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Abstract

Are individuals always better off when their preferences can be represented by expected

utility? I study this question in a bargaining game where individuals bargain over a pie of

fixed size, and I contrast the share received in the long-run by expected utility maximisers

with the share they would receive if their preferences were described by prospect theory

preferences instead when, in either case, they bargain with expected utility maximisers. I

present a necessary and sufficient condition for individuals to obtain a higher share of the

pie if their preferences obey prospect theory rather than expected utility. I decompose

the effect that the three features that characterise prospect theory preferences – refer-

ence point dependence, loss-aversion and probability weighting – have on the bargaining

outcome, and show that loss-aversion does not have any effect on the outcome of the

bargaining process, reference-point dependent preference confers an unambiguous advan-

tage and probability weighting is unambiguously disadvantageous. This ties in with the

main result outlined earlier: if the upward pull of reference point dependence is relatively

stronger than the downward push of probability weighting, then individuals are better off

with prospect theory preferences than with expected utility preferences, and vice-versa.
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1 Introduction

The expected utility framework of von Nuemann and Morgernstern (1944) has been the

workhorse for analysing situations involving decision-making under risk and uncertainty. The

primary appeal of the expected utility approach, apart from convenience of use and tractabil-

ity, derives from its axiomatic foundations: individual preferences need only satisfy complete-

ness, continuity and the independence axiom in order to have an expected utility representa-

tion. Furthermore, even though observed ‘violations’ of expected utility have cast doubt on

its descriptive validity (for eg. Allais (1953) and Kahnemann and Tversky (1979)) and subse-

quently led to the development of alternative models of decision-making under risk – of which

prospect theory (Kahnemann and Tversky (1979, 1992)) is arguably the most comprehensive

competing alternative – it is argued that (individuals with) non-expected utility preferences

could be persuaded to make a ‘Dutch book’ against himself i.e. if preferences of an individ-

ual do not satisfy expected utility, then a money pump can impoverish the individual, and

hence he would be ‘outperformed’ and selected against by (individuals with) expected utility

preferences. In this paper, I explore a question of this very nature: in a strategic situation of

bargaining, are individuals necessarily better off with expected utility preferences than when

they are endowed with a particular type of non-expected utility preferences, namely prospect

theory preferences?

I consider a recurrent bargaining game, as in Young (1993b), where individuals from

one population are randomly matched to individuals from another population to bargain

over division of a pie of fixed size. The two randomly matched individuals in each pair

simultaneously announce the share of the pie that they claim for themselves. They receive

their respective claims only if the two demands are compatible with each other i.e. they sum up

to no more than unity; otherwise, they receive nothing. In a bargaining situation such as this,

it is reasonable that the history of play should influence the share that each individual claims

for himself. Hence, I posit that each individual draws an independent random sample from

the demands made by the other population’s individuals in the last period, and he assumes

that his randomly matched co-player’s demand in this period is drawn from the distribution

of demands expressed in the random sample. Then, in the current period, an individual

almost always chooses an ex-ante ‘optimal’ demand (given his preferences) in response to the

randomly drawn sample. I focus on the stochastically stable division of the pie, which is the

mode of division that is expected to prevail most of the time in the long-run.

As a benchmark, I first consider the case where both populations comprise of individuals

whose preferences have an expected utility representation. Here, decision making involves has

two components: a von-Nuemann Morgenstern (vN-M) utility function that assigns a utility

value to each outcome of the bargaining game, and the probability distribution of relevant

outcomes. In context of the first component, I suppose that the vN-M utility functions of
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individuals in the two populations, namely A and B, are given by the increasing and concave

functions u and v respectively, where the argument of each utility function is the share of

the pie received. As for the second component, there are two relevant mutually exclusive

and exhaustive events: either the claimed share is received, or it isn’t, and the probability

of either event is derived by each individual from his randomly drawn sample. That is, if he

claims x fraction of the pie for himself, then he supposes that the probability of obtaining it is

the relative frequency with which the individuals of the other population have demanded less

than 1− x in his randomly drawn sample. Then, the expected utility of making a particular

demand is the weighted sum of utilities of the two outcomes (where one outcome corresponds

to receiving nothing, while the other outcome corresponds to receiving the claim made), with

the weights being equal to the probability of occurrence of each event. Each individual almost

always chooses a demand that maximises his expected utility. The limiting stochastically

stable division of the bargaining game when individuals in both populations are expected

utility maximisers coincides with the Nash bargaining solution (Nash (1950)), i.e. if x∗ and 1−

x∗ is the share obtained by each individual in population A and B respectively in the limiting

stochastically stable division, then x∗ maximises u(x) v(1 − x) (see also Young (1993b)). A

corollary is that if individuals in either population have the same vN-M utility function, then

an equal division of the pie is the stochastically stable division.

Now, suppose that the preferences of individuals in population B are described by prospect

theory instead, but individuals in populationA continue to maximise expected utility. Prospect

theory has two components - a value function, and a probability weighting function, and the

distinguishing features of these two components are as follows:

(i) Each outcome is evaluated in terms of a gain or a loss about a reference point. Thus

now, unlike expected utility preferences, where only the share of the pie that is received is

germane, evaluation of an outcome depends on how the share of the pie compares with a

particular share that serves as the reference point. Prospect theory assumes that the value

function, the analogue of the utility function, is concave in the gains domain and convex in the

losses domain, with a value of zero assigned to the outcome where the share received exactly

equals the reference point. Importantly, prospect theory does not formalise the process of

determination of the reference point but suggests that features such as recent history, norms

or aspirations may affect the reference point. In this paper, the process of reference point for-

mation is endogenous – since an individual supposes that his co-player’s demand comes from

the same distribution as the demands in the sample, I assume that an individual’s reference

point is obtained from the randomly drawn sample as well. Thus, similar in spirit to Koszegi

and Rabin (2006), where expectations – which in this case arise from the random sample an

individual draws – influences the reference point of an individual.

(ii) Individuals are loss-averse, i.e. a gain of any particular magnitude cannot compensate for
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a loss of equal magnitude.

In context of these two features, I assume that the value function of individuals of popula-

tion B is v(·) in the gains domain (i.e. the vN-M utility function of population B when their

preferences were represented by expected utility) and −λ v(·) in the losses domain. Here,

λ > 1 indicates loss-aversion. This allows me to focus purely on the effect of change in pref-

erences from the expected utility to prospect theory.

(iii) Objective probabilities are transformed by a probability weighting function w(·), the

defining characteristic of which is the over-weighting of ‘small’ probabilities and under-

weighting of large probabilities, i.e. for probability p ‘sufficiently small’, w(p) > p, and for

probability p′ ‘sufficiently large’, w(p′) < p′.

The manner in which an individual with preferences described by prospect theory chooses

his claim is as follows. He draws an independent random sample from the demands made by

the population of expected utility maximisers in the previous period. This random sample

determines the reference point for him in that particular period. He assumes that the demand

that he will face in the current period is drawn from the demand distribution in the random

sample. Each demand that an individual may make results in one of two events: it is either

compatible with the demand of his random co-player, or it is not; in either case, the associated

objective probability is obtained from the sample. For example, if he claims x fraction of the

pie, then he supposes that the probability of obtaining it is the relative frequency with which

the individuals of the other population have demanded less than 1−x in his randomly drawn

sample, and the probability thus obtained is transformed by the weighting function. Thus,

each demand gives rise to a prospect comprising of two events, namely obtaining the claim,

and not obtaining it. Each of these two outcomes are then either coded as a gain or a loss,

depending on how the outcome compares with the reference point. The value of the prospect

induced by making a particular demand is simply the sum of the values of these two outcomes,

weighted by the corresponding probability weight. The individual almost always chooses the

demand that induces the prospect of highest value.

The above description highlights the difference in the decision making process of expected

utility maximisers and prospect value maximisers. My objective is to compare the share of the

pie received in the limiting stochastically stable division by population B individuals when

they maximise expected utility, and when they maximise prospect value. Interestingly, I find

that population B individuals receive a higher share of the pie when they are prospect value

maximisers if and only if v′(0)
w′(0) > v′(1 − x∗), where v′(0) is the marginal utility/value as the

share approaches zero, w′(0) is the slope of the probability weighting function as probability

approaches zero, and v′(1−x∗) is the marginal utility of the share received by them when they

are expected utility maximisers. Thus, not only is it not possible to unequivocally state that

expected utility maximising individuals (of a population) ‘outperform’ their counterfactual
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selves when they are endowed with non-expected utility preferences instead, but I also derive

the necessary and sufficient conditions for the former to receive a lower share than in the latter

case. The corollary of this is that prospect value maximising individuals also outperform the

expected utility maximisers in the other population by receiving more half of the pie when

the individuals in both populations have the same utility/value function (i.e. u = v) and the

above condition holds.

