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Abstract

The series on average hours worked in the manufacturing sector is a key leading
indicator of the U.S. business cycle. The paper deals with robust estimation of the
cyclical component for the seasonally adjusted time series. This is achieved by an
unobserved components model featuring an irregular component that is represented
by a Gaussian mixture with two components. The mixture aims at capturing the
kurtosis which characterizes the data. After presenting a Gibbs sampling scheme, we
illustrate that the Gaussian mixture model provides a satisfactory representation of
the data, allowing for the robust estimation of the cyclical component of per capita
hours worked. Another important piece of evidence is that the outlying observations
are not scattered randomly throughout the sample, but have a distinctive seasonal
pattern. Therefore, seasonal adjustment plays a role. We finally show that, if a flexible
seasonal model is adopted for the unadjusted series, the level of outlier contamination
is drastically reduced.

Keywords: Gaussian Mixtures. Robust signal extraction. State Space Models. Bayesian
model selection. Seasonality.
JEL codes: C11, C22, C52, E32.



1 Introduction

The series of average weekly hours in manufacturing (AWH, henceforth) is an im-
portant indicator of the state of the U.S. economy. It is considered, in particular, a
leading economic indicator of output and employment in manufacturing (see for in-
stance Glosser and Golden, 1998), since firms usually tend to respond to business cycle
conditions by decreasing or increasing hours worked, before hiring or laying off workers.
According to Cho and Cooley (1994), a sizeable share of the adjustment in total hours
over the business cycle represents adjustment in average hours, while the remainder
concerns changes in employment. Also, the procyclicality of per capita hours worked
and their response to technology shocks is the subject of a vivid ongoing debate, see
Gaĺı and Rabanal (2005) and the references therein. Finally, AWH is listed among the
10 indicators that make up the Conference Board composite index of leading indicators
(CBO, 2001).

The series measures an average of the number of hours worked per week by produc-
tion workers in U.S. manufacturing industries. It is produced by the U. S. Bureau of
Labor Statistics (http://www.bls.gov/ces/), as part of the Current Employment Statis-
tics (CES) monthly survey, which obtains payroll hours, employment and earnings from
business establishments.

The series is usually analyzed in seasonally adjusted (SA) form. Seasonal adjust-
ment is carried out by the BLS according to the methodology reported at http://www-
.bls.gov/ces/cesseasadj.htm. A particular problem is posed by the treatment of calen-
dar related fluctuations, and in particular by the treatment of moving festivals (Easter
and Labor day). As a matter of facts, the data are collected from the respondents’
payroll records for the pay period that includes the 12th of each month. Thus, if Easter
or Labor day falls during the week including the 12th, the number of hours worked
will be reduced.

The seasonally adjusted series is plotted in the top panel of figure 1; the super-
imposed shaded ares locate the NBER recessions. The plot confirms the tendency to
lead the business cycle peaks, and reveals the presence of a few occasional large drops
in hours worked. The standardized fourth moment of the monthly growth rates is
equal to 22.5, and the Jarque-Bera (JB, 1980) normality test statistics for this series
is 11518. When computed on the yearly growth rates, the kurtosis drops to 3.79, and
the JB normality statistics is a mere, though significant, 18.9. The unadjusted series
is presented in the bottom plot. A noticeable feature is that the seasonal component
does not look regular and evolves over time. It is perhaps interesting to single out
the period 1975-1980, when the SA series is characterized by the same troughs as the
unadjusted series.

AWH provides an interesting case study in Bayesian estimation of the business
cycle in an environment heavily contaminated by outlying observations: the latter
may have economic interpretation, as they can be due to strikes or overtime hours, but
we document in this paper that a large share may be due to underadjustment of the
seasonal component. The main objective of this paper is thus to carry out robust signal
extraction with reference to the cyclical component. This is based on an unobserved
components model featuring the decomposition into a long-run trend, a cycle and with
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finite mixtures provide a flexible tool to model outliers and skewed distribution.
Outlying observations and structural breaks in the components can be handled by

the inclusion of appropriate dummy variables on the right hand side of the measurement
and transition equations. However, this strategy has several drawbacks: for instance,
when a dummy is used to capture an additive outlier, this amounts to considering
the corresponding observation as missing, so that a weight of zero is assigned to it in
signal extraction and forecasting; on the contrary, the observation may still contain
some information, which could be elicited by suitable downweighting. An alternative
strategy consists in allowing the disturbances of a structural model to possess a heavy
tailed density, such as Students’ t-distribution, the general error distribution (Durbin
and Koopman, 1997), or a mixture of Gaussian (Harrison and Stevens, 1976, Frühwirth-
Schnatter, 2006, Giordani, Kohn and van Dijk, 2007). The second strategy is preferred
in this paper since it allows to single out which observations are outlying.

The unobserved components model Gaussian mixture model provides a good fit to
the data and is a significant improvement over a standard linear model, as it is revealed
by model selection according to a proposal by Chib and Jeliazkov (2001).

The paper is structured as follows. Section 2 presents the unobserved components
model for the seasonally adjusted series. Bayesian inference is discussed in section 3,
whereas section 4 addresses the issue of model selection and deals with the estimation
of the marginal likelihood of our model, using the approach suggested by Chib and
Jeliazkov (2001). In section 5 we presents and discuss the estimation results, which
finally lead us to the specification and the estimation of an unobserved components
Gaussian mixture model for the unadjusted series (section 6). Section 7 concludes the
paper.

