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Abstract 

 

This paper proposes a stochastic frontier panel data model which includes time-invariant 

unobserved heterogeneity along with the efficiency effects. Following Paul and Shankar 

(2018), the efficiency effects are specified by a standard normal cumulative distribution 

function of exogenous variables which ensures the efficiency scores to lie in a unit interval. 

This specification eschews one-sided error term present in almost all the existing inefficiency 

effects models. The model parameters can be estimated by non-linear least squares after 

removing the individual effects by the usual within transformation or using non-linear least 

squares dummy variables (NLLSDV) estimator. The efficiency scores are directly calculated 

once the model is estimated. An empirical illustration based on widely used panel data on 

Indian farmers is presented.  
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1. Introduction 

 

There is a vast literature on the measurement of technical (in) efficiency based on stochastic 

frontier models ever since the pioneering studies of Aigner et al. (1977), and Meeusen van den 

Broeck (1977).  In most of the models, inefficiency is captured by a half normal or truncated 

normal distribution, and a transformation proposed by Jondrow et al. (1982) (popularly known 

as JLMS estimator) is utilised to derive the technical inefficiency scores. A number of 

subsequent stochastic frontier studies have focussed on explaining inefficiency. For this 

purpose, some studies notably by Kalirajan (1981) and Pitt and Lee (1981) have followed a 

two-step procedure. In the first step, the production frontier is estimated, and the technical 

inefficiency scores are obtained for each firm.  In the second step, these technical inefficiency 

scores are regressed against a set of variables which are hypothesized to influence firm’s 

inefficiency. Given the drawbacks associated with the two-step method1, some recent studies 

estimate the inefficiency scores and exogenous effects in one single step.  Amongst these 

studies, the most popular are those of Kumbhakar et al. (1991), Huang and Liu (1994) and 

Battese and Coelli (1995). In order to examine the exogenous influence on inefficiency, these 

authors parameterize the mean of pre-truncated distribution. These models are further 

complemented by Caudill and Ford (1993), Caudill et al. (1995) and Hadri (1999) who account 

for potential heteroscedasticity by parameterizing the variance of pre-truncated distribution. 

Wang (2002) proposes a more general model that combines these two strands of one-step 

models.  

  

Availability of Panel data has led to further improvements in the stochastic frontier modelling, 

allowing for time-invariant unobserved heterogeneity. Some of the earlier panel data stochastic 

1
 See, for example, Battese and Coelli (1995), Simar and Wilson (2007) and Wang (2002). 
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frontier studies treated unobserved heterogeneity as a measure of inefficiency (eg. Schmidt and 

Sickles, 1984; Kumbhakar, 1990; Battese and Coelli, 1992).  This approach does not allow for 

individual effects (in the traditional sense) to exist alongside inefficiency effects. 

 

Greene (2005) proposes a “true fixed-effect” model, which is essentially a standard fixed-effect 

panel data model augmented by an additional one-sided error term, whose mean is a function 

of inefficiency effects.  In this model, the heterogeneity is represented by dummy variables and 

the problem of incidental (nuisance) parameters is encountered. Greene’s Monte Carlo 

simulations reveal that this problem does not affect the frontier coefficients, but it leads to 

inconsistent variance estimates.  A similar result is reported in Wang and Ho (2010). The error 

variances are important in the stochastic frontier context because they affect the extraction of 

inefficiency scores from estimated composite residuals (Jondrow et al., 1982). 

 

Chen et al. (2014) and Belotti and Ilardi (2017) adopted different estimation approaches to 

estimate Greene’s model. The estimators proposed in these studies provide consistent estimates 

of the frontier parameter vector β and composite error variance 2σ even for small N (number 

of firms) and T (time observations for each firm). However, these and couple of other studies 

which explicitly account for ‘persistent’ (time-invariant) and ‘transient’ (time varying) 

inefficiencies, (eg. Colombi et al., 2014) utilise JLMS transformation (Jondrow et al., 1982) to 

derive the inefficiency scores. As shown in Schmidt and Sickles (1984) the JLMS estimator is 

not consistent in that the conditional mean or mode of the random variable representing 

inefficiency component (u) given the composite error (v-u) term, that is, u v u− never 

approaches u even when the number of cross-sectional units tends to infinity.  However, if the 
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panel data are used, this limitation can be overcome under certain other assumptions, some of 

which may be less realistic (Parmeter and Kumbhakar, 2014)2. 

 

Parmeter and Kumbhakar (2014) discuss a distribution free inefficiency effects model which 

was first proposed in Simar et al. (1994) and later explained in detail in Wang and Schmidt 

(2002) and Alvarez et al. (2006). Parmeter et al. (2017) non-parametrically estimate 

distribution free inefficiency effects using a partly linear model initially proposed by Robinson 

(1988). This model is similar to the one proposed by Deprins and Simar (1989a, 1989b) and 

extended in Deprins (1989). Paul and Shankar (2018) propose a distribution free efficiency 

effect model to estimate technical efficiency scores3. The efficiency effects are specified by a 

standard normal cumulative distribution function of exogenous variables which ensures the 

efficiency scores to lie in a unit interval. Their model eschews one-sided error term present in 

almost4 all the existing inefficiency effects models.   

