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Abstract

We develop simple and non-asymptotically justified methods for hypothesis
testing about the coefficients (θ∗ ∈ R

p) in the high dimensional (generalized)
regression models where p can exceed the sample size n. Given a function
h : R

p 7→ R
m, we consider H0 : h(θ∗) = 0m against the alternative hypothesis

H1 : h(θ∗) 6= 0m, where m can be as large as p and h can be nonlinear in θ∗.
Our test statistics is based on the sample score vector evaluated at an estimate
θ̂α that satisfies h(θ̂α) = 0m, where α is the prespecified Type I error. We
provide nonasymptotic control on the Type I and Type II errors for the score
test. In addition, confidence regions are constructed in terms of the score vec-
tors. By exploiting the concentration phenomenon in Lipschitz functions, the
key component reflecting the “dimension complexity” in our non-asymptotic
thresholds uses a Monte-Carlo approximation to “mimic” the expectation that
is concentrated around and automatically captures the dependencies between
the coordinates. The novelty of our methods is that their validity does not

rely on good behavior of
∥∥∥θ̂α − θ∗

∥∥∥
2

or even n−1/2

∥∥∥X
(

θ̂α − θ∗

)∥∥∥
2

nonasymp-

totically or asymptotically. Most interestingly, we discover phenomena that
are opposite from the existing literature: (1) More restrictions (larger m) in
H0 make our procedures more powerful; (2) whether θ∗ is sparse or not, it
is possible for our procedures to detect alternatives with probability at least
1 − Type II error when p ≥ n and m > p − n; (3) the coverage probability of
our procedures is not affected by how sparse θ∗ is. The proposed procedures
are evaluated with simulation studies, where the empirical evidence supports
our key insights.
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this research. An earlier draft of this manuscript was prepared during my appointment at Michigan
State University (Department of Economics, Social Science Data Analytics Initiative) that also
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1 Introduction

A common feature of the existing procedures that are deemed “practical” for infer-
ence of high dimensional regression coefficients is that they all hinge on asymptotic
validity to some extent. This occurrence is perhaps not coincidental as asymptotic
analysis often allows one to focus on the “leading” term(s) by assuming the “remain-
der” terms approach to zero faster, which can be quite convenient for determining
the threshold in a test. However, many real-world applications (in psychology, for
example) have a limited sample size which renders any asymptotic argument ques-
tionable.

Our primary goal is to find situations where effective non-asymptotic methods
can be developed for hypothesis testing about the coefficients in high dimensional
regression models. We illustrate the key insight with the linear regression model

Yi = Xiθ
∗ + Wi, i = 1, ..., n, (1)

where W = {Wi}n
i=1 ∼ N (0n, σ2

In) and 0n denotes an n−dimensional vector of
zeros; θ∗ is a p−dimensional vector of unknown coefficients and p is allowed to
exceed the sample size n; Y = {Yi}n

i=1 is an n−dimensional vector of responses;
X = {Xi}n

i=1 ∈ R
n×p is the design matrix with the ith row specified by Xi. Given

a function h : R
p 7→ R

m, let

H0 : h(θ∗) = 0m vs. H1 : h(θ∗) 6= 0m,

where m can be as large as p and h can be nonlinear in θ∗. Relative to existing
literature, we will look at these broader forms of hypotheses and the impact of m,
the number of restrictions in the null hypothesis. By making simple changes in
the notations, we can also test H0 : h(θ∗) ≤ 0m or H0 : h(θ∗) ≥ 0m using the
procedures and analysis developed later in the paper.

Our secondary goal is to seek some general nonasymptotic theory for inference in
high dimensional models that involve non-Gaussian responses, heteroscedastic noise,
and nonlinearity in the regression coefficients (including the binary response models
and certain nonlinear regressions). Throughout the paper, we make our argument
by conditioning on X; in addition, we assume {θ ∈ R

p : h(θ) = 0m} 6= ∅ and H0

does not contain any redundant restrictions.
This work is initially inspired by an important problem from intervention studies

– testing for heterogeneity in treatment effects. Suppose Vi is a binary variable which
equals 1 if individual i receives treatment and 0 otherwise; Zi is a p−dimensional
vector of covariates such that E(Zi) = 0p (this zero-mean condition can be relaxed
but is assumed here to lighten the notations). We use Y A

i to denote the (potential)
outcome upon receiving treatment, Y B

i to denote the (potential) outcome without
treatment, and Yi to denote the observed outcome; note that Yi = (1−Vi)Y

B
i +ViY

A
i .
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A commonly studied model (see, e.g., [19]) takes the form

Yi = π∗
0 + π∗

1Vi +
p∑

j=1

γ∗
j ViZij +

p∑

j=1

α∗
j Zij + Wi (2)

where

TE(Zi) := E

(
Y A

i − Y B
i |Zi

)
= π∗

1 +
p∑

j=1

γ∗
j Zij , (3)

ATE := E

(
Y A

i − Y B
i

)
= π∗

1. (4)

The heterogeneity in the treatment effect TE(Zi) corresponds to
∑p

j=1 γ∗
j Zij .

Taking the expectation of TE(Zi) in (3) over Zi gives (4), referred to as the Average
Treatment Effect (ATE). We are often interested in testing

H0 : γ∗
j = γ0

j ∀j ∈ {1, 2, ..., p} . (5)

Such a hypothesis can be handled by the methods developed in this paper since it
is a special case of our H0. Note that when γ0

j = 0 for all j, the hypothesis above
implies there is no heterogeneity in the treatment effect.

Before this paper, some tests have been proposed in the literature of high di-
mensional inference. For example, [7] establish asymptotic consistency for testing

H0,G : θ∗
j = 0 ∀j ∈ G ⊆ {1, 2, ..., p} (6)

in Yi = Xiθ
∗ +Wi, where they require log(|G|) = o(n1/7) and the sparsity parameter

s0 of θ∗ to satisfy n−1 (s0 log p)2 log(|G|) = o(1); [23] allow G = {1, 2, ..., p} but
require n−1 (log (pn))7 = o(1) and n−1 (s0 log p)2 log p = o(1) (which essentially
restricts |G| through p). [23] note that the smaller |G| gets, the more powerful
their procedure becomes (see equation (13) in [23]); furthermore, their simulation
results suggest that the coverage probability decreases as θ∗ gets less sparse.

In our view, the aforementioned findings are counterintuitive: First, more re-
strictions (larger |G|) on θ∗ in H0 result in fewer parameters to be “determined”
and thus should only make the testing problem easier; second, if |G| is large enough,
the power of a test should not rely on whether θ∗ is sparse or not. With these
questions in mind, we offer a new testing method and statistical analysis, which
does not require the conditions mentioned in the previous paragraph and works for
any finite (n, p). We reveal phenomena that are opposite from the existing litera-
ture: (1) More restrictions (larger m) in H0 make our procedures more powerful; (3)
whether θ∗ is sparse or not, it is possible for our procedures to detect alternatives
with probability at least 1 − Type II error when p ≥ n and m > p − n; (3) the
coverage probability of our procedures is not affected by how sparse θ∗ is.

As suggested by the title, this paper studies nonasymptotic inference by exploit-
ing the sharp concentration phenomenon in Lipschitz functions, which should be
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distinguished from another line of literature based on normal approximations using
the Stein’s Method, for example, [6] and [11] (also see [23], whose method is justified
by the theory in [6]). In particular, [11] studies similar models (as this paper) and
develops results for hypothesis testing in the regime of n ≫ p; by contrast, our focus
is on the regime of p ≥ n and possibly p ≫ n. In [11], some of the results are
still only asymptotically valid and the other results (even though nonasymptotically
justified) come with probabilistic guarantees that contain rather loose constants and
dimension-dependent components.

For the mean of a high-dimensional random vector, [1] study bootstrap confi-
dence regions with the concentration approach. Beyond the inference for the mean
of a high-dimensional random vector, is it possible to adapt a concentration ap-
proach for testing about the coefficients in a high-dimensional regression problem?
At first glance, there seems no lack of non-asymptotic bounds on the lp−error (often
p ∈ [1, 2] or p = ∞) of some (regularized) estimator concerning (1). However, these
bounds (even in the sharpest forms) tend to involve quite a few unknown nuisance
parameters that are hard to estimate in practice. In order to adapt the existing
bounds for the purpose of inference, prior knowledge on the sparsity of θ∗ would be
needed at a minimum; see, e.g., [10].

For this reason, we choose our test statistics to base on the sample score vector
evaluated at θ̂α that satisfies h(θ̂α) = 0m, where α is the prespecified Type I error.
By definition, the resulting procedure is a score test. Our test statistics take the
form

Ψq(θ̂α) :=

∥∥∥∥
1

n
XT

(
Y − Xθ̂α

)∥∥∥∥
q

, (7)

where θ̂α is obtained by solving the following program:

(
θ̂α, µ̂α

)
∈ arg min

(θα,µα)∈Rp×Rp
‖µα‖q̃

subject to:

∥∥∥∥∥
1

n

n∑

i=1

Xi (Yi − Xiθα) − µα

∥∥∥∥∥
q

≤ rα,q, (8)

h(θα) = 0m,

with q, q̃ ∈ [1, ∞] chosen by the users. For 1 ≤ q ≤ ∞, we write ‖v‖q to mean

the lq−norm of a k−dimensional vector v, where ‖v‖q :=
(∑k

i=1 |vi|q
)1/q

when

1 ≤ q < ∞ and ‖v‖q := maxi=1,...,k |vi| when q = ∞. The choice for rα,q in the first
constraint is to be specified in the subsequent section.

We can also work with an alternative formulation:
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(
θ̂α, µ̂α

)
∈ arg min

(θα,µα)∈Rp×R

µα

subject to:

∥∥∥∥∥
1

n

n∑

i=1

Xi (Yi − Xiθα)

∥∥∥∥∥
q

≤ rα,q + µα, (9)

h(θα) = 0m,

µα ≥ 0.

Throughout this paper, we will slightly abuse the notations as in the above, where
µ̂α (also µα) in (8) is a vector and in (9) is a scalar. In addition, we suppress the
dependence of (θ̂α, µ̂α) in (8) on (q, q̃) and the dependence of (θ̂α, µ̂α) in (9) on q
for notational simplicity.

A solution θ̂α to either (8) or (9) may not necessarily be unique: that is, there
might be different θ̂αs that satisfy (8) (or (9)) while delivering the same (minimal)
objective value ‖µ̂α‖q̃ (respectively, µ̂α). We refer to the vector µα in (8) (and the
scalar µα in (9)) as the “slack” vector (respectively, the “slack” variable) that fills

the “gap” between
∥∥∥ 1

n

∑n
i=1 Xi (Yi − Xiθ

∗)
∥∥∥

q
and

∥∥∥ 1
n

∑n
i=1 Xi (Yi − Xiθα)

∥∥∥
q

where

h(θα) = 0m. When the null hypothesis is true, i.e., h(θ∗) = 0m, the optimal value
‖µ̂α‖q̃ (respectively, µ̂α) must be zero with probability at least 1 − α. This fact does

not imply that θ̂α would necessarily be “close” to θ∗ under H0, but rather,

∥∥∥∥∥
1

n

n∑

i=1

Xi

(
Yi − Xiθ̂α

)∥∥∥∥∥
q

≤ rα,q, (under H0)

with the same probability guarantee 1 − α for the event

∥∥∥∥∥
1

n

n∑

i=1

Xi (Yi − Xiθ
∗)

∥∥∥∥∥
q

≤ rα,q.

