
Munich Personal RePEc Archive

Futures risk premia in the era of shale oil

Ferriani, Fabrizio and Natoli, Filippo and Veronese, Giovanni

and Zeni, Federica

Bank of Italy, Imperial College London

August 2018

Online at https://mpra.ub.uni-muenchen.de/89097/

MPRA Paper No. 89097, posted 21 Sep 2018 13:21 UTC



Futures risk premia in the era of shale oila

Fabrizio Ferriani b Filippo Natolib Giovanni Veroneseb Federica Zenic

August 2018

Abstract

The advent of shale oil in the United States triggered a structural transformation in the
oil market. We show, both theoretically and empirically, that this process has relevant
consequences on oil risk premia. We construct a consumption-based model with shale
producers interacting with financial speculators in the futures market. Compared
to conventionals, shale producers have a more flexible technology, but higher risk
aversion and additional costs due to their reliance on external finance. Our model
helps to explain the observed pattern of aggregate hedging by US firms in the last
decade. The empirical analysis shows that the hedging pressure of shale producers
has become more relevant than that of conventional producers in explaining the oil
futures risk premium.
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1 Introduction

The advent of shale oil has radically altered the supply of crude oil in the United States

and its effects have reverberated across the global oil market. Between 2006 and 2018,

the US has almost doubled its crude oil production becoming the second largers world

producer, mostly on account of the output from shale wells (Figure 1.1, left panel). The

advent of shale technology has introduced relevant changes in the oil production sec-

tor, on both the technology and financing sides. Fracking and horizontal drilling allow

shale producers to respond more quickly to oil price changes; however, the adoption of

the new technology required a massive expansion in capex and exploration which was

accompanied by an increasing amount of debt in the oil sector (Figure 1.1, right panel).

While a growing literature explores the impact of the shale revolution on the economy,

the technology and financing features of the shale sector are rarely considered jointly, as

well as their effects on oil prices within a unified modelling framework. In this paper

we consider both technology and financing characteristics of shale producers to explore

the production-price nexus. In particular, we document how the advent of shale oil has

impacted oil prices through the producers’ supply and hedging pressure. Our analysis

is both theoretical and empirical. First, we introduce shale producers in a consumption-

based model of crude oil, in which prices are determined in equilibrium from the inter-

action between producers and speculators in the oil futures market, following Acharya

et al. (2013) (ALR henceforth). Our model shows that the peculiar characteristics of shale

producers, both in terms of technology and financing structure, matter in equilibrium.

Second, we empirically examine the drivers of the risk premium embedded in WTI fu-

tures contracts before and after the advent of shale oil. By separately identifying conven-

tional and shale producers in the US oil industry, we show that US shale companies have

become one relevant driver of global spot and futures prices.

Our producer-speculator model is designed as follows. Risk-averse producers hedge

future profits by storing inventories and selling futures contracts; speculators, who buy

futures as counterpart of producers and lend money to producers, are capital constrained

so there are limits for the hedging demand of producers to be satisfied (limits-to-arbitrage

friction). The model has two periods and oil producers are shale producers: with respect

to conventional producers, they are modeled as more flexible in their supply decisions but

with higher risk aversion and additional production costs due to their reliance on exter-

nal finance. Compared to the conventional producer vs. speculator model, the limits-to-

arbitrage friction is amplified because: (1) a higher risk aversion of shale firms generates

a higher hedging pressure raising the futures risk-premium, i.e. the difference between
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Figure 1.1: US oil production and leverage. The left plot displays the total US crude oil production
and shale oil production measured in terms of milion barrels per day (mbd); both series are from EIA.
Shale-oil production includes hydraulically fractured production originated from EIA plays: Monterey,
Austin Chalk, Granite Wash, Woodford, Marcellus Haynesville Niobrara-Codell, Wolfcamp, Bonespring,
Spraberry, Bakken, Eagle Ford, and Yeso-Glorieta. The right plot displays median leverage defined as total
liabilities/total assets for US E&P companies with SIC code 1311.

expected spot prices and current futures prices (risk aversion effect) and (2) a more flex-

ible supply schedule reduces the quantity to be hedged but, in equilibrium, also raises

the variance of spot and futures prices thereby leading to a higher futures risk premium

(technology effect).1 A comparative simulation of the shale-speculator and conventional-

speculator models reveals that in an oil sector populated by shale producers the demand

for financial hedging might be higher, beacause of higher risk aversion, or lower mainly

because of a cost effect (non-negligible operational costs erode producer’s expected profits,

reducing the amount of production to be hedged).

Using a novel hand-collected firm-level dataset with detailed information on financial

1This effect is related to the fact that the model is two-period and oil supply is finite, so must be inter-
preted as a long-run effect.
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hedging contracts, we calibrate our model to replicate the aggregate dynamics of hedging

by US oil companies in the last decade. The simulation captures both the surge in aggre-

gate hedging before 2013 and the marked fall in 2014-15 following the oil price decline.

Moreover, we empirically investigate the role of US producers in driving the futures risk

premium. Measures of producer’s default risk, to proxy for the fundamental hedging

pressure, are computed from firm-level balance sheet data obtained from the Compustat

database. In particular, we distinguish conventional and shale producers on the basis of

the rate of growth in their ouput, assuming that producers with the fastest expansion in

production are also those adopting the new technology. We then regress the futures risk

premium on the default risk specific to conventional and shale producers, controlling for

time-varying risk absorption capacity of speculators and their commodity-related expo-

sure.

We show that, in the last two decades, the default risk of shale producers has indeed

become a more relevant driver of the futures risk premium, reflecting the recomposition

of the oil industry. In this perspective, our results suggest that the shale revolution has

brought back producers at the heart of the price discovery mechanism. However, this

increased hedging pressure on the part of producers found a substantial offset from a cor-

responding expansion of speculative capital on the long side, which thereby curbed the

fluctuations in the risk premium component of the futures price. To account for the time-

varying risk absorption capacity of speculators, who take the long side of the oil futures,

we build an indicator of U.S. banks activity in commodity derivatives. This measure cap-

tures directly banks’ off-balance (notional) exposure and is measured in relation to banks’

trading assets. According to this measure, U.S. banks ability to engage in derivatives

markets remained substantial also in the last decade, at a time when other measures of

speculator capital constraints, such as the one based on broker-dealer balance sheet have

instead fallen dramatically.

