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Abstract

I propose a Generalized Roy Model with sample selection that can be used to analyze
treatment effects in a variety of empirical problems. First, I decompose, under a monotonicity
assumption on the sample selection indicator, the MTR function for the observed outcome
when treated as a weighted average of (i) the MTR on the outcome of interest for the always-
observed sub-population and (ii) the MTE on the observed outcome for the observed-only-
when-treated sub-population, and show that such decomposition can provide point-wise sharp
bounds on the MTE of interest. I, then, show how to point-identify these bounds when the
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the MTE of interest when the support of the propensity score is discrete.
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1 Introduction

I propose a Generalized Roy Model (Heckman & Vytlacil 1999) with sample selection

in which there is one outcome of interest that is observed only if the individual self-selects

into the sample. So, in addition to the fundamental problem of causal analysis in which I

only observe one of the potential outcomes due to endogenous self-selection into treatment,

I also face a problem of endogenous sample selection. Such framework is useful to analyze

many empirical problems: the effect of a job training program on wages (Heckman et al.

(1999), Lee (2009), Chen & Flores (2015)), the college wage premium (Altonji (1993), Card

(1999), Carneiro et al. (2011)), scarring effects (Heckman & Borjas (1980), Farber (1993),

Jacobson et al. (1993)), the effect of an educational intervention on short- and long-term

outcomes (Krueger & Whitmore (2001), Angrist et al. (2006), Angrist et al. (2009), Chetty

et al. (2011), Dobbie & Jr. (2015)), the effect of a medical treatment on health quality (CASS

(1984), U.S. Department of Health and Human Services (2004)), the effect of procedural laws

on litigation outcomes (Helland & Yoon (2017)), and any randomized control trial that faces

an attrition problem (DeMel et al. (2013), Angelucci et al. (2015)).

Under a monotonicity assumption on the sample selection indicator, I decompose the

Marginal Treatment Response (MTR) function for the potential observed outcome when

treated as a weighted average of (i) the MTR on the outcome of interest for the sub-population

who is always observed and (ii) the Marginal Treatment Effect (MTE) on the observed out-

come for the sub-population who is observed only when treated. Under a bounded (in one

direction) support condition, such decomposition is useful because it allows me to propose

point-wise sharp bounds on the MTE on the outcome of interest as a function of the MTR

functions on the observed outcome, the maximum and (or) minimum of the support of the

potential outcome, and the proportions of always-observed individuals and observed-only-

when-treated individuals. I also show that it is impossible to construct bounds without extra

assumptions when the support of the potential outcome is the entire real line.

I, then, proceed to show that those bounds are well-identified. When the support of the

propensity score is an interval, the relevant objects are point-identified by applying the local
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instrumental variable approach (LIV, see Heckman & Vytlacil (1999)) to the expectations of

the observed outcome and of the selection indicator conditional on the propensity score and

the treatment status. However, in many empirical applications, the support of the propensity

score is a finite set. In such context, I can identify bounds on the MTE of interest by adapt-

ing the nonparametric bounds proposed by Mogstad et al. (2017) or the flexible parametric

approach suggested by Brinch et al. (2017) to encompass a sample selection problem. When

using the nonparametric approach, the bounds on the MTE of interest are simply an outer

set that contains the true MTE, i.e., they are not point-wise sharp anymore.

Partial identification of the MTE of interest is useful for two reasons. First, bounds on

the MTE can be used to shed light on the heterogeneity of treatment effects, allowing the re-

searcher to understand who benefits and who loses with a specific treatment. Such knowledge

can be used to optimally design policies that provide incentives to agents to take a treatment.

Second, bounds on the MTE can be used to construct bounds in any treatment effect param-

eter that is written as a weighted integral of the MTE. For example, by taking a weighted

average of the point-wise sharp bounds on the MTE, one can bound the average treatment

effect (ATE), the average treatment effect on the treated (ATT), any local average treatment

effect (LATE, Imbens & Angrist (1994)) and any policy-relevant treatment effect (PRTE,

Heckman & Vytlacil (2001b)). Although such bounds may not be sharp for any specific pa-

rameter, they are a general and easy-to-apply solution to many empirical problems. Therefore,

if the applied researcher is interested in a parameter that already has specific bounds for it

(e.g., intention-to-treat treatment effect (ITT) by Lee (2009) and LATE by Chen & Flores

(2015)), he or she should use a specialized tool. However, if the applied researcher is interested

in parameters without specialized bounds (e.g., the PRTE or LATEs outside the support of

the propensity score), he or she may take a weighted integral of point-wise sharp bounds

on the MTE of interest. In other words, facing a trade-off between empirical flexibility and

sharpness, the partial identification tool proposed in this paper focus on empirical flexibility

while still ensuring some notion of sharpness.

I make contributions to two literatures: identification of treatment effects using an instru-
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ment and identification of treatment effects with sample selection.