2 The Gaussian mixture model

Let ySA

t , t = 1, . . . , n, denote the logarithm of seasonally adjusted AWH. The model
for the series, plotted in the upper panel of figure 1, is an additive decomposition into
a trend component, µt, representing the underlying long run evolution of the series, a
stationary cycle, ψt, and an irregular component, ǫt, which is specified as follows:

ySA

t = µt + ψt + ǫt,

µt = µt−1 + ηt, ηt ∼ N(0, σ2
η),

ψt = φ1ψt−1 + φ2ψt−2 + κt, κt ∼ N(0, σ2
κ)

ǫt = (1 − St)ǫ0t + Stǫ1t ǫit ∼ N(0, σ2
ǫi),

St ∼ IID Bernoulli(ω)

(1)

The trend is a random walk, whereas the cycle is an autoregressive process of order 2,
AR(2), with stationary complex roots, which is achieved via the reparameterization in
terms of the modulus and the phase of the roots of the AR polynomial. In particular,
we write φ1 = 2ρ cos λc and φ2 = −ρ2, where ρ is defined in the interval (0,1), and λc

is in [0, π].
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We assume that the irregular component has a finite mixture distribution, with two
components. Denoting by f(ǫt) the probability density function of ǫt and by g(ǫt; µ, σ2

ǫ )
the univariate Gaussian density with mean µ and variance σ2

ǫ ,

f(ǫt) = (1 − ω)g(ǫt; 0, σ2
ǫ0) + ωg(ǫt; 0, σ2

ǫ1). (2)

We identify the mixture parameters by imposing the ordering restriction σ2
ǫ0 < σ2

ǫ1.
Letting St denote an IID Bernoulli indicator variable taking the values 0, 1 with prob-
ability ω = P (St = 1) and 1 − ω = P (St = 0), respectively, when the series is in a
low volatility state 0, the irregular variance is σ2

ǫ0; σ2
ǫ1 is the irregular variance in the

high volatility state (St = 1). This identification constraint avoids the label switching
problem; see Geweke (2005) and Frühwirth-Schnatter (2006) for details.

We further assume that the random disturbances ηt, κt, ǫ0t, ǫ1t are mutually inde-
pendent. Conditionally on St, the model (1) is a linear Gaussian state space model
with measurement equation given by the first equation and transition equation built
from the Markovian representation for µt and ψt.

3 Bayesian Estimation

In this section we discuss how we make inference for the model presented in section
2. In particular, we discuss our prior choices, and we describe the algorithm used for
computing the posterior distribution and the full conditional distributions.

Let x = {µt, ψt, t = 0, . . . , n} denote the collection of the unobserved components,
Ψ = (σ2

η, σ
2
κ, σ2

ǫ0, σ
2
ǫ1, λc, ρ, ω) the vector of parameters of the model as defined in section

2. We further denote by S = {S1, . . . , St, . . . , Sn} the n−dimensional vector of indicator
variables St.

Our objective is to estimate the parameters of the posterior distribution of the
vector of parameters Ψ, of the the unobserved states and the latent indicator, by
generating random draws from the joint posterior of the unobserved components and
vector of parameters itself, p (Ψ, S, x|y), where y =

(
ySA
1 , ySA

2 , . . . , ySA
n

)
denotes the

vector of seasonally adjusted observations. A Metropolis-Hastings within Gibbs sam-
pling algorithm is implemented, where we take the vector S, the matrix of unobserved
states as a single block and partition the vector Ψ into three blocks, Ψ = (Σ′,Λ′, ω)′,
where Σ =

(
σ2

η, σ
2
κ, σ2

ǫ0, σ
2
ǫ1

)
, Λ = (λc, ρ), and ω is the mixing probability.

3.1 Prior Distributions

In a mixture context being fully non-informative and obtaining proper posterior dis-
tributions is not feasible. Since there is always the possibility that no observations are
allocated to one or more components, and so the data are uninformative about them,
standard choices of independent improper non-informative prior distributions for the
component parameters can not be used (Diebold and Robert, 1994). For this reason,
the choice of the a-priori distributions is guided by a desire to ensure that posterior
computations are relatively straightforward and that, as far as possible, the observed
data is allowed to speak for itself without strong prior information being imposed.
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Table 1: Prior hyper-parameters, initial values of the chain and lower bounds.
Parameter Initial Value α0

J β0
J Lower Bound

σ2
η 2.83E-07 4.0 5.67E-07 1.00E-010

σ2
κ 3.66E-04 4.0 7.32E-04 1.00E-06

σ2
ǫ0

4.83E-06 4.0 9.67E-06 1.00E-07
σ2

ǫ1
4.83E-05 4.0 9.67E-05 -

The usual Inverted Gamma prior distribution is chosen for the scale parameters in Σ,
while a Beta distribution is chosen for the cycle parameters (λc, ρ), and for the mixing
probability ω. This gives rise to the following structure of prior distributions:

p (Σ, Λ, ω) ∝ p (Σ) p (Λ) p (ω) (3)

where we assume an independent structure between each block of variables and within
each block

p (Σ) ∝
∏

J

IG

(
σ2

J ,
α0

J

2
,
β0

J

2

)
, ∀J = {ǫ0, ǫ1, η, κ} (4)

p (Λ) ∝ Be
(
ρ|p0

1, p
0
2

)
× πBe

(
λc|c

0
1, c

0
2

)
I[0,π] (5)

p (ω) ∝ Be
(
ω|s0

1, s
0
2

)
. (6)

The choice of an inverted gamma structure for the variance parameters in Σ is
motivated by the aforementioned need of avoiding improperness of the posterior dis-
tributions in the mixture framework. Under these priors the variance parameters have
independent inverted gamma conditional posteriors, even in the case on no observa-
tions allocated to one of the two mixture components. However, as pointed out by
Harvey, Trimbur and van Dijk (2007), the use of very slow shape and scale parameters
for these distributions may lead to problems in estimation, in particular for parameters
that tend to take on small values such as the variance of the trend component. In order
to avoid distortions in the estimates of the variance components and degeneracy of the
sampler, we introduced the lower bounds reproduced in the last column of table 1, even
if in the post-processing of the simulations we realize that these bounds are not binding
most of the time. The choice of a uniform prior for the cycle parameters (ρ, λc), over
the stationarity region, which is a bounded region in R×R, i.e. (ρ, λc) ∈ (0, 1)× [0, π],
does not pose a problem in terms of successfully generating competitive parameter
values. As described in section 3.3 above, we use a Metropolis step for the simulation
of variate from this full conditional distribution.

