small sample properties of estimators for the spatial parameter ρ (ρ = 0.8, independent and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 -0.04 -0.01 0.00 0.01 1.21 0.95 0.74 0.49 5.25 5.15 5.50 4.85 39.00 55.10 77.70 97.25
50 0.04 0.04 0.01 0.00 0.93 0.75 0.56 0.38 5.45 5.65 5.25 5.45 60.80 78.35 93.70 99.90

100 0.01 0.01 0.01 0.00 0.65 0.51 0.39 0.27 5.35 4.45 4.40 4.40 85.85 97.15 99.90 100.00
500 -0.01 -0.01 0.00 0.00 0.29 0.23 0.18 0.12 5.20 5.30 4.40 4.30 100.00 100.00 100.00 100.00

1,000 0.00 0.00 0.00 0.00 0.21 0.17 0.13 0.09 5.00 5.45 5.45 6.15 100.00 100.00 100.00 100.00

2SLS estimator
30 -0.04 0.00 0.01 0.01 1.45 1.14 0.87 0.61 6.20 6.45 6.90 8.10 32.90 47.85 68.20 92.00
50 0.03 0.04 0.01 0.01 1.03 0.81 0.62 0.42 5.15 5.85 5.50 6.20 51.90 72.05 89.70 99.65

100 0.01 0.00 0.01 0.00 0.71 0.55 0.41 0.29 5.00 4.95 4.40 5.40 80.50 94.70 99.90 100.00
500 -0.01 -0.01 0.00 0.00 0.31 0.24 0.18 0.13 4.70 4.30 4.90 4.40 99.90 100.00 100.00 100.00

1,000 0.00 0.00 0.00 0.00 0.22 0.17 0.13 0.09 4.70 4.45 5.30 6.05 100.00 100.00 100.00 100.00

B2SLS estimator
30 -0.10 -0.03 -0.01 0.00 1.42 1.11 0.84 0.59 5.40 6.30 6.35 7.60 33.20 49.15 69.55 93.85
50 0.01 0.02 0.00 0.00 1.00 0.79 0.60 0.41 5.45 5.50 5.95 6.20 53.80 73.00 92.10 99.65

100 -0.01 -0.01 0.00 0.00 0.68 0.53 0.39 0.27 4.90 5.60 4.65 5.05 82.35 94.90 99.90 100.00
500 -0.01 0.00 0.00 0.00 0.30 0.23 0.18 0.12 5.10 5.10 5.15 4.60 100.00 100.00 100.00 100.00

1,000 0.00 0.00 0.00 0.00 0.21 0.16 0.12 0.09 4.45 4.85 4.95 5.25 100.00 100.00 100.00 100.00

GMM estimator
30 -0.77 -0.68 -0.65 -0.62 1.45 1.18 1.00 0.82 11.95 13.20 19.65 30.05 24.15 35.05 53.45 80.50
50 -0.39 -0.37 -0.37 -0.36 0.98 0.81 0.66 0.52 9.15 10.20 13.30 18.95 49.50 68.90 88.00 99.25

100 -0.19 -0.19 -0.18 -0.17 0.64 0.51 0.39 0.30 7.65 7.05 7.80 11.55 84.95 97.20 99.80 100.00
500 -0.04 -0.04 -0.04 -0.04 0.26 0.21 0.16 0.11 5.25 5.35 5.95 6.20 100.00 100.00 100.00 100.00

1,000 -0.02 -0.02 -0.02 -0.02 0.18 0.15 0.11 0.08 5.75 5.45 6.25 6.10 100.00 100.00 100.00 100.00

MLE
30 0.27 0.19 0.16 0.13 1.21 0.90 0.68 0.46 17.05 13.20 11.70 10.50 69.75 81.25 94.25 99.85
50 0.25 0.16 0.11 0.09 0.89 0.67 0.49 0.34 15.30 11.75 9.70 8.75 86.70 94.75 99.50 100.00

100 0.19 0.11 0.08 0.07 0.62 0.46 0.34 0.24 14.05 10.25 8.75 8.00 98.45 99.80 100.00 100.00
500 0.14 0.07 0.04 0.03 0.30 0.21 0.15 0.10 17.80 10.30 8.10 8.90 100.00 100.00 100.00 100.00

1,000 0.12 0.06 0.03 0.01 0.23 0.16 0.11 0.07 21.60 12.10 8.40 7.40 100.00 100.00 100.00 100.00

Notes: The DGP is given by (S.1), where eit are given by (S.2). The true parameter values are ρ = 0.8, β1 = 1 and β2 = 2. The true number of factors is 2. The
power is computed under H1 : ρ = 0.78. See also the notes to Table S.1a.
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Table S.2b: Small sample properties of estimators for the slope parameter β1 (β1 = 1, ρ = 0.8, independent and heteroskedastic errors)

Bias(×100) RMSE(×100) Size(×100) Power(×100)
N\T 20 30 50 100 20 30 50 100 20 30 50 100 20 30 50 100

