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Abstract

We argue that cooperation can become more fragile if (i) there are sufficiently

many intermediate levels of cooperation and (ii) players cannot respond with large

punishments to small deviations. Such disproportional punishments can be perceived

as unreasonable or players can face external constraints—political checks, negative

publicity, etc. Specifically, we show that regardless of how patient the players are, any

prisoner’s dilemma game can be extended with intermediate levels of cooperation in

such a way that full conflict is the only equilibrium outcome of the extended game.
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1 Introduction

In his seminal book, “The Strategy of Conflict,” Thomas Schelling spoke of the difficulty

of committing to a big retaliation in response to a small provocation. He was suggesting

that in the face of this difficulty the possibility to wage a limited war, i.e. the availability

of intermediate actions, might prevent the conflict from escalating: “if it [the threat] can be

decomposed into a series of consecutive smaller threats, there is an opportunity to demon-

strate on the first few transgressions that the threat will be carried out on the rest.” More

specifically, in the context of a repeated prisoner’s dilemma situation, Schelling suggested

that the presence of intermediate actions might actually allow for deescalation of conflict

(see pp. 45–46). In this paper we argue that such intuition does not necessarily hold. In the

absence of credible commitment to a full-out retaliation, the conflict, following a sequence

of small deviations, can escalate fully. Specifically, we show that for any prisoner’s dilemma

game and any discount factor the cooperation can break down if there is a sufficient number

of suitably chosen intermediate actions.

In other words, the very addition of intermediate actions coupled with a restriction of

punishments to “reasonable” levels can break down the cooperation which was previously

feasible. Thus, contrary to Schelling’s (1980) intuition, intermediate actions can make co-

operation more fragile, for example in situations where only symmetric punishments are

feasible due to political constraints.

The underlying mechanism, that we study in detail further, can be demonstrated using

the following prisoners’ dilemma game as an example:

C D

C 0, 0 −5, 2

D 2,−5 −3,−3

The cooperative outcome (C,C) can be supported as an equilibrium in every round of a

repeated game as long as 2− 3δ/(1− δ) ≤ 0 or δ ≥ 2/5.
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Now, suppose that the world has become more complex and an intermediate level of

cooperation (or conflict) is available:

C D′ D

C 0, 0 −2, 1 −5, 2

D′ 1,−2 −1,−1 −4, 1

D 2,−5 1,−4 −3,−3

Further, suppose that the players cannot punish deviations from C to D′ by playing D.

For example, if the Unites States were to respond with a large scale military engagement

(D) following a single act of cyber attack against the US (D′), then the military action

would need an authorization from the US Congress, which might consider such punishment

excessive or unreasonable. Consequently, if a player considers a deviation to D′, she can

reasonably expect to be punished with the same action D′ rather than with D. In this case,

the deviation from (C,C) is profitable if 1 − δ/(1 − δ) ≥ 0 or δ ≤ 1/2. If we suppose that

(D′, D′) is played as a steady state, then a deviation to D is also profitable as long as δ ≤ 1/2.

Thus, for any δ ∈ (2/5, 1/2) cooperation can be sustained as an equilibrium outcome in the

smaller game (or in a game with strong punishments) but it is not sustainable in the extended

game when punishments are limited. Moreover, full conflict is the only equilibrium outcome

of the extended game.

Arguably, the world is substantially more interconnected today than it used to be decades

or centuries ago. Nowadays, countries can engage in cooperation or conflict on various

levels: from foreign direct investments to financial sanctions, from coordinated development

of global IT networks to cyber warfare, from technological cooperation to espionage, from

joint military exercises to locating strategic military installations closer to their opponents.

Following decades of globalization and mutual integration our world is not necessarily a safer

place to live in. In January 2018, the Bulletin of the Atomic Scientists moved the Doomsday

Clock to two minutes before midnight. This is the clock’s lowest value, matching that
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of 1953. The increasing threats of nuclear weapons and climate change and the inability

of the world leaders to de-escalate the situation were stated as the reason. Yet at the

time when mutual cooperation is paramount, major international powers keep provoking

one another. The United States engage in cyber espionage and allegedly cyber warfare

(e.g. Stuxnet). The Russian Federation allegedly does the same. At the moment of this

writing, both countries are playing in a proxy war in Syria. Donald Trump in his telephone

conversation with Vladimir Putin referred to the New START (Strategic Arms Reduction

Treaty) as “one of several bad deals negotiated by the Obama administration.” In July

2017, the first Chinese aircraft carrier was shown publicly in Hong Kong, at least one more

carrier has been commissioned and will be built in the near future. Earlier in 2017, the

Japanese prime minister, Shinzo Abe, expressed his intent to revise the Article 9 of the

Japanese constitution—the rule restricting Japan from owning military forces with offensive

potential—by 2020. In what might turn out to be another push towards Abe’s cause, North

Korea launched a ballistic missile that flew over Japan, a first since 1998. Should we be

worried? Are such tensions and conflicts more likely to escalate in the 21st century than

they were back in the 20th century?

