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Abstract 

We experimentally test the qualitatively different equilibrium predictions of two theoretical 
models of attack and defense of a weakest-link network of targets. In such a network, the attacker’s 
objective is to assault at least one target successfully and the defender’s objective is to defend all 
targets. The models differ in how the conflict at each target is modeled — specifically, the lottery 
and auction contest success functions (CSFs). Consistent with equilibrium in the auction CSF 
model, attackers utilize a stochastic “guerrilla-warfare” strategy, which involves attacking at most 
one target arbitrarily with a random level of force. Inconsistent with equilibrium in the lottery CSF 
model, attackers use the “guerrilla-warfare” strategy and assault only one target instead of the 
equilibrium “complete-coverage” strategy that attacks all targets. Consistent with equilibrium in 
both models, as the attacker’s valuation increases, the average resource expenditure, the 
probability of winning, and the average payoff increase (decrease) for the attacker (defender). 
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1. Introduction 

In many network applications, such as cyber-security, electrical power grids, or oil pipeline 

systems, the failure of any individual component in the network may be sufficient to disable the 

entire network. In the case of a system of dikes on the perimeter of an island, Hirshleifer (1983) 

coined the term weakest-link to describe this type of intra-network complementarity among 

components.1 In addition to networks with physically linked components, political considerations 

also may create a situation in which physically disjoint components are connected by a form of 

weakest-link complementarity in preferences. For example, a single terrorist spectacular may 

allow a terrorist to influence the target audience.2 This paper experimentally examines two models 

of attack and defense of a weakest-link network of targets that differ with respect to the choice of 

contest success function (CSF), i.e., the mapping from the two players’ resource allocations to a 

target into their probabilities of destroying or defending the target, used to model the conflict at 

each target. 

In the attack and defense of a weakest-link network, the nature of the CSF is a key 

determinant of equilibrium behavior. We focus on two CSFs, lottery and auction, which are two 

special cases of the general ratio-form contest success function 𝑥𝑥𝐴𝐴𝑟𝑟/(𝑥𝑥𝐴𝐴𝑟𝑟 + 𝑥𝑥𝐷𝐷𝑟𝑟 ), where 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐷𝐷 

are the attacker’s and defender’s allocations of force, respectively, and the parameter 𝑟𝑟 > 0 is 

inversely related to the level of noise, or randomness, in the determination of the winner of the 

conflict (conditional on the players’ allocations). In the lottery CSF, 𝑟𝑟 = 1, a situation in which 

the outcome of the conflict at each target is sufficiently noisy. The auction CSF corresponds to the 

                                                 
1 Applications of the weakest-link structure include: organizational performance that depends on the weakest-link 
(Kremer 1993); internet security (Moore et al. 2009); and package auctions in which the objective of some bidders is 
to obtain all of the goods while for other bidders the objective is to obtain only one good (Milgrom 2007). 
2 As stated in the Joint House-Senate Intelligence Inquiry into September 11, 2001 (US Congress 2002), terrorists 
need to be successful only once in killing Americans and demonstrating the inherent vulnerabilities the victims face. 
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limiting case where 𝑟𝑟 = ∞, a situation in which no noise is present (i.e., the player who allocates 

the stronger level of force wins).3 

In Clark and Konrad (2007), the conflict at each target of the weakest-link attacker-

defender game features the lottery CSF. Clark and Konrad assume that the exogenous noise 

generated is independent across targets and demonstrate the existence of a pure-strategy 

“complete-coverage” equilibrium in which all targets are attacked and defended.4 In contrast, 

Kovenock and Roberson (2018) show that, in all equilibria of the game with the auction CSF, the 

attacker utilizes a stochastic “guerrilla-warfare” mixed strategy, which involves randomly 

attacking at most one target – where each target is equally likely to be attacked – with a random 

level of force.5 Conversely, the defender uses a mixed strategy that stochastically covers all of the 

targets, allocating a random level of force to each target. That strategy results in a correlation 

structure of endogenous noise that makes all multiple target attacks payoff dominated by a single 

target attack.6 In this paper, we complete the characterization of equilibrium in the lottery CSF 

version of the game by showing that equilibrium is unique and test the implications of these two 

models in a laboratory experiment. We employ a two-by-two design that investigates the impact 

of the CSF (lottery versus auction) and the relative valuation of the attacker’s prize (low versus 

high) on the behavior of attackers and defenders. 

                                                 
3 However, as noted in the case of a single two-player contest with linear costs − by Baye et al. (1994) and Alcalde 
and Dahm (2010) − there exist equilibria that are payoff equivalent to the 𝑟𝑟 = ∞ case whenever 𝑟𝑟 > 2. Ewerhart 
(2017) has demonstrated that, in fact, in such an environment any Nash equilibrium is payoff and revenue equivalent 
to the all-pay auction. Thus, the auction CSF case with r = ∞ is a relevant theoretical benchmark for all 𝑟𝑟 > 2. 
4 For the attacker, this prediction holds for all parameter configurations. For the defender, this prediction holds if the 
ratio of the attacker’s valuation of success to the defender’s valuation of success is below a certain threshold. 
5 See also the related papers Dziubiński and Goyal (2013, 2017). 
6 For almost all configurations of the players’ valuations of winning, one of the two players drops out with positive 
probability by allocating zero resources to each target, with the identity of the dropout determined by a measure of 
asymmetry in the conflict that takes into account both the ratio of the players’ valuations and the number of targets. 
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The results of our experiment support the theoretical prediction that, under the auction CSF, 

attackers use a stochastic “guerrilla-warfare” strategy of attacking at most one target, and 

defenders use a stochastic “complete-coverage” strategy in which all targets are defended. In 

contrast, under the lottery CSF, instead of the pure-strategy Nash-equilibrium “complete-

coverage” strategy, the expenditures of both the attackers and defenders are distributed over the 

entire strategy space. In fact, under the lottery CSF, attackers utilize a “guerrilla-warfare” strategy 

of attacking at most one target more than half of the time, instead of using a “complete-coverage” 

strategy, which is observed less than 25% of the time. 

 Consistent with predictions, under both CSFs, as the attacker’s valuation increases, the 

attacker’s resource expenditure increases and the defender’s expenditure declines. As a result, the 

attacker’s probability of winning and the average payoff also increase. However, under both CSFs, 

both players’ average resource expenditures exceed their respective theoretical predictions, as is 

common in other contest experiments (Dechenaux et al. 2015). 