 

However, none of the existing distribution free models including more recent ones by Parmeter 

et al. (2017) and Paul and Shankar (2018) account for unobserved heterogeneity.  The present 

paper extends Paul and Shankar’s (2018) model to account for unobserved heterogeneity within 

the framework of panel stochastic frontier. While this technique can be applied to stochastic 

2 Battese and Coelli (1988) have proposed an alternative estimator ( { }( )exp − −E u v u  ). Kumbhakar and Lovell 

(2000, pp.77-79) discuss this and the JLMS estimator in details and also refer to related findings of Horrace and 

Schmidt (1996). 

 
3 In the efficiency literature, the term ‘distribution free’ is mentioned in Parmeter and Kumbhakar (2014) to 

refer to the fact that inefficiency estimation need not utilize the truncated normal distribution. Parmeter and 

Kumbhakar (2014) utilize a scaling function and Paul and Shankar (2018) use a cumulative distribution function 

to derive efficiency scores. The relevant details are provided in Section 2 of this paper. 

 
4 Even though the model as proposed in Parmeter and Kumbhakar (2014) requires no distributional assumptions 

for the inefficiency term, it does invoke the scaling property in which the inefficiency term is initially assumed to 

have a basic distribution such as half or truncated normal distribution. Further, Parmeter et al. (2017) make no 

distributional assumptions concerning the inefficiency term but the estimation is performed in a non-parametric 

framework 
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frontiers of any type, production, cost or any other, the analytical framework and empirical 

application presented in this paper are specific to a production frontier.  The parameters of the 

production function and efficiency effect specification can be estimated by non-linear least 

squares after removing the individual effects by the usual within transformation or using non-

linear least squares dummy variables (NLLSDV) estimator. The efficiency scores are directly 

calculated once the model is estimated.  

 

The paper is organised as follows. Section 2 provides a review of studies based on panel data 

stochastic frontier modelling of inefficiency.  Section 3 discusses modelling of technical 

efficiency effects while accounting for firm-specific unobserved heterogeneity.   An empirical 

exercise based on panel data on Indian farmers is presented in Section 4. Section 5 provides 

concluding remarks.  

 

2.  A Review of Literature on Efficiency Measurement Based on Panel Data Stochastic 

Frontier Models  

 

The literature on efficiency measurement based on panel data stochastic frontier is quite rich 

and comprehensive.  However, the review of literature presented below is brief and selective. 

It covers topics such as unobserved heterogeneity, true fixed effects, persistent and time 

varying inefficiencies, and distribution free efficiency effects.  

 

(i) Modelling Unobservable Firm Effects as a Measure of Inefficiency 

The role of unobservable individual effects in the panel data estimation of stochastic frontier 

models has been recognised for long. In some of the early panel data stochastic frontier studies, 



6 

 

individual effects are interpreted as inefficiency.  For example, Schmidt and Sickles (1984) 

consider the following stochastic production frontier specification.  

 
it i it ity xα β ε= + + ,        i =1, … , N,    t = 1, . . . , T.    (1) 

where yit is log of output and 
itx  is a vector whose values are functions of input quantities and 

time, i and t are cross section and time subscripts respectively, αi is time-invariant unobserved 

firm-specific (individual) effect, and εit is a random noise term. Equation (1) is consistently 

estimated by ‘within group’ ordinary least squares. After the model parameters are estimated, 

individual effects are recovered and then adjusted to conform to an inefficiency interpretation 

as  

 * max= − =  
i i iwhereα α α α α                  (2) 

That is, inefficiency is measured as the difference between a particular firm’s fixed effects and 

the firm that has the highest estimate of the fixed effects in the sample. By interpreting the firm 

specific term as ‘inefficiency’ any unmeasured time invariant cross firm heterogeneity is 

assumed away. The inefficiency estimates so obtained are time-invariant.  Obviously, this 

approach does not allow for individual effects (in the traditional sense) to exist alongside 

inefficiency effects. 

 

The time-invariant inefficiency assumption has been relaxed in a number of subsequent studies, 

including Kumbhakar (1990) and Battese and Coelli (1992). These studies specify inefficiency 

(
itu ) as a product of two components. One of the components is a function of time and the other 

is an individual specific effect so that ( )it iu G t u= × . For example, in Battese and Coelli (1992) 

( )( ) expG t t Tη= − −  
5 and ( )2,iu N µ σ+ 6. In these models, however, the time varying 

5 η is an unknown scale parameter of the exponential function. 

6 ( )2,N µ σ+
 refers to truncated normal distribution. 
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pattern of inefficiency is the same for all individuals, so the problem of inseparable inefficiency 

and individual heterogeneity remains. 