As has been mentioned earlier, there are three principal differences between the prospect

theory and expected utility approaches, namely, evaluation about a reference point, loss

aversion, and probability weighting. In order to better understand the nature of the result

outlined above, I decompose the effect of each of these three factors. For this purpose, I

examine three alternative situations: (i) population B individuals’ preferences are reference

point dependent but they are not loss-averse and neither are probabilities transformed by

the weighting function, (ii) population B individuals are loss-averse but they do not weight

probabilities, and (iii) population B individuals transform the probabilities obtained from the

sample by the same probability weighting function w, but their preferences do not exhibit

reference point dependence, and hence no loss aversion either. (The last case corresponds to

Quiggin’s (1982) rank-dependent utility.) In each of these three cases, I analyse the limiting

stochastically stable division of the pie when they bargain against the other population of

expected utility maximisers, and ask, how does the share of the pie received by the three

different types of individuals compare to the share they would have received had they been

expected utility maximisers or prospect value maximisers instead.

I use the following notation to denote the share of the pie received by population B in-

dividuals in the limiting stochastically stable division when they have the different types of

preferences mentioned above, and when they bargain with the expected utility maximising

individuals in population A:

(i) xEU : share of the pie received by population B individuals in the limiting stochastically

stable division when they are expected utility maximisers as well

(ii) xPT : share of the pie received by population B individuals in the limiting stochastically

stable division when their preferences are described by prospect theory

(iii) xRPD: share of the pie received by population B individuals in the limiting stochasti-

cally stable division when their preference exhibits reference-point dependence, but not loss

aversion and neither are probabilities transformed by the weighting function

(iv) xRPD,LA: share of the pie received by population B individuals in the limiting stochas-

tically stable division when their preference exhibits reference-point dependence and loss

aversion, but probabilities are not transformed by the weighting function

(v) xRD: share of the pie received by population B individuals in the limiting stochastically

stable division when they have rank dependent utility, i.e. their preference exhibit neither
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reference-point dependence nor loss aversion, but probabilities are transformed by the weight-

ing function

I then show that xRD < xEU < xRPD = xRPD,LA and xRD < xPT < xRPD = xRPD,LA

Hence, individuals of population B receive the highest and lowest share when they have refer-

ence point dependent preferences and probability weighted preferences respectively, and the

presence/absence of loss-aversion has no additional effect. Interestingly, individuals with ref-

erence point dependent preferences always outperform their counterfactual expected utility

maximising selves. Combining this with the previous result, I obtain xRD < xEU < xPT <

xRPD = xRPD,LA if v′(0)
w′(0) > v′(xEU ), and xRD < xPT < xEU < xRPD = xRPD,LA otherwise.

These results show that the a priori indeterminacy about whether individuals receive a

higher share of the pie if they are expected utility maximisers or prospect value maximisers

can be ascribed to the relative strengths of the downward push of probability weighting and

the upward pull of reference point dependence. In fact, this interpretation comes not only

from the above inequalities but also be seen analytically in the inequality v′(0)
w′(0) > v′(xEU ). I

show that the term v′(0) originates from pure reference point dependence of preferences and

causes xEU < xRPD, while the term w′(0) arises purely from probability weighting and causes

xEU < xRD. I interpret v′(0) and w′(0) as the strengths of reference point dependence and

probability weighting respectively; if the former outweighes the latter, i.e. v′(0)
w′(0) > v′(xEU ),

then xPT > xEU while if the latter is more dominant, i.e. v′(0)
w′(0) < v′(xEU ), then xPT < xEU .

In summary, the expected utility hypothesis of von Nuemann and Morgenstern (1944) has

been widely, and almost all pervasively, used to analyse situations of risk and uncertainty.

However, the descriptive validity of expected utility has been called into question due to

observed violations of the axioms of expected utility, the most prominent examples of this

being in Allais (1953) and Kahnemann and Tversky (1979). Even then, an argument is favour

of expected utility has been that if individuals display non-expected utility, then they would

voluntarily agree to subject themselves to a money pump, or make a Dutch book against

themselves; this leads one to surmise that individuals with non-expected utility would be

exploited and driven away by individuals with expected utility preferences. Machina (1989)

discusses some of these issues, and Green (1987) formalises the conditions under which an

individual with non-expected utility preferences can be persuaded to “make book against

himself”. Here, I use a bargaining model, as in Young (1993b), to analyse if individuals

would always prefer to maximise expected utility – the choice of this strategic situation is

motivated by the fact that it allows direct interaction and confrontation between individuals

with expected utility preferences and prospect theory preferences. I report necessary and

sufficient conditions under which individuals would actually prefer to have prospect theory

preferences over expected utility preferences.
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2 Model, analysis and results

A and B represent two equally-sized non-empty finite populations of n individuals. Time is

discrete and in each (time) period, each individual in one population is randomly matched

to exactly one individual from the other population. I remain agnostic about the specifics

of the matching process; hence, particular matches may be more likely than others due to

reasons of social/geographical proximity. The randomly matched individuals bargain over

a surplus/pie, the size of which is normalised to unity, by simultaneously announcing the

fraction of the surplus that they claim for themselves. The claims that can be made come

from a finite set of feasible demands D(δ) = {δ, 2 δ, . . . , 1 − δ}, where δ > 0 is the precision

of demand. An individual receives his claim if his demand is compatible with that of his

randomly matched co-player, i.e. the sum of the claims in the pair does not exceed unity;

otherwise, they receive nothing. This signifies the end of the period, and in the next period,

the same events recur in this recurrent model of bargaining: the individuals are randomly

matched, they simultaneously demand a share of the surplus for themselves, and they receive

their demand if it is compatible with the demand of the co-player. ωA(t) = (x1A(t), . . . , x
n
A(t))

and ωB(t) = (x1B(t), . . . , x
n
B(t)) represent the n demands made in period t by individuals in

population A and B respectively. ω(t) = (ωA(t), ωB(t)) represents the state in the beginning

of period t+ 1 (when demands have not yet been made in period t+ 1), with the state space

being Ω = D(δ)n ×D(δ)n.

I now describe the process by which individuals choose the demand that they make in each

period in this ‘unperturbed’ process of bargaining. With strictly positive probability less than

unity, that may vary across individuals, an individual exhibits inertia and makes the same

claim that he had made in the previous period. With the strictly positive complementary

probability, each individual gathers information by independently drawing a random sample of

size s without replacement from the n demands made by individuals of the other population in

the previous periods, with s ≤ n. When the sampling is incomplete (i.e. s < n), I assume that

every feasible sample has strictly positive probability, but not necessarily equal probability,

of being drawn by each individual. This gives a probability distribution of demands made

by (individuals of) the other population. Each individual assumes that the demand made by

his randomly chosen co-player in this period will be drawn from this distribution, and so, in

response, he chooses the ex-ante optimal demand (given his preferences). This preferences of

the individuals are described next.

I assume that preferences of individuals in population A lends itself to an expected utility

representation. u : R+ → R+ is the increasing and concave von Nuemann-Morgenstern

(vN-M) utility function, and is normalised so that u(0) = 0. The argument of the vN-

M utility function is the share of the pie received by the individual. The implication of u

being increasing is that individuals prefer a higher share of the pie, and concavity of u implies
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diminishing marginal utility and risk-aversion. Individuals in population Amaximise expected

utility with respect to the cumulative probability distribution of demands expressed by the

randomly drawn sample. That is, for any claim x than an individual makes, the probability

of obtaining the claim p(x) is the relative frequency with which demands no greater than

1 − x appear in the sample drawn from the other population’s demands; thus, the claim

of x gives an expected utility of p(x)u(x) + (1 − p(x))u(0) = p(x)u(x). Each individual

(from population A) chooses the demand that maximises this expected utility i.e. he chooses

a demand from the set argmaxxp(x)u(x), where x ∈ D(δ).

In the benchmark case, I assume that individuals in population B are also expected util-

ity maximisers, and hence they choose their claim in a similar manner; the only difference is

that their vN-M utility function is v : R+ → R+. I will compare this to the situation where

the preferences of individuals in population B are described by Cumulative Prospect Theory

(Kahnemann and Tversky (1992)). Representation of preferences under Cumulative Prospect

Theory differs from expected utility representation in three crucial aspects:

(i) Outcomes are not evaluated at their absolute levels (as in the case of expected utility

maximisers). The ‘value function’ (Prospect Theory’s analogue of the vN-M utility function)

evaluates outcomes as a gain or a loss about a reference point, and is concave (or risk-averse)

in the gains domain and convex (or risk-seeking) in the losses domain. Let v+ : R+ → R

and v− : R− → R be the value function in the gains and losses domain respectively, with v+

being increasing and concave, v− being increasing and convex, and v+(0) = v−(0) = 0. If xi

is the share of the pie received by an individual i and ri ∈ [0, 1] denotes his reference point,

then the argument of the value function is xi − ri; so the corresponding value is v+(xi − ri)

if xi − ri > 0 or v−(xi − ri) otherwise.