International relationships are rich in detail and we do not claim that our theoretical

explorations are directly applicable to the aforementioned conflicts. However, we hope to

contribute to the understanding of one specific aspect of international relationships, or other

conflicting situation. Namely, does the emergence of intermediate levels of conflict, cyber

warfare being one such example, make the uncooperative outcomes in prisoner’s dilemma

type games more likely?

To this end, we consider a general prisoner’s dilemma game with an arbitrary number

of intermediate levels of deviation (or cooperation). We further assume that grim strategies

cannot be used credibly, i.e. a player cannot respond with a punishment that is stronger than

the original deviation. For instance, if we consider the case of international relationships,

4



then the Doctrine of Proportionality is one of the fundamental principles of international law.

“According to the doctrine, a state is legally allowed to unilaterally defend itself and right

a wrong provided the response is proportional to the injury suffered”.1 Even in cases when

international law is not directly applicable, countries follow the principle of proportionality.

For example, such tit-for-tat strategies are often used when diplomats get expelled. Given

our assumption on proportional punishments, we show that no matter how patient the

players are, there are intermediate levels of deviation such that no cooperative equilibria

exist. Whether emerging intermediate actions in real life games are of such nature is a

different question, but we show that the risk is present.

The literature on prisoner’s dilemma with intermediate actions is relatively scarce. Snidal

(1985) shows that new strategic difficulties arise in such games, e.g., having multiple Pareto-

efficient outcomes instead of just one. He does not, however, speak of the possibility of

conflict escalation. In an independent work, Langlois (1989) explicitly allows for conflict

escalation. He considers a repeated prisoner’s dilemma game with a continuum of interme-

diate actions and with linear payoffs, and he shows that there exists a Markov equilibrium

in linear strategies that can sustain full cooperation. In comparison with our work, Langlois

does not impose any restrictions on the degree of punishment, whereas such restrictions are

the main focus of our discussion.

In a later work, Friedman and Samuelson (1990) analyze repeated games with continu-

ous payoffs, thus similar to Langlois (1989), but the authors restrict the punishment to be

proportional to the deviation. If the deviation approaches zero, so does the punishment.

Friedman and Samuelson consider reference dependent strategies, and show that that if the

discount factor is large enough, then with these strategies it is possible to construct a deesca-

lating equilibrium despite having limited punishment. In contrast, we consider the limiting

behaviour of discrete games and simpler tit-for-tat strategies. We arrive at the opposite

1See https://www.cfr.org/backgrounder/israel-and-doctrine-proportionality, accessed on 9th of August

2018.
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conclusion: for every value of the discount factor there are games with sufficiently many in-

termediate actions where escalation cannot be precluded. The difference between our result

and that of Friedman and Samuelson (1990) arises due to different interpretations of what a

small punishment is: a tit-for-tat action in our case and a punishment proportional to gains

in payoffs in their case. We discuss this crucial difference in more detail at the end of the

paper. In their later work, Friedman and Samuelson (1994) showed that the Folk Theorem of

Fudenberg and Maskin (1986) can be extended to games with continuous reaction functions.

A paper with a setup most similar to ours is McGinnis (1991). McGinnis models in-

termediate levels of cooperation as a sequence of overlapping prisoner’s dilemma games.

Importantly, he argues for a specific log-linear payoff function as most suitable for the study

of international conflict. Given his specific payoff function, he shows that the equilibrium

will likely be sustained at one of the intermediate levels of cooperation and not at full co-

operation. In contrast with McGinnis, we study a general payoff structure and show that a

more extreme outcome—namely, no cooperation—is always a possibility.