 

(ii) True Fixed Effects Models  

Greene (2005) has strongly argued that inefficiency effect and the time- invariant firm-specific 

effect are different and should be accounted for separately in the estimation. If the firm-specific 

heterogeneity is not adequately controlled for, then the estimated inefficiency may be picking 

up firm-specific heterogeneity in addition to or even instead of inefficiency. Thus, inability of 

a model to estimate individual effects in addition to the inefficiency effect poses a problem for 

empirical research. Greene (2005) proposed the following ‘True Fixed Effects’ (TFE) model 

which account for unobserved firm specific heterogeneity along with time varying inefficiency. 

 
it i it it it i it ity x v u xα β α β ε= + + − = + +                  (3) 

Assuming that the inefficiency term 
itu  is half normally distributed, that is, ( )20,itu N σ+ , 

the log likelihood function for the fixed effects stochastic frontier model is expressed as 

 

 

1 1

2
log log

N T

it i it it i it

i t

y x y x
L

α β α βλ φ
σ σ σ= =

 − − − −      = Φ −               
∑∑                              (4) 

 

where ( ).φ  and ( ).Φ  are the probability and cumulative density functions of a standard normal 

distribution respectively, 2 2

u v
σ σ σ= +  is the standard deviation of the composite error term 

it it itv uε = − and u

v

σλ
σ

=  is the ratio of inefficiency standard deviation to noise standard 

deviation. Maximization of the unconditional log likelihood function in (4) is done by ‘brute 

force’ even in the presence of possibly thousands of nuisance (incidental) parameters by using 
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Newton’s method. Based on Monte Carlo simulation, Greene shows that β  estimates are not 

biased but the residual estimates are biased possibly due to incidental parameters problem7.  

 

Wang and Ho (2010) eliminate incidental parameters by either first differencing or within 

transformation. Their model is specified as: 

 
it i it ity xα β ε= + + ,                             (5.1) 

it it itv uε = − ,                    (5.2) 

            ( )20,it vv N σ ,                   (5.3) 

             *

it it i
u h u= × ,                    (5.4) 

             ( )it ith f z δ= ,                   (5.5) 

              ( )* 2,i uu N µ σ+ .                   (5.6) 

itu is the technical inefficiency and  
itz  is a vector of variables explaining the inefficiency. The 

model exhibits the ''scaling property'' in the sense that, conditional on
itz , the one-sided error 

term equals a scaling function hit multiplied by a one-sided error distributed independently of

itz . With this property, the shape of the underlying distribution of inefficiency is the same for 

all individuals, but the scale of the distribution is stretched or shrunk by observation-specific 

factors
itz . The time-invariant specification of *

i
u  allows the inefficiency 

itu  to be correlated 

over time for a given individual.  

 

 

 

 

7  The incidental parameters problem is first defined in Neyman and Scott (1948) and surveyed in Lancaster 

(2000). 
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On first differencing, the above equations result in the following: 

 ( )

( )

*

* 2

,

,

0, ,

,

,

i i i

i i i

i

i it i

i u

y x

v u

v MVN

u h u

u N

β ε

ε

µ σ+

∆ = ∆ + ∆

∆ = ∆ − ∆

∆ Σ

∆ = ∆ ×

 

  

 





         (6) 

where ( ) { }2 3, ,..., , , , , ,i i i iTw w w w w y x u vε′∆ = ∆ ∆ ∆ ∈ . The first-difference introduces 

correlations of 
itv∆ within the ith panel, and the ( ) ( )1 1T T− × −  variance-covariance matrix of 

the multivariate normal distribution (MVN) of 
iv∆  is given by 

 

 
2

2 1 0  0

1 2 1 0

0

1

0 0 1 2

vσ

− 
 − − 

Σ =  
 − 
 − 




   
   



       (7) 

Marginal likelihood function is then derived and estimation is performed by numerically 

maximising the marginal log-likelihood function of the model (see Wang and Ho, 2010, p. 288 

for details). Monte Carlo simulations carried out in their paper indicate that while the incidental 

parameters problem does not affect the estimation of slope coefficients, it does introduce bias 

in the estimated model residuals. Since the inefficiency estimation is based on residuals, 

incident parameter problem should be of concern to empirical researchers, particularly when T 

is not large.8 

8
 Wang and Ho (2010) also estimated their model after within transformation and the results of Monte Carlo 

simulations do not alter the conclusions.  
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Chen et al. (2014) suggest an alternative to the TFE treatment of Wang and Ho (2010). 

Specifically, they propose a consistent marginal maximum likelihood estimator (MMLE) for 

the TFE model exploiting a within-group data transformation and the properties of the closed 

skew normal (CSN) class of distributions (Gonzalez-Farias et al., 2004).  They also conduct a 

simulation exercise and did not encounter any bias in the estimation of variance that Greene 

(2005) and Wang and Ho (2010) have found in their studies.  