The rest of the paper is organized as follows. In Section 2, we provide a brief review of the 

multi-battle contest literature. Section 3 presents a theoretical model of the attack and defense 

game. Section 4 describes the experimental design, procedures and hypotheses. Section 5 reports 

the results of our experiment and Section 6 concludes. 

 

2. Literature review 

Most of the existing theoretical work on multi-battle contests features symmetric objectives.7 

However, in applications such as cyber-security and terrorism, objectives are asymmetric with 

                                                 
7 For a survey, see Kovenock and Roberson (2012). Recent theoretical work on multi-battle/Blotto-type games 
includes extensions such as: asymmetric players (Roberson 2006; Hart 2008; Weinstein 2012; Dziubiński 2013; 
Macdonell and Mastronardi 2015), non-constant-sum variations (Szentes and Rosenthal 2003; Kvasov 2007; Hortala-
Vallve and Llorente-Saguer 2010, 2012; Roberson and Kvasov 2012; Ewerhart 2018), alternative definitions of 
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success for the attacker requiring the destruction of at least one target and successful defense 

requiring the preservation of all targets (Sandler and Enders 2004). Such structural asymmetry is 

the focus of the two weakest-link attacker-defender games (Clark and Konrad 2007; Kovenock 

and Roberson 2018) that we test experimentally. 

To the best of our knowledge, our study is the first to examine behavior in weakest-link 

attacker-defender games utilizing both the lottery CSF and the auction CSF. Although most of the 

existing experimental studies focus on single-battle contests, interest in multi-battle contests is 

growing.8 Experimental studies on multi-battle contests have examined how different factors such 

as budget constraints (Avrahami and Kareev 2009; Arad and Rubinstein 2012), objective functions 

(Duffy and Matros 2017), information (Horta-Vallve and Llorente-Saguer 2010), contest success 

functions (Chowdhury et al. 2013), focality (Chowdhury et al. 2016) and asymmetries in resources 

and battlefields (Arad 2012; Holt et al. 2015; Montero et al. 2016, Duffy and Matros 2017) 

influence individual behavior in contests. For a recent survey of the experimental literature on 

contests, see Dechenaux et al. (2015).  

Consistent with the previous studies in which allocations are not budget-constrained, we 

find significant over-expenditure relative to the Nash equilibrium predictions under both the lottery 

CSF and the auction CSF. However, our most surprising result is that the theoretical prediction 

that attackers use a “guerrilla-warfare” strategy under the auction CSF also is observed under the 

lottery CSF. This is surprising because almost all multi-battle contest experiments in the literature 

find strong qualitative support for the theoretical predictions, even if the precise quantitative 

                                                 
success (Golman and Page 2009; Tang et al. 2010; Rinott et al. 2012), and political economy applications (Laslier 
2002; Laslier and Picard 2002; Roberson 2008; Bierbrauer and Boyer 2016; Boyer et al. 2017; Thomas 2018). An 
extensive theoretical literature also exists on dynamic multi-battle contests. See, for instance, Harris and Vickers 
(1987), Klumpp and Polborn (2006), Konrad and Kovenock (2009) and Gelder (2014). 
8 The experimental literature on dynamic multi-battle contests also is growing. See, for instance, Deck and Sheremeta 
(2012, 2015), Mago et al. (2013), Mago and Sheremeta (2017, 2018) and Gelder and Kovenock (2017).  
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predictions are refuted. A potential explanation as to why attackers use a “guerrilla-warfare” 

strategy under the lottery CSF is that subjects may find it natural to concentrate resources on just 

one target since one successful attack is enough to win. Such a heuristic strategy also explains why 

individual behavior is so close to the theoretical predictions under the auction CSF. 

 

3. The game of attack and defense 

The model is formally described as follows. Two risk-neutral players, an attacker 𝐴𝐴 and a defender 𝐷𝐷 , simultaneously allocate resources across 𝑛𝑛  targets. The players’ one-dimensional resource 

expenditures for target 𝑖𝑖, denoted 𝑥𝑥𝐴𝐴𝑖𝑖  and 𝑥𝑥𝐷𝐷𝑖𝑖  for 𝐴𝐴 and 𝐷𝐷 respectively, are non-negative and are 

mapped into their respective probabilities of winning target 𝑖𝑖 by the general ratio-form, or Tullock 

(1980), CSF. Thus, player 𝐷𝐷 wins target 𝑖𝑖 with probability 

𝑝𝑝𝐷𝐷𝑖𝑖 �𝑥𝑥𝐴𝐴𝑖𝑖 ,𝑥𝑥𝐷𝐷𝑖𝑖 � = � �𝑥𝑥𝐷𝐷𝑖𝑖 �𝑟𝑟�𝑥𝑥𝐴𝐴𝑖𝑖 �𝑟𝑟+ �𝑥𝑥𝐷𝐷𝑖𝑖 �𝑟𝑟     if 𝑥𝑥𝐴𝐴𝑖𝑖 + 𝑥𝑥𝐷𝐷𝑖𝑖 > 0 

         

    
12                   otherwise

 ,     (1) 

and player 𝐴𝐴 wins target 𝑖𝑖 with probability 1 − 𝑝𝑝𝐷𝐷𝑖𝑖 �𝑥𝑥𝐴𝐴𝑖𝑖 ,𝑥𝑥𝐷𝐷𝑖𝑖 �. For the lottery CSF, 𝑟𝑟 = 1, and for the 

auction CSF, 𝑟𝑟 = ∞.9 

The attacker and the defender have asymmetric objectives. The defender’s objective is to 

defend all 𝑛𝑛 targets in the network successfully, in which case he receives a “prize” of value 𝑣𝑣𝐷𝐷. 