The paper is organized as follows. Section 2 reviews the theoretical and empirical

contributions related to our study. Section 3 explains the theoretical model, and Section

4 comments on the main predictions obtained via model simulation. Section 5 proposes

an empirical validation of the model looking at the effect of producers’ default risk on

futures risk premium. Section 6 concludes.
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2 Literature review

A growing literature investigates the impact of the shale revolution on U.S. production

and the economy. With respect to conventional producers, shale firms have different

technology and financing structure. On the one hand, greater drilling responsiveness and

higher productivity from unconventional wells have the potential to magnify the price

response of US production (Newell and Prest, 2017). Bjørnland et al. (2017) use well-level

data from North Dakota – a region that has recently gained a crucial relevance for the

overall US unconventional production – and show that firms using shale oil technology

are more flexible in allocating output intertemporally, thus suggesting a production pat-

tern more consistent with the Hotelling’s theory of optimal extraction. Anderson et al.

(2018) recast the traditional Hotelling’s model as a drilling problem and present a similar

outcome using detailed well-level data from Texas. However, they find only drilling ac-

tivity to respond dynamically to price incentives while production, being constrained by

decaying reservoir pressure, exhibits a more limited price responsiveness.

Domanski et al. (2015) document how the shale boom was financed by a rapid increase

in debt in the U.S. oil and gas producing sector. This expansion occurred in a period of

historically low interest rates with fairly stable oil prices positively affecting the value of

oil reserves, i.e. the firms’ main source of collateral to access external funds. This buildup

in leverage was not inconsequential for producers: according to Gilje et al. (2017) it ma-

terially affected firms’ output and investment decisions, with firms potentially sacrificing

long run project value, and could ultimately have made the oil market more exposed to

financial shocks (Dale, 2015).

Few papers study the price effects of the shale revolution. Belu Manescu and Nuño

(2015) employ the general equilibrium model proposed in Nakov and Nuño (2013) to

assess the impact of shale production on global oil prices, finding that price effects are

muted by the contraction in non-shale oil supply, largely from Saudi Arabia. Via coun-

terfactual analysis Kilian (2017) investigates the effect of the shale revolution on Arab oil

producers and finds a marginal impact of the fracking boom on global oil prices and the

2014-15 oil slump. A similar finding is presented in Baumeister and Kilian (2016) who

construct price forecasts for oil spot prices using a VAR model, finding that global sup-

ply factors (among which the shale revolution) are only partially responsible for the 2014

price decline. Bornstein et al. (2017) construct a general equilibrium model of the oil sec-

tor with OPEC and non-OPEC producers: by including fracking producers with more

flexible technology and shorter lags between investment and production, they argue that

oil price volatility is bound to decline.
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Some papers investigate other aspects linked to the advent of shale oil. Gilje (2017)

proposes an identification strategy based on shale oil discoveries to examine how changes

in local credit supply affect the real economy. Hunt et al. (2015) examine the macroeco-

nomic impacts of the shale revolution and their effects for the US economy both in terms

of GDP and the trade balance. Kilian (2016) describes how increasing shale production

led to the oil glut in Cushing and widened the Brent-WTI spread in 2011. Gilje et al. (2016)

use news on US shale production to measure the spillovers of shale technology shocks on

global equity prices, detailing different transmission channels from the oil industry to

other productive sectors.

Our model investigates the shale market from a broader asset pricing perspective,

including both the financing and technology features of shale production, and drawing

micro-founded predictions for equilibrium spot and futures prices. In this perspective,

we show via simulation that our framework can accommodate two optimal risk manage-

ment theories predicting opposite hedging behavior of firms. On the one hand, in good

states less-capitalized shale firms hedge more than conventional firms due to a higher

risk of default, coherently with Froot et al. (1993). On the other hand, in bad states the

expected profits of shale firms can be so low – due to high debt burdens and decreas-

ing net worth levels – that their hedging demand is lower than that of well-capitalized

conventional producers. This last effect occurs as a consequence of collateral constraints

affecting the dynamic trade-off between external financing and risk management, as pre-

dicted by modern theories of risk management (see Rampini and Viswanathan, 2010 and

Rampini et al., 2014). As pointed out by Mello and Parsons (2000) every hedging strategy

comes packaged with a borrowing strategy: suggestive evidence of a tight link between

between credit and hedging decisions can be found in many 10-K filings of oil and gas

companies. For example, according to Carrizo Oil and Gas Inc. “The Company uses only

credit agreement participants to hedge with, since these institutions are secured equally with the

holders of the Company’s bank debt (2015)”. Our model incorporates this sector specific fea-

ture, as shale producers who engage in futures trading with speculators also borrow from

based on their reserves (so called “reserves based lending”; Azar, 2017).

3 Model

In this Section we introduce shale producers in a consumption-based model of crude oil,

in which oil prices are determined in equilibrium from the interaction between producers

and financial speculators. We first characterize the agents in the economy; then, we model
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an economy in which producers are only shale companies.

3.1 The agents in the economy

Our framework is a consumption-based model with two periods and three agents: a rep-

resentative consumer, the manager of an oil producing firm and the manager of a finan-

cial institution investing in oil futures. The interaction between risk averse producers

and capital constrained speculators gives rise to a limits-to-arbitrage friction that impacts

equilibrium oil prices.

The commodity consumers’ inverse demand function is given by:

St = ω

(

Ct

Qt

)1/ǫ

where St is the commodity spot price, Qt is the equilibrium commodity supply, Ct is the

consumption of other goods, and ω and ǫ are positive constants. The inverse demand

function can be derived from a representative consumer with CES preferences over two

goods, a consumption good (C) and oil (Q) with an intratemporal elasticity of substitution

equal to ǫ. The consumption Ct, which in the model represents an exogenous demand

shock, is distributed lognormally with

E[lnCt] = µ and Var[lnCt] = σ2
c

In the following we introduce two types of producers, a conventional and a shale pro-

ducer, and a financial institution (speculator) which does not only invest in the futures

market but also provides credit to producers. In the next section, we compute the equi-

librium of a shale-speculator model (i.e., an economy in which producers are only shale

companies) and evaluate comparative statics with respect to a model featuring only con-

ventional (instead of shale) producers and “pure speculators” in the futures market (i.e.,

investors in commodity futures with no lending activity). For further details on the latter,

see ALR.