 

Belotti and Ilardi (2017) propose two alternative consistent estimators which extend the Chen 

et al. (2014) results in different directions. The first estimator is a marginal maximum simulated 

likelihood estimator (MMSLE) that can be used to estimate both homoscedastic and 

heteroskadastic normal-half normal and normal-exponential models. This estimator allows 

only the time-invariant inefficiency effects. The second is a U-estimator based on all pairwise 

quasi-likelihood contributions constructed exploiting the analytical expression available for the 

marginal likelihood function when T = 2. This strategy allows to provide a computationally 

feasible approach to estimate normal-half normal, normal-exponential and normal-truncated 

normal models in which inefficiencies can be heteroskedastic and may follow a first-order 

autoregressive process. This estimator allows the modelling of inefficiency variance9 as a 

function of exogenous effects.  Finally, the finite sample properties of the proposed estimators 

are investigated by conducting Monte Carlo simulations. The results show good finite sample 

properties, especially in small samples.  

 

9 Existing effects models parameterize the mean of the pre-truncated distribution as a way to study the 

exogenous influence on inefficiency. 
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In another related research, Wikstrom (2015) suggests a class of consistent method of moment 

estimators that goes beyond the normal half-normal TFE model proposed by Greene (2005). 

This is demonstrated by deriving a consistent normal-gamma TFE estimator. 

 

 (iii) Models with Persistent and Time Varying Inefficiencies 

In some  panel data based models, technical inefficiency is viewed as consisting of two 

components, namely, persistent (long run) inefficiency and time varying (short run) 

inefficiency.  The persistent inefficiency is time-invariant and could arise due to the presence 

of rigidity within a firm’s organisation and production process. Unless there is a change in 

something that affects management practices at the firm (for example, new government 

regulations or a change in ownership), it is unlikely that persistent inefficiency will change.  

The time varying inefficiency could be due to non-organisational factors that can be reduced/ 

removed in the short run even in the presence of organisational rigidities10. The models 

proposed by Kumbhakar (1991), Kumbhakar and Heshmati (1995), Kumbhakar and 

Hjalmarsson (1993, 1995) treat firm effects as persistent inefficiency and include another 

component to capture time varying technical inefficiency and thus do not account for the 

heterogeneity effects.  The task of estimating these two inefficiencies while also allowing for 

firm-effects heterogeneity is undertaken in Tsionas and Kumbhakar (2012) and Colombi et al. 

(2014). The model proposed by these authors can be written as (see Kumbhakar et al., 2012): 

10 Colombi et al. (2014) have clarified the difference between persistent and time-varying inefficiencies by giving 

an example of a hospital which has more capacity (beds) than the optimal required level, but downsizing may be 

a long-run process due to social pressure. This implies that the hospital has a long-run inefficiency since this gap 

cannot be completely recovered in the short-run. But this hospital may increase its efficiency in the short-run by 

reallocating the work force across different activities. Thus, some of the physicians' and nurses' daily working 

hours might be changed to include other hospital activities such as acute discharges. This is a short-run 

improvement in efficiency. Hence, the hospital continues to suffer from long run inefficiency due to excess 

capacity, but the time varying activities have improved part of its short-run inefficiency. 
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( )

( )

( )

( )

2

2

2

2

0,

0,

0,

0,

it i it it it i

i w

it v

it u

i h

y w x v u h

w N

v N

u N

h N

α β

σ

σ

σ

σ

+

+

+

= + + + − −









       (8) 

In equation (8) 
iw , 

itu , 
ih respectively represent firm-specific unobserved heterogeneity, 

transient inefficiency and persistent inefficiency. Fillipini and Greene (2016) develop a 

practical full information maximum simulated likelihood estimator for this model in order to 

reduce the extreme complexity of the log likelihood function in Colombi et al. (2014).    

 

(iv) Distribution Free Models of (In)efficiency Measurement 

Parmeter and Kumbhakar (2014) discuss a model possessing the scaling property which can be 

estimated without making any distributional assumption. Their model can be written as  

 ( )it it it it ity x v g z uβ γ= + −                                 (9) 

where ( ) itz

it
g z e

γγ = is the scaling function and 
itu the basic distribution such as half-normal or 

truncated normal. The conditional mean of y, given x and z, is  

( ), itz

it it it it
E y x z x e

γβ µ= −                                                       (10) 

where ( )itE uµ = . The equation (9) can be re-written as 

( )it it itz z z

it it it it it ity x e v e u x e
γ γ γβ µ µ β µ ε= − + − − = − +                 (11) 

where ( )itz

it it it
v e u

γε µ= − −  is independent but not identically distributed. This model can be 

estimated with nonlinear least squares by minimizing ( )2

1 1= =

− +∑∑ it

N T
z

it it

i t

y x e
γβ µ . 
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Parmeter et al. (2017) estimate the following partly linear regression model initially proposed 

by Robinson (1988), which does not invoke the scaling property. 

          ( ) ( )( ) ( )it it it it it it it it it it it ity x v u x g z v u g z x g zβ β γ γ β γ ε= + − = − + − − = − +              (12) 

where ( )( )it it it itv u g zε γ= − −  and ( ) ( ) 0it itE u g z γ= > . To estimate β , the following equation 

is required. 