(ii) Individuals are loss-averse: the marginal effect a loss of a particular magnitude outweighs

the marginal effect of a gain of the same magnitude, i.e. v′−(−x) > v′+(x).

(iii) Individuals transform objective probabilities to weight the value of an outcome. For any

claim x than an individual makes, there are two mutually exclusive and exhaustive outcomes:

the claim is obtained (when it is comptiable with the demand of the co-player) or it is not ob-

tained. The probability of obtaining the claim (similarly, not obtaining the claim) p(x) (simi-

larly, 1−p(x)) is the relative frequency with which demands no greater than (similarly, strictly

greater than) than 1 − x appear in the sample drawn from the other population’s demands.

Next, it is not the probability of occurrence of an event that is transformed (as in the original

version of Prospect Theory in Kahnemann and Tversky (1979)), but the transformation is

via a cumulative functional w that operates on the probability distribution (Kahnemann and

Tversky (1992)). In this paper, I assume that the same cumulative functional operates on

all outcomes (i.e. gains as well as losses); this implies that any two mutually exclusive and

exhaustive outcomes with probabilities p and 1 − p receive a weight of w(p) and w(1 − p)
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respectively, with the additional property that w(p) + w(1 − p) = 1.1 Importantly, ‘small’

probabilities are over-weighted while ‘large’ probabilities are under-weighted – if probability

p > 0 is sufficiently small, then w(p) > p, and if probability p < 1 is sufficiently large, then

w(p) < p. Crucially, under-weighting of small probabilities implies w′(0) > 1, i.e. the slope of

the weighting function around 0 is greater than unity. Furthermore, w(1) = 1, and w(0) = 0.

It follows from the above that a claim of xi by individual i induces a prospect that gives

a share of xi with probability p(xi), and a share of 0 with probability 1− p(xi). The value of

this prospect is w(p(xi)) v+/−(xi−ri)+(1−w(p(xi))) v−(0−ri), ri ∈ [0, 1] being his reference

point, and v+/− = v+ if xi− ri > 0 and v+/− = v−(xi− ri) otherwise. The individual chooses

the claim that induces the prospect of the highest value, i.e. he chooses a demand from the

set argmaxxi
w(p(xi)) v+/−(xi − ri) + (1− w(p(xi))) v−(0− ri), with xi ∈ D(δ).

The only aspect that needs further elaboration is the determination of the reference point,

which is the share of the pie an individual ‘expects’ to receive, in the sense that losses or

gains are anchored around this point. I posit that the reference point is a function of the

random sample drawn by the individual. For the moment, I only assume that the if any two

individuals from the same population draw a sample that has the same cumulative distribution

of demands, then their reference point is the same, and that if the sample drawn by an

individual comprises of only one demand x, then the reference point of the individual is 1−x.

The bargaining process is in a convention at time period t if (x1A(t− 1) . . . , xnA(t− 1)) =

(x̄, . . . , x̄) and (x1B(t−1) . . . , xnB(t−m)) = (1−x̄, . . . , 1−x̄) for some x ∈ D(δ). The convention

in which population A demands and obtains fraction x̄ is denoted by ωx̄. Once a convention ωx̄

is attained, any individual from population A (similarly, population B) continues to demand

x̄ (similarly, 1 − x̄) in all time periods to follow, irrespective of whether the individual is an

expected utility maximiser or prospect value maximiser. This is because:

(i) Any sample that can be drawn by an individual in population A comprises only of 1 −

x̄; hence,the individual assigns probability one to the event that his randomly chosen co-

player will demand 1− x̄; consequently, x̄ is the expected utility maximising demand for that

individual from population A. Similarly, for any individual in population B, any sample that

can be drawn results in the reference point being 1− x̄; this individual assigns probability one

to the event that his randomly chosen co-player will demand 1 − x̄, and this event receives

a weight of w(1) = 1; consequently, 1 − x̄ is the demand that maximises the value of the

induced prospect.

(ii) Inertia, which is the other component of the decision-making process of the individuals,

would also lead individuals to make the same choice.

However, I note that while the maximised value of the prospect induced by demanding a share

1The method of using a cumulative functional on the probability distribution to transform probabilities
was first proposed in Quiggin (1982), and resulted in the formulation of rank-dependent utility.

9



in accordance with the established convention is exactly equal to zero (since the individual

receives a share that is exactly equal to the reference point), the expected utility of demanding

a share in accordance with the established convention is strictly positive.

In the proposition to follow (proof in the appendix), I show that the bargaining process

converges almost surely to a convention i.e. the probability of a transition to a convention

from any initial state is strictly positive, irrespective of whether population B individuals

maximise expected utility or prospect value.

Proposition 1. The unperturbed bargaining process converges almost surely to a conven-

tion, and stays locked into the convention, irrespective of whether population B individuals

maximise expected utility or prospect value.

The description of the bargaining game thus far assumes that individuals always make a

demand that is ex-ante optimal given the preferences. I now introduce the possibility that

individuals make mistakes/experiment with another mode of behaviour. With independent

probability ε > 0, each individual makes a demand that neither maximises his expected

utility (in case of expected utility maximisers) or value of the induced prospect (in case of

prospect value maximisers) nor is it due to inertia. This makes the transition from one

convention to another possible. Starting from a particular convention, if enough number of

mistakes/experimentations (in the demands made by the other population) accumulate in the

sample drawn by an individual, then the set of demands that maximises his expected util-

ity/prospect value may contain a demand that does not conform to the established convention;

this opens the path of transition to another convention.

This perturbed process of bargaining can be represented by a Markov process P (ε) on

the state space Ω. This Markov process is ergodic: for each ε > 0, there exists a unique

stationary distribution µ(ε) given by µ(ε)P (ε) = µ(ε). Young (1993a) and Kandori, Mailath

and Rob (1993) define the stochastically stable set as the set of states that receive positive

weight in the limiting stationary distribution µ∗ = limε↓0µ(ε), the importance of it being

that states in this set are expected to be observed most of the time in the long-run. The

identification of this set is determined by the relative difficulty/ease of transition from one

set of conventions to the complementary set of conventions. The radius-modified co-radius

theorem in Ellison (2000) demonstrates that if the radius of a convention ωx, which is the

minimum number of experimentations needed to transit from the basin of attraction of the

convention, is greater than its modified co-radius, which is the maximum of the minimum

number of experimentations needed to transit between any two adjoining conventions along a

minimal resistance path to ωx from any other convention, then ωx is the stochastically stable

state.

The limiting stochastically stable division is defined as the division of the pie (x, 1−x) in

the stochastically stable state as the precision of demand δ → 0. (In the division (x, 1 − x),
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x refers to the share obtained by individuals of population A while 1− x refers to the share

of the pie received by individuals of population B.) In the benchmark case where both

populations comprise of expected utility maximisers, the limiting stochastically stable division

coincides with the Nash bargaining solution, where the Nash bargaining solution is the division

(xn, 1 − xn), where xn = argmaxxu(x) v(1 − x) (Young (Theorem 3,1993b)). This result is

presented in the proposition below (proof in the appendix).

Proposition 2. The limiting stochastically stable division in the bargaining game when both

populations A and B comprise only of expected utility maximisers, with vN-M utility functions

u and v respectively, coincides with the Nash bargaining solution.

Corollary 1. Each individual receives exactly half of the pie in the limiting stochastically

stable division of the bargaining game when both populations comprise of expected utility max-

imisers and all individuals have the same vN-M utility function.

In context of the above proposition, I denote the share of the pie received by population B

individuals in the limiting stochastically stable division by xEU = 1 − xn. The objective is

to compare xEU with the share of the pie received by individuals in population B when the

expected utility preferences are replaced by prospect theory obeying preferences. If, in the

latter case, the population B individuals receive less than xEU in the limiting stochastically

stable division, then these individuals are better off with preferences that can be represented

by expected utility than with preferences that are described by prospect theory. In order to

focus purely on the effect that arises because expected utility representation of preferences is

replaced by prospect theory obeying preferences, I keep everything else the same by assuming

that the value function v+(x) = v(x) and v−(x) = −λ v(x), where λ > 1 indicates loss-

aversion.

Proposition 1 shows that the unperturbed bargaining process attains a convention in

finite time when population B individuals maximise prospect value. In order to analyse the

stochastically stable, I examine the relative ease of transition between conventions in the

presence of mistakes/experimentations. One important consideration in this analysis involves

the adaptation of the reference point. When the state is described by a convention, there

is no ambiguity about the reference point: by the assumption made earlier, an individual’s

reference point is simply the share received by him in the convention. However, in the

presence of experimentations, it is possible that the reference point, which depends on the

drawn sample, adapts or changes. On one extreme, it is quite probable that reference point

adaption is sluggish or conservative: for example, it is equal to the share received by the

corresponding individual in the established convention, and it adapts only when another

convention supplants the established convention. On the other extreme, it is also probable

that reference point adaptation is radical, or shows excess momentum, by changing as soon
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as a single mistake/experimentation is observed. The relevance of reference point adaptation

comes from the fact that the reference point not only determines whether an outcome is coded

as a loss or a gain, but also the magnitude of a gain or a loss, and therefore the value of the

prospect corresponding to each demand that the individual might make. In other words,

depending on the reference point, the same prospect may be associated with different values.