Oil producers. Production firms are run by risk-averse managers who aim at smoothing

profits over time. For this purpose, they store oil inventories and sell futures contracts to

hedge against low prices (so low profits) next period. When aggregate demand shocks

hit the economy, producers choose the quantity of inventories and futures contracts that

maximize their risk-adjusted profits.
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Oil companies can be of two types: conventional (p) or shale (s). Conventional firms have

a predetermined production schedule which allows them to extract precisely gt in each

period. At time t, they save an amount i
p
t from current supply, with current output given

by

q
p
t = gt − i

p
t

At the same time, they hedge an amount h
p
t of next period output in the futures mar-

ket. The model has two periods t = 0, 1. Denoting the consumer’s frictionless stochastic

discount factor2 as Λt, profits as π
p
t , the coefficient of relative risk aversion of the conven-

tional firm’s manager as γp, and the price of futures contracts as Ft, the problem of the

conventional producer is3

max
{i

p
0 ,h

p
0}

π
p
0 + E0(Λ1π

p
1 )−

γp

2
Var0(π

p
1 )

with profit function

π
p
0 = S0(g0 − i

p
0) (3.1)

π
p
1 = S1(i

p
0 + g1) + h

p
0(F0 − S1) (3.2)

and subject to the constraint

q
p
0 ≤ g0 ⇐⇒ i

p
0 ≥ 0 (3.3)

Shale producers have different preferences, profits and technology. Their salient character-

istics are incorporated through the following assumptions:

1 As to prefences, being structurally less capitalized, shale producers are modelled as

more risk averse than conventionals: indeed, companies heavily relying on external

financing are more exposed to shocks than capitalized companies, and this affects

their price of risk. This assumption is motivated by an extensive literature on the

costs of external financing as one of the key determinants of fundamental hedging

demand by risk averse managers (Froot et al., 1993; Gilje, 2016). In modelling terms,

we assume that the shale producer’s risk aversion satisfies

γs
> γp (3.4)

2The one prevailing under the assumption of no frictions.
3Without loss of generality, we assume that the one-period depreciation rate of oil inventories is zero or,

more generally, that there are no storage costs.
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2 Thanks to the new technology of horizontal drilling, they can extract (and sell) oil

from reserves which would be otherwise, i.e. with conventional vertical drilling,

unavailable for current production. Put differently, shale producers bear an option to

depart from the predetermined production schedule {g0, g1} and extract an amount

es
0 from next period supply, g1, so that current output reads

qs
0 = g0 − is

0 + es
0

3 Holding this option-like technology has non-negligible (relatively to conventional

producers) operational costs related to installation of facilities, drilling, and trans-

portation equipment, that shale producers need to pay upfront. In the model, the

technology investment has a fixed cost4

D0

which is financed externally by capital constrained speculators. Consistent with

a specific feature of debt financing in the shale oil sector, D0 is collateralized on

the value of current reserves, S0g0
5. Debt is paid back at time 1, and the interest-

rate charged is the risk-free rate r. If the collateral value is lower than the amount

granted, however, that is

D0 > S0g0

shale producers also incur an extra payment in term of oil barrels detracted from

next period supply (by the speculator). In presence of this collateral constraint, next

period output reads

qs
1 = g1(1 − ψ) + is

0 − es
0

where ψ ∈ [0, 1) is set exogenously in such a way that the speculator’s expected

revenues from the sale of shale oil offset the current losses from credit6.

4where D0 > 0 is a structural parameter indicating the total operational costs.
5Producers need to pledge g0 as collateral for the loan, as g0 can be considered as proved reserves. Proved

reserves are valued 100% of their market value, from which the choice of the collateral value. Our model is
an obvious simplification of the complex reserve based lending agreements between producers and lenders,
which also distinguish between producing and non producing reserves, as well as developed and undevel-
oped ones.

6That is, ψ is such that

D0 − S0g0 = ψE0[Λ1S1g1] with D0 > S0g0

which implies

ψ =
[D0 − S0g0]

+

E0[Λ1S1g1]
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The problem of the representative shale producer can be simplified to

max
{xs

0,hs
0}

πs
0 + E0(Λ1πs

1)−
γs

2
Var0(π

s
1)

where xs
0 = is

0 − es
0 and necessarily7

qs
0 ≤ g0 + g1 ⇐⇒ xs

0 ≥ −g1 (3.5)

Shale producer’s profit function reads

πs
0 = S0(g0 − xs

0)

πs
1 = S1[x

s
0 + g1(1 − ψ)] + hs

0(F0 − S1)− DS0
0 (1 + r)

where from the previous discussion

DS0
0 = min(D0, S0g0), ψ =

[D0 − DS0
0 ]

E0[Λ1S1g1]
(3.6)

To sum up, shale producers have a higher gamma than conventional producers (Assump-

tion 1), a relaxed technology constraint (Assumption 2) and a state-contingent liability

(Assumption 3). In case of zero operational costs (D0 = 0), external financing is not

needed so the shale producer problem collapses to that of a conventional producer with

a more flexible technology and a higher risk-aversion.

Speculators. Financial institutions (indexed by f ) are speculators in the oil futures mar-

ket and creditors to shale producers. They are ruled by risk-neutral managers and subject

to capital constraints that are proportional to the variance of time 1’s profits.8 At time 0,

the financial institution lends D0 to the shale producer and choose the optimal number

of long positions h f in the crude oil futures market. The speculator’s objective function

where we set D0 such that ψ ∈ [0, 1), i.e. shale producers’ total profits are never fully absorbed by debt.
7As is

0, es
0 are linearly dependent state variables, any linear combination of the two will yield the same

FOC for the producer problem. We choose xs
0 = is

0 − es
0 so that when xs

0 > 0 (xs
0 < 0), the producer is saving

(extracting) oil barrels for next period output (current output).
8This formulation is observationally equivalent to the case of a risk-averse manager with no capital

constraints.
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reads

max
h

f
0

π
f
0 + E0(Λ1π

f
1 )−

γ f

2
Var0(π

f
1 )

with profit function

π
f
0 = −D0

π
f
1 = h

f
0(S1 − F0) + DS0

0 (1 + r) + ψg1(S1)

“Pure speculators” share the same characteristics of the financial instituions described

above; however, their business is limited to investing in commodity futures, with no lend-

ing activity. Hence, their profit function reduces to π
f
0 = 0 and π

f
1 = h

f
0(S1 − F0).