In the paper, we establish statistical guarantees (stated in terms of (α, q̃, q)) for (8),
and statistical guarantees (stated in terms of (α, q)) for (9).

To compare (8) with (9) from the computational perspective, we let Fα
1 denote

the set of (θα, µα) that are feasible for (8) and Fα
1,θ denote the set of θα from Fα

1 ;

similarly, Fα
2 and Fα

2,θ are defined with regard to (9). Note that an element (θ̃α, µ̃α)
in Fα

1 implies ∥∥∥∥∥
1

n

n∑

i=1

Xi

(
Yi − Xiθ̃α

)∥∥∥∥∥
q

≤ rα,q + ‖µ̃α‖q ;

that is, (θ̃α, ‖µ̃α‖q) ∈ Fα
2 . Consequently, Fα

1,θ ⊆ Fα
2,θ. On the other hand, the

objective function in (8) is minimized over a p−dimensional vector as opposed to
a scalar in (9). However, (8) does not require the entries in the slack vector to be
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positive while (9) require the slack variable to be positive. These facts suggest that
the choice between (8) and (9) incurs some trade-offs in terms of computational cost.

Compared to basing the test statistics on a consistent estimator for θ∗, such as
the existing Lasso estimators, Dantzig selectors, or the new variant (10) with q̃ = 1
and q = ∞ (to be discussed later), the score statistics (7) using θ̂α from (8) or (9)
allow us to bypass the sparsity assumption on θ∗ and the inherent challenges in
an inverse problem. As a consequence, our thresholds or confidence regions do not
involve unknown parameters related to sparsity.

In terms of relaxing sparsity assumptions, this paper shares slight similarity
as [24] although our method is drastically different from what is proposed in [24].
Also, [24] deal with H0 : aT θ∗ = b0 for some prespecified a ∈ R

p and b0 ∈ R

while the form of our null hypothesis is much more general and can impose up to p
restrictions on θ∗; moreover, the statistical guarantees in [24] are asymptotic while
our procedures are nonasymptotically valid and found to work well for small n (such
as 15) in simulations; finally, [24] show that their test can attain certain optimality in
detecting alternatives as long as the sparsity parameters of θ∗ and a are in the order

o
( √

n
log p

)
, while we find the power of our tests depends on the number of restrictions

in H0 (whether θ∗ is sparse or not).
If we choose q = ∞, then (7) is reduced to

Ψ∞
(
θ̂α

)
:=

∥∥∥∥∥
1

n

n∑

i=1

Xi

(
Yi − Xiθ̂α

)∥∥∥∥∥
∞

.

This statistics shares some resemblance to the score-based correction term in the
debiased Lasso literature (see, e.g., [7, 12, 17, 22, 23]) as well as the decorrelated
score in [15]. Unlike the debiased and decorrelated procedures which require an
initial (consistent) estimator for (the sparse) θ∗ in the correction term, our θ̂α here
need not be consistent and is directly used in the test statistics (requiring no further
debiasing or decorrelating step). In addition, our methods are nonasymptotically
valid and do not require θ∗ to be sparse, whereas the aforementioned papers hinge
on the asymptotic normality of the debiased or decorrelated procedure and require
θ∗ to be sufficiently sparse.

We derive implementable (non-asymptotic) thresholds rα,q such that

P0

{
Ψq(θ̂α) ≥ rα,q

}
≤ α, (Type I Error)

P1

{
Ψq(θ̂α) ≤ rα,q

}
≤ β, (Type II Error)

where P0 means under H0, P1 means under H1 and a “Level−β Separation Require-
ment” imposed upon the lq−distances between the population score vectors evalu-

ated at θ∗ and θαs satisfying h(θα) = 0m. Our decision rule is that if Ψq(θ̂α) ≥ rα,q,
we reject the null hypothesis H0. In addition to the guarantees on the Type I and
Type II errors, we also construct confidence regions in terms of the score vectors.
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Our non-asymptotic thresholds rα,q consist of data-driven components which re-
flect the “dimension complexity”, as well as components which are free of p. This
form is a direct result of the concentration phenomenon in Lipschitz functions. The
key data-driven component in our rα,q uses a Monte-Carlo approximation to “mimic”
the expectation that is concentrated around and automatically captures the depen-
dencies across coordinates. These facts put our framework in sharp contrast with
the Bonferroni approach used in the estimation literature (e.g., [10]). In this per-
spective, our results share some similarity as those in [1] except that [1] concern
inference for the mean of a random vector while we consider inference about the
coefficients (θ∗ ∈ R

p) in the high dimensional regression models.
Beyond the context of hypothesis testing, as a secondary contribution, the data-

driven approach proposed in this paper for setting the thresholds ra,q also suggests
a new class of regularized estimators:

θ̂new
α ∈ arg min

θα∈Rp
‖θα‖q̃ subject to

∥∥∥∥
1

n
XT (Y − Xθα)

∥∥∥∥
q

≤ rα,q. (10)

When q̃ = 1 and q = ∞, (10) can be viewed as a variant of the Dantzig selector,
for which we establish a complementary l2−error bound. In contrast to (10), (8)
and (9) involve a second constraint h(θα) = 0m and a slack vector (or variable)
µα in the first constraint, as well as a different objective function (minimizing the
lq̃−norm of the slack vector or minimizing the slack variable, instead of minimizing
‖θα‖q̃). Consequently, the resulting solution to (10) is not constrained to satisfy

h(θ̂new
α ) = 0m, whereas θ̂αs in (8) and (9) satisfy h(θ̂α) = 0m.
The rest of the paper is organized as follows. In Section 2, we focus on the

Gaussian regression models and establish nonasymptotic control on the Type I and
Type II errors for the proposed score test. Implementations for some natural choices
of q (relevant to both (8) and (9)) and q̃ (relevant to (8)) are also discussed.

We demonstrate numerical evidence through simulation studies in Section 3,
where the computational performance of (8) and (9) as well as different choices of
(q̃, q) in (8) and q in (9) are also compared. We look at a “small sample” setup
(n = 15, p = 50) and a “larger sample” setup (n = 100, p = 300). Our designs range
from highly dense θ∗ to highly sparse θ∗ and our null hypotheses take either the form
(6) or H0 : Aθ∗ = 0m, for some prespecified A ∈ R

m×p and m ∈ {p, p − 3, p − 9}.
The second form of hypotheses is motivated by real world applications in marketing
and more detail is described in Section 3. To the best of our knowledge, this paper
is the first that studies H0 : Aθ∗ = 0m with “large” m, which cannot be handled by
existing approaches in the literature.

The remaining sections are about various extensions. Section 4 provides some
general nonasymptotic justifications for inference in high dimensional models that
involve non-Gaussian responses, heteroscedastic noise, and nonlinearity in the re-
gression coefficients (including the binary response models and certain nonlinear
regressions). Motivated by the data-driven feature of our concentration approach,
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Section 5 proposes a new class of regularized estimators along with a complementary
l2−error bound. Section 6 concludes the paper and all technical details are deferred
to the supplementary materials.

2 Gaussian Regressions

For the linear regression model (1), we first consider the scenario where σ2 is known,
and then look at the scenario where σ2 is not known a priori. Throughout this
section, we use EW [·] to denote the expectation over W only, conditioning on X.

By considering the concentration of
∥∥∥ 1

nXT W
∥∥∥

q
around EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
, our

first result establishes an “ideal” confidence region for the lq−distance between the

score vectors evaluated at θ∗ and a “theoretical” optimal solution, θ̂∗
α; that is,

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q

=

∥∥∥∥
[

1

n
XT (Y − Xθ̂∗

α)

]
−
[

1

n
XT (Y − Xθ∗)

]∥∥∥∥
q

.

This “theoretical” optimal solution above, θ̂∗
α, is obtained by setting rα,q in (8) (and

(9)) to EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
plus a deviation. In practice, EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
may be

bounded with its Monte Carlo approximation and a “small” remainder term. This
approach results in a “practical” optimal solution, θ̂α, which can then be used to
construct test statistics and a “practical” confidence region.

To state the first result, we introduce the following notation (which will appear
in many places throughout this paper):

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

= q

√√√√√
p∑

j=1



√√√√ 1

n

n∑

i=1

X2
ij




q

, q ∈ [1, ∞)

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

= max
j∈{1,...,p}

√√√√ 1

n

n∑

i=1

X2
ij , q = ∞.

Proposition 2.1 . Assume (1) where W ∼ N (0n, σ2
In) and is independent of X.

Then for any q ∈ [1, ∞], we have

P

{∥∥∥∥
1

n
XT W

∥∥∥∥
q

≥ EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ t

}
≤ exp




−nt2

2σ2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 . (11)

Moreover, for α ∈ (0, 1), let

rα,q = r∗
α,q := EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ σ

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√
2

n
log

1

α
(12)
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in (8) (or (9)). Then, an optimal solution
(
θ̂∗

α, µ̂∗
α

)
to (8) must satisfy

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q̃

≥ ‖µ̂∗
α‖q̃ , (13)

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α) − µ̂∗
α

∥∥∥∥
q

≤ 2r∗
α,q, (14)

with probability at least 1 − α. Similarly, an optimal solution
(
θ̂∗

α, µ̂∗
α

)
to (9) must

satisfy

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q

≥ µ̂∗
α, (15)

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q

≤ 2r∗
α,q + µ̂∗

α, (16)

with probability at least 1 − α.

2.1 Hypothesis Testing

For the moment, suppose we set rα,q = r∗
α,q in (8) (or (9)) according to (12) as in

Proposition 2.1. Under H0, (θ∗, 0p) ((θ∗, 0)) is an optimal solution to (8) (respec-
tively, (9)). Consequently, given the test statistics (7) and a chosen α ∈ (0, 1), an
optimal solution to (8) (and (9)) must satisfy

P0

{
Ψq(θ̂∗

α) ≥ r∗
α,q

}
≤ α (17)

where P0 means under H0.
The claim in (17) suggests a test (with level α) based on the statistics Ψq(θ̂∗

α)
and an “ideal” critical value, r∗

α,q, given in (12). When W ∼ N (0n, σ2
In) and σ2

is known, the first term EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
in r∗

α,q can be approximated by Monte-

Carlo as follows. Let Z ∈ R
n×R be a matrix consisting of independent entries

randomly drawn from N (0, 1) and the rth column of Z is denoted by Zr. By

(75) and (76), note that σR−1∑R
r=1

∥∥∥ 1
nXT Zr

∥∥∥
q

− EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
is sub-Gaussian

with parameter at most (nR)−1/2σ
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
q
. Consequently, (73) yields the

following concentration

P

{
EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
≥ σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ t

}
≤ exp




−nRt2

2σ2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 .