           ( ) ( )( )it it it it it it ity E y z x E x z β ε− = − +                                           (13) 

Since, ( )it itE y z and ( )it itE x z are unknown, to obtain consistent estimate of β for the partly 

linear model of Robinson (1988) the conditional means are replaced with their nonparametric 

estimates. 

 

As pointed out in Parmeter and Kumbhakar (2014), the above two models, (11) and (12), suffer 

from certain limitations. First, to avoid identification issues, z cannot contain a constant term 

in models (11) and (12). Second, in model (11), sinceε depends on z  through z
e

γ , x and z 

cannot contain common elements. However, Parmeter et al. (2017) show that ( )x E x z− in 

(13) is uncorrelated with ε and hence the correlation between z and x is not an issue. Finally, 

it is possible to obtain negative estimates of ( )g z  in model (12) which is inconsistent with the 

notion that ( )g z  represents average inefficiency. 

 

Paul and Shankar (2018) propose a distribution free model wherein the efficiency effects are 

specified by a standard normal cumulative distribution function of exogenous variables. This 

ensures the efficiency scores to lie in a unit interval. Their model eschews one-sided error term 

present in almost all the existing inefficiency effects models.  The model contains only a 
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statistical noise term (v), and its estimation is done in a straight forward manner using the non-

linear least squares. Once the parameters are estimated, the efficiency scores are calculated 

directly. 

 

However, all the existing distribution free models including more recent ones by Parmeter et 

al. (2017) and Paul and Shankar (2018) do not account for unobserved heterogeneity.  In the 

next section, we extend Paul and Shankar’s (2018) stochastic frontier model to account for 

unobserved heterogeneity. 

 

3. The Proposed Model  

Consider the following TFE stochastic production frontier efficiency effects model which 

accounts for time-invariant unobserved heterogeneity.  

exp( ) ( )it i it it itY x H zα β ε γ= + +                                                             (14) 

where Yit is the quantity of output; 
itx  is a ( )1 K×  vector whose values are functions of input 

quantities and time, and β  is the corresponding coefficient vector ( )1K × .   αi is firm-specific 

unobserved effect, and 
itε  represents the random noise. ( )itH z γ  represents the efficiency term 

and is required to lie between 0 and 1, that is, 0 ( ) 1itH z γ≤ ≤ . Any cumulative distribution 

function (cdf) will satisfy this property.   

 

Taking logarithm on both sides of (14), we have 

( )ln( ) ln ( )it it i it it ity Y x H zα β γ ε= = + + +                    (15) 

The within transformation will eliminate unobserved firm-specific effects. Thus, on subtracting 

time averages of the concerned variables, we have 
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( ) ( )

( )

1 1 1 1

1

1

1

1

1 1 1 1
ln ( ) ln ( )

( )
ln

( )

( )
ln

( )

i i i i

i i

i i

T T T T

it it it it it it it it

t t t ti i i i

it
it i it i it i

T T

it

t

it
it it

T T

it

t

y y x x H z H z
T T T T

or

H z
y y x x

H z

H z
y x

H z

β γ γ ε ε

γβ ε ε

γ

γβ

γ

= = = =

=

=

 
− = − + − + − 

 

 
 
 

− = − + + − 
  
    




= +
 
 
 

∑ ∑ ∑ ∑

∏

∏
 

itε




 
+ 

 
 





(16) 

where 
1

1 iT

i it

ti

w w
T =

= ∑ and { }, , ,i it iw w w w y x ε= − ∈ . This equation is written assuming that the 

panel data are unbalanced. However, in the case of balanced data, Ti is to be replaced by T for 

all i.  

 

Equation (16) can be estimated by minimizing the following sum of squared errors with respect 

to parameter vectorθ : 

  ( )

2

1

1 1

1

( )
ln

( )

i

i i

TN

it
N it it

T Ti t

it

t

H z
Q y x

H z

γθ β

γ
= =

=

  
  
  

= − −  
   
      

∑∑
∏

               (17) 

where ( ),θ β γ ′′ ′= . Alternatively, one could use non-linear least square dummy variable 

estimator (NLLSDV) by minimising  

2

1

1

1 1 1

1

( )
ln

( )

i

i

TN N

it
it i i it

T Ti t i

it

t

H z
y d x

H z

γα β

γ

−

= = =

=

  
  
  − − −  

   
      

∑∑ ∑
∏

                              (18) 
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where, 
id is firm dummy which takes a value of 1 for the ith firm and 0 otherwise and 

iα  is the 

corresponding coefficient. Equation (17) or (18) can be estimated using the nonlinear least 

squares option available in any standard econometric package such as EViews/Stata/Matlab.   

 

We assume the efficiency term to take a probit functional form, that is, ( ) ( )it itH z zγ γ= Φ 11, 

where Φ  is a standard normal cdf, 
itz  is a vector containing a constant 1 and exogenous 

variables12 assumed to influence efficiency and γ  is the corresponding coefficient vector13.   