3.2 Optimization of the producer

We assume that the oil sector is populated by shale producers only, and imagine an econ-

omy composed by consumers, shale producers and financial institutions accommodating

both producers’ hedging and borrowing needs. From the shale producer problem, the

FOCs with respect to xs
0 and hs

0 yield

x̂s
0 =

−S0 + E0(Λ1S1) + λs

γsσ2
− g1(1 − ψ) + ĥs

0 (3.7)

and

ĥs
0 = g1(1 − ψ) + x̂s

0 −
E0[Λ1(S1 − F0)]

γsσ2
(3.8)

where λs is the shadow price of the stock-out constraint for the shale producer, i.e.

xs
0 ≥ −g1 (3.9)

and σ2 is the variance of the spot price.9 Note that x̂s
0

(

ĥs
0

)

depends negatively (posi-

tively) on γs, meaning that the higher risk aversion of shale producers with respect to

9As consumption is assumed to be lognormal with parameters µ and σc, in partial equilibrium the spot
price is also lognormal

St ∼ log N

(

µ

ǫ
+ log

(

ωQ
− 1

ǫ
t

)

,
σc

ǫ

)

with mean

E0(S1) = ωQ
− 1

ǫ
1 e

µ
ǫ +

1
2 (

σc
ǫ )

2
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conventional producers predicts a lower desired quantity of oil barrels to carry over and

a higher desire of hedging future sales. At the same time, x̂s
0

(

ĥs
0

)

depends positively

(negatively) on the liability term ψ, meaning that the higher borrowing needs of shale

producers with respect to conventional producers predict a higher desired quantity of oil

barrels to carry over and a lower desire of hedging future sales. In particular, it is interest-

ing to note that the collateralized debt financing in the shale oil sector has an important

effect on the producers’ risk-management decisions: when the debt cost D0 is high with

respect to the value of proven reserves S0g0, i.e. ψ > 0, shale producers are forced to

give up a share of their next period supply as an additional cost for undercollateralized

loans. As a consequence, they face a lower quantity of risk to hedge, which entails a lower

hedging pressure.

Combining (3.7) and (3.8) yields an expression for futures prices as a function of the spot

price

F0 = (S0 − λs)(1 + r) (3.10)

where (1 + r) = 1/E0[Λ1] is the gross one-period risk-free rate and λs accounts for the

convenience yield of holding oil the spot at time 0, following the definition of the basis as in

ALR.10 It is worth noting that, in our setting, the convenience yield arises from a different

(relaxed) stock-out constraint

qs
0 ≤ g0 + g1 ⇐⇒ xs

0 ≥ −g1 (3.11)

instead of the original one

q
p
0 ≤ g0 ⇐⇒ i

p
0 ≥ 0 (3.12)

and variance

Var0(S1) = σ2 = ω2Q
− 2

ǫ
1

(

e(
σc
ǫ )

2

− 1

)

e
2µ
ǫ +( σc

ǫ )
2

In equilibrium, the variance of the spot price σ2 depends negatively on Q∗
1 , so on x∗0 .

10The basis is defined as

S0 − F0

F0
= y −

r + δ

1 − δ

where y is the convenience yield of holding oil barrels at time 0, and δ is the cost of storage (which we
normalize for simplicity to 0). Combining this expression with equation 3.10, one gets an explicit relation
between y and the shadow price λ as

y =
λ

S0

1 + r

1 − δ

Note that the risk-free rate, i.e. the rate at which consumers discount future consumption, is constant
because of the joint assumption of CES preferences, lognormal consumption and partial equilibrium.
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That is, in our model one needs larger positive shocks in order for the convenience yield

to be positive, as the stock-out constraint becomes binding only when the shale producer

has run out of all of its oil reserves.

3.3 Optimization of the speculator

From the FOC of the financial institution one gets

ĥ
f
0 =

E0[Λ1(S1 − F0)]

γ f σ2
− ψg1 (3.13)

The tighter the capital constraint γ f , the lower the number of futures contracts the specu-

lator can afford. At the same time, the higher the oil price risk to which next period profits

are exposed (induced by the shale producers’ liability term ψ), the lower the number of

futures contracts the speculator is willing to hold.

3.4 Equilibrium results

The equilibrium solution for x and h can be found by applying the condition of zero net

supply of futures contracts

hs
0 = h

f
0 (3.14)

By recalling (3.8) and (3.13), we observe that a drop in producers’ hedging pressure gener-

ated by ψ > 0 is perfectly offset by an equivalent drop in speculators’ appetite for futures

contracts. As a consequence, producers’ borrowing needs and the degree of collateralization

have no role in shaping equilibrium prices. The (expected) futures risk premium is

E0

[

S1 − F0

F0

]

= −(1 + r)Corr0(Λ1, S1)Std0(Λ1)
σ

F0
+

γ f γs

γ f + γs
(1 + r)σ2 Q1

F0
(3.15)

with

F0 = (S0 − λs)(1 + r) (3.16)

With respect to the one obtained in a conventional producer - pure speculator model, the
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futures risk premium has a higher risk aversion parameter γs ≥ γp (Assumption 1) and a

relaxed stock-out constraint λs ≤ λp (Assumption 2). Next period (aggregate) output Q1

is given by Q1 = x∗0 + g1, and the equilibrium quantity x∗0 is retrieved implicitly. The first

term on the right-hand side is a covariance component, which depends on the correlation

between the consumer’s stochastic discount factor and the oil spot price, and the second

one is the limits-to-arbitrage component. Combining the risk aversion of producers – which

motivates the financial hedging pressure – with the capital constraint of speculators gen-

erates a limits to arbitrage friction: there are limits for the hedging demand of producers

to be satisfied. Put it differently, the frictionless stochastic discount factor Λt is not the

one which clears the futures market: the expected discounted payoff of a long futures

position is greater than zero, reflecting the fact that speculators demand a compensation

to fully accommodate producer’s hedging needs.

These differences translate into three distinct effects on the futures risk premium, that can

be rationalized into two categories, financing and technology effects:

• Financing effects:

– Risk-aversion effect: the higher risk aversion of shale producers generates a

higher hedging pressure that, for a given capital constraint of speculators, makes

the futures risk premium higher than in the conventional-pure speculator world;

– Cost effect: higher debt costs erode producers’ future profits: a lower quantity

of risk to hedge entails lower hedging pressures which is, however, perfectly

offset by an equivalent drop in speculators’ appetite for futures contracts: the

risk premium in equilibrium remains unchanged at the conventional-pure spec-

ulator level.

• Technology effect: following a positive aggregate demand shocks, shale producers

can boost production at time 0 which instead conventional producers are prevented

from doing: this entails a lower quantity of next period supply to hedge but, in equi-

librium, also a higher expected variance of spot and futures prices. The increased

quantity of risk prevails, entailing a higher futures risk premium.

