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Abstract 

This paper describes expectations and Buy-Sell transactions of selected Stokes between 

economic agents and Exchange on economic space as ground for modeling trading volume 

and price fluctuations. We study simple model of mutual relations between transactions and 

expectations and derive economic equations that describe disturbances of price, trading 

volume and expectations. We obtain simple harmonic oscillations for price fluctuations. We 

show that our model economic equations can take form of Lorenz attractor. Our 

approximation of transactions and expectations and economic equations on disturbances of 

price, trading volume and expectations allows apply dynamical systems methods for 

modeling chaotic behavior of economic and financial systems.  
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1. Introduction 

Price forecasting seems to be the Holy Grail of financial markets and the most valuable 

problem of macroeconomic and financial theory. Thousands of studies argue different 

properties of stock price evolution, volatility and returns and any review of current state of 

research will be non complete and could be enlarged. Thus our introductory sketch presents 

only small part of references on these problems.  

Roughly speaking, there are two ways to describe any complex phenomena. The first way 

extrapolates behavior of the process under consideration without attempt to understand and 

describe its internal nature and relations. These methods can use regular hypothesis and 

develop linear or non-linear extrapolating models to reproduce alikeness, similarity and 

resemblance of price evolution and fluctuations based on “history” data. Such approaches use 

stochastic models to describe spectrum or stochastic momentums of price, returns or 

volatility fluctuations. The second way to describe price behavior is to model the origin and 

the nature of processes those induce and govern stock price trends and fluctuations as well as 

trends and fluctuations of returns and volatility. Description and approximation of the 

processes those impact fluctuations of prices, returns and volatility are much more complex 

problem than extrapolation of the observed trends and fluctuations. But only the second way 

has option to describe real economic and financial processes and improve regulations of 

markets and forecasting of stock price trends and fluctuations.  

Most studies on modeling market price belong to the first way. General problems of price 

fluctuations are studied by (Fama, 1965; Fama, 1970; Lucas, 1978; Kydland and Prescott 

1980; Pearce, 1983; Friedman and Laibson, 1989; Campbell and Cochrane, 1995; Heaton and 

Lucas, 2000; Balke and Wohar, 2001; Hansen, 2013; Cochrane, 2017). Due to Fama (1965) 

the problem of price forecasting should respond: “To what extent can the past history of a 

common stock's price be used to make meaningful predictions concerning the future price of 

the stock? Answers to this question have been provided on the one hand by the various 

chartist theories and on the other hand by the theory of random walks.” Stochastic modeling 

of price fluctuations (Lucas, 1978) attracted researchers in statistical physics and that resulted 

in numerous theoretical and experimental studies on statistical properties of price and return 

fluctuations (Plerou et al., 1999; Shiryaev, 1999; Andersen et al., 2001; Plerou et a., 2001; 

Gabaix et al., 2003; Alejandro-Quinones et al, 2006; Andersen et al., 2006; Hördahl and 

Packer, 2007; Kaihatsu and Kurozumi, 2010; Greenwald, Lettau and Ludvigson, S., 2014). 

Complexity of price fluctuations description induces application of fractal models a studies of 
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price and return scaling behavior (Mandelbrot, 1963; Mandelbrot, Fisher, Calvet, 1997; 

Plerou et al., 1999; Calvet and Fisher, 2002; Gabaix et al., 2003; Carbone, Castelli, Stanley, 

2004; Stanley, Plerou and Gabaix, 2008; Segnon and Lux, 2013). Many studies describe 

properties of return fluctuations (Campbell, 1985; Keim and Stambaugh, 1986; Fama, E.F., 

1998; Calvet and Fisher, 2002; Greenwood and Shleifer, 2014; van Binsbergen, Gontis et al, 

2016; Gontis et al, 2016; Koijen, 2017) and volatility effects (Bates, 1996; Andersen and 

Lund, 1997; Andersen et al., 2001; Poon and Granger, 2003; Andersen et al., 2006; 

Bayraktar, Horst and Sircar, 2008). One of most important contributions to studies of price 

evolution concern introduction and description of expectations and behavioral models and 

studies of their impact on price and return fluctuations (Muth, 1961; Fama, 1965; Lucas, 

R.E., 1972; Sargent and Wallace, 1976; Blume, Easley, 1984; Grandmont,1992; Caporin, 

Corazzini and Costola, 2014; Greenwood and Shleifer, 2014; Greenwood and Shleifer, 2014; 

Lof, M., 2014; Thaler, 2018). Let’s outline studies that proposed deterministic models as 

solution for the random price origin. Works by (Barnett and Chen, 1988; Brock and Sayers, 

1988; Brock and Hommes, 1997; 1998) proposed that stochastic behavior of price 

fluctuations have origin in chaotic properties of deterministic dynamical systems. In other 

words, nonlinearity of deterministic dynamical systems cause observed chaotic dynamic 

evolution (Lorenz, 1963; Takens, 1981; Barnett and Chen, 1988; Nicolis and Prigogin, 1989; 

Guckenheimer and Holmes, 1990; Bullard and Butler, 1991; Grandmont, J.M., 1992; Kemp, 

1997; Schuster and Just, 2005; Goldstein, J., 2011).  

We propose that the price evolutions and fluctuations are the result of collective actions of 

numerous factors described in the references mentioned above. It is impossible to develop 

theory that takes into account all possible factors starting with “the past history of a stock's 

price”, action of different shocks like market, technology, economic, political, different 

models of random walks and disturbances. Any model can describe only part of real factors 

and observations.  

Our paper suggests economic model that takes into account only few factors that impact price 

fluctuations. General Occam’s razor principle (Baker, 2007) states: “Entities are not to be 

multiplied beyond necessity” and we don’t use any general equilibrium assumptions and 

models on state of markets, prices and etc. To obtain our results we derive simple 

deterministic economic equations that describe evolution and fluctuations of trading volume 

and value of transactions for particular Stocks at Exchange. We propose that trade decisions 

and transactions are made under definite expectations and our economic equations describe 

impact of these expectations on volume and trading value. For simple approximations we 
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derive solutions for volume and trading value and obtain relations for price evolution and 

fluctuations. We assume that interdependence between expectations and transactions can 

cause nonlinear coupling of simple economic equations and that results in chaotic price 

evolution and fluctuations. 

We model market transactions on economic space (Olkhov, 2016a; 2016b; 2017a-c). We 

regard all participants of economic relations and market trades – huge banks, corporations 

and investment funds, households and small companies and etc., – as economic agents. We 

assume that agents perform their transactions under action of some risks. Let’s propose that it 

is possible to make risk assessments for all economic agents and such risk assessments 

provide risk ratings for all agents. Let’s use agent’s risk ratings as their coordinates on 

economic space. To simplify the problem let’s assume that all agents can perform Buy-Sell 

transactions of selected Stocks at certain Exchange. Usage of agent’s risk ratings as 

coordinates allows distribute agents and their transactions over economic space. We propose 

that each transaction defines volume and value of the deal with selected Stocks and each 

transaction depends upon particular sort of expectations. We show that usage of economic 

space permits derive economic equations that describe mutual dependence between 

transactions and expectations on economic space. For simple model we derive solutions of 

economic equations and obtain representations for volume and value of selected Stocks and 

obtain prices and their fluctuations. We argue how dependence of expectations on 

transactions or other expectations can cause nonlinear coupling of simple economic equations 

and could results in chaotic behavior of price and return fluctuations.  

The rest of the paper unfolds as follows. In Section 2 we argue definition of economic space 

(Olkhov 2016a; 2016b; 2017b; 2017c) and explain how economic space helps for description 

of transactions and expectations of economic agents. Each Buy-Sell transaction performed by 

agents at Exchange determines volume and value of selected Stocks traded by this 

transaction. Thus transactions determine price for each particular trade. We derive system of 

economic equations that describes evolution of transactions on economic space and hence 

describe evolution of transactions prices. In Sec. 3 we argue expectations of agents that 

impact transactions and prices and explain how expectations can be described as functions of 

time and coordinates on economic space. In Sec.4 we use economic equations to define a 

simple model of mutual dependence between transactions and expectations and derive simple 

relations for price fluctuations. In Sec.5 we derive equations (8.1-8.4) on disturbances of 

trading volume q(t), price π(t) and disturbances of expectations exq(t) and exsv(t). Further we 

show that equations (8.1-8.3) on disturbances of trading volume q(t), price π(t) and 
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expectations exq(t) can take form of Lorenz attractor (10.1-10.3). Conclusions are in Section 

6. Appendix A presents derivations of model economic equation and simple harmonic 

oscillations of price fluctuations.  

2. Model Setup 

In this section we briefly introduce economic space (Olkhov, 2016a-b; 2017a-d) as ground 

for modeling price fluctuations. We underline that modeling on economic space have nothing 

common with spatial economics (Hotelling, 1929; Henderson et al, 2016).  

2.1. Economic space 

Let’s regard any traders at certain Exchange like banks, funds, companies, households and 

etc., as economic agents. We treat agents as simple units of economic and financial system 

that can execute Buy-Sell transactions. Each agent can execute transaction with particular 

Stocks at Exchange. Each Buy-Sell transaction determines volume of Stocks purchased and 

value of this transaction and hence defines the price of Stocks for particular transaction. It is 

difficult to describe evolutions of transactions for each particular agent. To simplify the 

problem we propose distribute all agents over points of economic space that we define below. 