The expected payoff of 𝐷𝐷 conditional on the expenditure �𝑥𝑥𝐴𝐴𝑖𝑖 , 𝑥𝑥𝐷𝐷𝑖𝑖 � is: 𝐸𝐸(𝜋𝜋𝐷𝐷) = �∏ 𝑝𝑝𝐷𝐷𝑖𝑖 �𝑥𝑥𝐴𝐴𝑖𝑖 ,𝑥𝑥𝐷𝐷𝑖𝑖 �𝑛𝑛𝑖𝑖=1 �𝑣𝑣𝐷𝐷 − ∑ 𝑥𝑥𝐷𝐷𝑖𝑖𝑛𝑛𝑖𝑖=1 .       (2) 

                                                 
9 For the auction CSF game, if the players allocate the same level of the resource to a target, it is assumed that the 
defender wins the target. However, a range of tie-breaking rules yields similar results. A detailed description of the 
theoretical model can be found in Clark and Konrad (2007) for the lottery CSF and Kovenock and Roberson (2018) 
for the auction CSF.  
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The attacker’s objective is to attack at least one target successfully, in which case he receives a 

prize of value 𝑣𝑣𝐴𝐴. The corresponding expected payoff of 𝐴𝐴 is: 𝐸𝐸(𝜋𝜋𝐴𝐴) = �1 −∏ 𝑝𝑝𝐷𝐷𝑖𝑖 �𝑥𝑥𝐴𝐴𝑖𝑖 ,𝑥𝑥𝐷𝐷𝑖𝑖 �𝑛𝑛𝑖𝑖=1 �𝑣𝑣𝐴𝐴 −∑ 𝑥𝑥𝐴𝐴𝑖𝑖𝑛𝑛𝑖𝑖=1 .      (3) 

Clark and Konrad (2007) derive a Nash equilibrium for the lottery CSF (𝑟𝑟 = 1). We 

complete the characterization of equilibrium by showing that equilibrium is unique (see Online 

Appendix A). 

Proposition 1: Under the lottery CSF, 

(i) If 𝑣𝑣𝐷𝐷 ≥ (𝑛𝑛 − 1)𝑣𝑣𝐴𝐴, then there exists a unique Nash equilibrium, which is in pure strategies. 

In equilibrium, player 𝐴𝐴 allocates 𝑥𝑥𝐴𝐴∗ =
𝑣𝑣𝐴𝐴2𝑣𝑣𝐷𝐷𝑛𝑛

(𝑣𝑣𝐴𝐴+𝑣𝑣𝐷𝐷)𝑛𝑛+1 to every target and player 𝐷𝐷 allocates 

𝑥𝑥𝐷𝐷∗ =
𝑣𝑣𝐴𝐴𝑣𝑣𝐷𝐷𝑛𝑛+1

(𝑣𝑣𝐴𝐴+𝑣𝑣𝐷𝐷)𝑛𝑛+1 to every target. 

(ii) If 𝑣𝑣𝐷𝐷 < (𝑛𝑛 − 1)𝑣𝑣𝐴𝐴 , then there exists a unique Nash equilibrium, which is in mixed 

strategies. In equilibrium, player 𝐴𝐴 allocates 𝑥𝑥𝐴𝐴∗ =
(𝑛𝑛−1)𝑛𝑛−1𝑛𝑛𝑛𝑛+1 𝑣𝑣𝐷𝐷 to each target and player 𝐷𝐷 

randomizes by allocating 𝑥𝑥𝐷𝐷∗ =
(𝑛𝑛−1)𝑛𝑛𝑛𝑛𝑛𝑛+1 𝑣𝑣𝐷𝐷 to every target with probability 𝑞𝑞∗ =

𝑣𝑣𝐷𝐷
(𝑛𝑛−1)𝑣𝑣𝐴𝐴 and 

0 to every target with the probability 1 − 𝑞𝑞∗ . 

Proposition 1 can be summarized as follows. If the ratio of the defender’s valuation to the 

attacker’s valuation exceeds a threshold, 𝑣𝑣𝐷𝐷 ≥ (𝑛𝑛 − 1)𝑣𝑣𝐴𝐴, then, in equilibrium, the defender uses 

a pure strategy that defends all targets with the same level of resources, 𝑥𝑥𝐷𝐷∗ > 0. However, if 𝑣𝑣𝐷𝐷 <

(𝑛𝑛 − 1)𝑣𝑣𝐴𝐴 , then the defender’s equilibrium expected payoff is zero and, in equilibrium, the 

defender engages in the conflict — by allocating 𝑥𝑥𝐷𝐷∗ > 0 to each target — with probability 𝑞𝑞∗ =𝑣𝑣𝐷𝐷
(𝑛𝑛−1)𝑣𝑣𝐴𝐴. With probability 1 − 𝑞𝑞∗ , the defender “surrenders” by allocating 0 to all 𝑛𝑛 targets. In 

contrast, for all parameter configurations the attacker plays a pure strategy. Although the attacker’s 
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objective is to destroy at least one target, because of the decreasing returns to expenditure exhibited 

by the lottery CSF, the equilibrium strategy is to attack all targets with 𝑥𝑥𝐴𝐴∗. 
Kovenock and Roberson (2018) characterize properties of the set of Nash equilibria for the 

auction CSF (𝑟𝑟 = ∞). They show that all equilibria are in mixed strategies, where a mixed strategy 

is an n-variate joint-distribution function. That paper completely characterizes the set of 

equilibrium payoffs and univariate marginal distributions, which are unique for all parameter 

configurations. These results are summarized as follows: 

Proposition 2: Under the auction CSF, 

(i) If 𝑣𝑣𝐷𝐷 ≥ 𝑛𝑛𝑣𝑣𝐴𝐴, then with probability 1 − 𝑛𝑛𝑣𝑣𝐴𝐴𝑣𝑣𝐷𝐷  player 𝐴𝐴 allocates 0 to every target. With the 

remaining probability, 
𝑛𝑛𝑣𝑣𝐴𝐴𝑣𝑣𝐷𝐷 , player 𝐴𝐴  randomly attacks a single target with a resource 

allocation drawn from a uniform distribution over the interval [0, 𝑣𝑣𝐴𝐴]. To each and every 

target, player 𝐷𝐷 allocates a random level of the resource drawn from a uniform distribution 

over the interval [0, 𝑣𝑣𝐴𝐴]. The players’ sets of equilibrium univariate marginal distribution 

functions are unique, and for each target 𝑗𝑗  are given by: 𝐹𝐹𝐴𝐴𝑗𝑗�𝑥𝑥𝐴𝐴𝑗𝑗� = 1 − 𝑣𝑣𝐴𝐴𝑣𝑣𝐷𝐷 +
𝑥𝑥𝐴𝐴𝑗𝑗𝑣𝑣𝐷𝐷  and 

𝐹𝐹𝐷𝐷𝑗𝑗�𝑥𝑥𝐷𝐷𝑗𝑗 � =
𝑥𝑥𝐷𝐷𝑗𝑗𝑣𝑣𝐴𝐴, respectively, over the interval [0, 𝑣𝑣𝐴𝐴]. 