Lastly, there is a group of papers that study prisoner’s dilemma games with intermediate

actions in an evolutionary setting: To (1988), Frean (1996), Wahl and Nowak (1999), Darwen

and Yao (2002). To (1988) considers a fixed population of strategies and shows that the

strategies where the punishment does not exceed the deviation are most profitable. In our

paper we specifically focus on such strategies, and To’s findings corroborate our setup. Frean

(1996) assumes a payoff structure that effectively corresponds to a zero discount rate and,

not surprisingly, he finds that his strategies evolve towards full cooperation. Both Wahl and

Nowak (1999) and Darwen and Yao (2002) arrive at the result that full cooperation is less

evolutionary likely when intermediate actions are present. None of these papers documents

escalating dynamics, and all these papers assume either linear or restricted quadratic payoffs.

In contrast, we study whether there are payoff structures, not necessarily linear, that can

lead to escalating dynamics.
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2 General Analysis and Discussion

In this section we present and discuss our general result. Consider an arbitrary prisoners’

dilemma game:

Γ =

A\B C D

C R,R S, T

D T, S P, P

where T > R > P > S and 2R > T + S.

If this game is played once, then the only Nash equilibrium is (D,D). If we consider a

repeated version of this game, then (C,C) can be sustained in an equilibrium if and only if

the discount factor δ ≥ T−R
T−P

.

Game Γ has two levels of cooperation: full cooperation and full defection. Broadly speak-

ing, we want to ask the following question: what happens with the cooperative equilibrium

if we add intermediate levels of conflict to game Γ? To make this question precise, we need

to define what we mean by a game with intermediate levels of conflict or cooperation; we

also need to define the class of strategies that we plan to study.

For any N > 2 we define class GN of games with N levels of cooperation as follows. Each

element ΓN ∈ GN is a game between two players, A and B, where each player can choose an

action a ∈ {1, . . . , N}. Choosing a = 1 means full cooperation, choosing a = N means full

defection. For each action choice (a, b) the payoff for player A is uA(a, b) and for player B it

is uB(a, b). We consider symmetric games, namely uA(a, b) = uB(b, a) = u(a, b). We further

impose that for any a, b, and c such that 1 ≤ a < b ≤ N and 1 ≤ c ≤ N the following

restrictions hold for the payoff matrix:

1. u(1, 1) = R, u(N, 1) = T , u(1, N) = S, u(N,N) = P ,

2. u(b, c) > u(a, c), u(c, b) < u(c, a),

3. u(a, a) > u(b, b), and 2u(a, a) > u(a, b) + u(b, a).
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Condition 1 (consistency) means that full cooperation and full conflict lead to the same

outcomes as in the original game Γ. Condition 2 (monotonicity) guarantees that intermediate

actions generate intermediate payoffs. Finally, condition 3 (prisoners’ dilemma) means that

every 2 × 2 principal submatrix of the payoff matrix can itself be viewed as a prisoners’

dilemma game. We impose Condition 3 to avoid local changes in the strategic nature of the

game when intermediate actions are added. For example, this condition helps us to exclude

games where local escalation is mutually profitable. Note that the games in a given GN

are characterised by the same set of players and actions but differ in their payoff functions,

which, however, must be compatible with conditions 1–3.

We consider an infinitely repeated game, where each stage game is some ΓN ∈ GN . We

assume that both players discount their payoffs with the same discount factor δ.

Finally, for a given N we limit our attention to the class of strategies ΣN , where each

element σ ∈ ΣN is defined as follows:

1. start play with some action a0 ∈ {1, . . . , N − 1},

2. in any round t play at = max{at−1, bt−1}, where at−1, bt−1 are actions played in the

previous round.2

In other words, in ΣN the punishment never exceeds the deviation. We therefore call such

strategies Markovian strategies with limited punishment.

Note that elements in ΣN differ only in their starting points, namely action a0. Further,

as every ΓN ∈ GN has the same set of players and actions, ΣN is well-defined for any ΓN ∈ GN .

Any original game Γ has an equilibrium in Σ2 strategies if δ is large enough. (We label

C as 1 and D as 2.) This is the equilibrium where each player starts with a = 1, and (1, 1)

2This strategy space is limited, because it does not support de-escalating strategies. We could have defined

the set of possible actions after imposing a restriction on “reasonable” punishments as at ≤ max{at−1, bt−1}.

However, with our choice of intermediate payoffs we still would not have been able to obtain a symmetric

equilibrium that leads to any outcome other than full conflict.
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remains a steady state from there on. However, as the number of actions increases, strategies

with limited punishment might fail to deliver an equilibrium in ΓN . This is formally captured

by the following proposition.

Proposition 1. For any δ < 1 there is N large enough and a game ΓN ∈ GN such that no

pair of strategies (σ, σ), with σ ∈ ΣN , constitutes an equilibrium in ΓN .