(18)
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Combining (11) and (18) yields

P

{∥∥∥∥
1

n
XT W

∥∥∥∥
q

≥ σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ t1 + t2

}

≤ exp




−nt2
1

2σ2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


+ exp




−nRt2
2

2σ2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 . (19)

2.1.1 Construction of Critical Values (rα,q) and Type I Error

For some chosen α1, α2 > 0 such that α1 + α2 = α ∈ (0, 1), we let in (19),

t1 = σ

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√
2

n
log

1

α1
:= τα1,q, (20)

t2 = σ

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√
2

nR
log

1

α2
:=

√
1

R
τα2,q.

Based on (19) along with the choices of t1 and t2 above, the RHS of the first con-
straint in (8) (or (9)) is set to

rα,q =
σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ τα1,q +

√
1

R
τα2,q. (21)

Note that we can draw as many columns in Z as we want, to make
√

1
Rτα2,q in (21)

small; for a given α, we can let α2 be smaller than α1 because of the additional

“
√

1
R”.

Under H0, (θ∗, 0p) ((θ∗, 0)) is an optimal solution to (8) (respectively, (9)) with
rα,q specified in (21). Consequently, a (practical) optimal solution to (8) (and (9))
must satisfy

P0

{
Ψq(θ̂α) ≥ rα,q

}
≤ α (Type I Error). (22)

Remarks. In terms of control on the Type I error, the lq−norm in (7), (8) and (9)
can be generalized to the function ζq : R

p 7→ R that satisfies:

• for all z ∈ R
p and a ∈ R

+, ζq (az) = aζq (z),

• for all z, z
′ ∈ R

p, ζq

(
z + z

′
)

≤ ζq (z) + ζq(z
′
),

• for all z ∈ R
p, |ζq (z)| ≤ ‖z‖q for q ∈ [1, ∞].

10



In this case, we simply let

rα,q =
σ

R

R∑

r=1

ζq

(
1

n
XT Zr

)
+ τα1,q +

√
1

R
τα2,q,

and obtain

P0

{
ζq

(
1

n
XT

(
Y − Xθ̂α

))
≥ rα,q

}
≤ α (Type I Error),

where θ̂α is a solution to (8) (or (9)) with the lq−norm in the first constraint replaced
by ζq. Given ζq is subadditive and bounded by the lq−norm, the results above follow
from the simple fact that

∣∣∣∣ζq

(
1

n
XT W

)
− ζq

(
1

n
XT W

′
)∣∣∣∣ ≤

∥∥∥∥
1

n
XT

(
W − W

′
)∥∥∥∥

q

≤ 1√
n

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

∥∥∥W − W
′
∥∥∥

2
.

Consequently, we can establish bounds that are identical to (11), (18), (19) in terms

of ζq

(
1
nXT W

)
, EW

[
ζq

(
1
nXT W

)]
, σ

R

∑R
r=1 ζq

(
1
nXT Zr

)
, and then follow the same

argument as what is used to show (22).

2.1.2 Practical Confidence Regions

Let
(
θ̂α, µ̂α

)
be an optimal solution to (8) with rα,q specified in (21). Our previous

analysis implies that

∥∥∥∥
1

n
XT X(θ∗ − θ̂α) − µ̂α

∥∥∥∥
q

≤
∥∥∥∥

1

n
XT (Y − Xθ̂α) − µ̂α

∥∥∥∥
q

+

∥∥∥∥
1

n
XT W

∥∥∥∥
q

≤ 2σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ 2τα1,q + 2

√
1

R
τα2,q (23)

and ∥∥∥∥
1

n
XT X(θ∗ − θ̂α)

∥∥∥∥
q̃

≥ ‖µ̂α‖q̃ (24)

11



with probability at least 1 − α; similarly, in terms of (9), we have
∥∥∥∥

1

n
XT X(θ∗ − θ̂α)

∥∥∥∥
q

− µ̂α

≤
∥∥∥∥

1

n
XT (Y − Xθ̂α)

∥∥∥∥
q

− µ̂α +

∥∥∥∥
1

n
XT W

∥∥∥∥
q

≤ 2σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ 2τα1,q + 2

√
1

R
τα2,q (25)

and ∥∥∥∥
1

n
XT X(θ∗ − θ̂α)

∥∥∥∥
q

≥ µ̂α (26)

with probability at least 1 − α. The argument for (24) and (26) is identical to what
is used to show (13) and (15). As we have pointed out in the introduction, there
might be different θ̂αs that satisfy (8) (or (9)) while producing the same (minimal)
objective value ‖µ̂α‖q̃ (respectively, µ̂α). Consequently, there is more than one
confidence region in the form of (23)-(24) or (25)-(26). In view of (25)-(26), the
length of the confidence interval is naturally

CI − Length =
2σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ 2τα1,q + 2

√
1

R
τα2,q. (27)

If EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
can be known exactly and we were able to set rα1,q = r∗

α1,q

in (8) (or (9)) as in Proposition 2.1, then any resulting optimal solution
(
θ̂∗

α, µ̂∗
α

)

to (8) (respectively, (9)) should satisfy

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α) − µ̂∗
α

∥∥∥∥
q

≤ 2EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ 2τα1,q, (28)

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q

− µ̂∗
α ≤ 2EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ 2τα1,q, (29)

both with probability at least 1 − α1. Comparing (23) with (28) and (25) with (29),
note that the difference in terms of the right hand sides is

2

(
σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

− EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

])
+ 2

√
1

R
τα2,q,

which can be made arbitrarily small with a large number of random draws in the
Monte-Carlo approximation. Because of such an approximation, the probabilistic
guarantees for (23) and (25) are bounded from below by 1 − α instead of 1 − α1.

Given the statistics Ψq(θ̂α) in (7) based on (a practical) θ̂α and the critical value
rα,q defined in (21), we have constructed a test with level α as shown in (22). For

12



some β ∈ (0, 1), when can this test correctly detect an alternative with probability
at least 1−β? To answer this question, we introduce the “Separation Requirement”
in the following section.

2.1.3 Separation Requirement and Type II Error

Letting Θ0 := {θ ∈ R
p : h(θ) = 0m}, we choose β1, β2 > 0 such that β1 + β2 = β ∈

(0, 1), and assume

inf
θ∈Θ0

∥∥∥∥
1

n
XT X(θ∗ − θ)

∥∥∥∥
q

≥ δα,β,q (30)

with

δα,β,q = 2EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ τα1,q +

√
1

R
τα2,q +

√
1

R
τβ1,q + τβ2,q (31)

for the prespecified α1, α2 > 0 (as used in (21)) such that α1 + α2 = α ∈ (0, 1). We
will refer to (30) as the “Separation Requirement” (SR) at the level β. In view of

∥∥∥∥
1

n
XT X(θ∗ − θ)

∥∥∥∥
q

=

∥∥∥∥EW

[
1

n
XT (Y − Xθ)

]
− EW

[
1

n
XT (Y − Xθ∗)

]∥∥∥∥
q

=

∥∥∥∥EW

[
1

n
XT (Y − Xθ)

]
− EW

[
1

n
XT W

]∥∥∥∥
q

,

note that the SR is imposed upon the lq−distance between the population score
vectors evaluated at θ∗ and θ(∈ Θ0).

Our next result concerns the Type II error of the test based on Ψq(θ̂α) in (7) and
rα,q defined in (21). For completeness, we also include the claim for the Type I error.

Theorem 2.1 . Assume (1) where W ∼ N (0n, σ2
In) and is independent of X.

For some chosen α1, α2 > 0 such that α1 + α2 = α ∈ (0, 1), consider the statistics
Ψq(θ̂α) based on (a practical) θ̂α and the critical value rα,q defined in (21). For any
q ∈ [1, ∞], we have

P0

{
Ψq(θ̂α) ≥ rα,q

}
≤ α, (Type I Error) (32)

where P0 means under H0. For the same rα,q used in (32) and some β1, β2 > 0 such
that β1 + β2 = β ∈ (0, 1), if h(θ∗) 6= 0m and (30) is satisfied, we have

P1

{
Ψq(θ̂α) ≤ rα,q

}
≤ β, (Type II Error) (33)

where P1 means under H1 and (30).

13



2.1.4 Implications of Our Results

Some interesting observations can be made from the results we have established

so far. First, our guarantees do not rely on good behavior of
∥∥∥θ̂α − θ∗

∥∥∥
2

or even

n−1/2
∥∥∥X

(
θ̂α − θ∗

)∥∥∥
2

nonasymptotically or asymptotically. As a consequence, θ∗

need not be sparse for the results to hold.
Second, the number of restrictions (i.e., m) in H0 plays a significant role

in the power of our procedures. If p ≥ n, m ≤ p − n, and Θ0 6= ∅, we can always
find a solution θ̂ such that Xθ̂ = Y . Consequently, we have

∥∥∥∥
1

n
XT X(θ∗ − θ̂)

∥∥∥∥
q

=

∥∥∥∥
[

1

n
XT (Y − Xθ̂)

]
−
[

1

n
XT (Y − Xθ∗)

]∥∥∥∥
q

=

∥∥∥∥
1

n
XT W

∥∥∥∥
q

.

(34)
By (11),

P

(∥∥∥∥
1

n
XT W

∥∥∥∥
q

≤ EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ τα,q

)
≥ 1 − α,

which implies that P

(∥∥∥ 1
nXT X(θ∗ − θ̂)

∥∥∥
q

≥ δα,β,q

)
is small and there is not enough

separation for our procedures to detect the alternatives. Note that
(
θ̂, 0p

)
(
(
θ̂, 0

)
)

also solves (8) (respectively, (9)) with probability 1 for any rα,q ≥ 0. Comparing

with (27), the length of
∥∥∥ 1

nXT X(θ∗ − θ̂)
∥∥∥

q
here can be bounded from above by

EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
+ τα,q.

As m gets larger relative to p − n, it becomes easier for (30) to be satisfied. In
general, the more restrictions in H0 we have (i.e., the larger m is), the more powerful
our procedures will be (whether θ∗ is sparse or not). This phenomenon is opposite
from what have been shown in the existing literature (cf. the discussions in the sixth
paragraph of Section 1) and exists not only in the linear regression models here, but
also in the models considered in Sections 2.3 and 4.

Third, we observe from (31) and (20) that the quantities taking the form of√
log 1

γ in δα,β,q are dimension free. Instead, the leading term EW

[∥∥∥ 1
nXT W

∥∥∥
q

]

in (31) and (11) reflects the “dimension complexity” and automatically takes into
consideration the dependencies between the coordinates. This result is a direct
consequence of the concentration phenomenon in Lipschitz functions of Gaussians.
Take q = ∞, W ∼ N (0n, In) and consider the extreme example where X consists
of p copies of the same column X0. Then, we have

EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
∞

]
=

√
2

π

1√
n

√√√√ 1

n

n∑

i=1

X2
0i

14



and (31) becomes

δα,β,∞ = 2

√
2

π

1√
n

√√√√ 1

n

n∑

i=1

X2
0i + τα1,q +

√
1

R
τα2,q +

√
1

R
τβ1,q + τβ2,q, (35)

which involves no dimension complexity (as desired). In terms of practical imple-

mentation, we have demonstrated that EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
can be well approximated

by the data-driven threshold σ
R

∑R
r=1

∥∥∥ 1
nXT Zr

∥∥∥
q
; see (18) and (79).