3.2 Likelihood and posterior

The complete-data likelihood is

p (y, x, S|Ψ) =
n∏

t=1

p (yt|xt, St, Ψ) p (xt|xt−1, Ψ) p (x0) , (7)
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where

p (yt|xt, St,Ψ) =
{
ωg

(
yt|xt, St = 0, σ2

ǫ0

) }1−St
{

(1 − ω) g
(
yt|xt, St = 1, σ2

ǫ1

) }St , (8)

represents the density of the mixture, p (xt|xt−1, Ψ) is the transition density of the state
space model which is markovian for the representation of the unobserved components
proposed we use here, (see, e.g. Harvey, 1989), and p (x0) is the prior distribution
on the initial vector of states x0, which is diffuse for non-stationary components and
centered around the long-term mean for the stationary component. The joint posterior
distribution of the parameters and the unobservable components, p (Ψ, x, S|y) will be
proportional to the product of the likelihood and the prior distributions given in the
previous subsection.

3.3 The Gibbs sampler

The Gibbs sampling approach to estimating the model parameters involves sampling
from the complete conditional distribution of each parameter in a systematic manner,
conditional on the previous sampled values of the other parameters. This approach is
always possible, since the complete conditional densities are available, up to a normal-
izing constant, from the form of the likelihood and the prior (see, Geman and Geman
(1994), and de Pooter, Segers and Van Dijk (2006) for an up to date overview of the
state of the art in Bayesian computation using Gibbs sampler). When some of these
conditional densities do not have standard form, as is often the case, the Metropolis-
Hastings algorithm may be used to obtain realizations from a Markov chain having the
required stationary distribution (see e.g., Casella and Robert (2004), and Gamerman
and Lopes (2007)).

After choosing a set of initial values for the parameter vector Ψ(0), simulations{
Ψ(i), x(i), S(i)

}
, i = 1, 2, . . . , from the posterior distribution are obtained by iterating

the following steps of the Gibbs sampler.

(i) Update the indicator variable

p(St = 1|Ψ(i), x(i), y) ∝
ω

σǫ0

exp

{
−

1

2σ2
ǫ0

(yt − µt − ψt)
2

}

+
(1 − ω)

σǫ1

exp

{
−

1

2σ2
ǫ1

(yt − µt − ψt)
2

}
(9)

with t = 1, . . . , n.

(ii) Simulate the matrix of unobserved components x(i+1), from the complete full con-
ditional distribution p(x|Ψ(i), S(i+1), y), where S(i+1) is the vector of indicator
variables generate at the previous step of the Gibbs sampler.

(iii) Simulate the cycle parameters (ρ, λc)
(i+1) from the full conditional distributions

p
(
ρ|λ(i)

c , Σ(i), ω(i), x(i+1), S(i+1), y
)
∝ p (ρ)

× exp

{
1

2σ2
κ

n∑

t=1

(
ψt − ρ cos λc ψt−1 + ρ2ψt−2

)2

}
, (10)
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and

p
(
λc|ρ

(i+1), Σ(i), ω(i), x(i+1), S(i+1), y
)
∝ p (λc)

× exp

{
1

2σ2
κ

n∑

t=1

(
ψt − ρ cos λc ψt−1 + ρ2ψt−2

)2

}
, (11)

where ψt, t = 0, 1, . . . , n, is defined as ψt = yt − µt, and the prior distributions
are beta, as described in the previous section.

(iv) Simulate Σ(i+1) from the complete full conditional distributions

p
(
σ2

J |Λ
(i+1), x(i+1), S(i+1), y

)
∝ IG

(
σ2

J |αJ , βJ

)
, ∀J = {ǫ0, ǫ1, η, κ} . (12)

The parameters of these posterior distributions are

αJ =
α0

J

2
+

nǫJ

2
, βJ =

β0
J

2
+

S̄J

2
,

where for J = {ǫ0, ǫ1}, nǫ0 =
∑n

t=1 St and nǫ1 =
∑n

t=1 (1 − St) are are the number
of observations allocated to the two components of the mixture,

S̄ǫ0 =
n∑

i=1

St (yt − µt − ψt)
2 , S̄ǫ1 =

n∑

i=1

(1 − St) (yt − µt − ψt)
2 ,

and, for the trend and cycle posterior variance, J = {η, κ}, we have αJ =
a0

J
+n

2 ,
and

βη =
α0

η

2
+

1

2

n∑

t=1

(µt − µt−1)
2

βκ =
α0

κ

2
+

1

2

n∑

t=2

(
ψt − ρ cos λcψt−1 − ρ2ψt−2

)2
.

(v) Simulate the mixing probability ω(i+1), from the complete full conditional distribu-
tion

p
(
ω|Λ(i+1), β(i+1), Σ(i+1), S(i+1), S(i+1), y

)
∝ Be (ω|g0 + nǫ0 , h0 + nǫ1) . (13)

We generate random draws from the full conditional distribution of the states p(x|Ψ, S, y),
at point (ii), using the simulation smoother for a linear state space model, developed
by de Jong and Shephard, (1996) and Durbin and Koopman (2001)). All the compu-
tations are carried out in Ox 4.10 by Doornik (2006). For the simulation smoother we
use the library Ssfpack, version 2.3, see Koopman et al. (1999).