Thus, reference point adaptation has a bearing on the share of the pie that maximises the

induced prospect value, and consequently on the ease of transition between conventions, and

hence, on stochastically stable division as well.

I now make an assumption about how the reference point of individuals in population B

adapts. If the state of the bargaining game is described by the convention ωx where the pie

is divided in the manner (x, 1 − x), then any sample that may be drawn by individuals of

population B comprises only of x; then, their reference point as a function of the sample is

denoted by r(x) and is equal to 1 − x. Now suppose that some individuals in population A

experiment/make a mistake by announcing a claim of x′ 6= x, some instances of which appear

in the sample of a population B individual, the other demands in the sample being equal to

x. Let the reference point corresponding to this sample be r(f, x, x′), where f ∈ [0, 1] is the

fraction of demands in the sample that equals x. Without loss of generality, suppose x′ > x.

The second assumption on the reference point function is that it is non-increasing in the

sample vector, and so, r(x) ≥ r(f, x, x′); however, since r(0, x, x′) = 1− x′ and the reference

point function is non-increasing, r(f, x, x′)− r(x) ∈ [x− x′, 0]. The third assumption is that

if x′′ > x′, then r(f, x, x′′)− r(f, x, x′) ∈ [x′ − x′′, 0]. That is, if the experimentation/mistake

comprised of demands of x′′ (instead of x′) and if the same proportion of mistakes (equal

to 1 − f) appear in the sample, then (i) the reference point cannot increase since it is non-

increasing in the sample vector, and (ii) the decrease in the reference point cannot be more

than x′′ − x′. If, on the other hand, x′′ < x′, then r(f, x, x′′)− r(f, x, x′) ∈ [0, x′′ − x′].

I re-iterate that I do not impose any restriction on the reference point function when

the support of the random sample that determines it comprises of more than two demands.

Further, the assumption about the reference point function is consistent with the two extremes

of reference point adaptation: (i) rB(
1
s , x, x

′) = 1−x′ i.e. the reference point adaptation shows

excess momentum by moving from 1−x when the convention is ωx to 1−x′ as soon as a single

mistake/experimentation appears in the sample of demands from the other population, and

(ii) rB(
s−1
s , x, x′) = 1 − x i.e. the reference point adaptation shows inertia by not changing

from 1 − x until the entire sample comprises of demands of the other population comprises

only of x′. An example of a reference-point function that satisfies this property is where it

is a weighted average of demands in the sample, where the weights assigned to the different

demands may vary according to the initial convention, and need not be equal to the frequency

of occurrence of each demand.
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The next proposition (proof in the appendix) illustrates how individuals fare when they

have prospect theory preferences instead of expected utility preferences.

Proposition 3. In the limiting stochastically stable division, individuals with preferences that

are described by prospect theory receive a higher share of the pie than they would receive if

their preferences had an expected utility representation instead if and only if v′(0)
w′(0) > v′(xEU ).

The proposition above provides the necessary and sufficient condition for a population of

individuals with prospect theory preference to receive a higher share than it would receive if

its preferences could instead be represented by expected utility. The expression on the left

hand side is the ratio of the marginal value at zero, and the marginal probability weight at

p = 0, while the right hand side is the marginal value of the share of the Nash bargaining

solution. Thus, the direction of the inequality determines if the individuals are better off with

prospect theory preferences. A corollary of the proposition above is that in the particular

case that u(·) = v(·), the population of individuals with prospect theory preferences receive

more than half of the pie, and the population of expected utility maximisers correspondingly

receive less than half of the pie, if and only if u′(0)
w′(0) = v′(0)

w′(0) > u′(1 − xn) = v′(1 − xn).

Thus, in this case, the individuals with prospect theory preferences not only outperform their

counterfactual expected utility maximising selves but also outperform the actual expected

utility maximisers in the other population.

Corollary 2. Suppose that the utility function of individuals in population A is the same as

the value function of individuals in population B, and let it be the function u(·). Then, the

population of individuals with preferences that can be described by prospect theory obtain more

than half of the pie while the population of expected utility individuals obtain less than half of

the pie if and only if u′(0)
w′(0) > u′(1− xn).

As mentioned earlier, prospect theory differs from expected utility representation of pref-

erences in three principal ways: (i) evaluation of outcomes about a reference point, (ii) loss

aversion, and (iii) transformation of objective probabilities to probability weights. I will now

de-construct the effect that each of these features by isolating the individual effect that they

have on the stochastically stable division. The proof of the above proposition shows that the

value of the parameter λ does not play a role in the result; consequently, loss aversion (i.e.

when λ > 1) or loss-seeking (when λ < 1) does not play a role either. This gives rise to the

next proposition.

Proposition 4. Loss aversion does not play a role in the determination of the limiting

stochastically stable division. Hence Proposition 3 and Corollary 4 hold irrespective of the

presence or absence of loss-aversion or loss-seeking behaviour on part of the individuals of

population B.
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I now examine the effect that the features of reference-point dependence and probability

weighting have on the stochastically stable division. Firstly, suppose that the preferences

of the individuals in population B are not reference-point dependent, i.e. the utility of an

outcome depends only on the absolute value of the share received rather than in terms of gains

or losses about the reference point. However, the objective probability associated with each

outcome is transformed by the weighting function, and the weight placed on the utility of each

outcome is the probability weight associated with that particular outcome. In other words,

the preferences of the individuals in population B have rank-dependent utility representation

in the sense of Quiggin (1982). Then, the next proposition (proof in the appendix) shows

that in the limiting stochastically stable division, this population of individual receives a lower

share of the pie than they would have if their preferences could instead be represented either

by expected utility or by prospect theory.

Proposition 5. In the limiting stochastically stable division, the population of individuals

whose preferences are represented by rank-dependent utility receive a lower share compared

to the share of the pie they would receive if their preferences could instead be represented by

either expected utility or prospect theory.

Corollary 3. Suppose that the utility function of individuals in population A is the same as

the value function of individuals in population B. Then, the population of individuals with

rank-dependent utility obtain less than half of the pie when they bargain either against a pop-

ulation of expected utility maximisers or against a population of individuals whose preferences

are described by prospect theory.

Finally, I examine the stochastically stable division when the individuals in population B have

‘reference-dependent’ preferences, i.e. the preferences are described by prospect theory but

for the feature that the objective probabilities associated with each outcome are not distorted

by the probability weighting function. That is, outcomes are evaluated as gains or losses

about a reference point, and each possible outcome is weighted by the objective probability

associated with it. The analysis of this situation is the same as in Proposition 3, where the

individuals of population B have preferences but with the weighting function w(p) = p. This

leads to the next proposition (proof in the appendix).

Proposition 6. In the limiting stochastically stable division, the population of individuals

whose preferences are reference point dependent receive a higher share of the pie compared to

the share they would receive if their preferences could instead be represented by either expected

utility, prospect theory, or rank-dependent utility.

Corollary 4. Suppose that the utility function of individuals in population A is the same as

the value function of individuals in population B. Then, the population of individuals with
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reference-point dependent preferences obtain more than half of the pie when they bargain either

against a population of individuals whose preferences can be represented either by expected

utility maximisers, rank-dependent utility or prospect theory.

The results presented demonstrate the effect that the each of the components of loss-

aversion, reference-point dependence and probability weighting have on the limiting stochas-

tically stable division. While loss-aversion is neutral, in the sense of not having any bearing

on the determination of the limiting stochastically stable state, probability weighting and

reference-point dependence give rise to opposing forces. In comparison to preferences which

have an expected utility representation, reference-point dependence confers an advantage on

the individuals in the sense of increasing the share of the pie they would have received oth-

erwise, while probability weighting exerts a downward pressure on the same. These two

opposing forces express themselves in the condition in Proposition 3, i.e. xPT S xEU if and

only if v′(0)
w′(0) S v′(xEU ), that determines if individuals are better off with prospect theory

preferences or with expected utility preferences. This condition reflects that whether xPT

is greater or smaller than xEU depends on the relative strengths of v′(0) and w′(0), where

the terms w′(0) and v′(0) comes from probability weighting (see proof of Proposition 5) and

reference-point dependence of preferences (see proof of Proposition 6) respectively. Thus if

the influence of v′(0) is stronger than that of w′(0), then the upward pull of reference point

dependence outweighs the downward push of probability weighting, and vice-versa.