Beyond the extreme example, more generally for q = ∞ and W ∼ N (0n, In)
(without much loss of generality by assuming σ = 1), we show in Section A.4 that

EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
∞

]
≥ 1

2

(
1 − 1

e

)√√√√ log p

4n2
min

j,l∈{1,...,p}

n∑

i=1

(Xij − Xil)
2 (36)

for all p ≥ 20, and

EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
∞

]
≤
√√√√2 log p

n2
max

j∈{1,...,p}

n∑

i=1

X2
ij +

√√√√ 8

n2 log p
max

j∈{1,...,p}

n∑

i=1

X2
ij (37)

for all p ≥ 2. While the nonasymptotic validity of our testing procedures does not
require any growth restrictions on the dimensionality, we see from (36) that δα,β,∞
can tend to zero only when log p

n = o(1) (if X does not contain identical columns).
As an alternative, the Bonferroni approach can also be used to construct a testing

procedure. In particular, we can solve (8) (or (9)) with q = ∞ and

rα,∞ =

√√√√ max
j∈{1,...,p}

2σ2

n

n∑

i=1

X2
ij

√
1

n
log

2p

α
. (38)

Consequently, the separation distance in (30) that allows us to correctly detect an
alternative with probability at least 1 − β takes the form

δα,β,∞ = rα,∞ + rβ,∞

=

√√√√ max
j∈{1,...,p}

2σ2

n

n∑

i=1

X2
ij

(√
1

n
log

2p

α
+

√
1

n
log

2p

β

)
. (39)

In contrast to our previous concentration approach, the Bonferroni alternative de-

rives the upper bound (38) from a simple union bound on
∥∥∥ 1

nXT W
∥∥∥

∞
; as a conse-

quence, the resulting threshold rα,∞ depends on p and fails to capture the depen-
dencies between the coordinates. In the extreme example discussed previously, note
that δα,β,∞ for the Bonferroni approach can be substantially bigger than (35) due
to the extra “log p” term.
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2.2 Unknown Noise Variance

When there is no prior information on σ,
√

Var (Yi) may be used as an upper bound.

We can easily estimate
√

Var (Yi) by σ̂Y =

√
n−1

∑(
Yi − Ȳ

)2
where Ȳ = 1

n

∑n
i=1 Yi.

If {Xi}n
i=1 consists of i.i.d. Gaussian vectors (so that Y is Gaussian), Proposition

4.1 in [1] implies that
√

Var (Yi) ≤
(

Cn − 1√
n

Φ−1
(

τ

2

))−1

σ̂Y := B̄τ

with probability at least 1 − τ , where Cn =
√

2
n

Γ(n/2)
Γ((n−1)/2) = 1 − O(n−1).

In problems where Var(Wi) is a constant over i, X is fixed, and the only source of
randomness in Y comes from W , replacing σ with B̄τ does not make rα,q a more con-
servative threshold for constructing confidence regions. In problems with a random
design, using B̄τ could result in confidence regions that are more conservative.

We find it rather challenging to estimate σ precisely and obtain a sharp thresh-
old simultaneously within the non-asymptotic framework. The main issue is that

our procedure does not guarantee a small n−1/2
∥∥∥X

(
θ̂α − θ∗

)∥∥∥
2

with high probabil-

ity, which seems to be needed for consistent estimation of σ. On the other hand,
if we were able to ensure a small error with respect to the prediction norm, our
nonasymptotic control is likely to become less sharper and also involves unknown
nuisance parameters that are hard to estimate.

2.3 Gaussian Nonlinear Regressions

The procedures and theory established in Section 2.1 can be easily extended to the
Gaussian nonlinear regression models

Yi = Υ (Xi; θ∗) + Wi, i = 1, ..., n, (40)

where W = {Wi}n
i=1 ∼ N (0n, σ2

In) as before, the functional form of Υ (Xi; θ∗) is
assumed to be known and possibly nonlinear in θ∗. Our test statistics (7) then takes
the form

Ψq

(
θ̂α

)
:=

∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Yi − Υ

(
Xi; θ̂α

)]∥∥∥∥∥
q

,

which we will refer to as the “quasi-score” evaluated at θ̂α, a solution to (8) (or (9))
where Xiθα is replaced with Υ (Xi; θα) for each i. Note that (11), (18), (19), and
(79) still hold. As a result, if we replace (30) with

inf
θ∈Θ0

∥∥∥∥∥
1

n

n∑

i=1

Xi [Υ (Xi; θ∗) − Υ (Xi; θ)]

∥∥∥∥∥
q

≥ δα,β,q,

the statements in Theorem 2.1 and its implications in Section 2.1.4 (with the linear
index replaced by Υ for each i) can be carried over to the case of Gaussian nonlinear
regressions.
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2.4 Implementation

We discuss implementations for some natural choices of q (relevant to both (8) and
(9)) and q̃ (relevant to (8)).

For example, letting q = ∞ leads to a “Dantzig Selector like” constraint and we
simply rewrite it as

1

n

n∑

i=1

Xij (Yi − Xiθα) − µα ≤ rα,q ∀j = 1, ..., p,

1

n

n∑

i=1

Xij (−Yi + Xiθα) + µα ≤ rα,q ∀j = 1, ..., p,

for (8) and as

1

n

n∑

i=1

Xij (Yi − Xiθα) ≤ rα,q + µα ∀j = 1, ..., p,

1

n

n∑

i=1

Xij (−Yi + Xiθα) ≤ rα,q + µα ∀j = 1, ..., p,

for (9). Note that the constraints above are linear whereas for q = 2, the first
constraint in (8) (respectively, (9)) becomes nonlinear and is implemented without
further manipulation in our simulations.

In the cases where q = q̃ = ∞ in (8), we work with the following (equivalent)
program:

min
(θα,µα,z)∈Rp×Rp×R

z

subject to:
1

n

n∑

i=1

Xij (Yi − Xiθα) − µα ≤ rα,q ∀j = 1, ..., p,

1

n

n∑

i=1

Xij (−Yi + Xiθα) + µα ≤ rα,q ∀j = 1, ..., p,

µj,α ≤ z ∀j = 1, ..., p, (41)

−µj,α ≤ z ∀j = 1, ..., p,

h(θα) = 0m.

In the cases where q = ∞, q̃ = 1 in (8), we work with the following (equivalent)
program:
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min
(θα,µα,z)∈Rp×Rp×Rp

p∑

j=1

zj

subject to:
1

n

n∑

i=1

Xij (Yi − Xiθα) − µα ≤ rα,q ∀j = 1, ..., p,

1

n

n∑

i=1

Xij (−Yi + Xiθα) + µα ≤ rα,q ∀j = 1, ..., p,

µj,α ≤ zj ∀j = 1, ..., p, (42)

−µj,α ≤ zj ∀j = 1, ..., p,

h(θα) = 0m,

where z = {zj}p
j=1. The tricks employed to formulate the programs (41) and (42)

are standard in the literature on linear programming (see, e.g., [2]).

3 Simulations

In this section, we evaluate the performance of our procedures through simulation
studies. The following choices of q and q̃ are considered:

(I) q = q̃ = ∞ in (8),

(II) q = ∞, q̃ = 1 in (8),

(III) q = ∞ in (9),

(IV) q = 2, q̃ = ∞ in (8),

(V) q = q̃ = 2 in (8),

(VI) q = 2 in (9).

The optimization problems above are solved with the “interior point” algorithm.
The matrix X ∈ R

n×p consists of n rows, which are fixed i.i.d. realizations from
the normal distribution N (0p, Σ) where Σjj = 1 and Σjj

′ = 0.3 for j 6= j
′

and

j, j
′ ∈ {1, ..., p}. Our null hypotheses take either the form (6) or

H0 : Aθ∗ = 0m (43)

for some prespecified A ∈ R
m×p consisting of m rows, which are fixed i.i.d. realiza-

tions from the normal distribution N (0p, Σ). In the simulations, we assign a seed
number, different from what is used to draw the rows in X, to generate the rows in
A.

18



The second form of hypotheses above is motivated by real world applications in
marketing, where firms usually can choose or have information about the covariates
but lack observations on the outcome. For example, a startup company may only be
able to perform experiments over a small set of customers and record their responses.
On the other hand, there could be numerous product attributes to be chosen freely
by the company; it might also have rich data on the characteristics of potential
customers. In these applications, the researchers can often “simulate” the matrix A
of their interest (where m can be as large as p). Recalling (2) and (3), one problem
is to test H0 : Aγ∗ = 0m; that is, there is no heterogeneity in the treatment effect
for the simulated profiles.

We first look at the case n = 15 and p = 50 to examine the “small sample”
performance of our procedures. A setup with such a small n (but larger p) is rarely
seen among existing simulation studies for regression models. In the end we look
at n = 100 and p = 300 to see the improvement. For the form (6), we consider the
following scenarios:

(a) G = {1, ..., p} \ {1, p
2 , p

}
with θ∗

j = ca

p for all j = 1, ..., p,

(b) G = {1, ..., p} \ {1, 2, ..., 9} with θ∗
j = cb

p for all j = 1, ..., p,

(c) G = {1, ..., p} with θ∗
2 = cc and θ∗

j = 0 for all j 6= 2,

(d) G = {1, ..., p} \ {1, p
2 , p

}
with θ∗

2 = cd and θ∗
j = 0 for all j 6= 2.

For the form (43), we let A consist of:

(e) p − 3 rows with θ∗
j = ce

p for all j = 1, ..., p,

(f) p − 9 rows with θ∗
j =

cf

p for all j = 1, ..., p.

Our coverage probabilities and rejection probabilities are calculated based on 100
repetitions. The subscripted cs are the approximate cutoff values that make the re-
jection probabilities at 95% and may vary among (a)-(f). The rejection probabilities
decrease as the subscripted cs decrease and vice versa. We first apply methods (I)
to (VI) to each of the scenarios listed above under n = 15 and p = 50.

For each of the 100 repetitions, the noise vector W is drawn from N (0n, σ2
In)

with σ = 0.5; we take R = 10000 i.i.d. draws (Zrs) from N (0n, In) and choose

α1 = 0.049, α2 = 0.001 (i.e., α = 0.05) to balance between τα1,q and
√

1
Rτα2,q in

(21). We set β1 = 0.001, β2 = 0.049 (i.e., β = 0.05) in (31) and approximate δα,β,q

with

δ̂α,β,q =
2σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ τα1,q +

√
1

R
τα2,q +

√
1

R
τβ1,q + τβ2,q,

which is compared with the actual separation
∥∥∥ 1

nXT X
(
θ∗ − θ̂α

)∥∥∥
q
. Tables 3.1-3.7

exhibit:
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(i) θ∗ that makes the rejection probability (Item v below) at 95%,

(ii) the average of
∥∥∥ 1

nXT X
(
θ∗ − θ̂α

)∥∥∥
q

over 100 repetitions,

(iii) the average of δ̂α,β,q over 100 repetitions,

(iv) the coverage probability,

(v) the rejection probability (i.e., 95%).