It is worth noting that, while the risk aversion effect exists no matter the aggregate de-

mand of oil, the technology effect is state-contingent, and materializes only in times

of high demand. Putting all these effects together, our model predicts a futures risk-

premium in equilibrium which is always positive and higher than the one generated by an

economy of only conventional producers.
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4 Simulation

In this Section we simulate our model for two purposes. First, we compare the shale-

speculator model with the conventional-pure speculator model: by doing so, we keep

the same parameters for the two models except for the producer’s risk aversion, and

discuss comparative statics for temporary demand shocks of opposite sign. Second, we

use historical spot prices as input to the model and generate a stream of predicted hedging

ratios (i.e., the ratio between amounts hedged and oil supply) of the oil sector during

the last 12 years, which we then compare with historical figures provided by our hand-

collected dataset.

4.1 Calibration

In both simulations, the calibration is made as follows. Some parameters are chosen as

in previous contributions: µ and σc are estimated from the time series of aggregate GDP

growth; ǫ = 0.1 and ω = 0.01 are such that (1) the two goods are complement for the

consumer, (2) the standard deviation of futures return is about 20 percent per quarter and

(3) the share of oil expenditure on total expenditure on other goods is 10 percent.11

The predetermined supplies gt are chosen such that the equilibrium spot price in response

to a zero demand shock is equal to 1. The shale producers’ debt Ds
0 is set equal to the

collateral value in presence of a zero demand shock, i.e. Ds
0 = S0g0 = g0, while the

conventional producers’ debt D
p
0 is set equal to 0. For illustrative purposes, we specify

the shale producers’ risk aversion parameter as γs = γp(1 + α), with α the representative

fraction of shale oil in the market. In the simulation made in Section 4.2, we set α = 1 and

obtain γs = 2γp; in Section 4.3, we let α vary so to match the share of shale over total U.S.

production in the last 12 years.

4.2 Comparative statics

We report model simulations for different levels of producer’s risk aversion. Results from

the shale-speculator model are reported in red, while those from the conventional-pure

speculator model in black. The following figures display the optimal amount of hedg-

ing, inventories and the futures risk premium as functions of the producer risk aversion

(namely, the fundamental hedging demand of the producer). The risk aversion coeffi-

cients of conventional and shale producers are displayed on a double x-axes (lower x-

axis: γp, upper x-axis: γs = 2γp). For each model, we compare producers’ responses

11See also the online Appendix of ALR.

14



Parameters Values

µ 0.004
σc 0.02
ω 0.01
ǫ 0.10

g0 0.63
g1 0.63

Ds
0 0.63

D
p
0 0

Table 1: Parameter table.

to large positive and large negative demand shocks, corresponding to the 75th and 25th

percentiles of the distribution of log consumption growth, respectively.

1 2 3 4 5 6 7 8 9 10

p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Hedging Ratio
2 4 6 8 10 12 14 16 18 20

Figure 4.1: Model-implied hedging ratio of shale producers (solid and dashed red lines) and conven-
tional producers (solid and dashed black lines). The lower (upper) x-axis: fundamental hedging demand
of the conventional (shale) producer γp (γs). Solid lines result from large positive shocks which trigger the
inventory constraint λp of the conventional producer, while dashed lines result from large negative shocks
which trigger the collateral penalty ψ of the shale producer.

Figure 4.1 displays the model-implied hedging ratio of conventional producers and shale

producers. Solid lines represent cases of large positive demand shocks, while dashed lines

represent large negative demand shocks. In case of large positive shocks, the stock-out
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constraint λp binds for conventional producers but not for shale: by anticipating part of

future supply, the latter have less oil to sell in the future so, in equilibrium, lower hedg-

ing needs (for same level of risk aversion) than conventionals. In case of large negative

shocks, on the other hand, the borrowing constraint ψ binds for shale producers but never

for conventionals: loan is undercollateralized so shale producers are forced to give up a

fraction of future supply and have less oil to hedge than conventionals, thereby causing,

again, lower hedging pressure. To sum up, both cost and technology effects do determine

a lower hedging demand than conventionals; however, as the difference is almost negli-

gible in case of positive shocks, it is very large in case of negative shocks. Note that, in

order to finally assess whether shale producers hedge more or less than conventionals in

equilibrium, it is important to also take into account the risk aversion effect: if the latter is

material, hedging needs can be higher than those of conventional producers, more than

offsetting the previous channels.

1 2 3 4 5 6 7 8 9 10
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-0.01
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-0.004
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0

0.002

0.004

0.006

0.008

0.01

Inventory

2 4 6 8 10 12 14 16 18 20

Figure 4.2: Model-implied optimal inventories of shale producers (solid and dashed red lines) and con-
ventional producers (solid and dashed black lines). The lower (upper) x-axis: fundamental hedging de-
mand of the conventional (shale) producer γp (γs). Solid lines result from large positive shocks which trig-
ger the inventory constraint λp of the conventional producer, while dashed lines result from large negative
shocks which trigger the collateral penalty ψ of the shale producer.

Figure 4.2 shows the optimal fraction of current reserves that producers carry over to in-

crease next period output. Solid lines represent cases of large positive demand shocks,

while dashed lines represent large negative demand shocks. In case of negative demand
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shocks, the stock-out constraints λp, λs are both slack and the producers hold equally

profitable technologies. As a result, they wish to carry over the same number of oil bar-

rels for next period output.12 In case of large positive shocks, on the other hand, shale

producers exercise their option-like technology by extracting oil from reserves otherwise

designated to future production13 - thereby showing in the figure as negative inventories

- while conventional producers face a binding stock-out constraint.
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p
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Futures Risk Premium
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Figure 4.3: Model-implied futures risk premium of shale producers (solid and dashed red lines) and
conventional producers (solid and dashed black lines). The lower (upper) x-axis: fundamental hedging
demand of the conventional (shale) producer γp (γs). Solid lines result from large positive shocks which
trigger the inventory constraint λp of the conventional producer, while dashed lines result from large neg-
ative shocks which trigger the collateral penalty ψ of the shale producer.

Figure 4.3 displays the equilibrium futures risk premium for conventional producers and

shale producers. First of all, it is worth reminding that, independently of current demand

levels, the risk-aversion effect induced by γs
> γp would always entail a higher futures

risk premium for shale producers than conventional producers.14 However, following a

positive demand shock a second effect also comes into play, triggered by a fundamental

difference in producers’ stock-out constraints. With positive demand shocks, shale pro-

ducers can boost production at time 0, unlike conventional producers: as observed from

12To be precise, shale producers’ inventories are slightly higher due to the discussed marginal effect of
the liability term ψ on x̂s

0, but the difference is negligible.
13Oil reserves unaccessible to conventional (vertical drilling) technologies.
14Follows immediately from the specification in Equation 3.15.
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figure 4.1, this entails a slightly lower quantity of next period supply to hedge for shale

producers but, in equilibrium, also a higher expected variance of spot and futures prices.