3 Conclusion

Expected utility is used pervasively in the economics literature to represent preferences of

individuals under situations of risk and uncertainty. The widespread use of expected utility

owes to the fact that it is founded by a-priori reasonable axioms and that it is very tractable

analytically. Yet another justification that is often forwarded is that individuals with non-

expected utility would be outperformed by expected utility maximising individuals. These are

the issues which motivate this paper. Are individuals always better off when their preferences

can be represented by expected utility? I examine this question in a bargaining environment,

where individuals are engaged in direct interaction and confrontation with one another. I

contrast the share of the pie received in the long-run by (a population of) expected utility

maximisers with the share received by them if their preferences were described by prospect

theory preferences instead when they bargain with (a population of) expected utility max-

imisers. The choice of prospect theory as the alternative to expected utility is motivated by

the fact that it is arguably the leading preference structure in terms of descriptive validity.

I demonstrate that it is not necessarily true that individuals are better of when they

are endowed with expected utility preferences. In fact, I present a necessary and sufficient
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condition that indicates when individuals obtain a higher share of the pie their preferences are

in line with prospect theory (rather than expected utility). In order to understand the nature

of this result more deeply, I isolate the effect of the three main components that go to describe

prospect theory preferences, namely, reference point dependence, loss-aversion and probability

weighting. I show that loss-aversion does not have an effect on the outcome of the bargaining

process. However, reference-point dependent preference confers an unambiguous advantage

while probability weighting is unambiguously disadvantageous. These two opposing forces

provide deeper insight into the earlier result. If the upward pull of reference point dependence

is relatively stronger than the downward push of probability weighting, then individuals are

better off with prospect theory preferences than with expected utility preferences, and vice-

versa.

Appendix

Proof of Proposition 1

Proof. Let ω(t) = (ωA(t), ωB(t)) denote the current state. Then, with positive probability,

all individuals in population B display inertia so that ωB(t) = ωB(t+ 1). Now, with positive

probability, each individual in population A draws the same sample from ωB(t), and responds

with the same expected utility maximising demand xA. Then, with positive probability, in

period t + 2, all individuals in population A display inertia and choose the same demand

xA so that ωA(t + 1) = ωB(t + 2) = {xA, . . . , xA}. Further, in period t + 2, with positive

probability, each individual in population B responds to the previous period’s demands of

population A; the support of any sample drawn from ωA(t + 2) is {xA}. So, all individuals

in population B demand 1− xA, and the state of the bargaining game in period t+ 2 is the

convention ωxA
. Thus, from any initial state, the bargaining process reaches a convention

with positive probability; by the earlier observation, once a convention is reached, the process

stays locked into that convention. �

Proof of Proposition 2

Proof. Step 1. Suppose that the current convention is ωx, where population A individuals

demand (and receive) x and population B individuals demand (and receive) 1− x, for some

x ∈ D(δ). Now, the minimum number of experimentations/mistakes needed to move from ωx

to another convention ωx′ is given by smin{1− u(x−δ)
u(x) , 1− v(1−x−δ)

v(1−x) ,
u(x)

u(1−δ) ,
v(1−x)
v(1−δ)} (Lemma 1,

Young (1993b)). The terms in the above expression come from consideration of the following:

(i) Suppose that some population B individuals, by mistake or because of experimentation,

demand a higher share than is dictated by the current convention. In particular, suppose

these individuals demand 1−x+ δ. With positive probability, all individuals in population A
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draw a sample that contains all such mistakes. Then, population A individuals demand x− δ

instead of x in response when sufficiently many population B individuals demand 1− x+ δ.

If i is the number of mistakes, all of which appear in the sample of size s with positive prob-

ability, then the expected utility received by a population A individual from demanding x is
i
s u(0)+(1− i

s)u(x) = (1− i
s)u(x) while the expected utility from demanding x−δ is u(x−δ).

So, individuals in population A demand x−δ in response when (1− i
s)u(x) ≤ u(x−δ). Then,

the minimum number of mistakes is i∗ = s (1− u(x−δ)
u(x) ).

It is easily verified that amongst all mistakes by population B individuals with demands

greater than 1 − x, the minimum number of mistakes needed in order for population A in-

dividuals to demand a share other than x is obtained when the mistake is with 1 − x + δ:

hence, amongst all mistakes with a demand greater than 1− x, it is sufficient to consider the

case when population B individuals demand 1− x+ δ by mistake.

(ii) The term s (1 − v(1−x−δ)
v(1−x) ) has a similar explanation: this is the minimum number of

experimentations/mistakes by population A individuals in demanding a share greater than

x that causes the population B individuals to deliberately demand a share other 1 − x in

response.

(iii) Another type of experimentation/mistake is when some population B individuals de-

mand a share that is lower than 1 − x. In particular, suppose they demand δ. Again, with

positive probability, all the mistakes appear in the sample drawn by each population A indi-

viduals. If i represent the number of such mistakes, then population A individuals demand

1−δ instead of x when i
s u(1−δ)+(1− i

s)u(0) ≥ u(x). So, the minimum number of mistakes

is i∗ = s
u(x)

u(1−δ) .

It is again easily verified that amongst all mistakes with demands less than 1−x, the minimum

number of mistakes needed in order for population A individuals to demand a share other

than x is obtained when the mistake is with δ: hence, amongst all mistakes with a demand

less than 1− x, it is sufficient to consider the case when population B individuals demand δ

by mistake.

(iv) Similarly, the term s
v(1−x)
v(1−δ) is minimum number of mistakes made by population A in-

dividuals with a demand less than x that causes population B individuals to deliberately

demand a share other than 1− x in response.

I now make the observation that once smin{1− u(x−δ)
u(x) , 1− v(1−x−δ)

v(1−x) ,
u(x)

u(1−δ) ,
u(1−x)
u(1−δ)} mistakes

occur, a transition from the convention ωx to another convention ωx′ happens with positive

probability. To see this, suppose, without loss of generality, that the minimum number of

mistakes given by the expression above are made by the population A individuals in period t.

Then, with positive probability, all these mistakes appear in the sample drawn by each popu-

lation B individual in the next period t+1, and they respond by demanding 1−x′ 6= 1−x; also,
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with positive probability, all population A individuals display inertia so that ωA(t) = ωA(t+1).

In period t+ 2, with positive probability, all population B individuals display inertia so that

ωB(t+1) = ωB(t+2) = (1−x′, . . . , 1−x′), while all population A individuals draw a sample

from ωB(t+ 1) = (1− x′, . . . , 1− x′), and respond optimally by demanding x′. Then, in pe-

riod t+2, the convention ωx′ is reached. Thus, smin{1− u(x−δ)
u(x) , 1− v(1−x−δ)

v(1−x) ,
u(x)

u(1−δ) ,
u(1−x)
u(1−δ)}

is the minimum number of experimentations that can cause a transition from a convention

ωx to another convention ωx′ .

Step 2. The convention ωx∗ is stochastically stable if and only if x∗ maximises

smin{1 − u(x−δ)
u(x) , 1 − v(1−x−δ)

v(1−x) ,
u(1−x)
u(1−δ)} on D(δ) (Lemma 2, Young (1993b)). The reason for

this is:

(i) Concavity of the utility functions imply u(x)
u(1−δ) ≥

v(1−x)
v(1−δ) . Hence, smin{1− u(x−δ)

u(x) ,

1− v(1−x−δ)
v(1−x) ,

u(x)
u(1−δ) ,

u(1−x)
u(1−δ)}=smin{1− u(x−δ)

u(x) , 1− v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}

(ii) In the above expression, the terms 1 − u(x−δ)
u(x) and v(1−x)

v(1−δ) are monotonically decreas-

ing in x while 1 − v(1−x−δ)
v(1−x) is monotonically increasing in x. Further, 1 − v(1−x−δ)

v(1−x) <

min{1 − u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} when x = δ, and 1 − v(1−x−δ)

v(1−x) > min{1 − u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} when

x = 1−δ. Hence the function smin{1− u(x−δ)
u(x) , 1− v(1−x−δ)

v(1−x) ,
v(1−x)
v(1−δ)} is first strictly increasing

in x, and then strictly decreasing in x. This implies that the expression either uniquely attains

its maximum at some x∗, or attains its maximum at two adjacent values x∗ and x∗ + δ.