The conditional posterior distributions of the cycle parameters (ρ, λc), at point
(iii), have no explicit forms of well known distributions that can be easily sampled.
Thus, we propose to update each parameter separately using Metropolis-Hastings (see

7



Metropolis et al. (1953) and Hastings (1970)) steps where the candidate distributions
are chosen to have the same supports than the conditional posteriors and the variances
can be calibrated using a small number of iterations of the algorithm in order to have
an acceptance ratio of about 50%. More specifically, in order to sample from the full
conditional posterior of ρ(i), for example, we generate candidate values from a Beta
distribution, Be(a, b), where we pose the mean of the Beta distribution to be equal
to the previously generated value of the parameter ρ(i−1). By inverting the relation
linking the mean and the variance of the Beta distribution to its parameters (a, b), we
obtain the following relation

{
a =

ρ2
i−1 (1−ρi−1)−v ρi−1

v

b = a1−ρi−1

ρi−1

where ρi−1 is the value generated by the Metropolis-Hastings sub-chain at step (i− 1)
and v is the variance of the proposal distribution. This parameters choice allows us
also to avoid numerical problems related to the evaluation of the Metropolis-Hastings
acceptance ratio in the presence of fat tailed and quite spiked likelihood functions. We
carry out the same operations for the parameter λc.

4 Model Selection

In this section, we give a brief account of Chib and Jeliazkov (2001) method to calculate
an estimate of the marginal density using the output from the Metropolis-Hastings
algorithm. This methodology allows us to discriminate which model, among g different
proposals, provides a better representation of a vector a data y = (y1, y2, . . . , yn), in
an appropriate statistical sense. Euristically, we want to compare how likely are the
data under the g different models, integrating over the parameter space.

Let us denote by p (y|Ψk,Mk) the density function of the data under model Mk

and a vector of parameters, Ψk, and p (Ψk|Mk) as the prior density. In this paper,
we compare two different models Mk: M1 is a standard Gaussian state space model
where the structural components are trend and cycle, while M2 is the Gaussian mix-
ture model defined in equation 1. These models differ for the treatment of the error
component, which is a standard Gaussian distribution in M1, and a mixture of two
normal distribution in M2. Since the two components of the mixture distribution have
the same mean but different variances, the implied unconditional distribution exhibits
fatter tails than in the normal case. The marginal density of the data under model
Mk is

m (y|Mk) =

∫
p (y|Ψk,Mk) p (Ψk,Mk) dΨk, k = 1, 2, (14)

where p (Ψk,Mk) represents the prior distribution of the parameter vector Ψk under
model Mk. The formal bayesian approach for comparing model M1 and M2 is through
the pairwise Bayes factor, defined as the ratio of marginal likelihoods

B1,2 =
m (y|M1)

m (y|M2)
, (15)
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which can also be interpreted as the posterior probability of model M1, when both
models are, a priori, equally likely. For a exhaustive discussion on Bayesian model
comparison using Bayes factors, we refer to the paper of Kass and Raftery (1995),
Chipman et al. (2001), Pericchi (2005) and the bibliography quoted therein, in partic-
ular for the explanation of why it may be misleading to use arbitrary vague priors and
improper priors in a model selection framework.

Calculating the marginal density, and hence the Bayes factor, is a daunting task
when estimation of the unknown parameters has been done by Markov chain Monte
Carlo methods. Recently, several Monte Carlo methods for computing the marginal
likelihoods have been developed, which include the Chib estimator, Chib (1995), the
ratio of importance sampling, Chen and Shao (1997), the path sampling, Gelman and
Meng (1998), the bridge sampling, Meng and Shilling (2002), and the extension of the
Chib (1995) estimator for the case of some Metropolis steps within the Gibbs sampler,
Chib and Jeliazkov (2001). In what follows we adapt the Chib and Jeliazkov (2001)
method to our general framework, in which some blocks of parameters of the posterior
distribution are updated by means of Gibbs steps, while some other are updated by
applying the more general Metropolis-Hastings algorithm.

The approach developed by Chib and Jeliazkov (2001) is based on the so called
marginal likelihood identity:

log m (y|Mk) = log p (y|Ψk,Mk) + log p (Ψk|Mk) − log p (Ψk|y,Mk) . (16)

The first terms of the RHS of equation (16) have a closed form expression, and can be
evaluated, for both models, by running the Kalman filter for the relevant state space
model, while the second component is simply the product of the prior distribution
for the parameters of each model. The last component, i.e. the normalized posterior
density of the parameters, requires a careful treatment. In fact, the computation of
p (Ψk|y,Mk) is possible only conditioning on a particular set of unobservable compo-
nents. The advantage of the approach proposed by Chib and Jeliazkov (2001) is to
provide a method to integrate this function over the space of the unobservable com-
ponents directly using the output of the a general MCMC algorithm. This operation
differs if the estimates of the parameters come from a pure Gibbs sampler (Σ, ω), or
from a Metropolis-within Gibbs step (Λ). By using the law of total probabilities, we
express the joint posterior, evaluated at Ψ∗, (Chib and Jeliazkov (2001) suggests to
choose a high density point in the support of the posterior, to assure the stability of the
estimate of the marginal likelihood), as the product of conditional distributions, which
in case of model M1 becomes (for convenience, we now suppress model conditioning
notation)

p (Ψ∗|y) = p (Σ∗|y) p (ω∗|Σ∗, y) p (Λ∗|Σ∗, ω∗, y) (17)

where p (Σ∗|y) is the marginal density ordinate of Σ, p (ω∗|Σ∗, y) is a reduced condi-
tional ordinate, and p (Λ∗|Σ∗, ω∗, y) is the full conditional density ordinate. In Ap-
pendix, we give a detailed description of how we apply the Chib estimator to evaluate
the posterior density ordinate, in our specific case.
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5 Estimation Results

For the seasonally adjusted AWH series we estimated the standard linear Gaussian
decomposition and the mixture model (1); the former is obtained by setting St =
0, t = 1, . . . , n in 1. The estimation results presented in this section are based on
a sample of 80000 draws from the Gibbs sampling scheme outlined in the previous
section, with a burn-in of 20000 iterations.