(ii) If 𝑣𝑣𝐷𝐷 < 𝑛𝑛𝑣𝑣𝐴𝐴, player 𝐴𝐴 randomly attacks a single target with a resource allocation drawn 

from a uniform distribution over the interval �0,
𝑣𝑣𝐷𝐷𝑛𝑛 �. With probability 1 − 𝑣𝑣𝐷𝐷𝑛𝑛𝑣𝑣𝐴𝐴, player 𝐷𝐷 

allocates 0 to every target. With the remaining probability, 
𝑣𝑣𝐷𝐷𝑛𝑛𝑣𝑣𝐴𝐴, player 𝐷𝐷 allocates to each 

target a random level of resources drawn from a uniform distribution over the interval �0,
𝑣𝑣𝐷𝐷𝑛𝑛 �. The players’ sets of equilibrium univariate marginal distribution functions for every 
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target are unique, and for each target 𝑗𝑗 are given by: 𝐹𝐹𝐴𝐴𝑗𝑗�𝑥𝑥𝐴𝐴𝑗𝑗� = 1 − 1𝑛𝑛 +
𝑥𝑥𝐴𝐴𝑗𝑗𝑣𝑣𝐷𝐷 and 𝐹𝐹𝐷𝐷𝑗𝑗�𝑥𝑥𝐷𝐷𝑗𝑗 � =

1 − 𝑣𝑣𝐷𝐷𝑛𝑛𝑣𝑣𝐴𝐴 +
𝑥𝑥𝐷𝐷𝑗𝑗𝑣𝑣𝐴𝐴, respectively, over the interval �0,

𝑣𝑣𝐷𝐷𝑛𝑛 �.  
It is important to note that, although this game generates multiple equilibria, there exists a 

unique set of equilibrium univariate marginal distribution functions. Kovenock and Roberson 

(2018) also show that the equilibrium joint distribution functions exhibit several distinctive 

properties. For example, in all equilibria of the auction CSF game, the attacker allocates a strictly 

positive amount to at most one target while the defender allocates a strictly positive amount to 

either all targets or to none of them. This particular property provides a striking contrast with 

equilibrium in the lottery CSF game (see Proposition 1) in which the attacker allocates, to every 

target, a strictly positive amount. 

 

4. Experimental design, procedures and hypotheses 

4.1. Experimental design 

Table 1 summarizes the experimental design. We employ a two-by-two design, by varying the 

CSF (Lottery versus Auction) and the relative valuation of the attacker’s prize (Low versus High). 

All four treatments involve four targets and two players (attacker and defender). The experimental 

instructions, shown in Online Appendix B, used a context-neutral language.10  

In the Lottery-Low and Lottery-High treatments, the probability that a player wins a given 

target is equal to the ratio of that player’s allocation of resources to the target to the sum of both 

players’ allocations to that target. In all treatments, the defender’s valuation of defending all targets 

is 𝑣𝑣𝐷𝐷 = 200 experimental francs. The attacker’s valuation of successfully attacking at least one 

                                                 
10 For example, players were called participants and targets were called boxes. 
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target is 𝑣𝑣𝐴𝐴 = 40 francs in the Lottery-Low treatment and 𝑣𝑣𝐴𝐴 = 80 francs in the Lottery-High 

treatment.11 For the parameter configuration in the Lottery-Low treatment, Proposition 1 part (i) 

applies and in the pure-strategy equilibrium the attacker allocates 3.2 tokens to each target and the 

defender allocates 16.1 tokens to each target. For the parameter configuration in the Lottery-High 

treatment, Proposition 1 part (ii) applies and in equilibrium the attacker allocates 5.3 tokens to 

each target and the defender allocates 15.8 tokens to every target with probability 0.83 and 0 tokens 

to every target with probability 0.17. 

In the Auction-Low and Auction-High treatments the winner of each target is determined 

by the auction CSF, but the remaining features of the model (𝑣𝑣𝐷𝐷, 𝑣𝑣𝐴𝐴, and 𝑛𝑛) are the same. From 

Proposition 2 part (i), in any equilibrium of the Auction-Low treatment: (a) the attacker utilizes a 

mixed-strategy that attacks no targets with probability 0.2 and, with probability 0.8, chooses 

exactly one target to attack at random and stochastically allocates between 0 and 40 tokens to that 

target, according to a uniform distribution, and (b) the defender randomizes according to a joint 

distribution function that stochastically allocates between 0 and 40 tokens to each target according 

to a uniform marginal distribution. In the Auction-High treatment, Proposition 2 part (ii) applies. 

In any equilibrium: (a) the attacker randomly chooses one of the targets to attack and stochastically 

allocates between 0 and 50 tokens to that target according to a uniform distribution and (b) the 

defender employs a mixed strategy in which, with probability 0.375 he engages in no defensive 

efforts and, with probability 0.625, the defender allocates a stochastic number of tokens, uniformly 

distributed between 0 and 50, to each target. 

  

                                                 
11 We chose these parameter valuations to ensure that: (a) the four treatments cover both parts of both propositions, 
and (b) each subject faced a non-trivial allocation problem in which both the attacker and the defender had a substantial 
chance of winning some targets. 
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4.2. Procedures 

The experiment was conducted at the Vernon Smith Experimental Economics Laboratory. The 

computerized experimental sessions were run using z-Tree (Fischbacher 2007). A total of 96 

subjects participated in eight sessions, summarized in Table 2. All subjects were Purdue University 

undergraduate students who participated in only one session of this study. Some students had 

participated in other economics experiments that were unrelated to this research. 

Each experimental session had 12 subjects and proceeded in two parts, corresponding to 

the lottery and auction treatments. 12  Each subject played for 20 periods in the Lottery-Low 

(Auction-Low) treatment and 20 periods in the Lottery-High (Auction-High) treatment. The 

sequence was varied so that half of the sessions had the Lottery-High (Auction-High) treatment 

first, and half had the Lottery-Low (Auction-Low) treatment first. 