For the moment, I assume that x∗ is the unique maximising value – uniqueness will ac-

tually be argued for in Step 3 below. Then, smin{1 − u(x−δ)
u(x) , 1 − v(1−x−δ)

v(1−x) ,
v(1−x)
v(1−δ)} equals

s (1 − v(1−x−δ)
v(1−x) ) when x ≤ x∗ and smin{1 − u(x−δ)

u(x) ,
v(1−x)
v(1−δ)} when x > x∗. In other words,

the minimum resistance path out of a convention ωx with x ≤ x∗ involves s (1 − v(1−x−δ)
v(1−x) )

experimentations and leads to the convention ωx+δ – recall from (ii) in Step 1 above that

s (1− u(1−x−δ)
u(1−x) ) is the minimum number of mistakes made by population A with the demand

x + δ that lead to population B individuals demanding 1 − x − δ. Similarly, the minimum

resistance path out of a convention ωx with x > x∗ involves a transition to either the conven-

tion ωx−δ when smin{1− u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} = s (1− u(x−δ)

u(x) ) (recall part (i) in Step 1 above), or

ωδ when smin{1− u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} = s

v(1−x)
v(1−δ) (recall part (iv) in Step 1 above).

Now, by definition, smin{1 − u(x∗−δ)
u(x∗) , 1 − v(1−x∗−δ)

v(1−x∗) ,
v(1−x∗)
v(1−δ) } is the radius of the convention

ωx∗ , and smin{1− u(x∗−δ)
u(x∗) , 1− v(1−x∗−δ)

v(1−x∗) ,
v(1−x∗)
v(1−δ) } > smin{1− u(x−δ)

u(x) , 1− v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)} for

all x 6= x∗. In addition, the modified co-radius of ωx∗ is strictly less than the radius because:

(i) ωx∗ can be reached from any convention ωy, y < x∗ by the path ωy, ωy+δ, . . . , ωx∗−δ, ωx∗ ,

and the minimum resistance between any two adjoining conventions along this path equals

s (1 − v(x−δ)
v(x) ) (recall the discussion in the paragraph above), which is lower than the radius

of ωx∗ , and,

(ii) ωx∗ can be reached from any convention ωy, y > x∗ either by the path ωy, ωy−δ, . . . , ωx∗+δ, ωx∗
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when smin{1− u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} = s (1− u(x−δ)

u(x) ) (recall the discussion in the above paragraph),

or when smin{1− u(x−δ)
u(x) ,

v(1−x)
v(1−δ)} = s

v(1−x)
v(1−δ) , by the path ωy, ωδ (recall discussion in the ear-

lier paragraph), and then using (i) above, via the path ωδ, ω2 δ, . . . , ωx∗−δ, ωx∗ . In either

case, the minimum resistance between any two adjoining conventions along this path equals

smin{1− u(x−δ)
u(x) ,

v(1−x)
v(1−δ)}, which is lower than the radius of ωx∗ .

By the radius-modified co-radius theorem in Ellison (2000), since the radius of ωx∗ is higher

than the modified co-radius of ωx∗ , ωx∗ is the stochastically stable state.

Step 3. It only remains to argue that as δ → 0, the stochastically stable state is the Nash bar-

gaining solution (xn, 1− xn), where xn = argmaxxu(x) v(1− x) (Lemma 3, Young (1993b)).

The x∗ that maximises smin{1 − u(x−δ)
u(x) , 1 − v(1−x−δ)

v(1−x) ,
v(1−x)
v(1−δ)} also maximises 1

δ smin{1 −
u(x−δ)
u(x) , 1 − v(1−x−δ)

v(1−x) ,
v(1−x)
v(1−δ)}. Now, as δ → 0, 1

δ (1 −
u(x−δ)
u(x) ) → u′(x)

u(x) , and
1
δ (1 −

v(1−x−δ)
v(1−x) ) →

v′(1−x)
v(1−x) , both of which are bounded, while 1

δ
v(1−x)
v(1−δ) becomes unbounded. Hence, as δ → 0,

the above expression is maximised when u′(x)
u(x) = v′(1−x)

v(1−x) . This is a necessary and sufficient

condition for x to maximise ln(u(x)) + ln(v(1− x)) = ln(u(x) v(1− x)). Thus, as δ → 0, the

stochastically stable division is (xn, 1 − xn), where xn = argmaxxu(x) v(1 − x) – the Nash

bargaining solution. �

Proof of Proposition 3

Proof. Step 1. Suppose that the current convention is ωx, where population A individuals

demand x and population B individuals demand 1 − x, for some x ∈ D(δ). The mini-

mum number of experimentations/mistakes needed to move from a convention ωx to another

convention ωx′ is smin{1− u(x−δ)
u(x) , w−1( v−(α−δ)−v+(α)

v−(x+α−1)−v+(α)),
u(x)

u(1−δ) , w
−1( v−(α−δ)−v−(x−1−α)

v−(x−δ+α)−v−(x−1−α))}.

The terms in the above expression come from consideration of the following:

(i) s (1 − u(x−δ)
u(x) ): this is the minimum number of individuals in population B who make a

mistake/experiment by demanding a share greater than x that results in the population A

individuals to deliberately demand a share other than 1−x in response (see Part (i) in Step 1

for detailed explanation).

(ii) Suppose that some population A individuals, by mistake or experimentation, demand a

share x′ that is higher than x, the share that is dictated by the current convention. Then,

population B individuals demand x̃ instead of 1−x (i.e. x̃ 6= 1−x) if the value of the prospect

induced by demanding x̃ is at least as much as the value of the prospect induced by demand-

ing the 1−x. Let i be the number of population A individuals who make this mistake. With

positive probability, each individual in population B draws a sample that contains all these i

instances of x′. Since all individuals in population B draw the same sample, let r = 1−x−α

denote reference point corresponding to this sample, where α ∈ [0, x′ − x] reflects the extent

to which the reference point adapts from that of the established convention ωx. If α = 0,
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then r = 1− x and the reference point adaptation displays inertia, while if α = x′ − x, then

r = 1− x′ and the reference point adaptation displays excess momentum.

If the randomly drawn sample has i
s proportion of x′ and 1− i

s proportion of x, then the value

of the prospect induced by a population B individual demanding 1−x is w( is) v−(0− (1−x−

α))+w(1− i
s) v+(1−x− (1−x−α))=w( is) v−(x+α− 1)+w(1− i

s) v+(α) while the value of

the prospect induced by demanding x̃ = 1−x′ is w(1)v−(1−x′−(1−x−α)) = v−(α+x−x′).

(It is easily verified that the value of the prospect induced by any demand other than 1 − x

or 1 − x′ is strictly dominated by the prospect that is induced by 1 − x or by 1 − x′, and

hence any other demand is not relevant to the calculus.) So, a population B individual will

choose 1 − x′ over 1 − x when v−(α + x − x′) ≥ w( is) v−(x + α − 1) + w(1 − i
s) v+(α). Be-

cause the RHS is decreasing in i and because the LHS is negative and does not depend on

i, for minimum number of experimentations, the inequality above will hold with equality i.e.

v−(α+ x− x′) = w( is) v−(x+ α− 1) + w(1− i
s) v+(α).

Importantly, it can be seen from the equality above that i
s is increasing in x′ for the following

reason. Suppose the equality holds at a particular set of values of x, x′ and α. Now, let

x′ increase by ∆x′ > 0. As result of this, let α change by ∆α ∈ [0,∆x′]. Then, the LHS,

v−(α+ x− x′), becomes even more negative while the terms on the RHS, v−(x+ α− 1) and

v+(α), do not reduce in value; hence for the equality to hold, i
s has to increase. Thus, i

s is

increasing in x′.

Since i
s is increasing in x′, it follows that for the minimum number of experimentations,

x′ = x + δ. As a result, the equality that defines i can be re-written as v−(α − δ) =

w( is) v−(x + α − 1) + w(1 − i
s) v+(α). It can be now be seen that i is increasing in x –

I will make use of this in Step 2. Also, using w( is) + w(1 − i
s) = 1, the minimum num-

ber of experimentations that can result in a transition from the convention is given by

i = sw−1( v−(α−δ)−v+(α)
v−(x+α−1)−v+(α)), where w−1(·) is the inverse of w(·).

(iii) s u(x)
u(1−δ) is minimum number of individuals in populationB who make mistakes/experiment

by demanding less than x that causes population A individuals to deliberately demand a share

other than 1− x in response (see Part (iii) in Step 1 for detailed explanation).

(iv) Suppose that some population A individuals, by mistake or experimentation, demand

a lower share x′ < x than is dictated by the current convention. Then, population B indi-

viduals demand x̃ instead of 1 − x (i.e. x̃ 6= 1 − x) if the value of the prospect induced by

demanding x̃ is at least as much as the value of the prospect induced by demanding 1−x. Let

i be the number of population A individuals who demand x′. With positive probability, each

population B individual draws a sample that contains all these i instances of x′. Because all

these individuals draw a sample that contains the same information, let r = 1−x+α denote

their reference point, where α ∈ [0, x − x′] reflects the extent to which the reference point
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adapts from that of the established convention ωx.