The second effect of an increased quantity of risk prevails, entailing a higher futures risk

premium for shale producers with respect to conventional producers. Following a neg-

ative demand shock, the liability term ψ comes into play generating a consistent drop

in shale producers’ hedging ratio (dashed red line in figure 4.1) and a negligible rise in

shale producers’ inventories (dashed red line in figure 4.2). As the former is offset by an

equivalent drop in speculators’ appetite for futures contract, the liability term ψ affects the

futures risk premium only through the inventory channel, thereby generating the same

negligible differences on the equilibrium outcome.

4.3 Model-implied and historical dynamics of the hedging ratio

In this Section we test the ability of our model to replicate the dynamics of financial hedg-

ing in the United States for different price levels. In particular, we construct the time

series of aggregate hedging contracts held by the oil sector and compare it with the one

obtained in equilibrium using the appropriate calibration of our model.
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Figure 4.4: The graph displays total oil production of US E&P firms and the average value of their
hedging ratio for their 12-month ahead crude oil production. Details on firms included in the sample of
analysis are provided in Section 4.
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To this end, we rely on a new hand-collected firm-level dataset providing detailed infor-

mation on E&P hedging contracts used to hedge oil production during the period 2006-

2016. The data set is constructed starting from annual company reports (10-K) available

from the EDGAR website of the US Security Exchange Commission (SEC), and it provides

information on the type of derivative instruments as well as on the notional amount of

each hedging contract. We restrict the analysis to E&P companies with Standard Indus-

trial Classification (SIC) code equal to 1311, which includes firms involved in “Crude

Petroleum and Natural Gas” exploration and production activities.15

Our data set details the 12-month ahead hedging exposure of each company by type of

instrument, and is richer than others employed in the literature. It consists of an unbal-

anced sample of 102 firms accounting for approximately 30% of overall US oil production

and observed over an 11 years time period. The sectoral hedging measure is constructed

by aggregating the value of all hedging contracts and summing across the whole sample

of firms. Figure 4.4 displays the dynamics of the average 12-month ahead hedging ratio

between 2006 and 2017 and the total oil production of firms included in our sample.

The model is simulated once for each quarter, calibrating the shock at each point in time

to obtain the average WTI oil spot price observed over the same time span. Results are

displayed in Figure 4.5. The model makes a good job in matching the amount of hedging

contracts in the period of the shale boom: in particular, it captures the increase in hedging

demand before 2013 and the fall thereafter.

5 Empirical estimates

The previous Section provided a theoretical underpinning for the link between futures

risk premium, shale producers’ fundamental hedging demand, and speculators’ capital

constraints. In this Section we empirically test this interplay and analyze how the recent

recomposition in the oil industry has affected futures risk premia. Our exercise starts

from the model equilibrium condition presented in Equation 3.15, and we estimate the

following model as its empirical counterpart:

15We first retrieve from the Wharton database the full list of companies with SIC code equal to 1311. Then
we filter out firms for which either the 10-k was not publicly available on EDGAR or the number of 10-k
filings was smaller than five during the period 2006-2016. We further exclude smaller reporting companies
that are not required to disclose information as their market risk is considered as negligible and firms where
risk management activities cannot be reclassified in terms of quantitative data as they are essentially not
reported in tabular form in item “7A. Quantitative and Qualitative Disclosures about Market Risk”. Please
notice that so-called “major companies” are not included in our final sample as they are generally classified
with SIC code 2911 (Petroleum refining).
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Figure 4.5: Historical hedging ratio (black line, right y-axis) and model-implied hedging ratio (red line,
left y-axis).

FRt+1 = α + β FHDt + δ Controlst + ut+1 (5.1)

where FR are crude oil excess returns on futures, FHD is our measure of fundamental

hedging demand by producers, and Controls are additional variables to account, among

others, for the US business cycle and other characteristics of commodity markets at the

time of the forecast; t denotes time measured in quarters. Similar to ALR we test model

predictions by running forecasting regressions of crude oil futures returns, which rep-

resent our proxy for the futures risk premium. However, we restrict the analysis to oil

prices and most importantly we split the sample into two periods to offer an accurate

representation of the new producers emerged with the advent of the shale revolution. In-

deed, while in the first part of the sample shale technology did not exist (or, at least, was

not yet adopted in the oil sector), since the year 2000s shale producers – albeit at a slower

pace – entered commodity markets. Therefore, to forecast risk premia in the second part

of the sample, we estimate the following regressions:

FRt+1 = α + β1 FHDConvt + β2 FHDShalet + δ Controlst + ut+1 (5.2)
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FRt+1 = α + β1 FHDConvt + β2 FHDShalet + β3 SPcct + δ Controlst + ut+1 (5.3)

where FHDConv is the fundamental hedging demand of conventional producers, FHDShale

is that of shale producers and SPcc is a measure of financial investors’ capital constraints;

provided that speculators invest not only in one asset class (as it is in the model), in the

set of controls of Equation 5.3 we also include a measure of speculator preference for

commodity futures, disregarded in standard oil regressions. In the following, we present

additional details on the variables that are adopted in the empirical analysis.

5.1 Oil futures returns
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Figure 5.1: Time series of quarterly crude oil futures returns. Data come from the New York Mercantile
Exchange (NYMEX) for the WTI Light Sweet Crude Oil contracts and are obtained from Bloomberg.

The variable FR is constructed using data from Bloomberg for the prices of WTI Light

Sweet Crude Oil front month futures contracts quoted at the New York Mercantile Ex-

change (NYMEX). Following Gorton et al. (2013), we obtain 3-month rolling commodity

futures excess returns as the one-month difference in the nearest to maturity contract, that
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would not expire during the next month, i.e. as:

Ft+1,T − Ft,T

Ft,T
(5.4)

where Ft,T is the futures price at the end of each month t on the nearest contract, with

expiration date T which is after month t + 1, and Ft+1,T is the price of the same contract at

the end of month t + 1. Quarterly returns are computed as the product of futures returns

within each quarter. The quarterly series, starting in 1983Q3 due to data availability, is

shown in Figure 5.1.