The literature about treatment effects with an instrument is enormous and I only briefly

discuss it. Imbens & Angrist (1994) show that we can identify the Average Treatment Effect

for the Compliers (LATE). Heckman & Vytlacil (1999), Heckman & Vytlacil (2005) and

Heckman et al. (2006) define the MTE and explain how to compute any treatment effect

as a weighted average of the MTE. However, if the support of the propensity score is not

the unit interval, then it is not possible to recover some important treatment effects, such

as the Average Treatment Effect (ATE) and the Average Treatment Effect on the Treated

(ATT) and the Policy Relevant Treatment Effect (PRTE, Heckman & Vytlacil (2001b)). A

parametric solution to this problem is given by Brinch et al. (2017), who identify a flexible

polynomial function for the MTE whose degree is defined by the cardinality of the propensity

score support.

A nonparametric solution to the impossibility of identifying the ATE and the ATT is

bounding them. Mogstad et al. (2017) use the information contained on IV-like estimands

to construct non-parametrically worst- and best- case bounds on policy-relevant treatment

effects. Other authors focus on imposing weak monotonicity assumptions or a structural

model. In the first group, Manski (1990), Manski (1997) and Manski & Pepper (2000) propose

bounds for the ATE and ATT. Chen et al. (2017) propose an average monotonicity condition

combined with a mean dominance condition across subpopulation groups and sharpen the

bounds previously proposed. Huber et al. (2017) add a mean independence condition within

subpopulation groups and bound not only the ATE and ATT when there is noncompliance,

but also the Average Treatment Effect on the Untreated (ATUT) and the ATE for always-

takers and never-takers (ATE-AT and ATE-NT).

Complementing the weak monotonicity approach, the structural approach has focused

mainly on the binary outcome case due to the need to impose bounded outcome variables.

Heckman & Vytlacil (2001a), Bhattacharya et al. (2008), Chesher (2010), Chiburis (2010),

Shaikh & Vytlacil (2011) and Bhattacharya et al. (2012) made important contributions to

this literature, bounding the ATE and the ATT. While Bhattacharya et al. (2008), Shaikh &
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Vytlacil (2011) and Bhattacharya et al. (2012) consider a thresholding crossing model on the

treatment and the outcome variable, Chiburis (2010) assumes a thresholding crossing model

only on the outcome variable.

I contribute to this literature about identifying treatment effects using an instrument by

extending the non-parametric approach by Mogstad et al. (2017) and the flexible parametric

approach by Brinch et al. (2017) to encompass a sample-selection problem. By doing so, I

can partially identify the MTE function on the outcome of interest instead of on the observed

outcome.

The literature about identification of treatment effects with sample selection is vast and

I only briefly discuss it. The control function approach is a possible solution to it and is

analyzed by Heckman (1979), Ahn & Powell (1993) and Newey et al. (1999), encompassing

parametric, semiparametric and nonparametric tools. Using auxiliary data is another pos-

sible solution and is studied by Chen et al. (2008). A nonparametric solution that requires

weaker conditions is bounding. In a seminal paper, Lee (2009) imposes a weak monotonicity

assumption on the relationship between sample selection and treatment assignment to sharply

bound the Intention-to-Treat Average Treatment Effect (ITT) for the subpopulation of always-

observed individuals. Using techniques developed by Frangakis & Rubin (2002), Blundell et al.

(2007) and Imai (2008) and a weak monotonicity assumption, Blanco et al. (2013) bound the

Intention-to-Treat Quantile Treatment Effect (Q-ITT) for the always-observed individuals.

Moreover, by imposing weak dominance assumptions across subpopulation groups, they can

sharpen the ITT bounds proposed by Lee (2009). Huber & Mellace (2015) additionally impose

a bounded support for the outcome variable and propose bounds on the ITT for two other

subpopulations: observed-only-when-treated individuals, and observed-only-when-untreated

individuals. Complementary to those studies, Lechner & Mell (2010) derive bounds for the

ITT and the Q-ITT for the treated-and-observed subpopulation, Mealli & Pacini (2013) de-

rive bounds for the ITT when the exclusion restriction is violated and there are two outcome

variables, and Behaghel et al. (2015) combines techniques developed by Heckman (1979) and

Lee (2009) to propose bounds for the ATE in a survey framework in which the interviewer
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tries to contact the surveyed individual multiple times.

In the intersection of both literatures, a few authors address the problem of sample selec-

tion and endogenous treatment simultaneously. Huber (2014) point-identifies the ATE and

the Quantile Treatment Effect (QTE) for the observed sub-population and for the entire pop-

ulation using a nested propensity score based on a instrument for sample selection. Fricke

et al. (2015), by using a random treatment assignment and a continuous exogenous variable to

instrument for treatment status and sample selection, point-identify the LATE. Lee & Salanie

(2016), who also include sample selection in a Generalized Roy Model, use two continuous

instruments to provide control functions for the selection into treatment and sample selection

problems, allowing them to point-identify the MTE.