If the randomly drawn sample has i
s proportion of x′ and 1 − i

s proportion of x, then

the value of the prospect induced by a population B individual from demanding 1 − x is

w(1) v−(1 − x − (1 − x + α)) = v−(−α), and the value of the prospect from demanding

x̃ = 1− x′ is w( is) v+(1− x′ − (1− x+α)) +w(1− i
s) v−(0− (1− x+α)) = w( is) v+(x− x′ −

α)+w(1− i
s) v−(x−1−α). (It is easily verified that the value of the prospect induced by any

demand other than 1 − x or 1 − x′ is strictly dominated by the prospect that is induced by

1−x or by 1−x′, and hence these other demands are not relevant to the calculus). So, a pop-

ulation B individual demands 1−x′ if v−(−α) ≤ w( is) v+(x−x′−α)+w(1− i
s) v−(x−1−α).

Because the RHS is increasing in i and the LHS does not depend on i, to obtain the

minimum number of mistakes, the inequality above will hold with equality, i.e. v−(−α) =

w( is) v+(x− x′ − α) + w(1− i
s) v−(x− 1− α).

Importantly, it can be seen from the equality above that i
s is increasing in x′. The reason

is as follows. Suppose the equality holds at a particular set of values of x, x′ and α. Now,

let x′ decrease by ∆x′ > 0 to x′ − ∆x′ < x′, and as a consequence of this, let α increase

by ∆α ∈ [0,∆x′]. As a result, both the LHS (i.e. v−(−α)) and the second term of the RHS

(i.e. v−(x − 1 − α)) decrease in value and become even more negative while the first term

of the RHS (i.e. v+(x − x′ − α)) increases. Because of the convexity of v−, and because

x − 1 − α < −α, the same change in α by ∆α results in a smaller decrease in the value of

v−(x−1−α) compared to the decrease in the value of v−(−α), and this is further compounded

by the fact that v−(x − 1 − α) is weighted by w(1 − i
s) ≤ 1. Hence, following the change

in ∆x′, the RHS now is greater than the LHS, and to restore the equality, i must decrease.

Then, for the minimum number of experimentations out of the convention, x′ is set equal to

δ, the above equality re-written as v−(−α) = w( is) v+(x − δ + α) + w(1 − i
s) v−(x − 1 − α),

with α ∈ [0, x − δ]. It can be now be seen that i is decreasing in x – I will make use of this

in Step 2. Using w( is) + w(1 − i
s) = 1, the minimum number of experimentations that can

result in a transition from the convention is given by i = sw−1( v−(−α)−v−(x−1−α)
v+(x−δ+α)−v−(x−1−α)), where

w−1(·) is the inverse of w(·).

Step 2. The convention ωx∗ is stochastically stable if and only if x∗ maximises

smin{1−u(x−δ)
u(x) , w−1( v−(α−δ)−v+(α)

v−(x+α−1)−v+(α)),
u(x)

u(1−δ) , w
−1( v−(−α)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α))} onD(δ) (see Step 2

in the proof sketch of Proposition 2 for a detailed explanation).

Here, I only note that the terms 1− u(x−δ)
u(x) and w−1( v−(−α)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α)) are monotonically

decreasing in x while the terms w−1( v−(α−δ)−v+(α)
v−(x+α−1)−v+(α)) and

u(x)
u(1−δ) are monotonically increasing

in x. Further, min{w−1( v−(α−δ)−v+(α)
v−(x+α−1)−v+(α)),

u(x)
u(1−δ)} < min{w−1( v−(−α)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α)),

1−u(x−δ)
u(x) } when x = δ and min{w−1( v−(α−δ)−v+(α)

v−(x+α−1)−v+(α)),
u(x)

u(1−δ)} > min{w−1( v−(−α)−v−(x−1−α)
v+(x−δ+α)−v−(x−1−α)),
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1− u(x−δ)
u(x) } when x = 1− δ.

Thus, smin{1− u(x−δ)
u(x) , w−1( v−(α−δ)−v+(α)

v−(x+α−1)−v+(α)),
u(x)

u(1−δ) , w
−1( v−(−α)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α))} is initially

increasing in x and then decreasing in x. As argued in Step 2, Proposition 2, by the radius-

modified co-radius theorem, a state ωx is stochastically stable if and only x maximises the

above expression. Since the above expression is initially increasing in x and then decreasing

in x, it follows that either there is unique stable division (x, 1− x), or there are at most two

adjoining stable divisions (x, 1− x) and (x+ δ, 1− x− δ) that are stochastically stable.

Step 3. If x∗ maximises smin{1−u(x−δ)
u(x) , w−1( v−(α−δ)−v+(α)

v−(x+α−1)−v+(α)),
u(x)

u(1−δ) , w
−1( v−(−α)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α))},

then it also maximises 1
δ smin{1−u(x−δ)

u(x) , w−1( v−(α−δ)−v+(α)
v−(x+α−1)−v+(α)),

u(x)
u(1−δ) , w

−1( v−(−α)−v−(x−1−α)
v+(x−δ+α)−v−(x−1−α))}.

Now, as δ → 0, 1
δ (1 − u(x−δ)

u(x) ) → u′(x)
u(x) , and

1
δ w

−1( v−(α−δ)−v+(α)
v−(x+α−1)−v+(α)) → 1

w′(0)

−v′
−
(0)

v−(x−1) , while

the terms 1
δ

u(x)
u(1−δ) and 1

δ w
−1( v−(α−δ)−v−(x−1−α)

v+(x−δ+α)−v−(x−1−α)) become unbounded. Hence, as δ → 0,

the above expression is maximised when u′(x)
u(x) = 1

w′(0)

−v′
−
(0)

v−(x−1) . Thus the stochastically stable

division is (x∗, 1− x∗) where x∗ is the solution of u′(x)
u(x) − 1

w′(0)

−v′
−
(0)

v−(x−1) = 0.

The concluding step involves a comparison of x∗ above with xn. Since u′(xn)
u(xn)

− v′(1−xn)
v(1−xn)

= 0,

1
w′(0)

−v′
−
(0)

v−(xn−1) S v′(1−xn)
v(1−xn)

⇔ u′(xn)
u(xn)

− 1
w′(0)

−v′
−
(0)

v−(xn−1) T 0 ⇔ x∗ T xn (since the LHS of the

second inequality is decreasing in x). Using v−(−x) = −λ v(x), x∗ T xn if and only if
v′(0)
w′(0) S v′(1 − xn). Denoting the share of the pie received by the population of individuals

with prospect theory preferences by xPT , xPT = 1 − x∗ S xEU = 1 − xn if and only if
v′(0)
w′(0) S v′(1− xn) = v′(xEU ).

Thus, if I compare the stochastically stable division when population B individuals have pref-

erences that can be represented by expected utility to the stochastically stable division when

they have preferences that can be described by prospect theory, I find that the share of the

pie received by the latter is the same if v′(0)
w′(0) = v′(xEU ), smaller if v′(0)

w′(0) < v′(xEU ) and greater

if v′(0)
w′(0) > v′(xEU ). �

Proof of Proposition 5

Proof. Step 1. Suppose that the current convention is ωx, where population A individuals

demand x and population B individuals demand 1 − x, for some x ∈ D(δ). The minimum

number of experimentations/mistakes needed to move from ωx to another convention ωx′ is

given by smin{1 − u(x−δ)
u(x) , 1 − w−1(v(1−x−δ)

v(1−x) ), u(x)
u(1−δ) , w

−1(v(1−x)
v(1−δ) )}. The terms in the above

expression come from consideration of the following:

(i) The term s (1 − u(x−δ)
u(x) ) is the minimum number of mistakes made by population B in-

dividuals in demanding a share greater than x that causes the population B individuals to

deliberately demand a lower share than 1− x in response (see Part (i) in Step 1 for detailed
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explanation).

(ii) Suppose instead that population A individuals, by mistake or experimentation, demand

a share x′ that is higher than x, the share dictated by the current convention. Let i be

the number of population A individuals who make this mistake. With positive probability,

each individual in population B draws a sample that contains all these i instances of x′.

Then, population B individuals demand x̃ instead of 1 − x (where x̃ 6= 1 − x) if the rank

dependent utility from demanding x̃ is at least as much as the rank-dependent utility from

demanding the 1−x. If the randomly drawn sample has i
s proportion of x′ and 1− i

s propor-

tion of x, then the rank-dependent utility of a population B individual demanding 1 − x is

w( is) v(0) +w(1− i
s) v(1− x), while the rank-dependent utility due to demanding x̃ = 1− x′

is v(1− x′). (It is easily verified that the utility arising from any demand other than 1− x or

1 − x′ is strictly dominated by the utility obtained from demanding 1 − x or by 1 − x′, and

hence these other demands are not relevant to the calculus). Then, a population B individual

will choose 1 − x′ over 1 − x when w( is) v(0) + w(1 − i
s) v(1− x) ≤ v(1− x′); since the LHS

is decreasing in i, the minimum number of experimentations/mistakes will be obtained when

the above condition is satisfies with equality, i.e. i = sw−1(1 − v(1−x′)
v(1−x) ). Now, in the above

equality, i is increasing in x′. Hence, x′ is set equal to x+δ to obtain the minimum number of

experimentations/mistakes that make a transition from the convention possible. This gives

i = sw−1(1− v(1−x−δ)
v(1−x) ).