Aggregation of transactions performed by agents at point x of economic space allows transfer 

the description of Buy-Sell transactions executed by separate agents to description of 

transactions performed by all agents at point x of economic space. Such approximation 

allows regard transactions as “continuous transactions media” on economic space. That helps 

derive economic equations that model evolution of transactions and hence model dynamics 

and fluctuations of prices. We propose use risks that impact agents and their transactions and 

assessment of agent’s risks as ground for economic space definition. 

There are a lot of risks that impact economic agents like credit risks, inflation risks, market 

risks and many other (Wilier, 1901; Horcher, 2005; McNeil, Frey and Embrechts, 2005; 

Skoglund and Chen, 2015). We don’t argue specific economic or financial risks but treat 

them all as factors that impact economic agents, their transactions and entire economics. All 

agents are at risk but not for all risks and not for all agents risk assessments are provided. For 

large banks and corporations risk assessments are provided by rating companies as Moody’s, 

Fitch, S&P (Metz and Cantor, 2007; Chane-Kon, et.al, 2010; Kraemer and Vazza, 2012). 

Ratings take value of risk grades as AAA, A, BB, C and etc., and follow the risk rating 

methodologies (Altman, 2010; Staff U.S.SEC, 2012; S&P, 2014; Pitman and Moss, 2016). 

We propose (Olkhov, 2016a; 2016b; 2017a-d) regard risk grades AAA, A, BB, C and etc., as 
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discrete points x1,…xm of economic space. Such economic space imbed economic agents by 

their risk ratings x. Ratings of single risk distribute agents over points of one-dimensional 

economic space. Assessments of two or more risks distribute agents by their risk ratings on 

economic space with dimension two or more. Let’s assume that risk assessment methodology 

can utilize continuous risk grades. One can always assume that risk grades take value 

between most secure grade equals 0 and most risky grade equals X. Assessments of agent’s 

ratings for single risk fill interval (0,X) of economic domain on space R. Assessments of 

agent’s ratings for n risks define agent’s coordinates on economic domain on Rn. Let’s 

propose that econometrics provide sufficient data for risk assessments of all economic agents. 

This assumption doesn’t impose restrictions or ad hoc requirements on economic system 

under consideration like assumptions made by general equilibrium hypothesis (Arrow, 1974; 

Starr, 2011). We just assume that development of econometrics and risk methodologies 

similar to quality and granularity of U.S. National Income and Product Accounts system 

(Fox, et al., 2014) can solve the problem of risk assessment for most economic agents. Let’s 

propose that macroeconomics is under action of n=1,2,3.. risks and risk assessments of 

economic agents distribute them over economic domain on economic space Rn. For additional 

details on economic space modeling we refer to (Olkhov, 2016a - 2018). For brevity let’s 

further note economic space as e-space and economic agents as e-particles (economic 

particles). We use roman letters f, t, etc., to define scalar and bold letters x, B, P, etc., to 

define vector variables and functions. 

2.2. Transactions on e-space  

To describe properties of price evolution and fluctuations let’s consider particular Stocks that 

are traded at Exchange. Each transaction tri(t,x) executed by agent i at point x at moment t 

with selected Stocks determine trading volume Qi(t,x) and Stock value SVi(t,x) of transaction. 

Let’s define transactions tri(t,x) as two component functions and use bold letters:  𝒕𝒓𝑖(𝑡, 𝒙) = (𝑄𝑖(𝑡, 𝒙); 𝑆𝑉𝑖(𝑡, 𝒙))      (1.1) 

Price pi(t,x) of this transaction is determined by obvious relation (1.2):  𝑆𝑉𝑖(𝑡, 𝒙) = 𝑝𝑖(𝑡, 𝒙)𝑄𝑖(𝑡, 𝒙)      (1.2) 

There are several kinds of transactions between e-particles and Exchange. First, there are 

transactions those form Exchange Bid-Ask order book. E-particles execute transactions those 

determine Exchange Bid-Ask order book and transactions those delete previous proposals 

from Bid-Ask order book. Bid-Ask order book is a ground for Buy-Sell transactions executed 
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by e-particles (agents) at Exchange. Below we model transactions of e-particles with 

Exchange based on available Bid-Ask order book data.  

Description of transactions of numerous agents with Exchange is a very complex problem. 

To simplify this problem let’s replace precise description of transactions performed by 

separate agents by rougher description of transactions executed during time term Δ by 

numerous e-particles with coordinates in a unit volume dV(x) of e-space. Let’s outline that 

risk coordinates x=(x1,…xn) of e-particles on economic domain of n-dimensional e-space Rn 

are reduced by  0 ≤ 𝑥𝑖 ≤ 𝑋𝑖 , 𝑖 = 1, … 𝑛    (1.3) 

Here xi=0 define most secure and Xi define most risky grades for risk i. Relations (1.3) define 

economic domain (Olkhov, 2017d; 2018) and all economic agents have their “risk” 

coordinates at economic domain (1.3). Let’s assume that a unit volume dV(x) at point x 

contains many separate agents but scales dVi of a unit volume are small to compare with 

scales Xi of economic domain. 𝑑𝑉𝑖 ≪ 𝑋𝑖 , 𝑖 = 1, … 𝑛  ;    𝑑𝑉 = ∏ 𝑑𝑉𝑖𝑖=1,..𝑛    (1.4) 

Let’s aggregate all transactions tri(t,x) of e-particles from a unit volume dV(x) near point x 

during time term Δ and call it as transaction Tr(t,x) from point x. Such approximation 

neglects excess granularity of separate e-particles on e-space and moves description of 

transactions tri(t,x) of separate e-particles (agents) to description of transactions Tr(t,x) as 

function of points x of e-space. Let’s repeat that transactions Tr(t,x) are performed by 

numerous e-particles in a unit volume dV(x) during time term Δ. Time term Δ can equal one 

second, hour, day, week and etc., and is determined by particular problem under 

consideration. This approximation is intermediate between description of transactions of 

separate agents and description of transactions performed by all e-particles of entire 

economics. Let’s call such intermediate approximation as economic hydrodynamic-like 

approximation because it is alike to hydrodynamic approximation in physics. Hydrodynamic 

scales are small to compare with macro scales of fluid flows but each unit volume dV(x) 

contain a lot of physical particles (Landau and Lifshitz, 1987). To define above consideration 

in a more formal manner let’s assume that e-particles on e-space Rn at moment t have 

coordinates x=(x1,…xn) and velocities υ=(υ1,…υn). E-space Rn describes evolution of e-

particles under action of n risks. Velocities υ=(υ1,…υn) describe change of e-particles risk 

coordinates on e-space Rn during time Δ. Transactions tri(t,x) of e-particle i at point x at 

Exchange are defined by (1.1). Let’s define transaction Tr(t,x) from point x as sum of all 
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transactions tri(t,x) of all e-particles i during time term Δ in a unit volume dV(x):  𝑻𝒓(𝑡, 𝒙) = (𝑄(𝑡, 𝒙); 𝑆𝑉(𝑡, 𝒙)) = ∑ 𝒕𝒓𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙); ∆     (2.1) 𝑄(𝑡, 𝒙) = ∑ 𝑄𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆      ;     𝑆𝑉(𝑡, 𝒙) = ∑ 𝑆𝑉𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆  𝒕𝒓𝒊(𝑡, 𝒙) = (𝑄𝑖(𝑡, 𝒙); 𝑆𝑉𝑖(𝑡, 𝒙)) 

Price pi(t,x) of transaction tri(t,x) executed by e-particle i at point x is determined by (1.2). 

Transaction Tr(t,x) as function of point x defines price p(t,x) (2.2) at point x as 𝑆𝑉(𝑡, 𝒙) = 𝑝(𝑡, 𝒙)𝑄(𝑡, 𝒙)     (2.2) 

Price p(t,x) is averaged over prices of transactions performed by agents in a unit volume 

dV(x) at moment t during time Δ. Aggregation by scales of unit volume dV move description 

of transactions of separate e-particles to description of transactions as function of x on e-

space. Let’s outline that transactions Tr(t,x) are associated with points x of e-space, but not 

with separate e-particles. Relations (2.1; 2.2) describe transactions Tr(t,x) as functions of x or 

as continuous transactions media on e-space. To derive economic equations that describe 

evolution of transactions Tr(t,x) one should take into account possible motion of transactions 

media induced by velocities of separate e-particles on e-space. Indeed, velocities υi=(υ1,…υn) 

describe change of “risk” coordinates of e-particle i during time Δ. Thus transactions Tr(t,x) 

determined by (2.1) can flow on e-space alike to flow of fluids. To describe changes of 

transactions Tr(t,x) induced by motion of e-particles on e-space let’s define transactions 