The evidence from our simulation studies supports the main points of this paper.
A rejection can happen when a subscripted c is shared equally over all j = 1, ..., p
(which gives approximately sparse θ∗ or non-sparse θ∗) or over a single coefficient
(which gives exactly sparse θ∗). All it takes is sufficient separation in terms of∥∥∥ 1

nXT X
(
θ∗ − θ̂α

)∥∥∥
q
. When the number of restrictions (m) in H0 decreases from

p − 3 to p − 9 (Tables 3.1 to 3.2, Tables 3.5 to 3.6), the values of the subscripted
cs needed to make the rejection probabilities at 95% become substantially larger, as
shown in row (i); that is, our procedures become less powerful. Similar patterns are
also observed when m decreases from p to p − 3 (Tables 3.3 to 3.4). This behavior is
opposite from what has been noted in [23]: The smaller |G| gets, the more powerful
their procedure becomes in detecting sparse alternatives (such as Scenarios (c) and
(d)).

In view of (23)-(24) for (8) and (25)-(26) for (9), it is not surprising that the
coverage probabilities of our procedures are not affected by how sparse θ∗ is. In
contrast to “undercoverage” commonly reported in many asymptotic procedures, the
coverage probabilities shown in Tables 3.1-3.7 suggest our method is conservative.
The actual separation (ii) needed to achieve a power of 95% is somewhat smaller
than δ̂α,β,q (iii). This result is plausible given (33) only states that β is an upper
bound on the probability of our procedures failing to reject H0, under H1, (30),
and (31); also, the proposed separation in (31) is only sufficient but not necessary.
Establishing the minimax separation in terms of (30) for (6) and (43) under p ≥ n,
m > p − n could be a useful endeavor for future research.

For the same choice of q, methods (I)-(III) (respectively, methods (IV)-(VI))
give very similar performance as shown by rows (i) and (ii). Between the choices of
q = ∞ and q = 2, methods (I)-(III) appear more powerful than methods (IV)-(VI),
evidenced by (i) where the subscripted cs are smaller. From the computational as-
pect, method (III) is much faster than the rest. It also yields a more natural looking
confidence interval (see, (25)-(26)) whose length is simply (27), corresponding to
the “bold” numbers in the tables for the various scenarios and (n, p) combinations.
Note that the lengths here are the same as δ̂α,β,q for Method III because β1 = α2

and β2 = α1. But of course, for more general β1 and β2 as shown in Section 2, the
lengths of the confidence intervals do not have to coincide with δ̂α,β,qs.

To compare the small sample performance (n = 15, p = 50) with the larger
sample performance (n = 100, p = 300), we repeat the same exercise with methods
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(I) to (VI). For conciseness, we only exhibit the improvement for method (III) under
n = 100, p = 300 in Table 3.7. The improvement for other methods is very similar;
the same patterns discussed in the previous paragraph (when n = 15, p = 50) are
also observed under n = 100, p = 300.

As shown in Table 3.7, the subscripted cs that make the rejection probabilities
at 95% decrease drastically in the larger sample experiment. The difference in the
subscripted cs between Scenario (a) (m = p − 3) and Scenario (b) (m = p − 9),
between Scenario (e) (m = p − 3) and Scenario (f) (m = p − 9), between Scenario
(c) (m = p) and Scenario (d) (m = p − 3), respectively, gets smaller as p and n
increase. This finding is intuitive and can be reasoned as follows: Relative to the
setup n = 15 and p = 50, the number of “free” parameters remains the same (3 for
Scenarios (a), (d), and (e); 9 for Scenario (b) and (f); 0 for Scenario (c)) while n is
increased to 100. Consequently, the impact of more restrictions in H0 on the power
becomes less substantial.

Table 3.1: n = 15, p = 50, Scenario (a), Methods I-VI

I II III IV V VI

i 0.081 · 1p 0.081 · 1p 0.081 · 1p 0.096 · 1p 0.096 · 1p 0.096 · 1p

ii 1.034 0.986 1.034 3.856 3.852 3.852

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95

Table 3.2: n = 15, p = 50, Scenario (b), Methods I-VI

I II III IV V VI

i 0.496 · 1p 0.496 · 1p 0.496 · 1p 0.633 · 1p 0.633 · 1p 0.633 · 1p

ii 1.084 1.080 1.084 3.739 3.737 3.737

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95
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Table 3.3: n = 15, p = 50, Scenario (c), Methods I-VI

I II III IV V VI

i (0, 0.745, 0p−2) (0, 0.745, 0p−2) (0, 0.745, 0p−2) (0, 0.83, 0p−2) (0, 0.83, 0p−2) (0, 0.83, 0p−2)

ii 1.025 1.025 1.025 4.286 4.286 4.286

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95

Table 3.4: n = 15, p = 50, Scenario (d), Methods I-VI

I II III IV V VI

i (0, 4.45, 0p−2) (0, 4.45, 0p−2) (0, 4.45, 0p−2) (0, 4.875, 0p−2) (0, 4.875, 0p−2) (0, 4.875, 0p−2)

ii 1.015 0.993 1.015 3.738 3.736 3.736

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95

Table 3.5: n = 15, p = 50, Scenario (e), Methods I-VI

I II III IV V VI

i 0.054 · 1p 0.054 · 1p 0.054 · 1p 0.064 · 1p 0.064 · 1p 0.064 · 1p

ii 1.053 1.134 1.053 3.859 3.852 3.853

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95

Table 3.6: n = 15, p = 50, Scenario (f), Methods I-VI

I II III IV V VI

i 0.086 · 1p 0.086 · 1p 0.086 · 1p 0.102 · 1p 0.102 · 1p 0.102 · 1p

ii 1.098 1.130 1.098 3.796 3.795 3.795

iii 1.602 1.602 1.602 6.726 6.726 6.726

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95

Table 3.7: n = 100, p = 300, Scenarios (a)-(f), Method (III)

a b c d e f

i 0.008 · 1p 0.021 · 1p (0, 0.35, 0p−2) (0, 0.632, 0p−2) 0.002 · 1p 0.003 · 1p

ii 0.387 0.400 0.370 0.380 0.350 0.395

iii 0.595 0.595 0.595 0.595 0.595 0.595

iv 1 1 1 1 1 1

v 0.95 0.95 0.95 0.95 0.95 0.95
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4 Some General Non-Asymptotic Justifications

So far our theory has focused on Gaussian regressions with homoscedastic noise. Is it
possible to establish some general non-asymptotic justifications for inference in high
dimensional models that involve non-Gaussian responses, heteroscedastic noise, and
nonlinearity in the regression coefficients? We answer this question in this section.

4.1 Regressions with Non-Gaussian Noise

Our analysis in Section 2 exploits sharp concentration of Lipschitz functions of Gaus-
sian variables. This analysis can be extended to regression models where the noise
vector W is either bounded or has a strongly log-concave distribution. In particular,
we have the following analogues of (11).

Lemma 4.1 . Suppose W has a strongly log-concave1 distribution with parameter
ϕ. Then for any q ∈ [1, ∞], we have

P

{∥∥∥∥
1

n
XT W

∥∥∥∥
q

≥ E

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ t

}
≤ exp




−nϕt2

2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 . (44)

Remarks. For a fixed design X, if Y ∼ N (Xθ∗, Σ) and Σ ≻ 0, ϕ can be set to the
smallest eigenvalue of Σ−1. Beyond a normal distribution, [16] discuss quite a few
examples of strongly log-concave distributions.

Lemma 4.2 . Suppose W consists of independent random variables, all of which
are supported on [a, b]. Then for any q ∈ [1, ∞], we have

P

{∥∥∥∥
1

n
XT W

∥∥∥∥
q

≥ E

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ t

}
≤ exp




−nt2

2 (b − a)2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 . (45)

If we know the distribution of W , our analysis from Section 2 can be, in principle,
extended to construct testing procedures and confidence regions for regression mod-
els where W is either bounded or has a strongly log-concave distribution. However,
sometimes we might not know the distribution for W ; instead, we may have more
information on the distribution of Y than the distribution of W . In some applica-
tions, we might only know Y consists of entries supported on [a, b]. For example,
[20] estimate the effect of spending on math pass rates (Yi ∈ [0, 1]) under the as-
sumption E (Yi|Xi) = Φ (Xiθ

∗), where Φ(·) denotes the standard normal c.d.f. and

1A strongly log-concave distribution is a distribution with density p(z) = exp (−ψ(z)) such

that for some ϕ > 0 and all λ ∈ [0, 1], z, z
′

∈ R
n, λψ(z) + (1 − λ)ψ(z

′

) − ψ(λz + (1 − λ)z
′

) ≥

ϕ

2
λ(1 − λ)

∥∥∥z − z
′

∥∥∥
2

2

.
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Xi include the spending variable as well as other covariates. Another example is the
binary response model

P (Yi = 1|Xi) = Λ (Xi; θ∗) , i = 1, ..., n, (46)

where Yi ∈ {0, 1} and the functional form of Λ (Xi; θ∗) is assumed to be known; for
example, Λ may be a “probit” or a “logit” in (46) and Λ (Xi; θ∗) = Λ (Xiθ

∗). Under
the assumption

E (Yi|Xi) = Π (Xi; θ∗) , (47)

both binary and bounded response models can be treated in the same framework.

4.2 Bounded Responses

In what follows, we consider (47) where a ≤ Yi ≤ b for all i, the functional form
of Π (Xi; θ∗) is assumed to be known and possibly nonlinear in θ∗. Without loss of
generality, we assume a = 0 and b = 1. Our test statistics now becomes

Ψq

(
θ̂α

)
:=

∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Yi − Π

(
Xi; θ̂α

)]∥∥∥∥∥
q

, (48)

and θ̂α is a solution to

(
θ̂α, µ̂α

)
∈ arg min

(θα,µα)∈Rp×Rp
‖µα‖q̃

subject to:

∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θα)] − µα

∥∥∥∥∥
q

≤ rα,q, (49)

h(θα) = 0m,

or,

(
θ̂α, µ̂α

)
∈ arg min

(θα,µα)∈Rp×R

µα

subject to:

∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θα)]

∥∥∥∥∥
q

≤ rα,q + µα, (50)

h(θα) = 0m,

µα ≥ 0.

Throughout this section, we use EY |X [·] to denote the expectation over the distribu-
tion of Y conditioning on X; for an i.i.d. sequence of Radamacher random variables,
ε = {εi}n

i=1 (independent of Y and X), we use Eε [·] to denote the expectation over

24



ε only, conditioning on Y and X, and Eε,Y |X [·] to denote the expectation over the
distribution of (ε, Y ) conditioning on X.

Like in the regression problem, we first establish the concentration of
∥∥∥∥∥

1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

around its expectation

Sθ∗ := EY |X



∥∥∥∥∥

1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q


 . (51)

Previously we have simply replaced EW

[∥∥∥ 1
nXT W

∥∥∥
q

]
in (11) with its Monte Carlo

approximation σ
R

∑R
r=1

∥∥∥ 1
nXT Zr

∥∥∥
q

and a “small” deviation. This strategy cannot be

applied to the expectation Sθ∗ directly. Instead, we first seek a reasonable upper
bound which involves only {Y, X} and random variables from a known distribution.
These results are stated in the following proposition.