Infeasible 2SLS estimator (including factors)
30 0.02 -0.01 -0.03 -0.03 4.51 3.61 2.76 1.92 5.20 5.00 5.10 5.30 20.50 29.45 45.50 74.35
50 -0.22 -0.20 -0.12 -0.10 3.50 2.72 2.06 1.43 5.65 4.85 4.95 4.55 28.00 40.90 64.60 91.50

100 -0.15 -0.05 -0.05 -0.04 2.49 1.96 1.51 1.04 5.70 6.00 5.55 4.75 50.90 72.15 90.95 99.80
500 -0.05 -0.03 -0.02 -0.01 1.09 0.85 0.67 0.48 4.55 4.25 5.20 5.65 99.75 100.00 100.00 100.00

1,000 0.01 0.01 0.02 0.00 0.80 0.64 0.48 0.33 5.90 5.45 5.00 5.00 100.00 100.00 100.00 100.00

2SLS estimator
30 0.04 0.01 0.02 0.01 4.77 3.82 2.96 2.08 5.50 6.10 7.20 7.75 19.45 28.40 46.10 74.50
50 -0.22 -0.20 -0.10 -0.09 3.67 2.82 2.12 1.48 4.65 5.40 5.05 4.75 25.40 38.45 64.25 91.70

100 -0.14 -0.05 -0.06 -0.04 2.58 2.01 1.55 1.06 5.35 5.00 5.50 4.85 45.50 68.45 89.45 99.75
500 -0.06 -0.04 -0.02 -0.01 1.14 0.88 0.68 0.48 4.30 3.95 4.90 5.40 98.90 100.00 100.00 100.00

1,000 0.02 0.01 0.02 0.00 0.83 0.66 0.49 0.34 5.45 5.55 5.15 4.85 99.95 100.00 100.00 100.00

B2SLS estimator
30 0.08 0.03 0.03 0.02 4.76 3.82 2.96 2.08 5.50 6.20 7.10 7.80 19.90 28.75 46.20 74.50
50 -0.19 -0.18 -0.09 -0.09 3.66 2.81 2.12 1.47 4.65 5.25 4.95 4.70 25.75 38.50 64.80 92.15

100 -0.13 -0.04 -0.05 -0.04 2.57 2.00 1.55 1.06 5.30 4.95 5.30 5.20 45.85 68.90 89.75 99.70
500 -0.06 -0.05 -0.02 -0.01 1.14 0.88 0.68 0.48 4.25 3.85 4.95 5.40 98.85 100.00 100.00 100.00

1,000 0.02 0.01 0.02 0.00 0.83 0.66 0.49 0.34 5.40 5.50 5.10 4.70 99.95 100.00 100.00 100.00

GMM estimator
30 0.42 0.41 0.40 0.40 4.82 3.86 2.99 2.12 5.70 6.90 7.35 8.35 22.40 31.95 51.30 80.25
50 0.06 0.07 0.16 0.15 3.69 2.81 2.11 1.48 5.10 5.20 5.35 5.10 28.90 42.55 69.25 94.20

100 -0.01 0.08 0.08 0.09 2.56 1.99 1.53 1.05 5.50 5.45 5.35 5.15 47.55 71.75 91.25 99.80
500 -0.04 -0.02 0.01 0.02 1.13 0.87 0.67 0.48 4.05 3.50 4.90 5.45 98.90 100.00 100.00 100.00

1,000 0.03 0.03 0.03 0.02 0.82 0.65 0.49 0.34 5.15 5.60 5.40 5.15 100.00 100.00 100.00 100.00

MLE
30 -0.12 -0.10 -0.14 -0.09 4.93 3.73 2.79 1.86 11.90 8.55 7.40 6.70 29.50 36.05 50.65 77.50
50 -0.30 -0.23 -0.18 -0.15 3.62 2.68 1.97 1.38 10.00 6.60 5.20 5.35 35.90 49.35 70.50 94.25

100 -0.23 -0.11 -0.12 -0.10 2.60 1.95 1.47 1.00 10.75 8.10 6.80 6.00 60.20 78.15 93.40 99.90
500 -0.10 -0.05 -0.03 -0.03 1.15 0.86 0.66 0.46 10.30 6.40 6.40 7.10 99.60 100.00 100.00 100.00

1,000 -0.03 -0.02 0.01 -0.01 0.80 0.62 0.46 0.32 10.60 7.70 6.30 5.60 100.00 100.00 100.00 100.00

Notes: The DGP is given by (S.1), where eit are given by (S.2). The true parameter values are ρ = 0.8, β1 = 1 and β2 = 2. The true number of factors is 2. The
power is computed under H1 : β = 0.95. See also the notes to Table S.1a.
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S3 Empirical Application Supplement

S3.1 Comparison of Alternative De-Factoring and Estimation Methods

The estimators developed in the main text take advantage of cross-sectional averages to approach

the unknown factors. It is of interest to compare the results with those obtained by principal

components analysis. Bailey, Holly, and Pesaran (2016) lay out a two-stage estimation procedure

that consists of extracting common factors in the first stage and then applying a spatial model

to the first-stage residuals. The de-factoring step can be performed using either cross-sectional

averages or principal components (PC), and the estimation step can be implemented by the MLE

or GMM/2SLS routines described in the spatial literature.S1 From this perspective, the GMM

estimator developed in this paper can also be achieved by a two-step estimation, but its inference

under a two-step procedure would be invalid without some adjustments. No asymptotic theories

are available yet for the two-step estimators involving PC and MLE, and it is unclear how the

first-stage estimation error affects the second-stage results. Hence, in what follows, we will provide

some useful accounts of the relative performance of these different methods.