Although the three previous contributions are important, finding a credible instrument for

sample selection is hard, especially in Labor Economics. For this reason, it is important to

develop tools that do not rely on the existence of an instrument for sample selection. Frolich

& Huber (2014) point-identify the unconditional LATE under an conditional IV independence

assumption and a predetermined sample-selection assumption, ruling out an contemporane-

ous relationship between the potential outcomes and the sample selection problem. Chen &

Flores (2015) derive bounds for Average Treatment Effect for the always-observed compliers

(LATE-OO) by combining one instrument with a double exclusion restriction with monotonic-

ity assumptions on the sample selection and the selection into treatment problems. Moreover,

Blanco et al. (2017) and Steinmayr (2014) extend the work by Chen & Flores (2015) by, re-

spectively, considering a censored outcome variable and analyzing mixture variables combining

four strata.

I contribute to the literature about identification of treatment effects with sample selection

by partially identifying the MTE on the always-observed subsample allowing for an contem-

poraneous relationship between the potential outcomes and the sample selection problem, and

using only one (discrete) instrument combined with a monotonicity assumption. Doing so is

theoretically important, because it can unify, in one framework, the bounds for different treat-

ment effects with sample selection, and empirically relevant, because it allow us to partially
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identify any treatment effect on the outcome of interest in many empirical problems.

This paper proceeds as follows: section 2 details the Generalized Roy Model with sample

selection; section 3 explains how to derive bounds for the MTE of interest; and sections 4

and 5 discuss identification of the MTE bounds when the support of the propensity score is

continuous or discrete. Finally, section 6 discuss further work.

2 Framework

I begin with the classical potential outcome framework by Rubin (1974) and modify it to

include a sample selection problem. Let Z be an instrumental variable whose support is given

by Z, X be a vector of covariates whose support is given by X , W := (X,Z) be a vector

that combines the covariates and the instrument whose support is given by W := X × Z, D

be a treatment status indicator, Y ∗
0 be the potential outcome of interest when the person is

not treated, and Y ∗
1 be the potential outcome of interest when the person is treated. The

outcome variable of interest (e.g., wages) is Y ∗ := D ·Y ∗
1 +(1−D) ·Y ∗

0 . Moreover, let S1 and

S0 be potential sample selection indicators when treated and when not treated, and define

S := D ·S1+(1−D) ·S0 as the sample selection indicator. Define Y := S ·Y ∗ as the observed

outcome (e.g., labor earnings). I also define Y1 := S1 · Y
∗
1 and Y0 := S0 · Y

∗
0 as the potential

observable outcomes. Observe that, following Lee (2009) and Chen & Flores (2015), my

notation implicit imposes two exclusion restrictions: Z has no direct impact on the potential

outcome of interest nor on the sample selection indicator. The second exclusion restriction

requires attention in empirical applications. On the one hand, it may be a strong assumption

in randomized control trials if sample selection is due to attrition and initial assignment has an

effect on the subject’s willingness to contact the researchers. On the other hand, it may be a

reasonable assumption in many labor market applications in which initial random assignment

to a job training program has no impact on future employment status.

I model sample selection and selection into treatment using the Generalized Roy Model

(Heckman & Vytlacil 1999). Let U and V be random variables, and P : W → R and
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Q : {0, 1} × X → R be unknown functions. I assume that:

D := 1 {P (W ) ≥ U} (1)

and

S := 1 {Q (D,X) ≥ V } . (2)

As Vytlacil (2002) shows, equations (1) and (2) are equivalent to assuming monotonicity

conditions on the selection into treatment problem (Imbens & Angrist (1994)) and on the

sample selection problem (Lee (2009)). I stress that both monotonicity assumptions are

testable using the tools developed by Machado et al. (2018). Note also that, given equation

(2), S0 = 1 {Q (0, X) ≥ V } and S1 = 1 {Q (1, X) ≥ V }.

The random variables U and V are jointly continuously distributed conditional on X with

density fU,V |X : R2 ×X → R and cumulative distribution function FU,V |X : R2 ×X → R. As

is well known in the literature, equations (1) and (2) can be rewritten as

D = 1
{

FU |X (P (W ) |X ) ≥ FU |X (U |X )
}

= 1
{

P̃ (W ) ≥ Ũ
}

S = 1
{

FV |X (Q (D,X) |X ) ≥ FV |X (V |X )
}

= 1
{

Q̃ (D,X) ≥ Ṽ
}

where P̃ (W ) := FU |X (P (W ) |X ), Ũ := FU |X (U |X ), Q̃ (D,X) := FV |X (Q (D,X) |X ), and

Ṽ := FV |X (V |X ). Consequently, the marginal distributions of Ũ and Ṽ conditional on X

follow the standard uniform distribution. Since this is merely a normalization, I drop the tilde

and mantain throughout the paper the normalization that the marginal distributions of U

and V conditional on X follow the standard uniform distribution and that (P (w) , Q (d, x)) ∈

[0, 1]2 for any (x, z, d) ∈ W × {0, 1}. I also assume that:

Assumption 1 The instrument Z is independent of all latent variables given the covariates

X, i.e., Z ⊥⊥ (U, V, Y ∗
0 , Y

∗
1 ) |X .