 

4. An Empirical Illustration  

Annual data from 1975–1976 to 1984–1985 on farmers from the village of Aurepalle in State 

of Andhra Pradesh in India14 are used for empirical illustration. The data are unbalanced for 34 

farmers with 271observations over the period of 10 years15. This data set was made available 

to us by Hung-Jen Wang to whom we are thankful. In the past, this dataset has been used in 

11 Our model can be arrived at by adding a firm specific fixed effect term to equation (9) and replacing ( )it
g z γ  

with [ ]( )1
ln

it
z γ

µ
− Φ . 

12 A potential limitation of our specification as well most other distribution free inefficiency effects models 

including the recent one by Parmeter et al. (2017) is that the firms with the same z have the same efficiency. 

However, in most practical applications if sufficient number of variables are included into the (in) efficiency 

effects model then it is less likely that any two firms in the same time period or the same firm across different 

time periods will have the same z vector. 

 
13 We could have chosen any other function which is not a cumulative distribution function as long as this function 

is constrained to lie between 0 and 1. For example, we could have chosen 
1

( )
1

it

it

H z
z

γ
γ

=
+

 and restricted

0itz γ ≥ . Another example of a function which is not a distribution function but whose range lies is the unit 

interval, is a Gompertz function of the form ( )
zite

it
G z e

γ

γ −= (see Simar et al. 1994)). Instead, we chose probit 

function because it is quite popular in econometric literature and we do not have to impose any constraints on the 

parameter vector γ so that 0 ( ) 1itH z γ< < .  

 

14  These farm-level data on the agricultural operations of farmers were collected by the International Crops 

Research Institute for the Semi-Arid Tropics (ICRISAT). 

 
15 This data set contains all the 10 year observations for 16 of the farmers, and 2 minimal observations for 2 of 

the farmers. 
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several inefficiency studies including Battese and Coelli (1995), Coelli and Battese (1996) and 

Wang (2002). In line with these studies, the Cobb-Douglas functional form is chosen for our 

stochastic production function. For the production function, yit: ln(Yit) where Y is the total value 

of output (in Rupees, in 1975-76 values) from the crops which are grown; xit: {ln(Landit),  

ln(Laborit), ln(Bullockit), PILandit, ln[Max(Costit, 1 − Dit)], Yearit} where Land is the total area 

of irrigated and unirrigated land operated, Labor is the total hours of family and hired labor, 

Bullock is the hours of bullock labor and PILand is the proportion of operated land that is 

irrigated. Cost is the value of other inputs, including fertilizer, manure, pesticides, machinery, 

etc. and D is a variable which has a value of one if Cost is positive, and a value of zero if 

otherwise. Year is the year of the observation, numbered from 1 to 10, which accounts for the 

Hicksian neutral technological change. For the efficiency effect specification, zit: {Ageit, 

Schoolingit, Landit,, Landit
2

 }, where Age is the age of the primary decision-maker in the farming 

operation and Schooling is the years of formal schooling of the primary decision maker. We 

expect the efficiency level of the farms to increase with the level of education of the decision 

maker. However, it is difficult to predict a priori the sign on the effect of age of primary 

decision maker on efficiency. If the younger people have better knowledge of farming 

techniques and management then the farms with younger decision makers are likely to be more 

technically efficient, other things remaining the same. On the other hand, if the experience 

gained over the years matters for farming, then the farms managed by older persons might be 

technically more efficient. Thus, the effect of age of primary decision maker on technical 

efficiency is an empirical issue.  Land and Land2 are used to capture non-linear relationship 

between efficiency and farm size. There is a very old and vast literature debating the negative 

relationship between farm size and productivity where the latter is defined as output per land 

area cultivated (Sen, 1966; Carter, 1984; Eswaran and Kotwal, 1986; Bhalla and Roy, 1988; 

Benjamin, 1995; Barrett, 1996; Heltberg, 1998). However, the effect of land size on farm 
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efficiency is investigated only recently. Whether small farms have technical efficiency 

advantage and remain competitive in the light of ongoing transformation of agricultural 

markets and supply chain, is an empirical question.  Using the Mexican panel data on farming, 

Kagin et al. (2016) find an inverse efficiency relationship with farm size within the stochastic 

frontier framework of Battese and Coelli (1995). Using Brazilian farming data, Helfand and 

Levine (2004) reveal a non-linear relationship between farm size and efficiency, with 

efficiency first falling and then rising with size. For the Swedish dairy farms, Hansson (2008) 

also reports a U-shaped relationship between efficiency and farm size.  The insertion of Land 

and Land squared terms in the efficiency model allows us to test empirically the farm size-

efficiency relationship. 

 

The summary statistics of sample data are presented in Table 1. The land area cultivated varies 

from 0.20 hectare to 20.97 hectares. The percentage of land area under irrigation varies from 0 

to 100%. The age of the farmer varies from 26 to 90 years and level of education of farmers 

varies from illiteracy to 10 years of schooling.   