Proof. See Appendix.

Our proof is constructive. We explicitly build games ΓN using a discretization of a

suitably chosen continuous payoff function. Our construction is by no means unique and

many other examples that lead to full conflict can be made. The essential requirement for

any such construction is that there are sufficient incentives for deviation around cooperative

outcomes, while the payoffs remain sufficiently bounded so as to satisfy conditions 1-3. Not

every game with a large number of intermediate actions leads to a break-down of cooperation.

For example, if there is a big “gap” in the payoffs somewhere along the main diagonal of the

game, the conflict escalation naturally stops at that gap, provided that the discount factor is

sufficiently large. Or, if the game is extended “uniformly”, i.e. with payoffs defined linearly

along the main diagonal, linearly above it (triangle R−S−P ), and linearly below it (triangle

R − T − P ), then all the incentives of the original game are preserved, the critical value of

the discount factor remains the same, and the additional intermediate actions do not result

in escalation.3 Nonetheless, introduction of intermediate actions typically reduces the scope

for cooperation and requires players to be more patient, as our example in the introduction

suggests.

If no equilibrium in our class of strategies exists, then the only steady-state symmetric

equilibrium that remains is the full conflict equilibrium (N,N). We do not focus on the

precise mechanics of escalation when the players find themselves in a cooperative outcome

that cannot be supported as an equilibrium. It is conceivable that similarly to institutional

3It is straightforward to show that this “uniform” extension belongs to class GN .
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restrictions on large punishments there might be institutional restrictions on large deviations.

In such cases the conflict would escalate in a sequence of small deviations and gradually

approach the most non-cooperative outcome.

Our result is robust to the assumption that punishment must be symmetric. Any mod-

erate degree of asymmetry, in a sense that a deviation to action a can be punished by at

most action a+k, where k is a fixed number, still leads to the same conclusion, but probably

requires a higher N . It is critical, however, that the loss in the payoff from the strongest

feasible punishment is not too high. This can be guaranteed by a construction algorithm

similar to the one we use in our proof as long as k does not depend on N .

Our finding contrasts to that in Schelling (1980), who argued that intermediate levels of

conflict and punishment make cooperation more stable. His logic was based on the idea that

small threats are more credible and therefore act a sufficient deterrence device. Our analysis

suggests that, although being credible, these small punishments might not be sufficiently

grim, which results in step-by-step escalation of conflict.

The relation between our paper and Friedman and Samuelson (1990) is of particular

interest. Friedman and Samuelson show that cooperative outcomes can be achieved in games

with continuous strategies, where small deviations are met with small punishments. We

consider similar strategy profiles but we focus on discrete rather than continuous games,

and we show that in discrete games cooperation can break down. Let us elaborate on these

seemingly contradictory conclusions.

The crucial difference between our papers lies in how we define “small punishments”. In

Friedman and Samuelson (1990), a punishment is considered “small” if it is proportional

to the gains of a deviator, while in our case a punishment is considered “small” if it is

proportional to the deviation distance in the action space. If we were to introduce Friedman

and Samuelson’s concept into our discrete games, then punishments could be strong enough

to prevent any escalation. In particular, our Proposition 1 would not hold. Similarly, if
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our concept of small punishments was introduced into Friedman and Samuelson, then full

escalation might happen for some choices of the payoff function.4 Thus, our concept of a

small, proportional punishment makes our results differ both from the results found in the

usual repeated games literature and from those by Friedman and Samuelson.

Appendix

Proof of Proposition 1. We prove the proposition as follows. First, we choose a continuous

payoff function such that any uniform discretization of this function satisfies conditions 1,

2, and 3 (consistency, monotonicity, and prisoners’ dilemma). Second, we show that for any

δ < 1 there is a discretization that is sufficiently fine so that the corresponding game does

not have an equilibrium in ΣN .

Choose K to be the smallest integer such that

K > max

{

T −R

P − S
,

T −R

T − 2R + P
, 1

}

+ 1.

Note that K ≥ 3. For a ∈ {1, . . . , N} and b ∈ {1, . . . , N} let

u(a, b) = f

(

a− 1

N − 1
,
b− 1

N − 1

)

, (1)

where

f(x, y) =











(T −R)(x− y)1−1/K +R− (R− P )y if x ≥ y,

(S − P )(y − x)1/K +R− (R− P )y if x < y,
(2)

is a continuous function defined on [0, 1]× [0, 1]. Note that K and f do not depend on N .