In the first period of each treatment, subjects were randomly and anonymously assigned 

for the first 10 periods and then changed their assignment for the last 10 periods.13 Subjects of 

opposite assignments were re-paired randomly each period to form a new two-player dyad. Each 

period, each subject allocated a non-negative number of tokens to each of the four targets such that 

the sum of allocated tokens was weakly less than that subject’s valuation. Subjects were informed 

that all allocated tokens were forfeited. After all subjects made their allocations, the computer 

displayed the following information: attacker allocation, defender allocation, which targets they 

won, and individual earnings for the period. In the Lottery-High and Lottery-Low treatments, the 

winner was chosen according to the lottery CSF, independently across targets. In the Auction-High 

                                                 
12 Risk aversion preferences also were elicited, along the lines of Holt and Laury (2002). We found no interesting 
patterns between risk attitudes and behavior in weakest-link contests and omit discussion of this issue. 
13 Role-switching avoids any social preferences, i.e., subjects who were assigned as disadvantaged attackers knew that 
they would also play the role of the advantaged defenders, and induces better learning, since subjects have an 
opportunity to learn game strategies in both roles. 
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and Auction-Low treatments, the player who allocated more tokens to a particular target was 

chosen as the winner of that target.14 

After completing all 40 decision periods (two treatments), four periods were selected 

randomly for payment (two periods for each treatment). The sum of the total earnings for those 

four periods was exchanged at the rate of 26 tokens = $1. Additionally, all players received a 

participation fee of $20 to cover potential losses. On average, subjects earned $25 each, ranging 

from $11 to $36, and the payments were in cash. Each experimental session lasted about 80 

minutes. 

 

4.3. Hypotheses 

Our experiment tests five hypotheses motivated by the theoretical predictions. The first hypothesis 

addresses the comparative static properties of equilibrium in terms of a change in the attacker’s 

target valuation. 15  The next two describe equilibrium predictions concerning behavior in the 

Lottery-Low and Lottery-High treatments. The final two hypotheses describe equilibrium 

predictions concerning behavior in the Auction-Low and Auction-High treatments. 

Hypothesis 1: Under the lottery and auction CSFs, as the attacker’s valuation increases 

from 40 to 80, the average resource allocation, the probability of winning, and the average payoff 

increase (decrease) for the attacker (defender). 

                                                 
14 When both players allocated the same amount to a given target, the computer selected the defender as the winner of 
that target. 
15 Although the comparative statics results are framed in terms of a change in the attacker's valuation, owing to 
invariance of preferences with respect to affine transformations of utility, the theoretical benchmark also would apply 
to a decrease in the unit cost of resource expenditure of the attacker. 
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Hypothesis 2: In the Lottery-Low and Lottery-High treatments the attacker uses a 

“complete-coverage” strategy, which involves allocating a strictly positive and identical level of 

the resource across all targets. 

Hypothesis 3: In the Lottery-Low treatment the defender uses a “complete-coverage” 

strategy. In the Lottery-High treatment the defender allocates a strictly positive and identical level 

of the resource across all targets with positive probability, and a zero level of the resource with the 

remaining probability. 

Hypothesis 4: In the Auction-Low and Auction-High treatments the attacker uses a 

stochastic “guerrilla-warfare” strategy, which involves allocating a random level of the resource 

to at most one target. 

Hypothesis 5: In the Auction-Low treatment the defender uses a stochastic “complete-

coverage” strategy, which involves allocating random positive levels of the resource to all of the 

targets. In the Auction-High treatment the defender follows a stochastic “complete-coverage” 

strategy with positive probability and also allocates a zero level of the resource to every target with 

positive probability. 

 

5. Results 

5.1. Aggregate behavior 

Table 3 summarizes the average allocation of tokens, the probability of winning, and the average 

payoff of the attacker and the defender in each treatment. Consistent with Hypothesis 1, when the 

attacker’s valuation increases from 40 to 80, the average allocation of tokens by the attacker 

increases from 4.4 to 7.8 under the lottery CSF, and it increases from 4.4 to 7.7 under the auction 

CSF. The average allocation of tokens by the defender declines from 24.4 to 15.8 under the auction 
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CSF, but does not decline under the lottery CSF (19.4 versus 19.3). To support those conclusions 

we estimate panel regressions, reported in the top panel of Table 4, where the dependent variable 

is the allocation to any given target and the independent variables are a treatment dummy variable 

(High), a period trend (Period) and a constant (Constant). The model includes a random effects 

error structure, with the individual subject as the random effect, to account for the multiple 

allocation decisions made by individual subjects over the course of the experiment. The standard 

errors are clustered at the session level to account for session effects. The treatment dummy 

variable is significant in all regressions (p-values < 0.01), except the one where we compare the 

behavior of the defender in the Lottery-High and Lottery-Low treatments. 

Also, consistent with Hypothesis 1, the attacker’s probability of winning in the Lottery-

High treatment (0.68) is higher than his probability of winning in the Lottery-Low treatment (0.51), 

and the probability of winning in Auction-High (0.68) is higher than the probability of winning in 

Auction-Low (0.33). The middle panel of Table 4 reports the regression results from a random 

effects probit model. From that estimation, we see that, for both the auction and lottery CSFs, the 

attacker’s (defender’s) probability of winning is higher (lower) in the high attacker valuation 

treatment (p-values < 0.01). 

Finally, consistent with Hypothesis 1, from the estimation reported in the bottom panel of 

Table 4 we see that the defender’s (attacker’s) payoff in the Lottery-Low and Auction-Low 

treatments is higher (lower) than in the Lottery-High and Auction-High treatments, where the 

treatment dummy variable is significant in all regressions (p-values < 0.01 for all except the 

defender in the Lottery-High to Lottery-Low comparison, which has p-value < 0.05). 
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Result 1: Consistent with the prediction of Hypothesis 1, under the lottery and auction CSF, 

as the attacker’s target valuation increases, the average allocation of tokens, the probability of 

winning, and the average payoff increase (decrease) for the attacker (defender). 

Although the comparative static predictions of the theory are supported by our experiment, 

significant over-expenditure of resources by both player types is observed in all treatments. In the 

Lottery-Low treatment, the attacker allocates on average 4.4 tokens, instead of the predicted 3.2, 

and in the Lottery-High treatment, the attacker allocates 7.8 tokens, instead of 5.3. The relative 

magnitude of over-expenditure by the defender is similar: 19.4 tokens instead of 16.1 and 19.3 

tokens instead of 13.1. The range of average over-expenditure is 21%-47%. Over-expenditure also 

is observed in the Auction-High and Auction-Low treatments; however, the magnitude is around 

10%-22%.16 As a result of significant over-expenditure, in all treatments both player types receive 

smaller payoffs than predicted (see Table 3). 