As before, we consider unknown factors at both national and regional levels, and all MSAs

are classified into eight BEA Regions. Both dependent and independent variables are purged of

common effects, using the same procedure under consideration. If cross-sectional averages are

adopted as factor surrogates, they include national and regional averages of both dependent and

individual-specific regressors. If principal components analysis is performed, the strongest PC is

extracted from the full sample, then from the residuals the strongest PC is extracted for each of

the eight Regions separately.

Table S3.1 summarizes the estimation results of model (58) in the main text, using different

combinations of de-factoring and estimation schemes. The results suggest that both de-factoring

approaches have similar effectiveness in filtering out the strong dependence. All procedures yield

very close estimates of the spatial autoregressive coefficient as well as the coefficients for population

and income growth. All estimates are significant and of reasonable magnitude. The MLE has

a smaller standard error, since it neglects the sampling variation in the first-stage, and it also

disregards serial correlation and heteroskedasticity in the disturbances.

S3.2 Further Characterization of the Spatial Weights Matrices

Figure S.1 shows the histogram of distance between area of origin and area of destination based

on the migration weights matrix, Wm. It is readily seen that significant migration flows occur

between places farther than 100 miles apart, and hence the migration-based weights captures a

very different connections among MSAs from distance-based measures.

Figure S.2 presents the intensity plots for different spatial weights matrices that are considered

S1Bailey, Holly, and Pesaran (2016) analyze the residuals obtained by de-factoring with cross-sectional averages,
using a quasi-MLE that allows for heterogeneous spatial coefficients; they do not consider other estimation procedures.
By contrast, here the MLE refers to the standard estimation method for spatial models with homogeneous coefficients.
(See, for example, Anselin, 1988, Chapter 6.)
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Table S3.1: Comparison of estimation results of model (58) by alternative de-factoring and estima-
tion methods

De-factoring method CS PC

GMM MLE GMM MLE
(1) (2) (3) (4)

ρ [W ×%∆House price] 0.643 0.612 0.606 0.568
(0.005) (0.003) (0.006) (0.004)

β1 [%∆Population] 0.366 0.261 0.304 0.324
(0.040) (0.009) (0.025) (0.011)

β2 [%∆Income per capita] 0.093 0.082 0.075 0.077
(0.007) (0.004) (0.007) (0.004)

Natl. & Rgnl. unobserved factors Yes Yes Yes Yes
MSA FE and seasonal dummies Yes Yes Yes Yes

Residuals
CD test statistic -6.532 -6.291 6.229 8.680
Exponent of cross-section
dependence

0.674 0.694 0.739 0.738
(0.019) (0.019) (0.019) (0.019)

R̄2 0.837 0.835 0.815 0.812
Observations N = 377, T = 159

Notes: All estimations consider both national and regional (Natl. & Rgnl.) unobserved factors, and also include MSA
fixed effects (FE) and quarterly dummies. To save space, factor estimates are not reported. CS stands for the de-
factoring procedure using cross-sectional averages at both national and regional levels. PC refers to the de-factoring
procedure that extracts one principal component from the full sample and one from each Region. The spatial weights
matrix is W = W100. Standard errors are in parentheses.

in the paper. This figure complements Table B.1 in Appendix B and provides a direct visualization

of these weights matrices. In each plot, all MSAs are sorted first by Region and then by State.S2 As

expected, all weights matrices are sparse. Compared with distance-based matrices, the migration-

and correlation-based matrices contain more non-zero elements farther away from the diagonal.

S2The identities of the MSAs corresponding to the plots are available upon request.
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Figure S.1: Histogram of inter-MSA migration distance, based on the migration flow matrix Wm

Notes: This figure shows the distribution of distance between two MSAs that have a migration flow between them,
as indicated by a nonzero entry in the migration weights matrix Wm. The inflows and outflows between two MSAs
are considered as two flows.

(a) W75 (b) W100 (c) W125

(d) Wm (e) Ŵ+ (f) Ŵ−

Figure S.2: Intensity plots of the spatial weights matrices

Notes: The 377 MSAs are sorted first by Region and then by State. The Regions and States are ordered from the East
Coast to the West Coast. Zero elements of the weights matrix are plotted in white. Higher values are represented by
darker colors. Wd denotes radial distance weights matrix with threshold distance d (miles). Wm represents weights
matrix based on MSA-to-MSA migration flows. Ŵ+ (Ŵ−) is constructed from significantly positive (negative)
pairwise correlations of de-factored house price changes.
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