We verify conditions 1, 2, and 3 now. We have

u(1, 1) = f(0, 0) = R, u(N, 1) = f(1, 0) = T,

u(1, N) = f(0, 1) = S, u(N,N) = f(1, 1) = P.

4Our payoff function (2) is one such example. Note that it is not Lipschitz-continuous along the main

diagonal of the action space and therefore violates the conditions of Theorem 1 in Friedman and Samuelson

(1990).
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So, Condition 1 is satisfied. Next, we have

∂

∂x
f(x, y) =











K − 1

K
(T −R)(x− y)−1/K > 0 if x > y,

1

K
(P − S)(y − x)1/K−1 > 0 if x < y,

∂

∂y
f(x, y) =











−
K − 1

K
(T −R)(x− y)−1/K − (R− P ) < 0 if x > y,

−
1

K
(P − S)(y − x)1/K−1 − (R− P ) < 0 if x < y.

Therefore f(x, y) is strictly increasing in x and strictly decreasing in y. Consequently, Con-

dition 2 is satisfied.

Note that

∂

∂x
f(x, x) = −(R− P ) < 0,

hence f is strictly decreasing along its main diagonal and the first part of Condition 3 is

satisfied. The second part of the condition requires that 2u(a, a) > u(a, b) + u(b, a) for any

integer a, b such that 1 ≤ a < b ≤ N . Using our definition of u and rearranging terms, we

obtain

(R− P )
b− a

N − 1
− (T −R)

(

b− a

N − 1

)1−1/K

+ (P − S)

(

b− a

N − 1

)1/K

> 0

or, equivalently,

(R− P )

(

b− a

N − 1

)1−1/K

− (T −R)

(

b− a

N − 1

)1−2/K

+ (P − S) > 0. (3)

Let

g(φ) = (R− P )φ1−1/K − (T −R)φ1−2/K + (P − S).

Then to show that (3) holds for any integer a, b such that 1 ≤ a < b ≤ N it suffices to show

that g(φ) > 0 for all φ ∈ [0, 1].

Given that K ≥ 3, we have that g(φ) is continuous and bounded on [0, 1]. Hence, we only

need to check the sign of g at its boundary and inflection points. We have g(0) = P −S > 0

and g(1) = 2R− (T + S) > 0 (convexity of the original game).
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Solving g′(φ) = 0 we obtain that g has a unique inflection point on (0,∞) given by

φ0 =

(

T −R

R− P

K − 2

K − 1

)K

.

Suppose that T−R
R−P

> 1. We have required that K > T−R
T−2R+P

+1. From the first inequality

if follows that T − 2R + P > 0, and therefore the second inequality yields K−2

K−1
> R−P

T−R
.

Consequently, φ0 > 1. There are thus no inflection points on [0, 1], and so g(φ) > 0 for all

φ ∈ [0, 1].

Suppose that T−R
R−P

≤ 1. Then φ0 < 1. Evaluating g at φ0 and rearranging, we get

g(φ0) = (P − S)−
T −R

K − 1
φ
1−2/K
0 > (P − S)−

T −R

K − 1
.

We have required that K > T−R
P−S

+1. It immediately follows that g(φ0) > 0. So, g is strictly

positive at its boundary points as well as at its unique interior inflection point. Hence,

g(φ) > 0 for all φ ∈ [0, 1]. Summarizng, we shown that the second part of Condition 3 holds.

Having payoffs u as defined in (1), we proceed to show that given any δ < 1 there exists

a sufficiently large N so that no symmetric pair of strategies from ΣN forms an equilibrium.

Consider a pair of strategies (σ, σ), with σ ∈ ΣN . A necessary condition for these

strategies to form an equilibrium is that the first player does not have an incentive to deviate

from some steady state (a, a) to (a+ 1, a), or

1

1− δ
u(a, a) ≥ u(a+ 1, a) +

δ

1− δ
u(a+ 1, a+ 1). (4)

Conversely, if this condition is not satisfied, then no such pair of strategies forms an equilib-

rium. Expanding u in (4) and rearranging terms we obtain

δ

1− δ

R− P

N − 1
≥

T −R

(N − 1)1−1/K

and therefore for

N >

(

δ

1− δ

R− P

T −R

)K

+ 1

the equilibrium does not exist. Thus, given any δ < 1 we can choose N sufficiently large so

that (4) does not hold. For such an N , no pair of strategies (σ, σ), with σ ∈ ΣN , constitutes

an equilibrium.
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