Proposition 4.1 . Assume Y consists of independent random variables. For any
q ∈ [1, ∞], we have

P





∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

≥ Sθ∗ + t



 ≤ exp




−nt2

2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q


 . (52)

Let ε = {εi}n
i=1 be an i.i.d. sequence of Radamacher random variables independent

of Y and X. Under (47), we have

Eε,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

εiXi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q



 ≤ Sθ∗ ≤ 2Eε,Y |X





∥∥∥∥∥
1

n

n∑

i=1

εiXiYi

∥∥∥∥∥
q



 .

(53)
Remarks. Note that bound (52) holds for any fixed θ (not just the true coefficient
vector, θ∗). However, (53) relies crucially on the model assumption (47).

The upper bound in (53) can be viewed as the symmetrized version of Sθ∗ .
Considering a collection of i.i.d. Radamacher random draws (independent of Y and
X),

{εir : i = 1, ..., n, r = 1, ..., R} , (54)

we can replace Sθ∗ with 2
R

∑R
r=1

∥∥∥ 1
n

∑n
i=1 εirYiXi

∥∥∥
q

(a Monte-Carlo approximation

of the symmetrized version) and some “small” deviations. The complementary lower
bound in (53) suggests that Sθ∗ and its symmetrized version have the magnitude.
As a consequence, our replacement strategy is not an overly conservative approach
for constructing critical values.
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Hypothesis Testing

To avoid repetition, we omit the discussion on the “ideal” confidence regions and
directly jump to the construction of the test statistics Ψq(θ̂α) based on (a practical)

rα,q and θ̂α. The first step is to relate Sθ∗ with 2
R

∑R
r=1

∥∥∥ 1
n

∑n
i=1 εirYiXi

∥∥∥
q

as shown

in the following proposition.

Proposition 4.2 . Assume (47) where 0 ≤ Yi ≤ 1 for all i and the functional
form of Π (Xi; θ∗) is known. Given (54) which is independent of Y and X, for any
q ∈ [1, ∞], we have

∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

≥ 2

R

R∑

r=1

∥∥∥∥∥
1

n

n∑

i=1

εirYiXi

∥∥∥∥∥
q

+ t1 + 2t2 + 2t3 (55)

with probability no greater than α ∈ (0, 1), where

t1 = τα1,q =

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i
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q

√
2
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log

1

α1
,

t2 = τα2,q =
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√√√√ 1

n
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X2
i
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q

√
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n
log

1
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,

t3 =
2√
R

τα3,q =
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√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√
8

nR
log

1

α3
,

for some chosen α1, α2, α3 > 0 such that
∑3

k=1 αk = α.

Construction of Critical Values (rα,q) and Type I Error

Based on (55) along with the choices of t1, t2 and t3 above, we set in (49) (or (50)),

rα,q =
2

R

R∑

r=1

∥∥∥∥∥
1

n

n∑

i=1

εirYiXi

∥∥∥∥∥
q

+ τα1,q + 2τα2,q +
4√
R

τα3,q. (56)

Under H0, (θ∗, 0p) ((θ∗, 0)) is an optimal solution to (49) (respectively, (50)) with
rα,q specified in (56). Consequently, a (practical) optimal solution to (49) (and (50))
must satisfy

P0

{
Ψq(θ̂α) ≥ rα,q

}
≤ α (Type I Error). (57)
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Separation Requirement and Type II Error

Letting Θ0 := {θ ∈ R
p : h(θ) = 0m}, we choose β1, β2, β3 > 0 such that

∑3
k=1 βk =

β ∈ (0, 1), and assume

inf
θ∈Θ0

∥∥∥∥∥
1

n

n∑

i=1

Xi [Π (Xi; θ∗) − Π (Xi; θ)]

∥∥∥∥∥
q

≥ δα,β,q (58)

with

δα,β,q = EY |X



∥∥∥∥∥

1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q


+ Eε,Y |X



∥∥∥∥∥

2

n

n∑

i=1

εiXiYi

∥∥∥∥∥
q




+ τα1,q + 2τα2,q +

√
16

R
τα3,q + 2τβ1,q +

√
16

R
τβ2,q + τβ3,q, (59)

for the prespecified α1, α2, α3 > 0 (as used in (56)) such that
∑3

k=1 αk = α ∈ (0, 1).
Note that the SR is imposed upon the lq−distance between the “quasi score” vectors
evaluated at θ∗ and θ(∈ Θ0), since

∥∥∥∥∥
1

n

n∑

i=1

Xi [Π (Xi; θ∗) − Π (Xi; θ)]

∥∥∥∥∥
q

=

∥∥∥∥∥EY |X

{
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ)]

}
− EY |X

{
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

}∥∥∥∥∥
q

.

Our next result concerns the Type II error of the test based on Ψq(θ̂α) in (48)
and rα,q defined in (56). For completeness, we also exhibit the Type I error and the
practical confidence regions in this result.

Theorem 4.1 . Suppose the conditions in Propositions 4.1 and 4.2 hold. For some
chosen α1, α2, α3 > 0 such that

∑3
k=1 αk = α ∈ (0, 1), consider the statistics

Ψq(θ̂α) based on (a practical) θ̂α and the critical value rα,q defined in (56). For any
q ∈ [1, ∞], we have

P0

{
Ψq(θ̂α) ≥ rα,q

}
≤ α, (Type I Error) (60)

where P0 means under H0. For the same rα,q used in (60) and some β1, β2, β3 > 0
such that

∑3
k=1 βk = β ∈ (0, 1), if h(θ∗) 6= 0m and (58) is satisfied, we have

P1

{
Ψq(θ̂α) ≤ rα,q

}
≤ β, (Type II Error) (61)

where P1 means under H1 and (58).
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Furthermore, an optimal solution
(
θ̂α, µ̂α

)
to (49) must satisfy

∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Π (Xi; θ∗) − Π

(
Xi; θ̂α

)]∥∥∥∥∥
q̃

≥ ‖µ̂α‖q̃ , (62)

∥∥∥∥∥
1
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Xi

[
Π (Xi; θ∗) − Π

(
Xi; θ̂α

)]
− µ̂α

∥∥∥∥∥
q

≤ 2rα,q, (63)

with probability at least 1 − α. Similarly, an optimal solution
(
θ̂α, µ̂α

)
to (50) must

satisfy

∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Π (Xi; θ∗) − Π

(
Xi; θ̂α

)]∥∥∥∥∥
q

≥ µ̂α, (64)
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1

n

n∑

i=1

Xi

[
Π (Xi; θ∗) − Π

(
Xi; θ̂α

)]∥∥∥∥∥
q

≤ 2rα,q + µ̂α, (65)

with probability at least 1 − α.

For deriving ra,q in (49) or (50), the strategy where we replace Sθ∗ in (51) by
2
R

∑R
r=1

∥∥∥ 1
n

∑n
i=1 εirYiXi

∥∥∥
q

plus some “small” deviations only requires the correct

specification of the conditional mean of Yi, i.e., (47). This treatment delivers generic
confidence regions in the form of (62)-(63) or (64)-(65).

Note that the assumptions in Theorem 4.1 allow for the possibilities of het-
eroscedastic “noise” (Yi − Π (Xi; θ∗)) as well as nonlinearity in θ∗, while requiring
no specific knowledge on the distribution for Y (other than it is bounded). In the
linear regression model Y = Xθ∗ + W , [10] resolve the issues of heteroscedasticity
and non-Gaussian responses by tailoring the Bonferroni approach to self-normalized
sums. Their confidence regions involve several unknown nuisance parameters that
are hard to estimate in practice. Even in the case where the noise variances are
known and homoscedastic, to apply the confidence sets in [10] for testing hypothe-
ses of the form H0 : θ∗

j = 0 ∀j ∈ {1, 2, ..., p} (for example), one would require
sufficient sparsity in θ∗ as well as prior knowledge on the underlying sparsity (e.g.,
an upper bound on the number of non-zero coefficients in θ∗).

5 A New Class of Regularized Estimators

Beyond the context of hypothesis testing, the data-driven approach proposed in
Section 2 for setting rα,q suggests a new class of regularized estimators:

θ̂new
α ∈ arg min

θα∈Rp
‖θα‖q̃ subject to

∥∥∥∥
1

n
XT (Y − Xθα)

∥∥∥∥
q

≤ rα,q, (66)
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where

rα,q =
σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

+ τα1,q +

√
1

R
τα2,q, (67)

τα1,q = σ

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√
2

n
log

1

α1
, (68)

for some chosen α1, α2 > 0 such that α1 + α2 = α ∈ (0, 1).
Unlike (8) or (9), (66) has a different objective, minθα∈Rp ‖θα‖q̃, and does not

involve the slack vector (or variable) µα in
∥∥∥ 1

nXT (Y − Xθα)
∥∥∥

q
≤ rα,q. Moreover, the

solution to (66) is not constrained to satisfy h(θ̂new
α ) = 0m, whereas our estimator

θ̂α in Section 2 satisfies h(θ̂α) = 0m. When q̃ = 1 and q = ∞, we may view (66) as
a variant of the Dantzig selector.

In what follows, let θ̂new
α be a solution to the program (66) with q̃ = 1 and

q = ∞. We can establish an upper bound on
∥∥∥θ̂new

α − θ∗
∥∥∥

2
using the l2−sensitivity

defined as follows:

κJ∗ := inf
∆∈CJ∗ :‖∆‖

2
=1

∥∥∥∥
1

n
XT X∆

∥∥∥∥
∞

(69)

where

J∗ :=
{

j ∈ {1, ..., p} : θ∗
j 6= 0

}
,

CJ∗ :=
{
∆ ∈ R

p : ‖∆Jc
∗
‖1 ≤ ‖∆J∗‖1

}
,

where ∆J denotes the vector in R
p that has the same coordinates as ∆ on the set J

and zero coordinates on the complement Jc of J . The l2−sensitivity is introduced
by [9]2 and similar to the cone invertibility factors defined in [21]. In particular,
under a coherence condition introduced by [8], Proposition 4.2 in [9] shows that

κJ∗ %
1√
|J∗| (70)

where |J∗| denotes the cardinality of J∗ and f (n) % g (n) means f (n) ≥ C0g (n) for
some constant C0 ∈ (0, ∞).

The following result concerns the l2−error bound for θ̂new
α .

Theorem 5.1 . Assume (1) where W ∼ N (0n, σ2
In) and is independent of X.

Choosing q̃ = 1 and q = ∞ in (66) and setting rα,q according to (67) with q = ∞,
we have

P

(∥∥∥θ̂new
α − θ∗

∥∥∥
2

≤ 2rα,∞
κJ∗

)
≥ 1 − α (71)

2In contrast to (66), the estimators in [9] and [10] rely on the Bonferroni approach tailored to
the self-normalized sums.
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where κJ∗ is defined in (69).

In view of (37), (79) and (70), we see that the rate of our θ̂new
α , i.e., κ−1

J∗

√
log p

n ,

is not worse than the typical rate
√

|J∗| log p
n for estimation (see, e.g., [3]). If |J∗| is

large relative to n (lack of sparsity), then κ−1
J∗

could diverge faster than (or no slower

than)
√

n
log p .

The innovation of (66) lies in the use of (67) which can accurately approximate

the term EW

[∥∥∥ 1
nXT W

∥∥∥
∞

]
in (11) via Monte-Carlo and automatically take into

consideration the dependencies across coordinates. This fact makes (66) in contrast

with the Bonferroni approach which would set rα,∞ proportional to
√

1
n log 2p

α . As we

have demonstrated earlier (cf., Section 2.1.4), in the presence of strong dependencies
between the columns in X, rα,∞ for the Bonferroni approach can be substantially
bigger than (67) due to the extra “log p” term.