Our assessment of the convergence of the chain is based on the statistical properties
of the observed chain. Table 2 summarizes some aspects of the posterior distribution
of the parameters and presents the main convergence diagnostics. The acronim LinSA
refers to the linear Gaussian model; MixSA to the mixture model for the SA series. If
we let

VL = c0 + 2
l∑

j=1

wjcj , wj =
l − j

l + 1

denote the long run variance of a parameter sample path, where cj is the autocovariance
at lag j and l is the truncation parameter, persistence is defined as SL divided by the
variance (c0) (i.e., an estimate of the normalized spectral density at the zero frequency).
Moreover, if ψ(j) denotes the j-th sample of the GS scheme, after the burn-in period,
and ψ̄a denotes the average of the first na draws, ψ̄b is the average of the last nb draws
at the end of the convergence period, which are sufficiently remote to prevent any
overlap, the Geweke’s convergence statistic (Geweke, 1992, 2005) is

CG =
ψ̄a − ψ̄b√

VL,a/na + VL,b/nb

.

Figure 2 summarises aspects of the posterior distribution of the level, the cycle and
the irregular for the linear Gaussian model. The posterior distribution of variance of
the trend disturbances, σ2

η, and the weakly evolutive pattern of the estimated level
confirm that unit root and stationarity tests may provide little guidance regarding the
as to whether AWH are level stationary or difference stationary.

The plot reveals the presence of a number of observations which are highly influ-
ential for the estimates of the cycle and the irregular. On the contrary, the estimated
level is quite robust to the influence of those observations.

Modeling the irregular as a mixture of two Gaussian distributions has several ben-
efits. First and foremost, the cycle estimates, plotted in figure 3, are smoother and are
not affected by the outliers. The comparison of figure 3 with the estimated components
for the standard linear model (see 2) suggests that part of the variability affecting the
cycle estimates has been reallocated to the irregular component. This enables a clearer
description of the business cycle phases and improves the characterisation of the turn-
ing points. Secondly, the reliability of the cycle estimates increases, as the posterior
variance of the cycle estimate reduces. That the mixture model outperforms the Gaus-
sian linear model is confirmed by the comparison of the estimated marginal likelihoods
under the two models. The following table reports the Chib and Jeliazkov (2001) es-
timator of the marginal likelihood for the mixture model M1 and the Gaussian model
M2:
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Model log p (y|Ψ,Mk) log p (Ψk,Mk) log p̄ (Ψk|y,Mk) log m (y|Mk)

M1 1.77 9.45 19.42 -8.20
M2 137.50 8.19 21.36 124.44

Table 2: Posterior means, medians, variances and convergence diagnostics.
Mean Median Variance Persistence Geweke’s CG

LinSA MixSA LinSA MixSA LinSA MixSA LinSA MixSA LinSA MixSA
σ2

η 6.79e-07 3.92e-07 4.60e-07 3.07e-07 1.03 0.74 8696 79.96 -0.89 1.57

λc 0.04 0.04 0.04 0.032 0.69 0.69 43.81 37.56 -0.46 -0.85
ρ 0.73 0.76 0.73 0.76 0.038 0.03 56.17 38.23 -0.10 -.99
σ2

κ 1.08e-05 1.00e-05 1.06e-05 8.16e-06 0.13 0.11 24.52 18.95 1.63 1.59
σ2

ǫ0 1.44e-05 2.40e-06 1.44e-05 2.39e-06 0.086 0.20 1696 30.96 0.26 -1.01
σ2

ǫ1 1.61e-04 1.55e-04 0.26 8.68 -0.16
ω 0.08 0.08 0.02 15.38 -0.00

An interesting stylized fact emerges from the consideration of the estimated poste-
rior probabilities of being in a high volatility state, P (St = 1|y, Ψ), which are displayed
in figure 6. The Monte Carlo estimate of the posterior mean of ω is 0.08, i.e. about one
in ten observations is likely to be outlying. However, a closer inspection reveals that
the the outlying observations are clustered in certain months of the year. This is clear
from the bottom panel, which is the plot by month of the posterior probabilities. The
solid line connects the monthly averages, and the dotted line is drawn at the average
0.08. In particular, the outliers are clustered in the initial months of the year, namely
January (for which the average value of the posterior probability is 0.18), February,
April and December. The average probability is a mere 0.03 in June.

If the estimated p̂t = P (St = 1|y, ψ) are regressed on a constant and 11 seasonal
dummies, the test for the joint significance of the seasonal dummies takes the value
37.7 with a p-value of 8.9E-005. If the covariance matrix of the ordinary least squares
estimator is corrected for heteroscedasticity and autocorrelation (see Newey and West,
1987), the evidence is unchanged. This suggests that the outlying observations have a
marked periodic pattern.

6 Modeling Seasonality

The analysis of the seasonally adjusted data allows us to conclude that the Gaussian
mixture model provides a useful representation of the data, allowing for the robust
estimation of the cyclical component. Another important piece of evidence is that the
outlying observations are not allocated randomly throughout the sample, but have a
distinctive seasonal pattern. This may be the consequence of seasonal under and/or
overadjustment. In this section we further investigate whether this is indeed the case,
by estimating the same mixture model on the unadjusted series, yt, t = 1, . . . , n. Natu-
rally, we have to extend the model by considering a seasonal component and a calendar
component.
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The model for the seasonal time series is specified as follows:

yt = ySA

t + γt + β1Et + β2Lt, (18)

where ySA

t was given above in 1. The seasonal component, γt, is modeled as follows:

γt = z′tχt, χt = χt−1 + ζt (19)

where z′t = [D1t, . . . , Dst], with Djt = 1 in season j and 0 otherwise. The vector χt

contains the effects associated to each season and changes over time according to a
multivariate random walk; ζt is a zero-mean multivariate white noise with covariance
matrix which enforces the constraint i′sVar(ζt) = 0. This formulation is known in the
literature as the Harrison and Stevens (1976) specification. The distinguishing feature
of this approach is that it is formulated directly in terms of the effect of a particular
season, thereby enhancing flexibility needed to model seasonal heteroscedasticity (that
is when there are seasons which are ‘more variables’ than others, see Proietti, 1998).
The appropriate action for this model to deal with heteroscedasticity is to define the
covariance matrix of the seasonal innovations as follows:

Var(ζt) = Ω = D −
1

i′sDis
Disi

′

sD (20)

where D is a diagonal matrix, D = diag{dj , j = 1, . . . , 12}. Our preferred specification
has the dj constant across groups of seasons. In particular, it envisages two groups
of seasons, made up respectively by January, February and April, and the remaining
months, characterized by the two parameters, da and db, which are constant across the
months belonging to the same group.

The regression component, β1Et + β2Lt, captures calendar effects: Et and Lt are
deterministic dummy variables taking value 1 if respectively Easter and Labor day fall
within the observations week (that containing the 12th of each month).

6.1 Bayesian Estimation

Estimation is carried out in the same fashion as for the nonseasonal model in section
(3). The unobserved states collected in the vector x now include also the seasonal
component, i.e., x = {µt, ψt, γt, t = 0, . . . , n}. The vector of unknown parameters
Ψ = (σ2

η, σ
2
κ, σ2

ǫ0, σ
2
ǫ1, λc, ρ, ω, β1, β2, da, db), is also updated to keep into account the

block of exogenous regressors β and the block of seasonal parameters d, introduced in
the previous section.
To make Bayesian inference on this seasonal model we need to specify the prior distri-
butions on these new parameters. To the extent of being noninformative, we specify
the prior distribution for the β’s as the Jeffrey’s reference prior for location parameters
p (β1, β2) ∝ 1, and we specify a Uniform distribution over a reasonable support for
both the seasonal parameters p (da, db) ∝ U(0,10] × U(0,10].
Now one iteration of the Gibbs sampling is completed by adding the following two steps,
just before updating the mixing probabilities in the previous version of the algorithm

12



(v) Simulate β(i+1) =
(
β

(i+1)
1 , β

(i+1)
2

)
from the complete full conditional distribution

p
(
β|Λ(i+1),Σ(i+1), ω(i), x, S(i+1), y

)
∝ N2

(
β|δ, τ2

)
.

The posterior location and scale parameters are, respectively

τ−2 =
(
F ′F

)
, δ =

(
F ′F

)
−1

F ′ỹ

where F is a (n × 2)−matrix of observations of the two regressors E1 and L1,
and ỹt = yt − ψt − µt − γt represent the difference between the original series yt

and the unobserved components µt, ψt and γt.

(vi) Simulate (da, db)
(i+1) from the complete full conditional distribution

p
(
da, db|β

(i+1), Λ(i+1), Σ(i+1), ω(i), x, S(i+1), y
)
∝

1

|Ω|
exp

{
−

1

2

n∑

t=1

ζ ′t Ω−1 ζt

}

where ζt, t = 1, 2, . . . , n and Ω have been defined in equation (19) and (20) respec-
tively.

The form of the full conditional distribution of the seasonal parameters (da, db) is not
known due to the way the two parameters enters the likelihood, through the relation
specified in equation (20). To simulate from such a distribution we use a Gaussian
multiplicative random walk Metropolis-Hastings algorithm where proposed values are
generated using the relation

[
log d̃a

log d̃b

]
=

[
log d

(i−1)
a

log d
(i−1)
b

]
+

[
ξa

ξb

]
, (21)

where
(
d

(i−1)
a , d

(i−1)
b

)
are the values sampled at the previous iteration of the algorithm,

while
(
d̃a, d̃b

)
are the proposed values, and the two innovations terms (ζa, ζb) are

distributed accordingly to
[

ξa

ξb

]
∼ N

([
0
0

]
,

[
ν2

a 0
0 ν2

b

])
.

The two variance parameters
(
ν2

a , ν2
b

)
are calibrated in order to obtain a acceptance

ratio equal to about 50 − 60%. The acceptance probability of this Metropolis step is
equal to

α
(
d̃, d(i−1)

)
= min

{
1,

|Ω̃|

|Ω|
exp

[
−

1

2

n∑

t=1

ζ ′t Ω̃−1 ζt +
1

2

n∑

t=1

ζ ′t

(
Ω(i−1)

)
−1

ζt

]
J

}

where Ω̃ = Ω
(
d̃a, d̃b

)
, represent the proposed value of the variance of ζt and Ω(i−1) =

Ω
(
d̃

(i−1)
a , d̃

(i−1)
b

)
represents the previous value of the same quantity, while J =

∣∣∣∣
d̃a

d
(i−1)
a

d̃b

d
(i−1)
b

∣∣∣∣,
is the inverse of the jacobian of the transformation defined in equation (21).
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6.2 Estimation Results

The estimation results presented in this section are based on a sample of 50000 draws
from the Gibbs sampling scheme above, with a burn-in of 50000 iterations. The draws
and the nonparametric estimates of the posterior densities are reproduced in figure 5.
Table 3 reports the posterior means, medians, variances and convergence diagnostics
of the parameters in the vector Ψ. It is remarkable that the estimated proportion of
outlying observation is much reduced (the posterior mean of the mixture parameter ω
is a mere 0.01). Actually, as it is shown in the first panel of figure 6, which displays
the posterior probabilities of the high variance component, P (St = 1|y, Ψ), there is
one single observation belonging to the high volatility state with posterior probability
greater than 0.5. Morever, the periodic feature has disappeared.