“impulses” pi of e-particle i as: 𝒑𝑖(𝑡, 𝒙) = (𝒑𝑖𝑄(𝑡, 𝒙); 𝒑𝑖𝑆𝑉(𝑡, 𝒙)) = (𝑄𝑖(𝑡, 𝒙) 𝝊𝒊(𝑡, 𝒙) ; 𝑆𝑉𝑖(𝑡, 𝒙) 𝝊𝒊(𝑡, 𝒙))  (2.3) 

Transactions “impulses” pi(t,x) are additive and sum of “impulses” of two e-particles 1 and 2 

equals sum of group of two e-particles (take into account (2.1)): 𝒑(𝑡, 𝒙) = (𝑄(𝑡, 𝒙) 𝒗(𝑡, 𝒙) ;  𝑆𝑉(𝑡, 𝒙) 𝒗(𝑡, 𝒙)) = 𝒑𝟏(𝑡, 𝒙)+𝒑𝟐(𝑡, 𝒙)   (2.4.1) 𝑄(𝑡, 𝒙) 𝒗𝑄(𝑡, 𝒙) = 𝑄1(𝑡, 𝒙) 𝝊𝟏(𝑡, 𝒙) + 𝑄2(𝑡, 𝒙) 𝝊𝟐(𝑡, 𝒙)    (2.4.2) 𝑆𝑉(𝑡, 𝒙) 𝒗𝑆𝑉(𝑡, 𝒙) = 𝑆𝑉1(𝑡, 𝒙) 𝝊𝟏(𝑡, 𝒙) + 𝑆𝑉2(𝑡, 𝒙) 𝝊𝟐(𝑡, 𝒙)   (2.4.3) 𝑄(𝑡, 𝒙) = ∑ 𝑄𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆      ;     𝑆𝑉(𝑡, 𝒙) = ∑ 𝑆𝑉𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆  

Relations (2.4.1-2.4.3) show that “risk” velocities υQ(t,x) of the Volume Q(t,x) of Stocks and 

velocities υSV(t,x) of the Stock Value SV(t,x) can be different. Similar to (2.1) we aggregate 

transactions “impulses” of e-particles in a unit volume dV(x) at moment t during time Δ and 

define transactions “impulses” and velocities as functions of x: 𝑷(𝑡, 𝒙) = (𝑷𝑄(𝑡, 𝒙) ; 𝑷𝑆𝑉(𝑡, 𝒙)) = ∑ 𝒑𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆    (2.5.1) 
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𝑷𝑄(𝑡, 𝒙) = 𝑄(𝑡, 𝒙)𝒗𝑄(𝑡, 𝒙) = ∑ 𝑄𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆ 𝒗𝑖(𝑡, 𝒙)     (2.5.2)  𝑷𝑆𝑉(𝑡, 𝒙) = 𝑆𝑉(𝑡, 𝒙)𝒗𝑆𝑉(𝑡, 𝒙) = ∑ 𝑆𝑉𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆ 𝒗𝑖(𝑡, 𝒙)  (2.5.3) 𝒑𝑖(𝑡, 𝒙) = (𝒑𝑖𝑄(𝑡, 𝒙); 𝒑𝑖𝑆𝑉(𝑡, 𝒙)) = (𝑄𝑖(𝑡, 𝒙)𝒗𝑖(𝑡, 𝒙); 𝑆𝑉𝑖(𝑡, 𝒙)𝒗𝑖(𝑡, 𝒙)) (2.5.4) 𝒗(𝑡, 𝒙) = (𝒗𝑄(𝑡, 𝒙); 𝒗𝑆𝑉(𝑡, 𝒙))      (2.5.5) 

Economic meaning of “impulses” is very simple. “Impulses” pi(t,x) describe flows of 

transactions of separate agents due to motion of agents on e-space. “Impulses” P(t,x) describe 

flows of transactions media induced by collective “risk” motion of all e-particles in a unit 

volume dV(x) during time Δ. Relations (2.1-2.5.5) define transactions Tr(t,x), their 

“impulses” P(t,x) and velocities υ(t,x) as functions of coordinates x on e-space. These 

relations replace modeling transactions tri(t,x) of separate e-particle i at point x on e-space by 

description of transactions Tr(t,x) with less accuracy on e-space determined by coarsening 

over unit volumes dV during time term Δ. Such treatment has certain parallels to 

hydrodynamic approximation in physics (Landau and Lifshitz, 1987; Resibois and De 

Leener, 1977). Hydrodynamic approximation neglect granularity of separate particles and 

describes physical properties of the system as continuous media or physics of fluids. We 

develop similar approximation to describe transactions of e-particles (economic agents) on e-

space. Integral of transactions Tr(t,x) by variable x over e-space Rn defines all transactions 

Tr(t) performed in the entire economics with Exchange at moment t.  𝑻𝒓(𝑡) = (𝑄(𝑡); 𝑆𝑉(𝑡)) = ∫ 𝑑𝒙  𝑻𝒓(𝑡, 𝒙)      (2.6) 𝑄(𝑡) = ∫ 𝑑𝒙  𝑄(𝑡, 𝒙)  ;    𝑆𝑉(𝑡) = ∫ 𝑑𝒙  𝑆𝑉(𝑡, 𝒙) 

Thus the price p(t) (2.7) of transactions Tr(t) performed by all e-particles at moment t equals: 𝑆𝑉(𝑡) = 𝑝(𝑡)𝑄(𝑡)     (2.7) 

To describe evolution and fluctuations of the price p(t) (2.7) one should model evolution and 

fluctuations of (2.1-2.6). Roughening of transactions modeling permits derive economic 

equations that describe transactions Tr(t,x), their “impulses” P(t,x) and velocities υ(t,x). 

2.3. Economic equations for transactions 

Definitions of macro variables and transactions as functions of coordinates on e-space and 

derivation of the economic equations that describe their evolution were presented in (Olkhov, 

2016a; 2017a; 2017b; 2017c; 2018). Below we argue derivation of the economic equations 

for transactions Tr(t,x). Let’s regard transactions Tr(t,x) of selected Stocks as example only. 

The same considerations can be applied to description of transactions with portfolios, any 

Assets and Commodities, transactions that determine Bid-Ask order book or cancel orders 
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from Bid-Ask order book and etc.  

Let’s regard change of transactions Tr(t,x) (2.1) in a unit volume dV(x) at point x. Tr(t,x) can 

change due to two factors. First factor describes change of Tr(t,x) in time as ∂Tr/∂t. Second 

factor describes change of Tr(t,x) in a unit volume dV(x) due to flux of transactions flow υTr 

through surface of a unit volume. Divergence theorem (Strauss 2008, p.179) states that 

surface integral of flux υTr through surface of a unit volume dV(x) equals volume integral of 

divergence υTr. Thus total change of transactions Tr(t,x) in a unit volume dV(x) equals 𝜕𝜕𝑡 𝑻𝒓(𝑡, 𝒙) + 𝛻 ∙ (𝒗(𝑡, 𝒙)𝑻𝒓(𝑡, 𝒙))    (3.1) 

Here υ – velocity of transaction Tr(t,x) on n-dimension e-space Rn determined by (2.1-2.5). 

Taking into account relations (2.5.1-2.5.5) one can present components of Tr(t,x) (3.1) as 𝜕𝜕𝑡 𝑄(𝑡, 𝒙) + 𝛻 ∙ (𝒗𝑄(𝑡, 𝒙)𝑄(𝑡, 𝒙))    (3.2) 𝜕𝜕𝑡 𝑆𝑉(𝑡, 𝒙) + 𝛻 ∙ (𝒗𝑆𝑉(𝑡, 𝒙)𝑆𝑉(𝑡, 𝒙))    (3.3) 

Divergence 𝛻 ∙ equals: 𝛻 ∙ (𝒗𝑄(𝑡, 𝒙)𝑄(𝑡, 𝒙)) = ∑ 𝜕𝜕𝑥𝑖𝑖=1,…𝑛 (𝑣𝑄𝑖(𝑡, 𝒙)𝑄(𝑡, 𝒙)) 

Change of transactions Tr(t,x) can be induced by action of different factors. Let’s note them 

as F1. Then equation on transactions Tr(t,x) takes form: 𝜕𝑻𝒓𝜕𝑡 + ∇ ∙ (𝒗𝑻𝒓) = 𝑭1   ;    𝑭1 = (𝐹1𝑄 ;  𝐹1𝑆𝑉)    (3.4) 

or for components of transaction: for Volume Q(t,x) and for Stock Value SV(t,x) economic 

equations take form: 𝜕𝑄𝜕𝑡 + ∇ ∙ (𝒗𝑄𝑄) = 𝐹1𝑄   ;   𝜕𝑆𝑉𝜕𝑡 + ∇ ∙ (𝒗𝑆𝑉𝑆𝑉) = 𝐹1𝑆𝑉      (3.5) 

Equations (3.4; 3.5) describe a simple balance between evolution of transaction Tr(t,x) at 

point x and other factors that impact change of transactions. Left side (3.4) describes change 

in time and due to flux through surface of a unit volume. Right side describes impact of other 

factors. The same reasons define equations on transactions impulses P(t,x) determined by 

(2.5.1-2.5.5) as: 𝜕𝑷𝜕𝑡 + ∇ ∙ (𝒗𝑷) = 𝑭2  ;    𝑭2 = (𝑭2𝑄;  𝑭2𝑆𝑉)    (3.6.1) 𝜕𝑷𝑄𝜕𝑡 + ∇ ∙ (𝒗𝑄𝑷𝑄) = 𝑭2𝑄   ;    𝜕𝑷𝑆𝑉𝜕𝑡 + ∇ ∙ (𝒗𝑆𝑉𝑷𝑆𝑉) = 𝑭2𝑆𝑉   (3.6.2) 

Left sides of (3.6.1; 3.6.2) describe change of transactions impulses P(t,z) (2.5.1) due to 

change in time ∂P/∂t and due to flux 𝒗𝑷 through surface of unit volume that equal divergence ∇ ∙ (𝒗𝑷). Right-hand side F2 describes action of other factors that impact on transactions 
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impulses P(t,x). Economic equations (3.4; 3.5; 3.6.1; 3.6.2) present formal relations that 

describe evolution of transactions Tr(t,x) and their impulses P(t,x). To study a reasonable 

economic model with equations (3.4-3.6.2) one should define right side factors F1 and F2.  