Assumption 2 The distribution of P (W ) given X is nondegenerate.
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Assumption 3 The first and second population moments of the counterfactual variables are

finite, i.e., E [|Y ∗
d |] < +∞, E

[

(Y ∗
d )

2
]

< +∞, and E [|Sd|] < +∞ for any d ∈ {0, 1}.

Assumption 4 Both treatment groups exist for any value of X, i.e., 0 < P [D = 1 |X ] < 1.

Assumption 5 The covariates X are invariant to counterfactual manipulations, i.e., X0 =

X1 = X, where X0 and X1 are the counterfactual values of X that would be observed when

the person is, respectively, not treated or treated.

Assumption 6 The potential outcomes Y ∗
0 and Y ∗

1 have the same support, i.e., Y∗ := Y∗
0 =

Y∗
1 , where Y∗

0 ⊆ R is the support of Y ∗
0 and Y∗

1 ⊆ R is the support of Y ∗
1 .

Assumption 7 Define y∗ := inf {y ∈ Y∗} ∈ R ∪ {−∞} and y∗ := sup {y ∈ Y∗} ∈ R ∪ {∞}.

I assume that y∗ and y∗ are known, and that

1. y∗ > −∞, y∗ = ∞ and Y∗ is an interval, or

2. y∗ = −∞, y∗ < ∞ and Y∗ is an interval, or

3. y∗ > −∞, y∗ < ∞ and

(a) Y∗ is an interval or

(b) y∗ ∈ Y∗ and y∗ ∈ Y∗.

I stress that assumption 7 is fairly general. Case 1 covers continuous random variables

whose support is convex and bounded below (e.g.: wages), while Case 3.a covers continuous

variables with bounded convex support (e.g.: test scores). Case 3.b encompasses not only

binary variables, but also any discrete variable whose support is finite (e.g.: years of educa-

tion). It also includes mixed random variables whose support is not an interval but achieves

its maximum and minimum. I also highlight that proposition 12 shows that assumption 7 is

partially necessary to the existence of bounds on the MTE of interest in the sense that, if

y∗ = −∞ and y∗ = +∞, then it is impossible to bound the marginal treatment effect on the

outcome of interest without any extra assumption.
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Assumption 8 Treatment has a positive effect on the sample selection indicator for all in-

dividuals, i.e., Q (1, x) > Q (0, x) > 0 for any x ∈ X .

Assumption 8 goes beyond the monotonicity condition implicitly imposed by equation (2)

by assuming that the direction of the effect of treatment on the sample selection indicator

is known and positive, i.e., Q (1, x) ≥ Q (0, x) for any x ∈ X . In this sense, it is a standard

assumption in the literature.1 Most importantly, it is also a testable assumption using the tools

developed by Machado et al. (2018), because, under monotone sample selection (equation (2)),

identification of the sign of the ATE on the selection indicator provides a test for assumption

8. However, assumption 8 is slightly stronger than what is usually imposed in the literature,

because it additionally imposes Q (0, x) > 0 and Q (1, x) > Q (0, x) for any x ∈ X . I stress

that the first inequality implies that there is a sub-population who is always observed, allowing

me to properly define my target parameter — the marginal treatment effect on the outcome

of interest for the always-observed population. I also highlight that the second inequality

implies that there is a sub-population who is observed only when treated, making the problem

theoretically interesting by eliminating trivial cases of point-identification of the MTE of

interest as discussed in proposition 9. Finally, I emphasize that all my results can be stated

and derived with some obvious changes if I impose Q (0, x) > Q (1, x) > 0 for any x ∈ X

instead of assumption 8, as it is done in Appendix E. I also discuss an agnostic approach to

monotonicity in Appendix F.

3 Bounds on the MTE on the outcome of interest

The target parameter, the MTE on the outcome of interest for the sub-population who is

always observed, is given by

∆OO
Y ∗ (x, u) := E [Y ∗

1 − Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1]

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]− E [Y ∗

0 |X = x, U = u, S0 = 1, S1 = 1]

(3)

1Lee (2009) and Chen & Flores (2015) write it in an equivalent way as S1 ≥ S0.
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for any u ∈ [0, 1] and any x ∈ X , and is a natural parameter of interest. In labor market

applications where sample selection is due to observing wages only when agents are employed,

it is the effect on wages for the subpopulation who is always employed. In medical applications

where sample selection is due to the death of a patient, it is the effect on health quality for

the subpopulation who survives regardless of the treatment status. In the education literature

where sample selection is due to students quiting school, it is the effect on test scores for the

subpopulation who do not drop out of school regardless of the treatment status. In all those

cases, the target parameter captures the intensive margin of the treatment effect.2

Other possibly interesting parameters are the MTE on the outcome of interest for the

sub-population who is never observed (E [Y ∗
1 − Y ∗

0 |X = x, U = u, S0 = 0, S1 = 0]), the MTR

function under no treatment for the outcome of interest for the sub-population who is ob-

served only when treated (E [Y ∗
0 |X = x, U = u, S0 = 0, S1 = 1]) and MTR function under

treatment for the outcome of interest for the sub-population who is observed only when

treated (E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1]). While the last parameter can be partially

identified (Appendix D), the first two parameters are impossible to point-identify or bound

in a informative way because the outcome of interest (Y ∗
0 or Y ∗

1 ) is never observed for the

conditioning sub-populations. Note also that the sub-population who is observed only when

not treated (S0 = 1 and S1 = 0) do not exist by assumption 8.