In the situation where the noise variance σ is not known a priori, we can always
modify (66) by adopting the approach in Section 2. Alternatively, it is also possible
to modify the optimization procedure in [10] with our data-driven approach for set-

ting the constraint on
∥∥∥ 1

nXT (Y − Xθα)
∥∥∥

∞
.

Remarks. Note that the confidence interval in (71) cannot be computed easily
as κJ∗ is unknown and hard to estimate. Even for testing a hypothesis such as

H0 : θ∗ = 0p, deriving a practical critical value for the statistics
∥∥∥θ̂new

α

∥∥∥
2

is a chal-

lenging task. For this reason, we have chosen to work with the score tests (which
require no conditions on sparsity) as demonstrated in Section 2.

6 Conclusion

We have developed non-asymptotically justified methods for hypothesis testing about
the coefficients (θ∗ ∈ R

p) in the high dimensional (generalized) regression models
where p can exceed the sample size n. Relative to existing literature, we look at
broader forms of hypotheses and the impact of the number of restrictions in the
null hypothesis. In particular, we consider H0 : h(θ∗) = 0m against the alternative
hypothesis H1 : h(θ∗) 6= 0m, where m can be as large as p and the function of
interest h : R

p 7→ R
m can be nonlinear in θ∗. Our test statistics is based on the

sample score vector evaluated at an estimate θ̂α that satisfies h(θ̂α) = 0m, where α
is the prespecified Type I error. Our controls on the Type I and Type II errors for
the score test are nonasymptotic. In addition, confidence regions are constructed in
terms of the score vectors.

By exploiting the concentration phenomenon in Lipschitz functions, the key
component reflecting the “dimension complexity” in our non-asymptotic thresholds
uses a Monte-Carlo approximation to “mimic” the expectation that is concentrated
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around and automatically takes into account the dependencies between the coor-
dinates. The novelty of our methods is that their validity does not rely on good

behavior of
∥∥∥θ̂α − θ∗

∥∥∥
2

or even n−1/2
∥∥∥X

(
θ̂α − θ∗

)∥∥∥
2

nonasymptotically or asymp-

totically. Most interestingly, we discover phenomena that are opposite from the
existing literature: (1) More restrictions (larger m) in H0 make our procedures
more powerful; (2) whether θ∗ is sparse or not, it is possible for our procedures
to detect alternatives with probability at least 1 − Type II error when p ≥ n and
m > p − n; (3) the coverage probability of our procedures is not affected by how
sparse θ∗ is.

The proposed procedures are evaluated with simulation studies where we con-
sider a “small sample” setup (n = 15, p = 50) and a “larger sample” setup (n = 100,
p = 300). Our designs range from highly dense θ∗ to highly sparse θ∗ and our
null hypotheses take either the form (6) or H0 : Aθ∗ = 0m, for some prespecified
A ∈ R

m×p and m ∈ {p, p − 3, p − 9}. The empirical results are promising and
support our key insights.

We have also provided some general nonasymptotic justifications for inference
in high dimensional models that involve non-Gaussian responses, heteroscedastic
noise, and nonlinearity in the regression coefficients (including the binary response
models and certain nonlinear regressions). As a secondary contribution, we have
also proposed a new class of regularized estimators along with a complementary
l2−error bound, which are motivated by the data-driven feature of our concentration
approach.
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A Supplementary Materials

A.1 Preliminary

Here we include several classical results which are used in the main proofs. We first
introduce a definition of sub-Gaussian variables.

Definition A.1 . A zero-mean random variable U1 is sub-Gaussian if there is a
ν > 0 such that

E [exp (λU1)] ≤ exp

(
λ2ν2

2

)
(72)

for all λ ∈ R, and we refer to ν as the sub-Gaussian parameter.

Remarks.

1. Using the Chernoff bound, one can show that any zero-mean random variable
U1 obeying (72) satisfies

P (U1 ≤ −t) ≤ exp

(
− t2

2ν2

)
, (73)

P (U1 ≥ t) ≤ exp

(
− t2

2ν2

)
, (74)

for all t ≥ 0.

2. Let {Ui}R
i=1 be independent zero-mean sub-Gaussian random variables, each

with parameter at most ν. Then R−1∑R
i=1 Ui is sub-Gaussian with parameter

at ν/
√

R. To see this, note that for all λ ∈ R,

E

[
exp

(
λ

R

R∑

i=1

Ui

)]
=

R∏

i=1

E

[
exp

(
λUi

R

)]

≤
R∏

i=1

exp

(
λ2ν2

2R2

)

= exp

(
λ2ν2

2R

)
. (75)

The following result exhibits the type of sub-Gaussian variables that are of interest
to our analysis.

Lemma A.1 . Suppose U = {Ui}n
i=1 has a strongly log-concave distribution with

parameter ϕ > 0 and f : R
n → R is L−Lipschitz with respect to the Euclidean
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norm. Then for all λ ∈ R, we have

E [exp (λ {f(U) − E [f(U)]})] ≤ exp

(
λ2L2

2ϕ

)
. (76)

As a consequence,

P {f(U) − E [f(U)] ≤ −t} ≤ exp

(
− ϕt2

2L2

)
,

P {f(U) − E [f(U)] ≥ t} ≤ exp

(
− ϕt2

2L2

)
.

Remarks. The proof involves the so-called “inf-convolution” argument and an ap-
plication of the Brunn-Minkowski inequality; see [4] and [14].

Lemma A.2 . Assume U = {Ui}n
i=1 consists of independent random variables,

all of which are supported on [a, b]. If f : R
n → R is separately convex3 and

L−Lipschitz with respect to the Euclidean norm, then for all λ ∈ R,

E [exp (λ {f(U) − E [f(U)]})] ≤ exp

[
λ2(b − a)2L2

2

]
. (77)

As a consequence,

P [f(X) − E [f(X)] ≤ −t] ≤ exp

(
− t2

2L2(b − a)2

)
,

P [f(X) − E [f(X)] ≥ t] ≤ exp

(
− t2

2L2(b − a)2

)
.

Remarks. One proof for Lemma A.2 involves the entropy method and the so-
called Herbst argument; see [5]. Talagrand and Ledoux have contributed to the
result above in different papers.

A.2 Proof of Proposition 2.1

For any q ∈ [1, ∞],
∥∥∥ 1

nXT W
∥∥∥

q
is Lipschitz in W with respect to the Euclidean

norm. To see this, note that a triangle inequality and a Cauchy-Schwarz inequality

3Let the function fj : R → R be defined by varying only the jth co-ordinate of a function
f : R

n → R; f is separately convex if for each j ∈ {1, 2, ..., n}, fj is a convex function of the jth
coordinate.
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yield
∣∣∣∣∣

∥∥∥∥
1

n
XT W

∥∥∥∥
q

−
∥∥∥∥

1

n
XT W

′
∥∥∥∥

q

∣∣∣∣∣ ≤
∥∥∥∥

1

n
XT

(
W − W

′
)∥∥∥∥

q

≤ 1√
n

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

∥∥∥W − W
′
∥∥∥

2
. (78)

As a result of Lemma A.1, we have the concentration in (11).
If h(θ∗) = 0m, (11) then implies that (θ∗, 0p) ((θ∗, 0)) is an optimal solution to

(8) (respectively, (9)). If h(θ∗) 6= 0m, since {θ ∈ R
p : h(θ) = 0m} 6= ∅, we can find

some θ̃α such that h(θ̃α) = 0m. Letting

µ̃α =
1

n
XT (Y − Xθ̃α) − 1

n
XT (Y − Xθ∗) =

1

n
XT (Xθ∗ − Xθ̃α),

(11) then implies that
(
θ̃α, µ̃α

)
(
(
θ̃α, ‖µ̃α‖q

)
) is a feasible solution to (8) (respec-

tively, (9)) with probability at least 1−α. In any case, an optimal solution
(
θ̂∗

α, µ̂∗
α

)

to (8) must satisfy
∥∥∥∥

1

n
XT (Y − Xθ̂∗

α) − 1

n
XT (Y − Xθ∗)

∥∥∥∥
q̃

=

∥∥∥∥
1

n
XT (Xθ∗ − Xθ̂∗

α)

∥∥∥∥
q̃

≥ ‖µ̂∗
α‖q̃

with probability at least 1 − α. Similarly, an optimal solution
(
θ̂∗

α, µ̂∗
α

)
to (9) must

satisfy
∥∥∥∥

1

n
XT (Y − Xθ̂∗

α) − 1

n
XT (Y − Xθ∗)

∥∥∥∥
q

=

∥∥∥∥
1

n
XT (Xθ∗ − Xθ̂∗

α)

∥∥∥∥
q

≥ µ̂∗
α

with probability at least 1 − α. On the other hand, in terms of (8), applying the
triangle inequality yields

∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α) − µ̂∗
α

∥∥∥∥
q

≤
∥∥∥∥

1

n
XT W

∥∥∥∥
q

+

∥∥∥∥
1

n
XT (Y − Xθ̂∗

α) − µ̂∗
α

∥∥∥∥
q

≤ 2r∗
α,q

with probability at least 1 − α. In terms of (9), we simply have

P

(∥∥∥∥
1

n
XT X(θ∗ − θ̂∗

α)

∥∥∥∥
q

≤ 2r∗
α,q + µ̂∗

α

)
≥ 1 − α.

A.3 Proof of Theorem 2.1

We have already derived (32) in Section 2. To show (33), we define the event

E =

{
σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

≥ EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+

√
1

R
τβ1,q

}
.
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As we have argued for (18), we also have the upper deviation inequality

P

{
σ

R

R∑

r=1

∥∥∥∥
1

n
XT Zr

∥∥∥∥
q

≥ EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ t

}
≤ exp




−nRt2

2σ2
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q




(79)
and consequently, P (E) ≤ β1. Let Ec denote the complement of E . Under H1 and
(30), we have

P

{
Ψq(θ̂α) ≤ rα,q

}

=P

{
Ψq(θ̂α) ≤ rα,q|Ec

}
P (Ec) + P

{
Ψq(θ̂α) ≤ rα,q|E

}
P (E)

≤P

{
Ψq(θ̂α) ≤ rα,q|Ec

}
+ P (E)

≤P

{∥∥∥∥
1

n
XT (Xθ∗ − Xθ̂α)

∥∥∥∥
q

−
∥∥∥∥

1

n
XT W

∥∥∥∥
q

≤ rα,q|Ec

}
+ β1

≤P

{
δα,β,q −

∥∥∥∥
1

n
XT W

∥∥∥∥
q

≤ rα,q|Ec

}
+ β1

≤P

{∥∥∥∥
1

n
XT W

∥∥∥∥
q

≥ EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
q

]
+ τβ2,q|Ec

}
+ β1

≤β

where the fifth line follows from (30) and the sixth line follows from (31), the fact
that we are conditioning on Ec, as well as (11).