3. Expectations as functions on e-space 

Let’s use equations (3.4-3.6.2) to model evolution and fluctuations of Transactions of 

selected Stocks at Exchange under action of Expectations. To do that let’s argue Expectations 

of separate e-particles (agents) and their impact on Transactions executed by agents. Let’s 

study a simple model: Transactions are executed under action of Expectations. Expectations 

are formed by current macroeconomic variables and Transactions. As we argue in (Olkhov, 

2017b-c; 2018) Transactions define evolution of macroeconomic variables. Thus it is 

reasonable to assume that Expectations depend on Transactions only. To model relations 

between Transactions and Expectations we present transition from description of 

Expectations of separate agents to description of Expectations as functions of x on economic 

domain of e-space similar to Sec.2.  

3.1. Expectations as functions on e-space 

Let’s call exi(t,x) as Expectations of e-particle i (economic agent) at point x. Expectations are 

treated as factors that impact price fluctuations at least since Muth (1961) and were studied 

by Lucas (1972) and in numerous publications (Sargent and Wallace, 1976; Hansen and 

Sargent, 1979; Kydland and Prescott, 1980; Blume and Easley, 1984; Brock and Hommes, 

1998; Manski, 2004; Brunnermeier and Parker, 2005; Dominitz and Manski, 2005; Klaauw et 

al, 2008; Janžek and Ziherl, 2013; Caporin, Corazzini and Costola, 2014; Greenwood and 

Shleifer, 2014; Lof, 2014; Manski, 2017; Thaler, 2018). There are a lot of studies on 

measuring expectations (Manski, 2004; Dominitz and Manski, 2005; Klaauw et al, 2008; 

Bachmann and Elstner, 2013; Janžek and Ziherl, 2013; Manski, 2017; Tanaka et al, 2018). 

We propose that expectations are measured as probabilities and define execution of 

transactions tri(t,x) under considerations. We don’t specify particular type of expectations 

exi(t,x) like expected returns, expected inflation and etc. As first approximation let’s propose 

that all e-particles (agents) that execute transactions tri(t,x) at Exchange have same, the only 

sort of expectations exi(t,x) that approve performance of transactions tri(t,x). Actually we 

model impact of expectations exi(t,x) on transactions tri(t,x) only.  
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Let’s state that the only sort of expectations exi(t,x) of e-particles i at point x have “weights” 

proportional to their transactions tri(t,x). We define transactions as (1.1) and hence let’s 

define expectations exi(t,x) of e-particles i as two component function  𝒆𝒙𝑖(𝑡, 𝒙) = (𝑒𝑥𝑖𝑄(𝑡, 𝒙); 𝑒𝑥𝑖𝑆𝑉(𝑡, 𝒙))    (4.1) 

Let’s assume that expectations exiQ(t,x) are responsible for decision on trading volume Qi(t,x) 

of transaction (1.1) and expectations exiSV(t,x) are responsible for decision on Stocks value 

SVi(t,x) of transaction (1.1). To aggregate expectations exi(t,x) of all e-particles with 

coordinates x in a unit dV(t,x) during time Δ let’s define “expected transactions” eti(t,x) as 

expectations exi(t,x) “weighted” by transaction tri(t,x). 𝒆𝒕𝑖(𝑡, 𝒙) = 𝒆𝒙𝑖(𝑡, 𝒙)𝒕𝒓𝒊(𝑡, 𝒙) = (𝑒𝑥𝑖𝑄(𝑡, 𝒙)𝑄𝑖(𝑡, 𝒙); 𝑒𝑥𝑖𝑆𝑉(𝑡, 𝒙)𝑆𝑉𝑖(𝑡, 𝒙))  (4.2) 

Relations (4.2) define additive expected transactions eti(t,x). Additivity of (4.2) is required to 

derive expected transaction of group of e-particles as sum of their expected transactions. That 

allows define expected transactions ET(t,x) of group of e-particles with coordinates in a unit 

dV(t,x) during time Δ as: 𝑬𝑻(𝑡, 𝒙) = 𝑬𝒙(𝑡, 𝒙)𝑻𝒓(𝑡, 𝒙) = (𝐸𝑇𝑄(𝑡, 𝑥); 𝐸𝑇𝑆𝑉(𝑡, 𝑥))    (4.3) 𝐸𝑇𝑄(𝑡, 𝑥) = 𝐸𝑥𝑄(𝑡, 𝒙)𝑄(𝑡, 𝒙) = ∑ 𝑒𝑥𝑖𝑄(𝑡, 𝒙)𝑄𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆     (4.4.1)   𝐸𝑇𝑆𝑉(𝑡, 𝑥) = 𝐸𝑥𝑆𝑉(𝑡, 𝒙)𝑆𝑉(𝑡, 𝒙) = ∑ 𝑒𝑥𝑖𝑆𝑉(𝑡, 𝒙)𝑆𝑉𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆   (4.4.2) 𝑬𝒙(𝑡, 𝒙) = (𝐸𝑥𝑄(𝑡, 𝒙) ;  𝐸𝑥𝑆𝑉(𝑡, 𝒙))      (4.4.3) 

Expected transactions ET(t,x) (4.3) and transactions Tr(t,x) (2.1) define aggregate 

expectations Ex(t,x) (4.3; 4.4.3) of e-particles with coordinates x in a unit dV(t,x) during time 

Δ. Relations (4.3; 4.4.1-4.4.3) describe transition from description of expectations exi(t,x) of 

separate agents to description of expectations Ex(t,x) as functions of point x on e-space. To 

derive self-consistent equations that describe relations between transactions Tr(t,x) and 

expectations Ex(t,x) one should derive equations on expectations. To do that let’s use 

expected transactions ET(t,x) (4.3) and derive economic equations for ET(t,x) similar to 

equations (3.4-3.6.2). Let’s use relations (2.3 – 2.5) to define “impulses” Π(t,x) of expected 

transactions ET(t,x). Economic meaning of “impulses” Π(t,x) is similar to transactions 

impulses. Impulses Πi(t,x) of e-particle i at point describe flow of expected transaction 

eti(t,x)=exi(t,x)tri(t,x) induced by motion of e-particle i on e-space with velocity υi=(υ1,…υn). 

Let’s define impulses Πi(t,x) as: 𝜫𝑖(𝑡, 𝒙) = 𝒆𝒕𝒊(𝑡, 𝒙)𝒗𝒊(𝑡, 𝒙) = (𝑒𝑡𝑖𝑄(𝑡, 𝒙)𝒗𝑖𝑄(𝑡, 𝒙); 𝑒𝑡𝑖𝑆𝑉(𝑡, 𝒙)𝒗𝑖𝑆𝑉(𝑡, 𝒙)) 𝒆𝒕𝒊(𝑡, 𝒙)𝒗𝒊(𝑡, 𝒙) = 𝒆𝒙𝒊(𝑡, 𝒙)𝒕𝒓𝒊(𝑡, 𝒙)𝒗𝒊(𝑡, 𝒙) 𝑒𝑡𝑖𝑄(𝑡, 𝒙)𝒗𝑖𝑄(𝑡, 𝒙) = 𝑒𝑥𝑖𝑄(𝑡, 𝒙)𝑄𝑖(𝑡, 𝒙)𝒗𝒊𝑸(𝑡, 𝒙)   (4.5.1) 
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𝑒𝑡𝑖𝑆𝑉(𝑡, 𝒙)𝒗𝑖𝑆𝑉(𝑡, 𝒙) = 𝑒𝑥𝑖𝑆𝑉(𝑡, 𝒙)𝑆𝑉𝑖(𝑡, 𝒙)𝒗𝒊𝑆𝑉(𝑡, 𝒙) 𝒗𝒊(𝑡, 𝒙) = (𝒗𝒊𝑸(𝑡, 𝒙); 𝒗𝒊𝑆𝑉(𝑡, 𝒙)) 

Let’s aggregate Πi(t,x) in a unit volume dV(x) and time term Δ similar to (2.5.1-2.5.5): 𝜫(𝑡, 𝒙) = (𝜫𝑄(𝑡, 𝒙) ; 𝜫𝑆𝑉(𝑡, 𝒙)) = ∑ 𝜫𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆    (4.5.2) 𝜫𝑄(𝑡, 𝒙) = 𝐸𝑥𝑄(𝑡, 𝒙)𝑄(𝑡, 𝒙)𝒖𝑄(𝑡, 𝒙) = ∑ 𝑒𝑥𝑖𝑄𝑄𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆ 𝒗𝑖(𝑡, 𝒙)    (4.5.3) 𝜫𝑆𝑉(𝑡, 𝒙) = 𝐸𝑥𝑆𝑉(𝑡, 𝒙)𝑆𝑉(𝑡, 𝒙)𝒖𝑆𝑉(𝑡, 𝒙) = ∑ 𝑒𝑥𝑖𝑆𝑉𝑆𝑉𝑖(𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆ 𝒗𝑖(𝑡, 𝒙)   (4.5.4) 𝒖(𝑡, 𝒙) = (𝒖𝑄(𝑡, 𝒙); 𝒖𝑆𝑉(𝑡, 𝒙))    (4.5.5) 

Relations (4.3-4.4.3) and (4.5.1-4.5.5) show that expectations Ex(t,x) as medium on e-space 

has velocities u(t,x) (4.5.5) that can be different from velocities υ(t,x) of transactions (2.5.5). 