(iii) The term s
u(x)

u(1−δ) is minimum number of mistakes made by population B individuals

with a demand less than x that causes population B individuals to deliberately demand a

share other than 1− x in response (see Part (iii) in Step 1 for detailed explanation).

(iv) Suppose instead that population A individuals, by mistake or experimentation, demand

a share x′ that is lower than the share x that is dictated by the current convention. Let i be

the number of population A individuals who make this mistake. With positive probability,

each individual in population B draws a sample that contains all these i instances of x′.

If the randomly drawn sample has i
s proportion of x′ and 1 − i

s proportion of x, then the

rank-dependent utility of a population B individual demanding 1 − x is v(1 − x), while the

rank-dependent utility due to demanding x̃ = 1−x′ is w( is) v(1−x′)+w(1− i
s) v(0). Then, a

population B individual will choose 1−x′ over 1−x if v(1−x) ≤ w( is) v(1−x′)+w(1− i
s) v(0);

since the RHS is increasing in i, the minimum number of experimentations/mistakes will be

obtained when the above condition is satisfies with equality, i.e. i = sw−1( v(1−x)
v(1−x′)). Now, in

the above equality, i is increasing in x′. Hence, x′ is set equal to δ to obtain the minimum

number of experimentations/mistakes that make a transition from the convention possible.

This gives i = sw−1(v(1−x)
v(1−δ) ).

Step 2. The convention ωx∗ is stochastically stable if and only if x∗ maximises
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smin{1 − u(x−δ)
u(x) , w−1(1 − v(1−x−δ)

v(1−x) ), u(x)
u(1−δ) , w

−1(v(1−x)
v(1−δ) )} on D(δ) (see Step 2 in the proof

sketch of Proposition 2 for a detailed explanation).

Here, I only note that the terms 1 − u(x−δ)
u(x) and w−1(v(1−x)

v(1−δ) ) are monotonically decreas-

ing in x while the terms w−1(1 − v(1−x−δ)
v(1−x) ) and u(x)

u(1−δ) are monotonically increasing in x.

Further, min{w−1(1 − v(1−x−δ)
v(1−x) ), u(x)

u(1−δ)} < min{1 − u(x−δ)
u(x) , w−1(v(1−x)

v(1−δ) )} when x = δ and

min{w−1(1− v(1−x−δ)
v(1−x) ), u(x)

u(1−δ)} > min{1− u(x−δ)
u(x) , w−1(v(1−x)

v(1−δ) )} when x = 1− δ.

Thus, smin{1− u(x−δ)
u(x) , w−1(1− v(1−x−δ)

v(1−x) ), u(x)
u(1−δ) , w

−1(v(1−x)
v(1−δ) )} is initially increasing in x and

then decreasing in x. As argued in Step 2, Proposition 2, by the radius-modified co-radius

theorem, a state ωx is stochastically stable if and only x maximises the above expression.

Since the above expression is initially increasing in x and then decreasing in x, it follows that

either there is unique stable division (x, 1 − x), or there are at most two adjoining stable

divisions (x, 1− x) and (x+ δ, 1− x− δ) that are stochastically stable.

Step 3. The x∗ that maximises smin{1 − u(x−δ)
u(x) , w−1(1 − v(1−x−δ)

v(1−x) ), u(x)
u(1−δ) , w

−1(v(1−x)
v(1−δ) )}

also maximises 1
δ smin{1 − u(x−δ)

u(x) , w−1(1 − v(1−x−δ)
v(1−x) ), u(x)

u(1−δ) , w
−1(v(1−x)

v(1−δ) )}. Now, as δ → 0,

1
δ (1 − u(x−δ)

u(x) ) → u′(x)
u(x) , and w−1(1 − v(1−x−δ)

v(1−x) ) → w−1′(0) v′(1−x)
v(1−x) = 1

w′(0)
v′(1−x)
v(1−x) , while the

terms 1
δ

u(x)
u(1−δ) and 1

δ w
−1(v(1−x)

v(1−δ) ) become unbounded. Hence, as δ → 0, the above expression

is maximised when u′(x)
u(x) = 1

w′(0)
v′(1−x)
v(1−x) . Thus the stochastically stable division is (x̃, 1 − x̃)

where x̃ is the solution of u′(x)
u(x) − 1

w′(0)
v′(1−x)
v(1−x) = 0.

The concluding step involves a comparison of x̃ above with xn, where
u′(xn)
u(xn)

= v′(1−xn)
v(1−xn)

, and

x∗, where u′(x∗)
u(x∗) = 1

w′(0)
v′(0)

v(1−x) .

(i) Firstly, since w′(0) > 1, 1
w′(0)

v′(1−x)
v(1−x) <

v′(1−x)
v(1−x) , for all x ∈ D(δ). So, u′(xn)

u(xn)
− 1

w′(0)
v′(1−xn)
v(1−xn)

>

u′(xn)
u(xn)

− v′(1−xn)
v(1−xn)

= 0. As a result, u′(xn)
u(xn)

− 1
w′(0)

v′(1−xn)
v(1−xn)

is decreasing in x, x̃ > xn.

(ii) Secondly, by concavity of v, 1
w′(0)

v′(1−x)
v(1−x) < 1

w′(0)
v′(0)

v(1−x) for all x ∈ D(δ). So, 0 =
u′(x̃)
u(x̃) − 1

w′(0)
v′(1−x̃)
v(1−x̃) >

u′(x̃)
u(x̃) − 1

w′(0)
v′(0)

v(1−x̃) . Since
u′(x̃)
u(x̃) − 1

w′(0)
v′(0)

v(1−x̃) is decreasing in x, x̃ > x∗.

Denoting the share of the pie received by the population of individuals with rank-dependent

utility by xRD, xRD = 1− x̃ < 1− xn = xEU and xRD = 1− x̃ < 1− x∗ = xPT . Thus, in the

stochastically stable division, population B individuals receive a lower share of the pie when

their preferences are represented by rank-dependent utility than when their preferences are

described either by expected utility or by prospect theory. �

Proof of Proposition 6

Proof. It is sufficient to use w(p) = p in the proof of Proposition 3. Thus, the limiting

stochastically stable division is (x∗, 1 − x∗) where x∗ is the solution of u′(x)
u(x) −

−v′
−
(0)

v−(x−1) = 0.

So now, it only remains to compare x̂ with (i) xn, where
u′(xn)
u(xn)

= v′(1−xn)
v(1−xn)

, (ii) x∗, where
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u′(x∗)
u(x∗) = 1

w′(0)
v′(0)

v(1−x∗) , and (iii) x̃, where u′(x̃)
u(x̃) = 1

w′(0)
v′(1−x̃)
v(1−x̃) .

(i) Firstly, by concavity of v, v′(0)
v(1−x) >

v′(1−x)
v(1−x) , for all x ∈ D(δ). As a result, u′(xn)

u(xn)
− v′(0)

v(1−xn)
<

u′(xn)
u(xn)

− v′(1−xn)
v(1−xn)

= 0. Since u′(x)
u(x) − v′(0)

v(1−x) is decreasing in x, x̂ < xn.

(ii) Secondly, since w′(0) > 1, v′(0)
v(1−x) > 1

w′(0)
v′(0)

v(1−x) for all x ∈ D(δ). As a result, u′(x∗)
u(x∗) −

v′(0)
v(1−x∗) <

u′(x∗)
u(x∗) − 1

w′(0)
v′(0)

v(1−x∗) = 0. Since u′(x)
u(x) − v′(0)

v(1−x) is decreasing in x, x̂ < x∗.

(iii) Finally, by concavity of v, v′(1−x)
v′(0) < 1, while w′(0) > 1, i.e. w′(0) >

v′(1−x)
v′(0) . This im-

plies 1
w′(0)

v′(1−x)
v(1−x) <

v′(0)
v′(1−x) . As a result, u′(x̂)

u(x̂) − 1
w′(0)

v′(1−x̂)
v(1−x̂) >

u′(x̂)
u(x̂) − v′(0)

v′(1−x̂) = 0. Since
u′(x)
u(x) − 1

w′(0)
v′(1−x)
v(1−x) is decreasing in x, x̂ < x̃.

Denoting the share of the pie received by the population of individuals with reference-point

dependent preferences by xRPD, I find xRPD = 1 − x̂ > 1 − xn = xEU , xRPD = 1 − x̂ >

1− x∗ = xPT and xRPD = 1− x̂ > 1− x̃ = xRD. Thus, in the stochastically stable division,

population B individuals receive a higher share of the pie when their preferences are reference-

point dependent than when their preferences are described either by expected utility, prospect

theory, or rank-dependent utility. �
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