The second panel of the figure, which plots the estimated seasonal component,
E(γt|y), reveals that the seasonal pattern is highly evolutive over time. Moreover, the
seasonal component absorbs a relevant part of the volatility that the model fitted to
the SA series ascribed to the irregular component.

The cycle estimated from the model (bottom panel of figure 6) does not differ from
that of the estimated using the MixSA model.

Table 3: Posterior means, medians, variances and convergence diagnostics.
Mean Median Variance Persistence Geweke’s CG

σ2
η 4.67e-007 3.38e-007 0.84 83.07 2.86

λc 0.047 0.041 0.10 23.42 0.87
ρ 0.74 0.74 0.03 28.01 -2.04
σ2

κ 1.03e-005 1.0e-05 0.10 38.05 -1.49
σ2

ǫ0 5.1e-07 4.8e-07 0.30 43.12 1.41
σ2

ǫ1 6637e-07 4886e-07 1.00 3.95 -0.23
ω 0.01 0.01 0.70 24.25 0.70
da 6.8e-06 6.8e-06 0.08 71.13 -1.89
db 1.1e-05 1.1e-05 0.08 82.49 -1.48
β1 0.01 0.01 0.08 11.17 -2.53
β2 0.01 0.01 0.13 1.30 -0.57

7 Conclusions

For the U.S. seasonal adjusted average weekly hours worked time series we have pro-
posed an unobserved component which decomposes the series into a local level compo-
nent, an AR(2) cycle and an irregular term represented by a Gaussian scale mixture
model. The model was fitted using Monte Carlo Markov chain methods and proved to
be a significant improvement over the linear model with no mixture component, in the
light of the comparison of the marginal likelihood of the two models. The latter was
computed using the Chib and Jeliazkov (2001) approach. The average level of outlier
contamination was estimated to be equal to 8%.

14



The mixture model allows to robustify the estimates of the cyclical components,
which can already be considered the end result of this paper. However, we documented
that the pattern of the observations belonging to the high volatility state has a marked
periodic pattern, which may be the consequence of under- or over-adjustment. As a
matter of fact, if we model the unadjusted time series by a straightforward extension
of the model, contemplating the presence of a time evolutive seasonal component,
along with a regression component capturing the role of moving festivals, the level of
outlier contamination undergoes a dramatic reduction (only one observation could be
categorized as outlying).
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A Model Selection

In this appendix we discuss in detail how we implement the Chib and Jeliazkov (2001)
estimator of the marginal likelihood for the Gaussian mixture model defined in section
1. We evaluate each of the components of the posterior distribution of the parameters
in equation 17 by means of the following steps.

(i) The draws from the full MCMC run described in section 3.3, are used to estimate
the marginal density ordinate of the block parameters Σ, by

p (Σ∗|y) =

∫ ∏

J

IG
(
σ2

J |αJ , βJ

)
p (ω, Λ, x, S|y) dω dΛ dx dS

≃
1

M

M∑

m=1

∏

J

IG
(
σ2

J |α
(m)
J , β

(m)
J

)
, J = {ǫ0, ǫ1, η, κ}

where
{

α
(m)
J , β

(m)
J

}M

m=1
,∀J are the parameters of the complete full conditional

distributions of the MCMC sampler described in section 3.3 point (iv), computed
at the generated values.

(ii) Next, we fix the parameter Σ to Σ∗, and we obtain new draws
{
ω(g),Λ(g), x(g), S(g)

}G

g=1
,

from a reduced MCMC with densities

p (ω|y, x,Λ, Σ∗, S) , p (Λ|y, x,Σ∗, ω, S) , p (x|y, ω, Σ∗, Λ, S) , p (S|y, x, ω,Σ∗, Λ)

which are used to estimate the reduced posterior ordinate of the parameter ω

p (ω∗|Σ∗, y) =

∫
Be (ω|g0 + nǫ0 , h0 + nǫ1) p (Λ, x, S|y, Σ∗) dΛ dx dx

≃
1

M

M∑

m=1

Be
(
ω|g0 + n

(g)
0 , h0 + n

(g)
1

)
,

where n
(g)
ǫ0 and n

(g)
ǫ1 , are the number of observations allocated to the two compo-

nents of the mixture by the new reduced MCMC.

(iii) Finally, the full conditional density ordinate

p (Λ∗|Σ∗, ω∗, y) =

∫
p (Λ∗|y, x,Σ∗, ω∗, S) p (x, S|y, Σ∗, ω∗) dx dS

can not be estimated by Rao-Blackwellization, as in the previous cases, because
the normalizing constant of the full conditional distribution p (Λ∗|y, x,Σ∗, ω∗, S)
is not known. In particular, as described in section 3.3, we use two Metropolis-
Hastings within Gibbs steps to generate random variates from the full conditionals
distributions in equation 10 and 11. Starting from the reversibility condition of
the M-H sub-kernel, Chib and Jeliazkov (2001) prove that the reduced condi-
tional ordinate of a parameter, for which the normalizing constant is not know,
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can be expressed as the ratio of two expectations and estimated by MC aver-
ages of the MCMC output, in a similar way as we did in the previous steps.
In what follows, we adapt the general formula of Chib and Jeliazkov (2001) to
our problem of evaluating the normalizing constant of the reduced conditional
ordinate p (ρ∗, λ∗

c |Σ
∗, ω∗, y). Let α (ρ, ρ∗|y, λc, ω

∗, Σ∗, S) denotes the acceptance
probability of the M-H algorithm implemented within the Gibbs sampling to
sample from the full conditional distribution of ρ, (see equation 10)1, and let
q (ρ, ρ∗) the proposal distribution for the transition form ρ to the new value ρ∗2,
then p (ρ∗, λ∗

c |Σ
∗, ω∗, y) can be expressed as the ratio of two expectations, in the

following way

p (ρ∗|Σ∗, ω∗, y) =
E1 [α (ρ, ρ∗|y, λc, ω

∗, Σ∗, S) q (ρ, ρ∗)]

E2 [α (ρ∗, ρ|y, λc, ω∗, Σ∗, S)]
, (22)

where the expectation at the numerator E1 is taken with respect to the density
p (ρ, λc, x, S|y, ω∗, Σ∗), while the expectation at the denominator E2 is taken with
respect to the density p (λc, x, S|y, ρ∗, Σ∗, ω∗) q (ρ∗, ρ|y, λc, Σ

∗, ω∗, S). Each of the
integrals in equation 22 can be estimated by the output of the MCMC algorithm.