We, now, focus on the target parameter ∆OO
Y ∗ (x, u) given by equation (3). The second

right-hand term in equation (3) can be written as3

E [Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1] =

mY
0 (x, u)

mS
0 (x, u)

, (4)

where I define mY
0 (x, u) := E [Y0 |X = x, U = u ] and mS

0 (x, u) := E [S0 |X = x, U = u ] as

the MTR functions associated to the counterfactual variables Y0 and S0 respectively. In this

section, I assume that all terms in the right-hand side of equation (4) are point-identified,

2If the researcher is interested in the extensive margin of the treatment effect, captured by the
MTE on the observable outcome (E [Y1 − Y0 |X = x, U = u ]) and by the MTE on the selection indicator
(E [S1 − S0 |X = x, U = u ]), he or she can apply the identification strategies described by Heckman et al.
(2006), Brinch et al. (2017) and Mogstad et al. (2017).

3Appendix A.1 contains a proof of this claim.
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postponing the discussion about their identification to sections 4 and 5.

The first right-hand term in equation (3) can be written as4

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] =

mY
1 (x, u)−∆NO

Y (x, u) ·∆S (x, u)

mS
0 (x, u)

, (5)

where mY
1 (x, u) := E [Y1 |X = x, U = p ] is the MTR function associated to the counterfac-

tual variable Y1, ∆
NO
Y (x, u) := E [Y1 − Y0 |X = x, U = u, S0 = 0, S1 = 1] is the MTE on the

observed outcome Y for the sub-population who is observed only when treated, ∆S (x, u) :=

E [S1 − S0 |X = x, U = u ] = mS
1 (x, u) − mS

0 (x, u) is the MTE on the selection indicator,

and mS
1 (x, u) := E [S1 |X = x, U = u ] is the MTR function associated to the counterfactual

variable S1. In this section, I also assume that mY
1 (x, u) and ∆S (x, u) are point-identified,

postponing the discussion about their identification to sections 4 and 5.

Although point-identification of E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] is not possible, I can

find identifiable bounds for it.5

Proposition 9 Suppose that mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-identified.

Under assumptions 1-6, 7.1 and 8, the bounds on E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] are

given by

y∗ ≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (6)

Under assumptions 1-6, 7.2 and 8, the bounds on E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] are

given by

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ y∗. (7)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on

4Appendix A.2 contains a proof of this claim.
5Appendix A.3 contains a proof of this proposition.
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E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] are given by

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]

≤
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (8)

There is a important remark to be made about the bounds of proposition 9. Note that,

even when the support is bounded in only one direction (assumptions 7.1 and 7.2), it is

possible to derive lower and upper bounds on E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1].

At this point, it is also important to understand the determinants of the width of those

bounds. First, if there is no sample selection problem at all (P [S0 = 1, S1 = 1 |X = x, U = u ] =

1), then mS
0 (x, u) = 1, ∆S (x, u) = 0, implying tighter bounds in equations (6) and (7) and

point-identification in equation (8). Second and most importantly, if there is no problem of dif-

ferential sample selection with respect to treatment status (P [S0 = 0, S1 = 1 |X = x, U = u ] =

0), then ∆S (x, u) = 0, once more implying tighter bounds in equations (6) and (7) and point-

identification in equation (8). Both cases are theoretically uninteresting and ruled out by

assumption 8.

Finally, combining equations (3) and (4) and proposition 9, I can partially identify the

target parameter ∆OO
Y ∗ (x, u):

Corollary 10 Suppose that mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-identified.

Under assumptions 1-6, 7.1 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (9)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (10)
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Under assumptions 1-6, 7.2 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (11)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (12)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on ∆OO
Y ∗ (x, u) are

given by

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (13)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (14)

Most importantly, I can show that6:

Proposition 11 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)) and 8,

the bounds ∆OO
Y ∗ and ∆OO

Y ∗ , given by corollary 10, are point-wise sharp, i.e., for any u ∈ [0, 1],

x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (15)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (16)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (17)

6Appendix A.4 contains the proof of this proposition. Note that, if the functions mY
0 , mY

1 , mS
0 and ∆S are

point-identified only in a subset of the unit interval, then point-wise sharpness holds only in that subset.
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for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Intuitively, proposition 11 says that, for any δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, it is

possible to create candidate random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

that generate the candidate

marginal treatment effect δ (x, u), satisfy the bounded support condition — a restriction

imposed by my model (assumption 7) and summarized in equation (16) — and generate

the same distribution of the observable variables — a restriction imposed by the data and

summarized in equation (17). In other words, the data and the model in section 2 do not

generate enough restrictions to refute that the true target parameter ∆OO
Ỹ ∗ (x, u) is equal to

the candidate target parameter δ (x, u).