A.4 Additional Derivations

To show (36), we define an i.i.d. sequence of Gaussian random variables

W̃k ∼ N
(

0, min
j,l∈{1,...,p}

1

2n2

n∑

i=1

(Xij − Xil)
2

)

for k = 1, ..., p. Note that we have

EW

[(
1

n
XT

j W − 1

n
XT

l W

)2
]

≥ E
W̃

[(
W̃j − W̃l

)2
]

.
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By the Sudakov-Fernique Gaussian comparison result (see Corollary 3.14 in [13]),
we obtain

EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
∞

]
≥ EW

[
max

j∈{1,...,p}

1

n
XT

j W

]

≥ 1

2
E

W̃

[
max

j∈{1,...,p}
W̃j

]

≥ 1

2

(
1 − 1

e

)√√√√ log p

4n2
min

j,l∈{1,...,p}

n∑

i=1

(Xij − Xil)
2

(for all p ≥ 20), where the last line follows from a classical lower bound on the
Gaussian maximum (see, e.g., [13]). The upper bound

EW

[∥∥∥∥
1

n
XT W

∥∥∥∥
∞

]
≤
√√√√2 log p

n2
max

j∈{1,...,p}

n∑

i=1

X2
ij +

√√√√ 8

n2 log p
max

j∈{1,...,p}

n∑

i=1

X2
ij

(for all p ≥ 2) is another classical result on the Gaussian maximum (see, e.g., [18]).

Remarks. To obtain the lower bound on EW

[∥∥∥ 1
nXT W

∥∥∥
∞

]
, we first compare the de-

pendent sequence
{

1
nXT

j W
}p

j=1
with another independent Gaussian sequence W̃ =

{
W̃j

}p

j=1
and then apply a lower bound on E

W̃

[
maxj∈{1,...,p} W̃j

]
. In contrast, the

upper bound on EW

[∥∥∥ 1
nXT W

∥∥∥
∞

]
is obtained by applying

∑p
j=1 P

(∣∣∣ 1
nXT

j W
∣∣∣ ≥ t

)
,

where independence is not needed. Moreover, the upper bound also holds when W
is a sequence of sub-Gaussian variables while the lower bound requires W to be a
sequence of Gaussian variables.

A.5 Proofs of Lemmas 4.1 and 4.2

As a result of Lemma A.1 and (78), we have the concentration in Lemma 4.1.

Because
∥∥∥ 1

nXT W
∥∥∥

q
is separately convex in terms of W , Lemma A.2 implies the

concentration in Lemma 4.2.
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A.6 Proof of Proposition 4.1

Using the argument that leads to (78), we can show
∥∥∥ 1

n

∑n
i=1 Xi [Yi − Π (Xi; θ∗)]

∥∥∥
q

is Lipschitz in Y with respect to the Euclidean norm for any q ∈ [1, ∞]. That is,

∣∣∣∣∣∣

∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

−
∥∥∥∥∥

1

n

n∑

i=1

Xi

[
Y

′

i − Π (Xi; θ∗)
]∥∥∥∥∥

q

∣∣∣∣∣∣

≤ 1√
n

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

∥∥∥Y − Y
′
∥∥∥

2
. (80)

Note that
∥∥∥ 1

n

∑n
i=1 Xi [Yi − Π (Xi; θ∗)]

∥∥∥
q

is separately convex in terms of Y . As a

result of Lemma A.2, we have the concentration in (52).
To establish (53), we exploit the convexity of lq−norms and the fact that E (Yi|Xi) =

Π (Xi; θ∗). Let Y
′

=
{

Y
′

i

}n

i=1
be an independent sequence identical to but inde-

pendent of Y conditioning on X, and ε = {εi}n
i=1 be i.i.d. Radamacher random

variables independent of Y , Y
′
, and X. We obtain

EY |X





∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q





=EY |X





∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Yi − E

Y
′

i
|Xi

(
Y

′

i

)]∥∥∥∥∥
q





=EY |X





∥∥∥∥∥EY ′ |X

[
1

n

n∑

i=1

Xi

(
Yi − Y

′

i

)]∥∥∥∥∥
q





≤EY
′
,Y |X





∥∥∥∥∥
1

n

n∑

i=1

Xi

(
Yi − Y

′

i

)∥∥∥∥∥
q





=Eε,Y ′ ,Y |X





∥∥∥∥∥
1

n

n∑

i=1

εiXi

(
Yi − Y

′

i

)∥∥∥∥∥
q





≤2Eε,Y |X





∥∥∥∥∥
1

n

n∑

i=1

εiXiYi

∥∥∥∥∥
q



 , (81)

where the second line follows since E

(
Y

′

i |Xi

)
= Π (Xi; θ∗), the fourth line follows

from Jensen’s inequality, and the sixth line follows from the fact that εiXi

(
Yi − Y

′

i

)

and Xi

(
Yi − Y

′

i

)
have the same distribution.
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On the other hand, similar argument from above also yields

Eε,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

εiXi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q





=Eε,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

εiXi

[
Yi − E

Y
′

i
|Xi

(
Y

′

i

)]∥∥∥∥∥
q





≤Eε,Y
′
,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

εiXi

(
Yi − Y

′

i

)∥∥∥∥∥
q





=EY
′
,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

Xi

(
Yi − Y

′

i

)∥∥∥∥∥
q



 .

Applying the following inequality
∥∥∥∥∥

1

2n

n∑

i=1

Xi

(
Yi − Y

′

i

)∥∥∥∥∥
q

≤
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1

2n

n∑

i=1

Xi (Yi − Π (Xi; θ∗))
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q

+

∥∥∥∥∥
1

2n

n∑

i=1

Xi

(
Y

′

i − Π (Xi; θ∗)
)∥∥∥∥∥

q

,

and taking expectations gives

EY
′
,Y |X





∥∥∥∥∥
1

2n

n∑

i=1

Xi

(
Yi − Y

′

i

)∥∥∥∥∥
q



 ≤ EY |X





∥∥∥∥∥
1

n

n∑

i=1

Xi (Yi − Π (Xi; θ∗))

∥∥∥∥∥
q



 .

Putting the pieces together, we obtain the result in (53).

A.7 Proof of Proposition 4.2

We first show that Eε

{∥∥∥ 1
n

∑n
i=1 εiXiYi

∥∥∥
q

}
is Lipschitz in Y with respect to the

Euclidean norm for any q ∈ [1, ∞]. That is,

∣∣∣∣∣∣
Eε





∥∥∥∥∥
1

n

n∑

i=1

εiXiYi

∥∥∥∥∥
q



− Eε





∥∥∥∥∥
1

n

n∑

i=1

εiXiY
′

i

∥∥∥∥∥
q





∣∣∣∣∣∣

≤ 1√
n

∥∥∥∥∥∥

√√√√ 1

n

n∑

i=1

X2
i

∥∥∥∥∥∥
q

√√√√Eε

[
n∑

i=1

ε2
i

(
Yi − Y

′

i
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Note that Eε

{∥∥∥ 1
n

∑n
i=1 εiXiYi

∥∥∥
q

}
is separately convex in terms of Y . As a result of

Lemma A.2, we have the following concentration
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+ τα2,q



 ≤ α2. (82)

Let ε = {εi}n
i=1 be an i.i.d. sequence of Radamacher random variables, indepen-

dent of Y and X. We can again show that
∥∥∥ 1

n

∑n
i=1 εiYiXi

∥∥∥
q

is Lipschitz in ε with

respect to the Euclidean norm for any q ∈ [1, ∞] and the Lipschitz constant4 is

1√
n
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√

1
n

∑n
i=1 (YiXi)

2
∥∥∥∥

q
, which is bounded from above by 1√

n

∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
q

given

0 ≤ Yi ≤ 1. Let {εir : i = 1, ..., n, r = 1, ..., R} be a collection of i.i.d. Radamacher
random draws, independent of Y and X. Conditioning on Y and X, (75) and (77)

imply 1
R

∑R
r=1

∥∥∥ 1
n

∑n
i=1 εirYiXi

∥∥∥
q

−Eε

(∥∥∥ 1
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q

)
is sub-Gaussian with pa-

rameter at most 2√
nR
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√

1
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i=1 X2

i
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q
. Therefore, we have

EY |X


Eε


exp


λ


 1

R

R∑

r=1

∥∥∥∥∥
1

n

n∑

i=1

εirYiXi

∥∥∥∥∥
q

− Eε



∥∥∥∥∥

1

n

n∑

i=1

εiXiYi

∥∥∥∥∥
q












≤ exp


λ2

4
∥∥∥
√

1
n

∑n
i=1 X2

i

∥∥∥
2

q

2nR


 .

Consequently, (73) yields the following concentration
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 ≤ α3 (83)

Combining (52), (81), (82) and (83) yields (55).
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A.8 Proof of Theorem 4.1

We have already derived (60) in Section 4. For the confidence regions in Theorem
4.1, we simply follow the same argument used in the proof for Proposition 2.1.

To show (61), let us define the event

E =





1
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R
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for some chosen β1, β2 > 0 such that β1 + β2 ∈ (0, 1). As we have argued for (82)
and (83), we also have the upper deviation result P {E} ≤ β1 + β2. We use Ec to
denote the complement of E . Note that

P

{
Ψq(θ̂α) ≤ rα,q

}
≤ P

{
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}
+ P (E) .

Let β3 = β − β1 − β2. Since P (E) ≤ β1 + β2, it suffices to show that

P1

{
Ψq(θ̂α) ≤ rα,q|Ec

}

≤P1





∥∥∥∥∥
1

n

n∑

i=1

Xi

[
Π (Xi; θ∗) − Π

(
Xi; θ̂α

)]∥∥∥∥∥
q

−
∥∥∥∥∥

1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

≤ rα,q|Ec





≤P1



δα,β,q −

∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

≤ rα,q|Ec





≤P1





∥∥∥∥∥
1

n

n∑

i=1

Xi [Yi − Π (Xi; θ∗)]

∥∥∥∥∥
q

≥ Sθ∗ + τβ3,q|Ec





≤β3,

where the third line follows from (58) and the fourth line follows from (59), the fact
that we are conditioning on Ec, as well as (52).

A.9 Proof of Theorem 5.1

For some chosen α1, α2 > 0 such that α1 + α2 = α ∈ (0, 1), let us define the event

E =

{∥∥∥∥
1

n
XT W
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∞

≤ rα,∞

}

where rα,∞ is defined in (67). Bound (19) implies that P (E) ≥ 1 − α. We use the

notation ∆̂ = θ̂new
α − θ∗ in the following. On the event E , we obtain

∥∥∥∥
1

n
XT X∆̂
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≤ 2rα,∞. (84)
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Given E , θ∗ is feasible for (66) and consequently,
∥∥∥θ̂new

α

∥∥∥
1

≤ ‖θ∗‖1 ,

which implies that
∥∥∥∆̂Jc

∗

∥∥∥
1

≤
∥∥θ∗

J∗

∥∥
1
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1

≤
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α,J∗
− θ∗

J∗
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1

=
∥∥∥∆̂J∗

∥∥∥
1

; (85)

that is, ∆̂ ∈ CJ∗ . Using the definition of κJ∗ in (69), (84) and (85) imply that

∥∥∥θ̂new
α − θ∗

∥∥∥
2

≤ 2rα,∞
κJ∗

with probability at least 1 − α.
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