Significant over-expenditure in our experiment is consistent with previous experimental 

findings on all-pay auctions and lottery contests (Davis and Reilly 1998; Potters et al. 1998; 

Gneezy and Smorodinsky 2006; Sheremeta and Zhang 2010; Price and Sheremeta 2011, 2015). 

Suggested explanations for over-expenditure include bounded rationality (Sheremeta 2011; 

Chowdhury et al. 2014), utility of winning (Sheremeta 2010; Cason et al. 2012, 2017), other-

regarding preferences (Fonseca 2009; Mago et al. 2016), judgmental biases (Shupp et al. 2013), 

and impulsive behavior (Sheremeta 2016).17 The same arguments can be made to explain over-

expenditure in our experiment. 

 

                                                 
16 A standard Wald test, conducted on estimates of panel regression models, rejects the hypothesis that the average 
expenditures under the lottery CSF are equal to the predicted theoretical values in Table 3 (all p-values < 0.05). Under 
the auction CSF we can reject the null hypothesis only for the defender (p-value < 0.05). 
17 For a detailed review of possible explanations for the over-expenditure phenomenon see Sheremeta (2013, 2016). 
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5.2. Behavior of attackers under the lottery CSF 

Next, we examine attacker behavior under the lottery CSF, where, in equilibrium, the attacker 

employs a uniform allocation of tokens across targets. Contrary to Hypothesis 2, within each target 

the allocation of tokens is highly dispersed. Figure 1 displays, by treatment and player type, the 

empirical univariate marginal cumulative distribution functions of tokens allocated to an arbitrary 

target. 18 Instead of placing a mass point at 3.2 in the Lottery-Low treatment and 5.3 in the Lottery-

High treatment, the attacker’s resources are distributed between 0 and 50.  

[Insert Figure 1 here.] 

Another inconsistency with Hypothesis 2 is that, instead of a strictly positive token 

allocation for each target, the attacker places mass at 0 (see Figure 1). Table 5 shows properties of 

the strategies used by subjects in the Lottery-Low and Lottery-High treatments. The attacker 

frequently uses a “guerrilla-warfare” strategy that assaults at most one target (54% in the Lottery-

Low treatment and 51% in the Lottery-High treatment). A strategy of “complete coverage”, 

allocating a positive amount to all four targets, is used only 24% of time in the Lottery-Low 

treatment and 32% of the time in the Lottery-High treatment.19 

[Insert Table 5 here.] 

Result 2: Contrary to the prediction of Hypothesis 2, in the Lottery-Low and Lottery-High 

treatments, the attacker’s allocation of tokens to each target is highly dispersed. Instead of using 

                                                 
18 We combined the distribution of tokens to each of the four targets into one target, since marginal distributions to 
each target are identical across targets. 
19 Note that our results are robust to the exclusion of strategies involving drastic over-expenditure. For example, if 
defining drastic over-expenditure as expenditure greater than twice the expected Nash equilibrium expenditure (which 
excludes 18% [13%] of attacker strategies in the Lottery-Low [Lottery-High] treatment), then excluding drastic over 
expenditure the attacker allocates resources to at most one target 60% of the time in the Lottery-Low treatment and 
57% of the time in the Lottery-High treatment. The attacker allocates a positive amount to all four targets 19% of time 
in the Lottery-Low treatment and 26% in the Lottery-High treatment.   
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the “complete-coverage” strategy, the attacker uses the “guerrilla-warfare” strategy that allocates 

a positive bid to one or no targets more than 50% of the time. 

The fact that the attacker’s resource allocation to each target is very dispersed is consistent 

with previous experimental studies documenting high variance of individual expenditures in 

lottery contests (Davis and Reilly 1998; Potters et al. 1998; Chowdhury et al. 2014). Several 

explanations have been offered for such behavior based on the probabilistic nature of lottery 

contests and bounded rationality (Chowdhury et al. 2013). Those considerations also could explain 

the pattern observed in our experiment. 

A more novel finding of our study is the use of a “guerrilla-warfare” strategy by the 

attacker, which is inconsistent with the unique Nash equilibrium in the attack and defense game 

under the lottery CSF. Also, it appears unlikely that attackers adjust their strategy away from 

equilibrium because of suboptimal behavior on the part of defenders because, as we discuss later, 

defenders behave in accordance with the theoretical predictions. 

A likely explanation why attackers use a “guerrilla-warfare” strategy is that subjects may 

find it natural to concentrate resources on the necessary number of targets needed for victory (one 

in our case). Although such a strategy is not optimal, it is an appealing focal point (Schelling 1960). 

It has been well documented in the experimental literature that subjects naturally gravitate towards 

focal points even when doing so is not necessarily in their best interest (Roth 1985; Crawford et 

al. 2008; Chowdhury et al. 2016). Such a heuristic strategy also can explain why individual 

behavior is so close to the theoretical predictions under the auction CSF (as we discuss below). 

Note that the use of a “guerilla-warfare” strategy appears to come at a cost. If we omit all 

observed attacker strategies that involve drastic over-expenditure (greater than two times the 

expected Nash equilibrium level; see footnote 19) and match the remaining observed strategies 
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against a random observed defender strategy from the same treatment, then “guerilla-warfare” 

strategies appear to perform poorly relative to “complete-coverage” strategies. For the observed 

attacker strategies that allocate a positive amount to a single target, the payoff is 3.83 (23.39) in 

the Lottery-Low (Lottery-High) treatment. For the observed attacker strategies that allocate 

resources to all targets, this payoff is 6.66 (29.47).20 In this limited sense, attackers concentrating 

resources on a single target under the lottery CSF appear to do worse than those spreading 

resources across all four targets. 

 

5.3. Behavior of defenders under the lottery CSF 

Our results concerning the behavior of the defender support Hypothesis 3. In particular, theory 

predicts that in the Lottery-Low treatment the defender makes a strictly positive, and uniform, 

allocation of tokens across targets. Table 5 indicates that, supporting Hypothesis 3, the defender 

allocates tokens to all targets in the Lottery-Low treatment 92% of the time. In the Lottery-High 

treatment, theory predicts that the defender covers all of the targets with probability 0.83 and none 

of the targets with probability 0.17. Consistent with that prediction, the data indicate that the 

defender covers all of the targets in the Lottery-High treatment 84% of the time and none of the 

targets 12% of the time. 21 However, contrary to Hypothesis 3, instead of a uniform allocation 

across targets, the defender’s resources are distributed between 0 and 50 (see Figure 1). 