Moreover, the bounded support condition (assumption 7) is partially necessary to the

existence of bounds on the target parameter ∆OO
Ỹ ∗ (x, u). When the support is unbounded in

both directions (i.e., y∗ = −∞ and y∗ = +∞), then it is impossible to derive bounds on the

target parameter ∆OO
Ỹ ∗ (x, u) without any extra assumption. Proposition 12 formalizes this

last statement.7

Proposition 12 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and 8. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (18)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (19)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (20)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

7Appendix A.5 contains the proof of this proposition.
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This impossibility result is interesting in light of the previous literature about partial

identification of treatment effects with sample selection. In the case of the ITT (Lee (2009))

and the LATE (Chen & Flores (2015)), it is possible to construct sharp and informative

bounds even when the support of the potential outcome is the entire real line. However, when

focusing on a specific point of the MTE function, it is impossible to construct informative

bounds when Y∗ = R due to the local nature of the target parameter.

There are two important remarks about the results I have just derived. First, the bounds

under assumption 7 (corollary 10) are not only sharp, but can also be informative as the nu-

merical example in appendix B and the empirical application in section ?? illustrate. Second,

propositions 11 and 12 do not impose any smoothness condition on the joint distribution of

(Y ∗
0 , Y

∗
1 , U, V, Z,X). In particular, the conditional cumulative distribution functions FV |X,U ,

FY ∗
0 |X,U,V and FY ∗

1 |X,U,V are allowed to be discontinuous functions of U at the point u. Ap-

pendix G states and proves a sharpness result similar to proposition 11 and an impossibility

result similar to proposition 12 when FV |X,U , FY ∗
0 |X,U,V and FY ∗

1 |X,U,V must be continuous

functions of U.

Now, it is important to discuss the empirical relevance of partially identifying the MTE of

interest. First, bounds on the MTE can illuminate the heterogeneity of the treatment effect,

allowing the researcher to understand who benefits and who loses with a specific treatment.

This is important because common parameters (e.g.: ATE, ATT, LATE) can be positive even

when most people lose with a policy if the few winners have very large gains. Moreover,

knowing, even partially, the MTE function can be useful to optimally design policies that

provides incentives to agents to take some treatment. Second, I can use the MTE bounds to

partially identify any treatment effect that is described as a weighted integral of ∆OO
Y ∗ (x, u)

because

∫ 1

0

(

∆OO
Y ∗ (x, u)

)

· ω (x, u) du ≤

∫ 1

0
∆OO

Y ∗ (x, u) · ω (x, u) du

≤

∫ 1

0

(

∆OO
Y ∗ (x, u)

)

· ω (x, u) du, (21)
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where ω(x, ·) is a weighting function. Even though such bounds may not be sharp for any

specific parameter, they are a general and off-the-shelf solution to many empirical problems.

As a consequence of this trade-off, I recommend the applied researcher to use a specialized tool

if he or she is interested in a parameter that already has specific bounds for it (e.g., intention-

to-treat treatment effect (ITT) by Lee (2009) and LATE by Chen & Flores (2015)). However,

I suggest the applied research to easily compute a weighted integral of point-wise sharp bounds

on the MTE of interest if he or she is interested in parameters without specialized bounds

(e.g., the PRTE or LATEs outside the support of the propensity score). In other words,

facing a trade-off between empirical flexibility and sharpness, the partial identification tool

proposed in this paper focus on empirical flexibility while still ensuring point-wise sharpness

of the bounds on the MTE of interest.

Tables 1 and 2 show some of the treatment effect parameters that can be partially identified

using inequality (21). More examples are given by Heckman et al. (2006, Tables 1A and 1B)

and Mogstad et al. (2017, Table 1).

Table 1: Treatment Effects as Weighted Integrals of the Marginal Treatment Effect

ATEOO = E [Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) du

ATTOO = E [Y ∗
1 − Y ∗

0 |D = 1, S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωATT (u) du

ATUOO = E [Y ∗
1 − Y ∗

0 |D = 0, S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωATU (u) du

LATEOO(u, u) = E [Y ∗
1 − Y ∗

0 |U ∈ [u, u] , S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωLATE (u) du
Source: Heckman et al. (2006) and Mogstad et al. (2017). Note: Conditioning on X is kept implicit in
this table for brevity.

In appendix C, I impose an extra mean-dominance assumption and sharpen the bounds

given by corollary 10.
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Table 2: Weights

ωATT (x, u) =

∫ 1
u
fP (W )|X (p |x) dp

E [P (W ) |X = x ]

ωATU (x, u) ==

∫ u

0 fP (W )|X (p |x) dp

1− E [P (W ) |X = x ]

ωLATE (x, u) =
1 {u ∈ [u, u]}

u− u
Source: Heckman et al. (2006) and Mogstad
et al. (2017). Note: Conditioning on X is kept
implicit in this table for brevity and fP (W )|X is
the density of the propensity score given X.