Economic equations on expected transactions ET(t,x), Π(t,x) and u(t,x) determined by (4.5.1-

4.5.6) take form similar to equations (3.4-3.6): 𝜕𝑬𝑻𝜕𝑡 + ∇ ∙ (𝒖𝑬𝑻) = 𝑮1   ;    𝑮1 = (𝐺1𝑄 ;  𝐺1𝑆𝑉)   (5.1) 𝜕𝐸𝑇𝑄𝜕𝑡 + ∇ ∙ (𝒖𝑄 𝐸𝑇𝑄) = 𝐺1𝑄   ;   𝜕𝐸𝑇𝑆𝑉𝜕𝑡 + ∇ ∙ (𝒖𝑆𝑉 𝐸𝑇𝑆𝑉) = 𝐺1𝑆𝑉    (5.2) 𝜕𝚷𝜕𝑡 + ∇ ∙ (𝒖𝚷) = 𝑮2  ;    𝑮2 = (𝑮2𝑄;  𝑮2𝑆𝑉)    (5.3) 𝜕𝚷𝑄𝜕𝑡 + ∇ ∙ (𝒖𝑄𝚷𝑄) = 𝑮2𝑄   ;    𝜕𝚷𝑆𝑉𝜕𝑡 + ∇ ∙ (𝒖𝑆𝑉𝚷𝑆𝑉) = 𝑮2𝑆𝑉   (5.4) 

Economic equations (5.1-5.4) are similar to equations (3.4-3.6) and describe evolution of 

expected transactions ET(t,x), Π(t,x) under action of factors G1 and G2.  

Equations (3.4-3.6) and equations (5.1-5-4) allow derive equations on expectations Ex(t,x):  𝜕𝑬𝑻𝜕𝑡 + ∇ ∙ (𝒖𝑬𝑻) = 𝑮1   ;    𝑮1 = (𝐺1𝑄 ;  𝐺1𝑆𝑉) 𝜕𝜕𝑡 𝑬𝒙 𝑻𝒓 + ∇ ∙ (𝒖 𝑬𝒙 𝑻𝒓) = 𝑮1   ;    𝑮1 = (𝐺1𝑄 ;  𝐺1𝑆𝑉) 

4. Simple model relations between Transactions and Expectations 

To model mutual impact of expectations Ex(t,x) on transactions Tr(t,x) and vise versa let’s 

assume that factors F1 and F2 depend on expected transactions ET(t,x) (4.3) and their 

impulses Π(t,x) and velocities u(t,x) or their linear operators and factors G1 and G2 have 

similar dependence on Tr(t,x), P(t,x) and υ(t,x). Such approximation permits describe self-

consistent system of equations (3.4-3.6.3) and (5.1-5.4) that model mutual relations between 

transactions Tr(t,x) and expected transactions ET(t,x). Our approach models mutual 

dependence between transactions and expectations and shows possible hidden origin for price 

chaotic fluctuations. Nevertheless we simplify relations between Transactions and 
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Expectations the system of economic equations (3.4-3.6.3) and (5.1-5.4) remains sufficiently 

complex and we propose further simplifications.  

Let’s propose that we know slow mean evolution of transactions Tr(t,x) and expected 

transactions ET(t,x). Let’s describe evolution of small disturbances near mean values. Let’s 

present transactions Tr(t,x) and expectations ET(t,x) as: 𝑻𝒓(𝑡, 𝒙) = 𝑻𝒓𝟎(𝑡, 𝒙) + 𝒕𝒓(𝑡, 𝒙)  ;   𝑬𝑻(𝑡, 𝒙) = 𝑬𝑻𝟎(𝑡, 𝒙) + 𝒆𝒕(𝑡, 𝒙)  (6.1) 

Let’s neglect time dependence of mean Transactions Tr0(t,x) and expected transactions 

ET0(t,x) to compare with time dependence of disturbances tr(t,x) and et(t,x) respectively. 

Relations (6.1) describe transactions Tr(t,x) as sum of mean transactions Tr0(t,x) and small 

disturbances tr(t,x) and we use same representation for expected transactions ET(t,x). In 

Appendix A we present simple model with linear dependence between disturbances of 

transactions tr(t,x) and expected transactions et(t,x). Equations on disturbances tr(t,x) (A.1.3) 

and et(t,x) (A.2.3) for the assumptions (A.3.1; 3.2)  take form (A.4.1-4.2) and (A.4.4):  𝑑𝑑𝑡 𝑞(𝑡) = 𝛼𝑄 𝑒𝑡𝑞(𝑡)  ; 𝑑𝑑𝑡 𝑠𝑣(𝑡) = 𝛼𝑆𝑉 𝑒𝑡𝑠𝑣(𝑡)   (6.2) 𝑑𝑑𝑡 𝑒𝑡𝑞(𝑡) = 𝛽𝑄 𝑞(𝑡)  ; 𝑑𝑑𝑡 𝑒𝑡𝑆𝑉(𝑡) = 𝛽𝑆𝑉 𝑠𝑣(𝑡)   (6.3) 

Equations (6.1-6.3) or (A.4.1-A.4.5) define dimensionless price disturbances π(t) (A.5.1-

A.5.3): 𝜋(𝑡) = 𝑐𝑠𝑖𝑛𝜔𝑆𝑉𝑡 − 𝑑𝑠𝑖𝑛𝜔𝑄𝑡  ;   𝑐 ≪ 1;   𝑑 ≪ 1  (6.4) 

Relations (6.4) present simplest harmonic oscillations of price disturbances π(t). It seems that 

such simple approximation can’t describe chaotic fluctuations of price disturbances. 

Meanwhile we propose that even simple approximation can be origin for development of 

more complex models that may describe chaotic price fluctuations. 

5. Price fluctuations, Expectations and Lorenz attractor 

In this Section we show that disturbances of trading volume q(t), price π(t) and Expectations 

exq(t) and exsv(t) can become origin for deterministic chaotic fluctuations due to parallels to 

Lorenz attractor. Let’s start with equations (A.1.1) on transactions Tr(t) (A.1.3) and equations 

(A.2.1) on expected transactions ET(t) (A.2.2; A.2.3) and obtain equations on disturbances of 

trading volume q(t) (A.1.3), price π(t) (A.5.1) and disturbances of Expectations exq(t) and 

exsv(t) (4.3- 4.4.3) that we denote as: 𝐸𝑥𝑄(𝑡) = 𝐸𝑥𝑄0(𝑡) + 𝑒𝑥𝑞(𝑡) ; 𝐸𝑥𝑆𝑉(𝑡) = 𝐸𝑥𝑆𝑉0(𝑡) + 𝑒𝑥𝑠𝑣(𝑡)  (7.1) 

Equations (A.1.1) allow derive equations on volume Q(t), price p(t), and (A.2.1) on 

expectations ExQ(t) and ExSV(t). Equations on volume Q(t) take form 
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𝑑𝑄(𝑡)𝑑𝑡 = 𝐹1𝑄(𝑡)      (7.2) 

Equations on price p(t) follow from (2.2) and (A.1.1; 7.2): 𝑑𝑆𝑉(𝑡)𝑑𝑡 = 𝑑𝑝(𝑡)𝑄(𝑡)𝑑𝑡 = 𝑄(𝑡) 𝑑𝑝(𝑡)𝑑𝑡  + 𝑝(𝑡)𝐹1𝑄(𝑡) = 𝐹1𝑆𝑉(𝑡)  (7.3) 

Equations on expectations ExQ(t) and ExSV(t) result from (4.3-4.4.3) and (A.2.1): 𝑑𝐸𝑇𝑄𝑑𝑡 = 𝑄(𝑡) 𝑑𝐸𝑥𝑄𝑑𝑡 + 𝐸𝑥𝑄(𝑡) 𝐹1𝑄(𝑡) = 𝐺1𝑄(𝑡)   (7.4) 𝑑𝐸𝑇𝑆𝑉𝑑𝑡 = 𝑝(𝑡)𝑄(𝑡) 𝑑𝐸𝑥𝑆𝑉(𝑡)𝑑𝑡 + 𝐸𝑥𝑆𝑉(𝑡)𝐹1𝑆𝑉(𝑡) = 𝐺1𝑆𝑉(𝑡)   (7.5) 