5.2 Producers’ fundamental hedging demand

The fundamental hedging demand of producing firms is tightly linked to their distance

to default. Following previous contributions, we proxy producers’ fundamental hedging

demand with a measure of sectoral default risk for the oil sector. For this purpose, we

construct a balance sheet-based indicator by aggregating information from the financial

statements of all US firms classified with SIC code 1311. For our analysis we proxy the de-

fault risk of oil producers with the Altman (1968) z-score, the most common accounting-

based indicator of a company strength and financial conditions. We retrieve quarterly

accounting data from Compustat for the whole period covering the availability of crude

oil futures returns; our sample has a time varying composition due to sample attrition, but

it consists on average of more than 200 oil producers per quarter. For each company, we

construct the default risk measure De f Risk by using the definition of the Altman (1968)

z-score for manufacturing firms:

De f Risk = 1.2 ∗ (Working capital/Total assets) + 1.4 ∗ (Retained earnings/Total assets)

+3.3 ∗ (Ebit/Total assets) + 0.6 ∗ (Market value o f equity/Total liabilities)

+0.999 ∗ (Sales/Total assets)

(5.5)

The sectoral proxy for De f Risk is obtained by taking the median value across firms in

each quarter; a higher value of De f Risk indicates a lower sectoral probability of default.

We consider a unique indicator of De f Risk during the period from 1983Q3 up to 2000Q1,

using as a cut-off date the time in which data on shale production are recorded for the

first time by the U.S. Energy Information Administration (EIA). Starting from 2000Q1 we
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compute two distinct measures of De f Risk, distinguishing between shale and conven-

tional producers. However, establishing the precise nature of each producer does not

represent a straightforward task, as data detailing the type of crude oil production tech-

nology are not available at the firm level.
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Figure 5.2: Time series of total and shale crude oil production in the US measured in mbd; both se-
ries are from EIA. Shale-oil production includes hydraulically fractured production originated from EIA
plays: Monterey, Austin Chalk, GraniteWash,Woodford, Marcellus Haynesville Niobrara-Codell, Wolf-
camp, Bonespring, Spraberry, Bakken, Eagle Ford, and Yeso-Glorieta.

To address this issue we propose an identification strategy that exploits the dynamics of

crude oil production in the US, as reported in Figure 5.2. Since 2008-2009 total crude oil

production has been trending up; the graph clearly shows how the increase was utterly

driven by the upsurge in the shale oil production. In view of this evidence, we classify

as shale producers those firms whose cumulated growth in production between 2009Q2

and 2017Q4 was higher than the median of the entire US oil sector in the same period. We

consider the 2009Q2 as the beginning of the shale revolution, being the fourth quarter in a

row in which shale production, highly volatile since then, accounted for at least 10% over

total US crude oil production. In this way, we limit possible classification inconsisten-

cies due to a marginally material and quite volatile shale production; other contributions

in the literature propose a very similar starting date (see Kilian, 2017). Our classifica-

tion of shale and conventional firms also extends to the pre-shale revolution period (i.e.,

since 2000Q1), meaning that oil companies that are classified as shale are assumed to

be more active in shale than conventional production also between 2000 and 2009. This
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Figure 5.3: Time series of actual shale oil production retrieved from EIA and estimated shale oil produc-
tion in the sample. Both series are measured in mbd; the estimated shale oil series is multiplied by a scaling
factor equal to the quarterly fraction of shale crude oil over total US production.

seems reasonable provided that, in order to reach high levels of production, shale technol-

ogy required, at the first stage, long periods of exploration and technology development.

However, drilling from shale wells was obviously slow in the early 2000s, which explains

why our identification based on production dynamics needs to rely only on data from

2009 onwards.

Figure 5.3 compares the time series of official shale oil production by the EIA with the

one constructed by aggregating production from our identified shale producers, where

production from each shale producer is weighted by the market share of shale oil pro-

duction at each point in time. 16 The graph shows that, while our estimates only account

for half of the total shale production, we are able to track very well the unconventional

production dynamics during the shale revolution era.

The aforementioned firm classification allows to construct our specific indicators of

default risk: a unique series FHDt for the period 1983Q3-1999Q4 and two distinct se-

ries, FHDConvt and FHDShalet for conventional and shale producers respectively dur-

ing 2000Q1-2017Q4. Figure 5.4 shows the unique pre-shale indicator (upper panel) and

16By weighting production of the identified shale producers we avoid overestimates of shale production
in the first part of the sample, when conventional extraction was still made by companies experimenting
new production technologies.
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Figure 5.4: Standardized Altman z-score of US E&P companies (SIC code 1311); z-scores are preliminary
winsorized within the interval 0-12 to exclude outliers. The upper graph plots the sample median Altman
z-score from 1983Q2 to 1999Q4; the lower graph plots the sample median Altman z-scores from 2000Q1 to
2017Q4 differentiating between shale and conventional producers on the basis of the identification strategy
described in this Section.
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the two indicators for conventional and shale companies (lower panel), where small val-

ues indicate high default risk. The lower panel shows that the Altman z-scores have been

trending down since the late 2000s for both types of producers, and these trends acceler-

ated between 2013 and 2015, i.e. during the latest oil slump.

5.3 Financial speculators

To account for the presence of financial speculators interacting with oil producers, we

include a measure of speculator risk aversion γs. We follow Etula (2013) and construct

a measure of effective risk aversion based on broker-dealer and household balance sheet

data from the US Flow of funds. This indicator is negatively correlated with speculators’

capital constraints and previous contributions have shown its substantial effectiveness to

predict commodity futures returns.17

In addition, we also include a measure of speculators’ preference for investments in the

commodity markets (SPcc) based directly on banks’ regulatory reporting. This indicator

is more closely related to the commodity market than the previous measure. We source

the Federal Reserve banks’ micro data from Compustat and construct our indicator as

the ratio between the market value of banks’ off-balance sheet commodity exposure and

total trading assets.18 In each quarter, the bank-level indicator of commodity preference

is therefore as follows:

SPcct =
∑ Commodity f inancial derivatives in the trading bookt

Total trading assetst
(5.6)

where the numerator sums across financial derivatives whose underlying is either a single

commodity or a commodity index that are valued in the trading book of the bank. In the

following analysis we use an aggregate measure of commodity exposure corresponding

to the sectoral median of SPcct across reporting banks.

The two measures are displayed in Figure 5.5. The Broker-Dealer (BD) effective risk aver-

17The effective risk aversion measure is as follows

ERAt = 1 +
Broker-dealer equityt

Household equityt

(

1 −
Broker-dealer leveraget

Market leveraget

)

For details on how each term is constructed, see Etula (2013).
18Federal Reserve micro data provide information on the contract amount for all derivative contracts

committing the reporting entity to purchase or sell commodities such as agricultural products (e.g., wheat,
coffee), precious metals (e.g., gold, platinum), and non-ferrous metals (e.g., copper, zinc).
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Figure 5.5: Two measures of broker-dealer exposure: the effective risk aversion (green line) and the
median of the off-balance sheet exposure in commodity derivatives (yellow line). The green line represents
the non detrended version of the risk aversion measure proposed in Etula (2013).

sion (green line) grew substantially in early 2000’s and remained quite stable thereafter,

indicating the ample liquidity of U.S. banks; since 2010, it progressively decreased as a

consequence of stricter financial conditions with the global financial crisis. On the other

hand, the exposure in commodity derivatives (yellow line) increased steadily since 2006

– the beginning of the financialization era – and peaked in 2012; in mid-2012, due also

to stricter regulatory frameworks limiting the proprietary trading of derivatives by US

banks, the commodity exposure started to decline, albeit remaining well above the pre-

financialization levels.