4 Partial identification when the support of the propensity score is an

interval

Here, I fix x ∈ X and impose that the support of the propensity score, defined by Px :=

{P (x, z) : z ∈ Z}, is an interval8. Then, under assumptions 1-5, the MTR functions associated

to any variable A ∈ {Y, S} are point-identified by9:

mA
0 (x, p) = E [A |X = x, P (W ) = p,D = 0]−

∂E [A |X = x, P (W ) = p,D = 0]

∂p
· (1− p) ,

(22)

and

mA
1 (x, p) = E [A |X = x, P (W ) = p,D = 1] +

∂E [A |X = x, P (W ) = p,D = 1]

∂p
· p (23)

for any p ∈ Px.

Finally, the point-wise sharp bounds on ∆OO
Y ∗ (x, p) are point-identified by combining corol-

lary 10, equations (22) and (23), and the fact that ∆S (x, p) = mS
1 (x, p)−mS

0 (x, p).

8Px as an interval may be achieved by a continuous instrument Z or by the existence of independent
covariates (Carneiro et al. 2011).

9Appendix A.6 contains a proof of this claim based on the Local Instrumental Variable (LIV) approach
described by Heckman & Vytlacil (2005).
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5 Partial identification when the support of the propensity score is discrete

When the support of the propensity score is not an interval, I cannot point-identify

mY
0 (x, u), mY

1 (x, u), mS
0 (x, u), and ∆S (x, u) without extra assumptions, implying that I

cannot identify the bounds on ∆OO
Y ∗ (x, u) given by corollary 10. There are two solutions for

such lack of identification: I can non-parametrically bound those four objects (Mogstad et al.

(2017)) or I can impose flexible parametric assumptions (Brinch et al. (2017)) to point-identify

them. While the first approach is discussed in subsection 5.1, the second one is detailed in

subsection 5.2.

5.1 Non-parametric outer set around the MTE of interest

For any u ∈ [0, 1] and x ∈ X , I can bound mY
0 (x, u), mY

1 (x, u), mS
0 (x, u), and ∆S (x, u)

using the machinery proposed by Mogstad et al. (2017). To do so, fix A ∈ {Y, S} and d ∈ {0, 1}

and define the pair of functions mA :=
(

mA
0 ,m

A
1

)

and the set of admissible MTR functions

MA ∋ mA. Furthermore, fix (x, u) ∈ X × [0, 1] and define the functions Γ∗
1 : M

Y → R,

Γ∗
2 : M

Y → R, Γ∗
3 : M

S → R and Γ∗
4 : M

S → R as:

Γ∗
1

(

m̃Y
)

= m̃Y
1 (x, u) + 0 · m̃Y

0 (x, u)

Γ∗
2

(

m̃Y
)

= 0 · m̃Y
1 (x, u) + m̃Y

0 (x, u)

Γ∗
3

(

m̃S
)

= 0 · m̃S
1 (x, u) + m̃S

0 (x, u)

Γ∗
4

(

m̃S
)

= m̃S
1 (x, u)− m̃S

0 (x, u) ,

and observe that Γ∗
1

(

mY
)

= mY
1 (x, u), Γ∗

2

(

mY
)

= mY
0 (x, u), Γ∗

3

(

mS
)

= mS
0 (x, u), and

Γ∗
4

(

mS
)

= ∆S (x, u). Moreover, define, for each A ∈ {Y, S}, GA as a collection of known or

identified measurable functions gA : {0, 1} × X × Z → R whose second moment is finite. For

each IV-like specification gA ∈ GA, define also βgA := E [gA (D,Z)A |X = x ]. According to
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proposition 1 by Mogstad et al. (2017), the function ΓgA : MA → R, defined as

ΓgA

(

m̃A
)

= E

[∫ 1

0
m̃A

0 (X,u) · gA (0, Z) · 1 {p (W ) < u} du

∣

∣

∣

∣

X = x

]

+ E

[∫ 1

0
m̃A

1 (X,u) · gA (1, Z) · 1 {p (W ) ≥ u} du

∣

∣

∣

∣

X = x

]

,

satisfies ΓgA

(

mA
)

= βgA . As a result, mA must lie in the set MGA
of admissible functions

that satisfy the restrictions imposed by the data through the IV-like specifications, where:

MGA
:=
{

m̃A ∈ MA : ΓgA

(

m̃A
)

= βgA for all gA ∈ GA

}

.