 

Table 1: Summary Statistics of Data 

   Mean  Maximum  Minimum  Std. Dev. Observations 

Y: Value of output (Rupees) 3705.74 18094.19 36.1133 4565.74 271 

Land (hectares) 4.31 20.97 0.20 3.87 271 

Labor (hours)  2217.97 12916.00 26.00 2750.50 271 

Bullock (hours) 530.97 4316.00 8.00 606.00 271 

Cost of other inputs (Rupees) 655.23 6204.99 0 983.44 271 

Age of farmer (years)  53.88 90.00 26.0 12.57 271 

Schooling of farmer (years) 2.02 10.00 0 2.88 271 

PILand 0.14 1.00 0 0.21 271 
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The non-linear least squares (NLS) parameter estimates of the proposed model (equation 17) 

are obtained using Matlab software package. These estimates along with their standard errors 

are presented in cols. 2 and 3 of Table 2. The coefficients of inputs in the production function 

represent their output elasticities.  The output elasticities with respect to Land and Labor are 

positive and statistically significant. In terms of the magnitude of elasticity, labor turns out to 

be most important factor of production.  The output elasticity of Bullock, which is negative 

and statistical significant, is not to our expectations. This result was also observed in Battese 

and Coelli (1992, 1995), Coelli and Battese (1996) and Battese et al. (1989). A plausible 

explanation for this result, as provided in Battese and Coelli (1995), is that farmers may use 

bullocks more in years of poor production (associated with low rainfall) for the purpose of 

weed control, levy bank maintenance etc., which are difficult to conduct in years of higher 

rainfall and higher output. Hence, the bullock-labor variable may be acting as an inverse 

proxy for rainfall. The elasticity of Cost (other inputs) is negative but statistically 

insignificant. The elasticity of PILand is positive and significant implying that higher the 

proportion of irrigated farming, the larger is the output, other things remaining the same. The 

coefficient on Year is positive and significant, implying that there is significant technological 

progress.   
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Table 2: Estimated Stochastic Frontiers and Technical Efficiency Effects 

  
Model with Probit Efficiency 

Effects 

Model with Logit Efficiency 

Effects 

Variable Coefficient 
Std. 

Errora 
Coefficient 

Std. 

Errora 

 (1) (2) (3) (4) (5) 

Frontier Function         
     

ln(Land) 0.457* 0.057 0.468* 0.052 

ln(Labor) 1.145* 0.029 1.145* 0.029 

ln(Bullock) -0.495* 0.013 -0.495* 0.013 

ln(Cost)        -0.002 0.002         -0.002 0.002 

PILand 0.264* 0.046 0.260* 0.048 

t 0.036* 0.004 0.035* 0.004 

 

 

 

 

 Efficiency Effects  Efficiency Effects 
  

Constant (γo)          0.730 0.605 0.819 0.827 

Age (γ1) 0.015* 0.005 0.023* 0.007 

 

        Schooling (γ2) 
 

0.125* 0.017 0.187* 0.020 

 

            Land (γ3) 
 

        -0.274* 0.050 -0.401* 0.061 

 

            Land2  (γ4)
 

 

0.008* 0.002 0.012* 0.002 

Wald statisticsb:           480.9*           853.7*  
Observations 271   271   

a   These are robust standard errors (White, 1980). 

b  The Wald statistics has approximately chi-square distribution with degrees of freedom equal to the 

number of parameters assumed to be zero in the null hypothesis, H0. In the probit and logit models

0 0 1 2 3 4: 0= = = = =H γ γ γ γ γ . 

* represents significance level at the 1 percent. 

 

In the technical efficiency effects specification, the coefficient of Schooling of the decision 

maker is positive and statistically significant, implying that the efficiency of a farm improves 

with the level of education of the primary decision maker.  The coefficient of Age of the 

decision maker is also positive and significant, implying that, cetris paribus, farms managed 

by older farmers are more efficient than those managed by younger farmers.  This is expected 

because in the traditional farming, the practical experience gained by farmers over the years is 

likely to improve their farming efficiency.  The coefficient of Land is negative (-0.247) and 
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that of Land Squared positive (0.008) - both are statistically significant at the 1 percent level. 

This implies that the efficiency relationship with farm size is U-shaped with efficiency first 

declining with farm size and then increasing with size. This finding is similar to the results 

reported in Helfand and Levine (2004) for the Brazilian farms. These results suggest that since 

small farms have efficiency advantage, it could be that a heterogeneous farm structure, in which 

small farms coexist with large ones, is consistent with promoting agricultural growth.  While 

the small farms’ technical efficiency advantage has ramifications for their potential role in 

combating poverty and enhancing food security, the medium sized farmers should aim for farm 

sizes which are in the larger farm size segments to take advantage of higher productive 

efficiency. 