                                                 
20 Attacker strategies involving drastic over-expenditure have smaller expected payoffs than those without and tend 
to be positively correlated with the number of targets receiving a positive allocation. For example, in the Lottery-Low 
(Lottery-High) treatment 49% (72%) of all of the attacker strategies involving drastic over-expenditure are four-target 
strategies. In looking at the entire sample in the Lottery-Low (Lottery-High) treatment, the average expected payoff of 
the observed attacker strategies that allocate resources to only one target is 2.84 (23.11) and the average expected 
payoff of the observed attacker strategies that allocate resources to all targets is 3.13 (22.83). 
21 If we exclude strategies involving drastic over-expenditure, namely 11% (27%) of the defender strategies in the 
Lottery-Low (Lottery-High) treatment, the defender allocates resources to all targets 92% in the Lottery-Low treatment 
and 79% in the Lottery-High treatment. In the latter treatment, no targets receive a positive allocation 17% of the time.   
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Result 3: Consistent with the prediction of Hypothesis 3, in the Lottery-Low treatment, the 

defender uses a “complete-coverage” strategy by defending all targets and in the Lottery-High 

treatment the incidence of “complete coverage” is very high, but with the “no coverage” strategy 

(allocating zero to every target) the next most frequent strategy. Contrary to the prediction, instead 

of a uniform allocation across targets, allocations are dispersed over the interval [0, 50]. 

As in the case of attackers, the relatively high dispersion of the defenders’ allocations is 

consistent with previous experimental findings, and could be explained by the probabilistic nature 

of lottery contests and bounded rationality (Chowdhury et al. 2013). 

 

5.4. Behavior of attackers under the auction CSF 

 

Next, we look at attacker behavior under the auction CSF. Theory predicts that in the Auction-Low 

and Auction-High treatments, the attacker employs a stochastic “guerrilla-warfare” strategy, which 

involves allocating a random amount of the resource to at most one target. Figure 2 displays the 

empirical univariate marginal cumulative distribution function of the resource allocation to a target 

and indicates that, in the aggregate, the attacker’s behavior is consistent with that prediction. The 

stochastic “guerrilla-warfare” strategy is characterized by a significant mass point at 0 for the 

attacker, which is very close to the predicted value (0.75 versus 0.80 in the Auction-Low treatment 

and 0.67 versus 0.75 in the Auction-High treatment).22 Similarly, from Table 6, we see that the 

attacker allocates tokens to at most one target 89% of the time in the Auction-Low treatment and 

                                                 
22 In calculating the empirical mass points at 0 (Figures 1 and 2), we use an allocation of less than one token as an 
approximation of 0. That approximation is adopted because the tie-breaking rule favors defenders and therefore may 
encourage attackers to place a very small allocation on some targets in order to reduce the tie-breaking disadvantage. 
However, even if we use only 0 allocations to compute mass points at 0, we still get results that are close to the 
theoretical predictions (in the Auction-Low and Auction-High treatments, for example, the mass points at 0 for the 
attackers are 0.6 and 0.5). 
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81% of the time in the Auction-High treatment.23 These findings provide substantial support for 

Hypothesis 4. 

Result 4: Consistent with the prediction of Hypothesis 4, in the Auction-Low and Auction-

High treatments, the attacker adopts a stochastic “guerrilla-warfare” strategy, which involves 

allocating a random amount of the resource to at most one target. 

 

5.5. Behavior of defenders under the auction CSF 

We find that defender behavior likewise is consistent with Hypothesis 5. In particular, theory 

predicts that in the Auction-Low treatment the defender uses a stochastic “complete-coverage” 

strategy that allocates a strictly positive amount of resources to each target with probability one. 

The data indicate that the defender covers all of the targets 87% of the time (see Table 6). 

Moreover, consistent with the theoretical prediction, in the Auction-Low treatment the defender’s 

resources are distributed uniformly between 0 and 40 (see Figure 2). Similarly, in the Auction-

High treatment defender behavior is consistent with the theoretical prediction that with probability 

0.375 the defender engages in no defensive efforts and with probability 0.625 the defender 

allocates a stochastic number of tokens, uniformly distributed between 0 and 50, to each target. 

The data indicate that the defender covers all four targets 62% of the time, three targets 2%, two 

targets 2%, one target 4% and zero targets 30% of the time (see Table 6). 24  Moreover, the 

defender’s allocations are distributed uniformly between 0 and 50 (see Figure 2).  

                                                 
23 If we exclude strategies involving drastic over-expenditure, which excludes 18% (16%) of attacker strategies in the 
Auction-Low (Auction-High) treatment, then the attacker allocates resources to at most one target 87% of the time in 
the Auction-Low treatment and 79% of the time in the Auction-High treatment.   
24 The fact that the defender allocates 0 resources to all four targets 30% of the time could, potentially, be explained 
by subjects changing role assignments after 10 periods and a period 1-10 attacker continuing to behave as an attacker 
during periods 11-20. However, our results are robust to restricting data to the first 10 periods. Furthermore, excluding 
strategies involving drastic over-expenditure, which excludes 5% (20%) of defender strategies in the Auction-Low 
(Auction-High) treatment, the defender allocates resources to all targets 87% of the time in the Auction-Low treatment 
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Result 5: Consistent with the prediction of Hypothesis 5, in the Auction-Low treatment, the 

defender uses a stochastic “complete-coverage” strategy that involves allocating random positive 

levels of the resource to all of the targets. In the Auction-High treatment a high incidence of 

“complete-coverage” is observed and the “no-coverage” strategy is employed almost a third of the 

time.  

 

6. Conclusions 

This study experimentally investigates behavior in a game of attack and defense of a weakest-link 

network under two benchmark contest success functions: the auction CSF and the lottery CSF. We 

find that the auction CSF’s theoretical prediction that the attacker uses a stochastic “guerrilla-

warfare” strategy is observed under both the auction and lottery CSFs. That is inconsistent with 

Nash equilibrium behavior under the lottery CSF. However, such behavior is consistent with a 

simple heuristic strategy of focusing only on the necessary number of targets needed for victory 

(one in our case). The defender uses a stochastic “complete coverage” strategy under both the 

auction and lottery CSFs. That finding is consistent with equilibrium behavior under the auction 

CSF, but the high dispersion of target allocations is inconsistent with equilibrium under the lottery 

CSF. 