1. To estimate the numerator, fix Σ and ω to the maximum a posteriori (Σ∗, ω∗),
run a reduced MCMC with densities

p (Λ|y, x,Σ∗, ω∗, S) , p (x|y, ω∗, Σ∗,Λ, S) , p (S|y, x, ω∗, Σ∗, Λ) ,

and take the draws
{
Λ(l), x(l), S(l)

}L

l=1
to average the quantity α (ρ, ρ∗|y, λc, ω

∗, Σ∗, S) q (ρ, ρ∗),
i.e.

Ê1 [α (ρ, ρ∗|y, λc, ω
∗, Σ∗, S) q (ρ, ρ∗)]

≃
1

L

L∑

l=1

α
(
ρ∗, ρ|y, λ(l)

c , ω∗, Σ∗, S(l)
)

q
(
ρ(l), ρ∗

)
.

2. For the denominator of equation 22, because the expectation is conditioned
on ρ∗, we run an additional reduced MCMC algorithm with ρ fixed at ρ∗,
and full conditionals

p (λc|y, x,Σ∗, ω∗, ρ∗, S) , p (x|y, ω∗, Σ∗, λc, ρ
∗, S) , p (S|y, x, ω∗, Σ∗, ρ∗, λc) .

At each iteration of this reduced sampler, a value of ρ is drawn from the pro-
posal distribution of the Metropolis step q (ρ∗, ρ), conditional on the previous

draws of
(
λ

(h)
c , x(h), S(h)

)
from the reduced sampler, i.e.

ρ(h) ∼ q (ρ∗, ρ)

1The acceptance probability of the M-H step, α (ρ, ρ∗|y, λc, ω
∗,Σ∗, S), depends on the parameters

(λc, ω, Σ) and on the latent vector S, through the likelihood ratio.
2The proposal distribution is a Beta distribution with mean equal to the previous value of the sub-chain,

as discussed in section 3.3.
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leading to the sample
{

λ
(h)
c , x(h), S(h), ρ(h)

}H

h=1
from the distribution

p (λc, x, S|y, ρ∗, Σ∗, ω∗) q (ρ∗, ρ) .

The denominator of equation 22 is then estimated by

Ê2 [α (ρ∗, ρ|y, λc, ω
∗, Σ∗, S)] =

1

H

H∑

h=1

α
(
ρ∗, ρ(h)|y, λ(h)

c , ω∗, Σ∗, S(h)
)

,

and this allows us to estimate the ordinate p (ρ∗|y, Σ∗, ω∗)

p̂ (ρ∗|y, Σ∗, ω∗) =
Ê1 [α (ρ, ρ∗|y, λc, ω

∗, Σ∗, S) q (ρ, ρ∗)]

Ê2 [α (ρ∗, ρ|y, λc, ω∗,Σ∗, S)]
(23)

Exactly in the same way as we did for the parameter ρ, we can now estimate the
ordinate for λc, using the following relation

p̂ (λ∗

c |Σ
∗, ω∗, ρ∗, y) =

Ê1 [α (λc, λ
∗

c |y, ρ∗, ω∗, Σ∗, S) q (λc, λ
∗

c)]

Ê2 [α (λ∗

c , λc|y, ρ∗, ω∗,Σ∗, S)]
, (24)

where the expectation in the numerator of equation 24 is taken with respect to
p (λc, x, S|y, ρ∗,Σ∗, ω∗) and it is estimated by averaging α (λc, λ

∗

c |y, ρ∗, ω∗, Σ∗, S) q (λc, λ
∗

c)
using the same draws form the reduced MCMC described in the previous point
2. The expectation in the denominator of equation 24 is taken with respect to
the distribution p (x, S|y, ρ∗,Σ∗, ω∗, λ∗

c) q (λ∗

c , λc), and it is estimated by averaging
α (λ∗

c , λc|y, ρ∗, ω∗, Σ∗, S) using the output of a reduced MCMC with densities

p (x|y, ω∗, Σ∗, λ∗

c , ρ
∗, S) , p (S|y, x, ω∗, Σ∗, λ∗

c , ρ
∗)

with the additional simulation, at each step, of a random variates from the pro-
posal distribution q (λ∗

c , λc) conditional to the generated value of S.
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Figure 1: Average weekly hours in manufacturing: seasonally adjusted series (logarithms)
and unadjusted series. The shaded areas flag recessionary periods, according to the NBER
chronology.
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Figure 2: Seasonally adjusted AWH, linear Gaussian model: estimates of unobserved com-
ponents.
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Figure 3: Seasonally adjusted AWH, model with normal mixture irregular: estimates of
unobserved components.
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Figure 4: Seasonally adjusted AWH, model with normal mixture irregular: posterior prob-
abilities of high variance component, P (St = 1|y, Ψ) (top panel), and monthplot.
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Figure 5: Unadjusted AWH series model: MCMC draws and posterior densities of the
parameters.
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Figure 6: Estimated cycle (posterior mean of ψt) and seasonal component (posterior mean
of γt): posterior probabilities of high variance component, P (St = 1|y, Ψ) (top panel), and
monthplot.
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