To derive equations on disturbances q(t), π(t), exq(t), exsv(t) (A.1.3;A.5.1;7.1) let’s take right-

hand factors in (7.2 -7.4) F1Q(t), F1SV(t), G1Q(t), G1SV(t) as (A.1.4; A.2.4). Let’s assume that 

mean values Q0(t), p0(t), ExQ0(t) and ExSV0(t) are slow to compare with variability of 

disturbances q(t), π(t), exq(t), exsv(t) and neglect all derivations by time for mean values Q0(t), 

p0(t), ExQ0(t) and ExSV0(t) to compare with derivations of disturbances. Let’s take all slow 

mean variables as constants and neglect all nonlinear factors for disturbances. Hence obtain 

equations on dimensionless disturbances q(t), π(t), exq(t), exsv(t): 𝑄0 𝑑𝑞(𝑡)𝑑𝑡 = 𝑓1𝑞(𝑡)       (8.1) 𝑄0𝑝0 𝑑𝜋(𝑡)𝑑𝑡 + 𝑝0𝑓1𝑞(𝑡) + 𝑝0𝜋(𝑡)𝐹1𝑄0 = 𝑓1𝑠𝑣(𝑡)   (8.2) 𝑄0 𝑑𝑑𝑡 𝑒𝑥𝑞(𝑡) + 𝐸𝑥𝑄0𝑓1𝑞(𝑡) + 𝑒𝑥𝑞(𝑡)𝐹1𝑄0 = 𝑔1𝑞(𝑡)   (8.3) 𝑄0𝑝0 𝑑𝑑𝑡 𝑒𝑥𝑠𝑣(𝑡) + 𝐸𝑥𝑆𝑉0𝑓1𝑠𝑣(𝑡) + 𝑒𝑥𝑠𝑣(𝑡)𝐹1𝑆𝑉0 = 𝑔1𝑠𝑣(𝑡)  (8.4) 

Equations (8.1-8.4) define relations on dimensionless disturbances of trading volume q(t), 

price disturbances π(t) and disturbances of expectations of trading volume exq(t) and stock 

value exsv(t). Equations (8.1-8.4) with right-hand side factors f1q(t), f1sv(t), g1q(t), g1sv(t) have 

form of dynamical system equations. During last decades such systems established new 

research area that describes deterministic chaotic behavior of coupled oscillators, attractors, 

and non-linear dynamical systems. We note only small part of studies on chaotic dynamics 

(Lorenz, 1963; Andronov, Vitt and Khaikin, 1966; Mandelbrot, 1977; Takens, 1981; 

Thompson and Stewart, 1986; Sagdeev, Usikov and Zaslavsky, 1988; Nicolis and Prigogin, 

1989; Guckenheimer, Holmes, 1990; Bullard and Butler, 1991; Neimark and Landa, 1992; 

Brock and Hommes, 1997; Ott, 2002; Schuster and Just, 2005; Goldstein, J., 2011).  

Below we show that equations on dimensionless disturbances of trading volume q(t), price 

π(t) and expectations disturbances exq(t) can take form of Lorenz attractor. For convenience 

let’s denote 𝑥 = 𝑞(𝑡) ;  𝑦 = 𝜋(𝑡) ;  𝑧 = 𝑒𝑥𝑞(𝑡)     (9.1) 
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We derive equations (8.1-8.4) in the assumption that dimensionless disturbances q(t), π(t), 

exq(t) are small: 𝑥 = 𝑞(𝑡) < 1 ;  𝑦 = 𝜋(𝑡) < 1;  𝑧 = 𝑒𝑥𝑞(𝑡) < 1   (9.2) 

Let’s determine scales of small disturbances (9.1-9.2) as follows. Let’s model price 

disturbances π(t) in the assumption that mean price p0(t) can be regarded as constant. Intraday 

price fluctuations of Stocks at Exchange are usually don’t exceed 5% of mean price. Let’s 

describe disturbances (9.1; 9.2) in the assumption that price fluctuations π(t) don’t exceed 5% 

during time term T. Let’s take trading volume fluctuations q(t) and expectations exq(t) less 

than one. To develop parallels between equations (8.1-8.4) that should describe small 

disturbances during time term T and Lorenz equations (10.1-10.3). Let’s underline that 

trajectories of Lorenz attractor (Lorenz, 1963) 𝑑𝑥𝑑𝑡 =  𝜎(𝑦 − 𝑥)     (10.1) 𝑑𝑦𝑑𝑡 =  −𝑦 − 𝑥𝑧 + 𝑟𝑥     (10.2) 𝑑𝑧𝑑𝑡 =  𝑥𝑦 − 𝑏𝑧      (10.3) 

don’t describe small fluctuations near zero. More over, mean values of variables x, y, z during 

time term T don’t equal zero. Let’s define mean values X(T), Y(T), Z(T) as 𝑋(𝑇) = 1𝑇 ∫ 𝑑𝑡𝑇0 𝑥(𝑡)  ;   𝑌(𝑇) = 1𝑇 ∫ 𝑑𝑡𝑇0 𝑦(𝑡)  ;  𝑍(𝑇) = 1𝑇 ∫ 𝑑𝑡𝑇0 𝑧(𝑡)   (10.4) 

and redefine variables as 𝑥 → 𝑥′ + 𝑋  ; 𝑦 → 𝑦′ + 𝑌; 𝑧 → 𝑧′ + 𝑍    (10.5) 

Then variables x’, y’, z’ for equations (10.1-10.3) will have mean values equal zero. Now 

let’s rescale (10.1-10.3) so they can describe variables due to (9.2). To do that let’s change 

scales of Lorenz equations as follows. Let denote amplitudes along axes x,y,z as min L, N, M 

that obey: |𝑥(𝑡)| ≤ 𝐿 ;   |𝑦(𝑡)| ≤ 5%𝑁 ;  |𝑧(𝑡)| ≤ 𝑀  ,   𝑡 ≤ 𝑇   (10.6) 

Then scale transformation (10.7) for time term t<T  x → 𝐿𝑥;     𝑦 → 𝑁𝑦;    𝑧 → 𝑀𝑧    (10.7) 

defines dimensionless disturbances of price π(t)=y with amplitudes less then 5% and trading 

volume q(t), and expectations exq(t) fluctuations with amplitudes less then 1. Transition 

(10.5) and (10.7) transforms Lorenz equations (10.1-10.3) as follows: 𝑑𝑥𝑑𝑡 =  𝜎 (𝑁𝐿 𝑦 − 𝑥) + 𝜎𝐿 (𝑌 − 𝑋)    (10.8) 𝑑𝑦𝑑𝑡 = 𝐿𝑁 (𝑟 − 𝑍)𝑥 − 𝑦 − 𝑋𝑀𝑁 𝑧 − 𝐿𝑀𝑁 𝑥𝑧 + 1𝑁 (𝑟𝑋 − 𝑌 − 𝑋𝑍)   (10.9) 
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𝑑𝑧𝑑𝑡 =    𝑌𝐿𝑀 𝑥 + 𝑋𝑁𝑀 𝑦 − 𝑏𝑧 + 𝐿𝑁𝑀  𝑥𝑦 + 1𝑀 (𝑋𝑌 − 𝑏𝑍)   (10.10) 

Here constants X,Y,Z define mean values (10.4; 10.5) for t<T and constants L, N, M – define 

amplitude scales (10.6; 10.7). Hence dimensionless variables x,y,z for modified Lorenz 

equations (10.8-10.10) have zero mean values and amplitudes of x and z are less than 1 and 

amplitude of y is less than 5% for time term t<T. If T is large enough than it’s valid for 

different realizations of (10.8-10.10). It is easy to verify that relations (11.1-11.3): 𝑓1𝑞(𝑡) =  𝑄0𝜎 [(𝑁𝐿 𝑦 − 𝑥) + 1𝐿 (𝑌 − 𝑋)]    (11.1) 𝑓1𝑠𝑣(𝑡) = 𝑄0𝑝0 {[𝐿𝑁 (𝑟 − 𝑍) − 𝜎] 𝑥 + [(𝜎 𝑁𝐿 + 𝐹1𝑄0𝑄0 ) − 1] 𝑦 − 𝑋𝑀𝑁 𝑧 − 𝐿𝑀𝑁 𝑥𝑧 + 1𝑁 (𝑟𝑋 − 𝑌 −𝑋𝑍) + 𝜎𝐿 (𝑌 − 𝑋)}    (11.2) 𝑔1𝑞(𝑡) = 𝑄0 [ ( 𝑌𝐿𝑀 − 𝐸𝑥𝑄0𝜎) 𝑥 + (𝑋𝑁𝑀 + 𝐸𝑥𝑄0𝜎 𝑁𝐿 ) 𝑦 + (𝐹1𝑄0𝑄0 − 𝑏) 𝑧 + 𝐿𝑁𝑀  𝑥𝑦  +𝐸𝑥𝑄0 𝜎𝐿 (𝑌 − 𝑋) + 1𝑀 (𝑋𝑌 − 𝑏𝑍)]     (11.3) 

present equations (8.1-8.3) as modified Lorenz equations (10.8-10.10). Let’s underline that 

all constants those define scales of trading volume Q0, price p0 and expectations ExQ0, ExSV0 

remain as free parameters. Hence (10.1-10.3) and modified Lorenz equations (10.8-10.10) are 

valid for different Q0, p0 , ExQ0 and ExSV0.  