A common explanation for the empirical finding that “periods of high terrorism” seem to 

be relatively infrequent (Enders 2007) is that terrorists face a resource constraint; they therefore 

cannot attack all of their targets all of the time. Our experiment provides evidence for an alternative 

explanation. Infrequent “periods of high terrorism” simply may be the result of asymmetric 

                                                 
and 54% of the time in the Auction-High treatment. In the latter treatment, no targets receive a positive allocation 37% 
of the time.   
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objectives and strategic interactions between the attackers and defenders within a weakest-link 

contest environment. 
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Table 1: Experimental parameters and theoretical predictions 

 

Treatment Player Value 
Average  

allocation 
Expected 

payoff 
Probability 
of winning 

Lottery-Low 
A 40 3.2 7.8 0.52 
D 200 16.1 32.2 0.48 

Lottery-High 
A 80 5.3 37.8 0.74 

D 200 13.1 0.0 0.26 

Auction-Low 
A 40 4.0 0.0 0.40 
D 200 20.0 40.0 0.60 

Auction-High 
A 80 6.3 30.0 0.69 

D 200 15.6 0.0 0.31 

Average allocation in the Auction-Low and Auction-High treatments are 
calculated based on equilibrium mixed strategies.  

 
 
 

Table 2: Experimental sessions 

 

Session 
Number 

Design 
Matching 
protocol 

Participants 
per session 

Periods per 
treatment 

1-2 Lottery-Low → Lottery-High Strangers 12 20 
3-4 Lottery-High → Lottery-Low Strangers 12 20 
5-6 Auction-Low → Auction-High Strangers 12 20 
7-8 Auction-High → Auction-Low Strangers 12 20 

 
 
 

Table 3: Average allocation, probability of winning and payoff by treatment  

 

Treatment Player Value 
Average  

allocation 
Probability of  

winning 
Expected  

payoff 

Predicted Actual Predicted Actual Predicted Actual 

Lottery-Low 
Attacker 40 3.2 4.4 (2.5) 0.52 0.51 (0.50) 7.8 2.7 (18.6) 
Defender 200 16.1 19.4 (10.7) 0.48 0.49 (0.50) 32.2 20.6 (98.4) 

Lottery-High 
Attacker 80 5.3 7.8 (4.3) 0.74 0.68 (0.47) 37.8 23.6 (37.3) 

Defender 200 13.1 19.3 (13.0) 0.26 0.32 (0.47) 0.0 -14.1 (90.1) 

Auction-Low 
Attacker 40 4.0 4.4 (3.5) 0.40 0.33 (0.47) 0.0 -4.5 (16.8) 
Defender 200 20.0 24.4 (12.8) 0.60 0.67 (0.47) 40.0 36.2 (82.1) 

Auction-High 
Attacker 80 6.3 7.7 (4.6) 0.69 0.68 (0.47) 30.0 23.2 (33.5) 

Defender 200 15.6 15.8 (15.2) 0.31 0.32 (0.47) 0.0 1.7 (85.6) 

Standard deviation in parentheses. 
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Table 4: Panel estimation testing hypothesis 1 

 

Treatments 
Lottery-Low and 

Lottery-High 
Auction-Low and 

Auction-High 

Player Attacker Defender Attacker Defender 

Dependent variable Average allocation 

High 3.36*** -0.08 3.26*** -8.57*** 
    [1 if high value] (1.27) (1.97) (0.45) (3.29) 
Period 1.16** 4.86** 1.21** 6.48*** 
    [inverse period trend] (0.57) (2.00) (0.58) (2.07) 
Constant 4.19*** 18.55*** 4.22*** 23.22*** 
 (0.44) (1.87) (0.48) (1.65) 

Dependent variable Probability of winning 

High 0.47*** -0.48*** 0.92*** -0.95*** 
    [1 if high value] (0.13) (0.13) (0.11) (0.11) 
Period -0.20 0.20 -0.30 0.35 
    [inverse period trend] (0.22) (0.23) (0.27) (0.28) 
Constant 0.06 -0.06 -0.40*** 0.40*** 
 (0.07) (0.07) (0.05) (0.05) 

Dependent variable Expected payoff 

High 20.91*** -34.69** 27.70*** -34.48*** 
    [1 if high value] (2.22) (17.22) (2.00) (10.60) 
Period -12.53*** -4.30 -9.07*** 3.44 
    [inverse period trend] (3.14) (13.73) (2.37) (10.29) 
Constant 4.98*** 21.41* -2.87 35.58*** 
 (0.84) (11.49) (1.85) (6.45) 

Observations 960 960 960 960 
* significant at 10%, ** significant at 5%, *** significant at 1%. All models include a random 
effects error structure, with the individual subject as the random effect, to account for the multiple 
decisions made by the subject over the course of the experiment. The standard errors are clustered 
at the session level to account for session effects. 
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Table 5: Strategies used in the Lottery-Low and Lottery-High treatments 

 

Treatment Player 
Frequency of allocating tokens to 

0 Targets 1 Target 2 Targets 3 Targets 4 Targets 

Lottery-Low 
Attacker 0.10 0.44 0.14 0.08 0.24 
Defender 0.05 0.01 0.01 0.01 0.92 

Lottery-High 
Attacker 0.05 0.46 0.13 0.04 0.32 

Defender 0.12 0.01 0.01 0.02 0.84 

 
 
 
 

Table 6: Strategies used in the Auction-Low and Auction-High treatments 

 

Treatment Player 
Frequency of allocating tokens to 

0 Targets 1 Target 2 Targets 3 Targets 4 Targets 

Auction-Low 
Attacker 0.28 0.61 0.04 0.01 0.06 
Defender 0.06 0.02 0.02 0.03 0.87 

Auction-High 
Attacker 0.11 0.70 0.05 0.02 0.12 

Defender 0.30 0.04 0.02 0.02 0.62 
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Figure 1: CDF of tokens in the Lottery-Low and Lottery-High treatments 

 
The Lottery-Low treatment 

 

 
 

The Lottery-High treatment 
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Figure 2: CDF of tokens in the Auction-Low and Auction-High treatments 

 
The Auction-Low treatment 

 

  
 

The Auction-High treatment 
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