5.4 Results

Empirical estimates for Equation 5.1, 5.2 and 5.3 are reported in Table 2. We empirically

examine the drivers of the risk premium embedded in WTI futures contracts before and

after the advent of shale oil. Equation 5.1 is estimated between 1983Q1 and 1999Q4 with

results reported in the first column of Table 2 while equations 5.2 and 5.3 are estimated

between 2000Q1 and 2017Q4 and the corresponding results are displayed in columns 2-5

27



(1) (2) (3) (4) (5)

Altman score - pre 2000 -0.090∗∗

(0.04)

Altman score - shale -0.114∗∗ -0.117∗∗ -0.092∗∗ -0.093∗

(0.04) (0.05) (0.04) (0.05)

Altman score - conventional 0.052 0.066 0.049 0.060
(0.03) (0.04) (0.03) (0.04)

BD risk aversion -0.107 -0.101
(0.12) (0.13)

BD commodity exposure -0.112∗ -0.108∗

(0.06) (0.06)

Kilian Index 0.056 0.009 -0.008 0.003 -0.012
(0.06) (0.03) (0.03) (0.02) (0.03)

3m T-Bill 0.017 0.007 0.023 0.022 0.045
(0.02) (0.04) (0.05) (0.04) (0.05)

Futures basis -0.135 -0.025 -0.039∗ -0.031∗ -0.044∗∗

(0.11) (0.02) (0.02) (0.02) (0.02)

GDP forecast -0.040 0.057 0.074 0.069 0.083∗

(0.06) (0.04) (0.05) (0.04) (0.04)

Inventories -0.138∗∗∗ -0.150∗∗ -0.141∗∗∗ -0.137∗∗

(0.05) (0.06) (0.05) (0.06)

Credit lines - shale -0.040∗∗ -0.044∗∗

(0.02) (0.02)

Credit lines - conventional 0.012 0.022
(0.01) (0.01)

Table 2: Results from the regressions of crude oil futures returns on fundamental hedging demand prox-
ied by default risk measures and controls. In column 1 the time span is 1983Q1-1999Q4, in columns 2-5
it is 2000Q1-2017Q4. Altman scores account for producers’ fundamental hedging demand as described in
Section 5.2. BD effective risk aversion is the (non-detrended) measure introduced in Etula (2013), BD com-
modity exposure is US banks exposure in commodity derivatives. The controls in the regression include
Kilian Index, risk-free rate, futures basis, GDP growth forecast, % of available credit lines/total liabilities,
OECD oil inventories (these last two series are restricted to the second time span because of data availabil-
ity). Inventories and the two BD measures are in first difference. Standard errors in parentheses are robust
for heteroskedasticity and autocorrelation. * Denotes significance at the 10% level, ** denotes significance
at the 5% level, and *** denotes significance at the 1% level.

of the same table. The first column shows that, in the pre-shale and pre-financialization

period, the producer side of the oil market had a key role in the fluctuations of the futures

risk premium, which was tightly linked to hedging decisions of oil companies. In line
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with the model predictions, a higher fundamental hedging demand (a lower default risk)

leads to a widening of the risk premium.

During the 2000s, the interplay between an increasing speculative activity in oil market

and the expanding demand for hedging by shale producers had a material effect on the

risk premia. On the producer side, columns 2-5 show that, once separately identified,

only the default risk of shale producers remains significant and exerts a negative pres-

sure on futures risk premia. As predicted by the model, shale producers have on average

higher hedging needs than conventionals, and their reliance on external debt determines

higher pressure on financial derivatives. This result also emerges when we include, as an

additional control, the degree of financial soundness in terms of credit lines available to

the company to cover its liabilities (columns 3 and 5). On the other side of the market,

the commodity exposure of speculators becomes relevant in our extended sample that

includes years in which leverage and commodity exposure varied markedly. Note that,

for a given level of financial constraint, the specific exposure of speculators in commodity

markets, which may depend on the regulatory framework on derivatives as well as on

investment preferences, is relevant to capture their overall effect on risk premia (columns

4 and 5). When speculators’ risk capacity is low, additional investment in commodities

produces a negative effect on futures risk premia, as arbitrageurs require a higher com-

pensation to accomodate the hedging demand of oil producers.

All in all, the empirical evidence in Table 2 suggests that the hedging pressure from pro-

ducers remains a relevant driver of the futures risk premia. However, despite the increas-

ing pressure coming from the rise of shale producers, the risk premia were curbed by

the offsetting buying pressure from financial intermediaries taking long positions in oil

derivatives.19

6 Conclusions

The advent of shale oil in the United States induced a structural transformation in the oil

market. We show, both theoretically and empirically, that this process has relevant con-

sequences on oil prices. We construct a consumption-based model with shale producers

who interact with financial speculators in the futures market. Compared to convention-

als, shale producers have a more flexible technology, but higher risk aversion and addi-

tional costs due to their reliance on external finance. Our shale model helps to explain

19We find similar evidence of a compression in the risk premium using a model based estimate of the
“ex-ante” risk premium from the term structure model of (Hamilton and Wu, 2014), which we update until
the end of our sample. Results are available upon request.
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the observed pattern of aggregate hedging by US firms in the last decade. A comparative

simulation of the shale-speculator and conventional-pure speculator models reveals that,

on average, an oil sector populated by shale producers demand a higher amount of finan-

cial hedging contracts, creating more pressure on the sell side of the derivatives markets

and amplifying the arbitrage friction (so the futures risk premium). The empirical analy-

sis also shows that, in the era of shale oil, the hedging pressure of shale producers can be

more relevant than that of conventional producers in explaining the oil futures risk pre-

mium. However, despite the increasing pressure coming from the rise of shale producers

the futures risk premia were curbed by an offsetting buying pressure from financial inter-

mediaries taking long positions in oil derivatives. Both shale producers and speculators

are tightly linked to fluctuations in the credit cycle: the investigation of their joint dynam-

ics is left as avenue of future research.
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