Economic meaning of Lorenz equations (10.8-10.10) for disturbances of trading volume q(t), 

price π(t) and expectations exq(t) can be treated as follows. Equation (10.8) states that time 

derivative of trading volume disturbances x=q(t) is positively proportional to price 

disturbances y= π(t) and negative to trading volume x=q(t). Indeed, growth of price y=π(t) 

causes growth of trading volume q(t). As well high trading volumes induce decline of further 

growth of trading volumes. Equation (10.9) states that time derivative of price y= π(t) rise up 

with growth of trading volumes x=q(t) if r is more then amplitude of expectations Z. 

Otherwise time derivative of price y= π(t) has negative responses on trading volumes x=q(t), 

prices y= π(t), expectations z=exq(t) and on product of trading volumes x=q(t) and 

expectations of trading volumes z=exq(t). Indeed, growth of trading volume x=q(t) should 

cause rise of price y= π(t) if amplitude of expectations of trading volumes is relatively small. 

Otherwise, high trading volume expectations will decline price time variable. As well rise of 

price y= π(t) should induce further decline of price derivation dy/dt. High product of trading 

volumes x=q(t) and expectations of trading volumes z=exq(t) indicates possible growth of 

trading volumes in future and that should reduce price derivation dy/dt. Equation (10.10) on 

expectations of trading volumes z=exq(t) states that time derivation of z=exq(t) has negative 
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response on high expectations z=exq(t) and positive response on trading volume x=q(t), price 

y= π(t) and product of trading volume x=q(t) and prices y=π(t). Indeed, high values of 

product of trading volume and prices xy= q(t)π(t) should cause positive growth of 

expectations of trading volumes z= exq(t). On the other hand high values of expectations of 

trading volumes z=exq(t) decline its time derivative due to expected saturation of market. 

Thus modified Lorenz equations (10.8-10.10) have reasonable economic meaning for small 

disturbances of trading volume x=q(t), price y=π(t) and trading volume expectations z=exq(t). 

Modified Lorenz equation (10.8-10.10) may describe small fluctuations of trading volume 

|q(t)|<1, price |π(t)|<5% and expectations |exq(t)|<1 for time term t<T. Description of 

expectations exsv(t) due to equations (8.4) require assumptions on function g1sv(t). Further 

description of dimensionless disturbances x=q(t), y=π(t) and z=exq(t) for t>T may require 

taking into account changes of mean values of trade volumes Q0(t), price p0(t) and 

Expectations ExQ0(t) and other factors that may impact price fluctuations. These effects 

should be studied in upcoming papers. 

6. Conclusions 

We reduce our research by simple model relations between transactions and expectations. It 

seems interesting that general considerations about agents distributions on economic space 

allow derive equations (8.1-8.4) on disturbances of trading volumes q(t), price π(t) and 

expectations disturbances exq(t) and exsv(t). As we show that equations (8.2-8.4) can take 

form of Lorenz attractor. Description of price fluctuations by strange attractor model 

indicated possible deterministic origin for chaotic price disturbances. That is consistent with 

numerous studies that proposed deterministic models for the random price origin (Barnett and 

Chen, 1988; Brock and Sayers, 1988; Bullard and Butler, 1991; Brock and Hommes, 1997; 

1998).  

Lorenz attractor and similar non-linear dynamical systems are studied during last fifty years. 

We are not going to repeat here known results on Lorenz attractor and refer to numerous 

studies (Lorenz, 1963; Takens, 1981; Thompson and Stewart, 1986; Sagdeev et.al, 1988; 

Guckenheimer and  Holmes, 1990; Ott, 2002; Anishchenko et.al, 2003; Schuster and Just, 

2005; Loskutov, 2010; Goldstein, 201; Broer and Takens, 2011). Lorenz model (10.1-10.3) 

for price and expectations disturbances gives new look on possible nature of price and return 

fluctuations and that issue should be studied further. Fluctuations of asset prices due to 

Lorenz attractor equations can have impact on forecasting macro financial variables and on 

assessments of option pricing. It is clear that equations (8.1-8.4) and (10.1-10.3) describe 
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only part of reasons for chaotic price fluctuations. Various random shocks and impact of 

numerous financial variables that were neglected in our treatment for sure play important role 

for price and returns fluctuations. Equations (8.1-8.4) and their extensions can be used for 

modeling properties of price and trading volume fluctuations by strange attractors and allow 

apply general dynamical systems methods (Lorenz, 1963; Guckenheimer and Holmes, 1990; 

Neimark and Landa, 1992; Ott, 2002; Anishchenko et.al, 2003; Broer and Takens, 2011; 

Goldstein, 2011). We regard our result and representation of price fluctuations within Lorenz 

attractor as only a possible case for description of chaotic processes in financial markets. A 

lot of further studies are required to verify above approximations with observed data. Let’s 

repeat that our approach to description of economic and financial transactions, expectations 

and price fluctuations don’t need any assumptions and methods of general equilibrium and 

regard them as unnecessary.  

We propose that econometrics can provide sufficient data for assessment of risk ratings of 

economic agents and modeling their economic and financial variables and transactions on 

economic space. Distributions of agents by their risk ratings on economic space define 

transactions and expectations as functions of coordinates. Expectations play crucial role for 

evaluating transactions. We simplified relations between transactions and expectations to 

study their mutual impact in self-consistent manner. We hope that our model and results can 

be useful for further studies of expectations, price fluctuations and for application of modern 

dynamical systems methods for modeling macroeconomics and macro finance. 
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Appendix A 

Simple solution for price disturbances 

Let’s start with equations (3.4) on transactions Tr(t,x) and derive equations on transactions 

Tr(t) as function of time only. To do that let’s take integral of (3.4) by dx over economic 

domain (1.2): 𝑻𝒓(𝑡) = ∫ 𝑑𝑥 𝑻𝒓(𝑡, 𝒙)  ;   𝑬𝑻(𝑡) = ∫ 𝑑𝑥 𝑬𝑻(𝑡, 𝒙) 

∫ 𝑑𝑥 𝜕𝜕𝑡 𝑻𝒓(𝑡, 𝒙) + ∫ 𝑑𝑥 ∇ ∙ (𝒗𝑻𝒓) = ∫ 𝑑𝑥 𝑭1(𝑡, 𝒙)    
∫ 𝑑𝑥 𝜕𝜕𝑡 𝑻𝒓(𝑡, 𝒙) = 𝑑𝑑𝑡 ∫ 𝑑𝑥 𝑻𝒓(𝑡, 𝒙) = 𝑑𝑑𝑡 𝑻𝒓(𝑡)  ;  ∫ 𝑑𝑥 𝑭1(𝑡, 𝒙) = 𝑭1(𝑡) 

As we mentioned above Divergence theorem (Strauss 2008, p.179) states that surface integral 

of flux υTr through surface of a unit volume equals volume integral of divergence υTr. 

Economic transactions are defined on economic domain (1.2) and are equal zero out of 

economic domain. Hence integral by divergence over economic domain equals surface 

integral of flux υTr through surface of economic domain and equals zero as no fluxes out or 

in economic domain exist. The same statement valid for integral of flux uET through surface 

of economic domain: ∫ 𝑑𝑥 ∇ ∙ (𝒗𝑻𝒓) = 0   ;   ∫ 𝑑𝑥 ∇ ∙ (𝒖𝑻𝒓) = 0     (A.1) 

thus equations (3.4, 3.5) take form: 𝑑𝑑𝑡 𝑻𝒓(𝑡) = 𝑭1(𝑡)  ;   𝑑𝑄(𝑡)𝑑𝑡 = 𝐹1𝑄(𝑡)   ;   𝑑𝑆𝑉(𝑡)𝑑𝑡 = 𝐹1𝑆𝑉(𝑡)     (A.1.1) 

The same reasons are valid to equations on expectations (5.1; 5.2). Due to (6.1) transactions 

TR(t) take form  𝑻𝒓(𝑡) = 𝑻𝒓0(𝑡) + 𝒕𝒓(𝑡) ;  𝑻𝒓0(𝑡) = ∫ 𝑑𝑥 𝑻𝒓0(𝑡, 𝒙) ; 𝒕𝒓(𝑡) = ∫ 𝑑𝑥  𝒕𝒓(𝑡, 𝒙) (A.1.2) 

Due to (2.6) 𝑻𝒓0(𝑡) = (𝑄𝑜(𝑡); 𝑆𝑉0(𝑡));  𝒕𝒓(𝑡) = (𝑞(𝑡); 𝑠𝑣(𝑡)) 𝑄(𝑡) = 𝑄0(𝑡) + 𝑞(𝑡) ;   𝑆𝑉(𝑡) = 𝑝(𝑡)𝑄(𝑡) = 𝑆𝑉0(𝑡) + 𝑠𝑣(𝑡)  (A.1.3) 