 

The null hypothesis that there are no efficiency effects (i.e., all the coefficients of efficiency 

effects model are zero) is rejected at the 1% significance level by the Wald statistics. The 

technical efficiency levels range from 0.344 to 0.989 with an average level of 0.783. The 

estimated probability density function (pdf) of technical efficiency which is skewed to the left 

(See Figure 1), is leptokurtic as revealed by the Kurtosis statistics (Table 3, col. 2).  

Table 3: Summary Statistics of Estimated Technical Efficiency 

  Probit Specification Logit Specification 

   

 Mean 0.783 0.818 

 Median 0.815 0.871 

 Maximum 0.989 0.999 

 Minimum 0.344 0.220 

 Std. Dev. 0.131 0.165 

 Skewness -1.027 -1.401 

 Kurtosis 3.798 4.745 

 Observations 271 271 
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Figure 1:  Distribution of Technical Efficiency Scores 

 

 

 

 

The technical efficiency scores of farms (averaged over the sample period) along with their 

rankings are presented in cols. 2 and 3 of Table 4.  It is also worth noting that the average 

efficiency level of farmers shows a mild increase over time, from an average of 0.777 in the 

first half of the period to 0.789 in the second half (Table 5). 
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Table 4:   Farm-Wise Estimates of Mean Technical Efficiency 

 

Farm 

code 
Probit Specification Logit Specification 

 Estimate Ranking  Estimate Ranking  

(1)  (2)  (3)  (4)   (5) 

1 0.899 7 0.955 7 

2 0.858 12 0.917 10 

3 0.918 4 0.969 4 

4 0.899 6 0.956 5 

5 0.691 28 0.702 29 

6 0.766 25 0.813 25 

7 0.853 14 0.912 14 

8 0.846 16 0.898 16 

9 0.890 9 0.946 9 

10 0.846 15 0.904 15 

11 0.820 21 0.867 21 

12 0.858 11 0.916 12 

13 0.901 5 0.955 6 

14 0.839 18 0.896 17 

15 0.926 3 0.976 3 

16 0.855 13 0.917 11 

17 0.960 2 0.991 2 

18 0.893 8 0.952 8 

19 0.837 19 0.892 18 

20 0.522 34 0.467 34 

21 0.788 24 0.842 24 

22 0.726 26 0.755 26 

23 0.810 22 0.867 22 

24 0.589 32 0.564 33 

25 0.841 17 0.892 19 

26 0.688 29 0.710 28 

27 0.820 20 0.879 20 

28 0.810 23 0.857 23 

29 0.624 31 0.617 31 

30 0.670 30 0.685 30 

31 0.584 33 0.564 32 

32 0.704 27 0.726 27 

33 0.870 10 0.914 13 

34 0.968 1 0.994 1 
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Table 5:  Year-Wise Mean Technical Efficiency Levels 

 

Year Probit Logit 

(1)  (2)   (3) 

1 0.759 0.788 

2 0.722 0.739 

3 0.806 0.850 

4 0.789 0.825 

5 0.811 0.846 

6 0.783 0.818 

7 0.779 0.811 

8 0.787 0.825 

9 0.779 0.819 

10 0.816 0.863 

1-5 Years 0.777 0.810 

6-10 Years 0.789 0.827 

 

 

The model with efficiency effects specified by a logistic cumulative distribution function (logit 

model) is also estimated to see the sensitivity of results. The input elasticities of the production 

function with logit efficiency effects specification presented in col 4 of Table 2 are quite similar 

to those with the probit specification, in terms of magnitude and signs. The estimated 

coefficients of Age and Schooling of the decision maker in the logit specification of efficiency 

effects have the same signs as observed in the case the probit specification. The efficiency 

relationship with farm size is also observed to be U-shaped.  The average efficiency level of 

farms based on the logit specification is 0.818 which is slightly higher than that observed in the 

case of the probit specification (0.783) (Table 3). The efficiency ranking of farms by the logit 

model is almost the same (with some minor differences) as that by the probit model (Table 4).  

Like the probit model, the logit specification also shows a mild increase in average efficiency 

from first half period to the second half (Table 5). It is also worth noting that the correlations 

between the probit and logit efficiency estimates and their rankings are quite high, 0.998 and 

0.997 respectively. 
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5. Concluding Remarks  

 

This paper proposed a stochastic frontier panel data model which accommodates time -

invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are 

specified by a standard normal cumulative distribution function of exogenous variables which 

ensures the efficiency scores to lie in a unit interval. This specification is distribution free as it 

eschews one-sided error term present in almost all the existing inefficiency effects models. The 

model is within-transformed and then estimated with the non-linear least squares. The 

efficiency scores are calculated directly once parameters of the model are obtained.  The 

empirical exercise conducted with widely used panel data on Indian farmers reveals that both 

the education and age of the primary decision-maker enhance the efficiency of farms. The 

relationship between efficiency and farm size is found to be U-shaped. This suggests that since 

small farms have efficiency advantage, it could be that a heterogeneous farm structure, in which 

small farms coexist with large ones, is consistent with promoting agricultural growth.    
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