Let’s assume that factor F1(t) can be presented as mean part F10(t) and disturbances f1(t) as: 𝑭1(𝑡) = 𝑭10(𝑡) + 𝒇𝟏(𝑡); 𝐹1𝑄(𝑡) = 𝐹10𝑄(𝑡) + 𝑓1𝑞(𝑡);   𝐹1𝑆𝑉(𝑡) = 𝐹10𝑆𝑉(𝑡) + 𝑓1𝑠𝑣(𝑡)  (A.1.4) 

Equation (A.1.1) on disturbances tr(t) takes form: 𝑑𝑑𝑡 𝒕𝒓(𝑡) = 𝒇1(𝑡) ;   𝑑𝑞(𝑡)𝑑𝑡 = 𝑓1𝑞(𝑡)  ;   𝑑𝑠𝑣(𝑡)𝑑𝑡 = 𝑓1𝑠𝑣(𝑡)    (A.1.5) 
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Here f1(t) describes action of disturbances factors only and we propose that f1(t) depends on 

disturbances of expectations et(t) and neglect slow action of mean expectations ET0(t). The 

same assumptions are valid for expectations and their disturbances.  𝑑𝑬𝑻(𝑡)𝑑𝑡 = 𝑮1(𝑡)   ;   𝑑𝐸𝑇𝑄𝑑𝑡 = 𝐺1𝑄(𝑡)   ;   𝑑𝐸𝑇𝑆𝑉(𝑡)𝑑𝑡 = 𝐺1𝑆𝑉(𝑡)   (A.2.1) 𝑬𝑻(𝑡) = 𝑬𝑻0(𝑡) + 𝒆𝒕(𝑡) ;  𝑬𝑻0(𝑡) = ∫ 𝑑𝑥 𝑬𝑻0(𝑡, 𝒙) ; 𝒆𝒕(𝑡) = ∫ 𝑑𝑥  𝒆𝒕(𝑡, 𝒙)  (A.2.2) 𝐸𝑇𝑄(𝑡) = 𝐸𝑇𝑄0(𝑡) + 𝑒𝑡𝑞(𝑡) ; 𝐸𝑇𝑆𝑉(𝑡) = 𝐸𝑇𝑆𝑉0(𝑡) + 𝑒𝑡𝑠𝑣(𝑡)  (A.2.3) 

We propose that factor G1(t) can be presented as mean part G10(t) and disturbances g1(t) 

similar to (A.1.4) : 𝑮1(𝑡) = 𝑮10(𝑡) + 𝒈𝟏(𝑡) 𝐺1𝑄(𝑡) = 𝐺10𝑄(𝑡) + 𝑔1𝑞(𝑡);   𝐺1𝑆𝑉(𝑡) = 𝐺10𝑆𝑉(𝑡) + 𝑔1𝑠𝑣(𝑡)  (A.2.4) 

 and due to (A.2.1) equations on expectations et(t) disturbances take form: 𝑑𝑑𝑡 𝒆𝒕(𝑡) = 𝒈1(𝑡)  ;    𝑑𝑑𝑡 𝑒𝑡𝑞(𝑡) = 𝑔1𝑞(𝑡)   ;  𝑑𝑑𝑡 𝑒𝑡𝑠𝑣(𝑡) = 𝑔1𝑠𝑣(𝑡)  (A.2.5) 

To simplify relations between transactions and expectations let’s assume that factor f1 linear 

depends on expectations disturbances and equations (A.1.1) on disturbances b(t) take form: 𝑑𝑑𝑡 𝒕𝒓(𝑡) = 𝒇1(𝑡) = 𝜶 𝒆𝒕(𝑡) = (𝛼𝑄𝑒𝑡𝑞(𝑡); 𝛼𝑆𝑉𝑒𝑡𝑠𝑣(𝑡)) ;   𝜶 = (𝛼𝑄; 𝛼𝑆𝑉)  (A.3.1) 

Coefficients αQ and αSV are constant. Let’s make same assumptions for equations (A.2.5) and 

take equations on expectations disturbances et(t) in the form similar to (A.3.1):  𝑑𝑑𝑡 𝒆𝒕(𝑡) = 𝒈1(𝑡) = 𝜷 𝒕𝒓(𝑡) = (𝛽𝑄𝑞(𝑡); 𝛽𝑆𝑉𝑠𝑣(𝑡)) ; 𝜷 = (𝛽𝑄; 𝛽𝑆𝑉)  (A.3.2) 𝒇1(𝑡) = (𝛼𝑄𝑒𝑡𝑞(𝑡); 𝛼𝑆𝑉𝑒𝑡𝑠𝑣(𝑡))  ;  𝒈1(𝑡) = (𝛽𝑄𝑞(𝑡); 𝛽𝑆𝑉𝑠𝑣(𝑡))    (A.3.3) 

Assumptions (A.3.3) describe simplest model relations between transactions and expectations 

and present equations (A.3.1-3.2) in a closed form. We neglect action of transactions 

impulses P(t,x) and expectations impulses Π(t,x) on evolution of transactions and 

expectations disturbances and reduce system of equations (3.4- 3.6.3) and (5.1-5.4) to system 

of equations (A.3.1-3.2). For components of transactions disturbances tr(t)=(q(t); sv(t)) 

(A.1.3) and expectations disturbances et(t)=(etq(t); etsv(t)) (A.2.3) equations (A.3.1-3.2) take 

form: 𝑑𝑑𝑡 𝑞(𝑡) = 𝛼𝑄 𝑒𝑡𝑞(𝑡)  ; 𝑑𝑑𝑡 𝑠𝑣(𝑡) = 𝛼𝑆𝑉 𝑒𝑡𝑠𝑣(𝑡)   (A.4.1) 𝑑𝑑𝑡 𝑒𝑡𝑞(𝑡) = 𝛽𝑄 𝑞(𝑡)  ; 𝑑𝑑𝑡 𝑒𝑡𝑠𝑣(𝑡) = 𝛽𝑆𝑉 𝑠𝑣(𝑡)    (A.4.2) 

For case 𝛼𝑄𝛽𝑄 < 0 ;  𝛼𝑆𝑉𝛽𝑆𝑉 < 0 
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equations (A.4.1-4.2) describe oscillations of transactions disturbances q(t) and sv(t) with 

frequencies ωQ and ωSV: 𝜔𝑄2 = −𝛼𝑄𝛽𝑄 ;  𝜔𝑆𝑉2 = − 𝛼𝑆𝑉𝛽𝑆𝑉     (A.4.3) ( 𝑑2𝑑𝑡2 + 𝜔𝑄2  ) 𝑞(𝑡) = 0  ;  ( 𝑑2𝑑𝑡2 + 𝜔𝑆𝑉2  ) 𝑠𝑣(𝑡) = 0   (A.4.4) 

Transactions disturbances in simplest case take form 𝑞(𝑡) = 𝑄0(𝑡) 𝑐 𝑠𝑖𝑛𝜔𝑄𝑡  ;    𝑠𝑣(𝑡) = 𝑆𝑉0(𝑡) 𝑑 𝑠𝑖𝑛𝜔𝑆𝑉𝑡  (A.4.5) 

Here c and d – constants that describe relative amplitudes of q(t) and sv(t). We propose 

(A.1.4) that Q0(t) and SV0(t) are slow to compare with disturbances and frequencies ωQ and 

ωSV so we treat Q0(t) and SV0(t) in relations (A.4.5) as constants and use form (A.4.5) for 

convenience only. Due to (2.7) and (A.1.3) price p(t) of transaction (A.1.2) take form: 𝑝(𝑡) = 𝑝0(𝑡)(1 + 𝜋(𝑡))     (A.5.1) 

p0(t) – is a mean price determined by ratio of slow mean stock value Tr0SV(t) and trading 

volume Tr0Q(t) components of transactions: 𝑝0(𝑡) = 𝑆𝑉0(𝑡)/𝑄0(𝑡)     (A.5.2) 

and π(t) – dimensionless price disturbances determined by transactions disturbances with 

price scale p0 = p0(t). Let’s assume that mean price p0(t) is slow to compare with price 

disturbances and consider p0(t) as constant p0. For the first approximation by transactions 

disturbances q(t)/Q0(t) price disturbances π(t) take form 𝜋(𝑡) = 𝑠𝑣(𝑡)𝑆𝑉0(𝑡) − 𝑞(𝑡)𝑄0(𝑡)  
Simple relations (A.4.5) give for dimensionless price disturbances π(t): 𝜋(𝑡) = 𝑑 𝑠𝑖𝑛𝜔𝑆𝑉𝑡 − 𝑐 𝑠𝑖𝑛𝜔𝑄𝑡     ;  𝑐 , 𝑑 ≪ 1   (A.5.3) 

Relations (A.5.3) describe simplest harmonique oscillations of dimensionless price 

disturbances induced by action of expectations disturbances (A.4.1-2). Market reality is much 

more complex, but any complex issue may have simple origin. 
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