Assuming thatMA is convex andMGA
6= ∅ for every A ∈ {Y, S}, proposition 2 by Mogstad

et al. (2017) ensures that:

inf
m̃Y ∈MGY

Γ∗
1

(

m̃Y
)

=: mY
1 (x, u) ≤ mY

1 (x, u) ≤ mY
1 (x, u) := sup

m̃Y ∈MGY

Γ∗
3

(

m̃Y
)

inf
m̃Y ∈MGY

Γ∗
2

(

m̃Y
)

=: mY
0 (x, u) ≤ mY

0 (x, u) ≤ mY
0 (x, u) := sup

m̃Y ∈MGY

Γ∗
2

(

m̃Y
)

inf
m̃S∈MGS

Γ∗
3

(

m̃S
)

=: mS
0 (x, u) ≤ mS

0 (x, u) ≤ mS
0 (x, u) := sup

m̃S∈MGS

Γ∗
3

(

m̃S
)

inf
m̃S∈MGS

Γ∗
4

(

m̃S
)

=: ∆S (x, u) ≤ ∆S (x, u) ≤ ∆S (x, u) := sup
m̃S∈MGS

Γ∗
4

(

m̃S
)

(24)

As a consequence, I can combine corollary 10 and inequalities (24) to provide a non-

parametrically identified outer set around ∆OO
Y ∗ (x, u):

Corollary 13 Fix u ∈ [0, 1] and x ∈ X arbitrarily.

Under assumptions 1-6, 7.1 and 8, the bounds of an outer set around ∆OO
Y ∗ (x, u) are given

by

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

, (25)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

. (26)

Under assumptions 1-6, 7.2 and 8, the bounds of an outer set around ∆OO
Y ∗ (x, u) are given
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by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

, (27)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

. (28)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds of an outer set around

∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ max

{

max

{

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

, y∗ − y∗

}

, (29)

and that

∆OO
Y ∗ (x, u) ≤ min

{

min

{

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

, y∗ − y∗

}

. (30)

I stress that the cost of non-parametric partial identification of mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u), and ∆S (x, u) is losing the point-wise sharpness of the bounds around the tar-

get parameter ∆OO
Y ∗ . For that reason, corollary 13 is stated in terms of bounds of an outer set

around ∆OO
Y ∗ (x, u), that contains the true target parameter ∆OO

Y ∗ (x, u) by construction.

5.2 Parametric identification of the MTE bounds

The fully non-parametric approach explained in subsection 5.1 may provide an uninforma-

tive outer set (i.e., equal to y∗−y∗ or y∗−y∗ under assumption 7.3). In such cases, parametric

assumptions on the marginal treatment response function may buy a lot of identifying power.

Although restrictive in principle, parametric assumptions may be flexible enough to provide

credible bounds on ∆OO
Y ∗ (x, u).

I fix x ∈ X and assume that the support of the propensity score P (x, Z) is discrete and

given by Px = {px,1, . . . , px,N} for some N ∈ N. I could directly apply the identification

strategy proposed by Brinch et al. (2017) by assuming that the MTR functions associated to

Y and S are polynomial functions of U . However, this assumption is problematic for binary
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variables, such as the selection indicator S. For this reason, I make a small modification to

the procedure suggested by Brinch et al. (2017): for d ∈ {0, 1} and A ∈ {Y, S}, the MTR

function is given by

mA
d (x, u) = MA

(

u,θA
x,d

)

(31)

for any u ∈ [0, 1], where ΘA
x ⊂ R

2L is a set of feasible parameters, L ∈ {0, . . . , N − 1} is the

number of parameters for each treatment group d,
(

θ
A
x,0,θ

A
x,1

)

∈ ΘA
x is a vector of pseudo-

true unknown parameters, and MA : [0, 1] × R
2L → R is a known function. For example,

in the case of a binary variable, a reasonable choice of MA is the Bernstein Polynomial
(

MA
(

u,θA
x,d

)

=
∑L−1

l=0 θAx,d,l ·
(

L
l

)

· ul · (1− u)L−l
)

with feasible set ΘA
x = [0, 1]2L. In the case

of the selection indicator, the feasible set would be restricted by assumption 8 to ΘA
x =

{(

θ̃
A

x,0, θ̃
A

x,1

)

∈ [0, 1]2L : θ̃
A

x,1 ≥ θ̃
A

x,0

}

. I stress that the only difference between the Bernstein

polynomial model and the simple polynomial model proposed by Brinch et al. (2017) is that

it is easier to impose feasibility restrictions on the former model.

Back to the parametric model given by equation (31), I define the parameters
(

θ
A
x,0,θ

A
x,1

)

as

pseudo-true parameters in the sense that the parametric model in equation (31) is an approxi-

mation to the true data generating process via the moments E [A |X = x, P (W ) = pn, D = d ]

for any d ∈ {0, 1} and n ∈ {1, . . . , N}. Formally, I define

(

θ
A
x,0,θ

A
x,1

)

:= argmin
(

θ̃
A

x,0,θ̃
A

x,1

)

∈ΘA
x

N
∑

n=1













E [A |X = x, P (W ) = pn, D = 0]−

∫ 1
pn

MA
(

u, θ̃
A

x,0

)

du

1− pn





2

+



E [A |X = x, P (W ) = pn, D = 1]−

∫ pn
0 MA

(

u, θ̃
A

x,1

)

du

pn





2










.

(32)

Note that, to estimate parameters
(

θ
A
x,0,θ

A
x,1

)

, I can simply use the sample analogue of

equation (32), i.e., I only have to estimate a constrained OLS regression whose restrictions

are given by the set ΘA
x . The main advantage of estimating this parametric model using OLS

is that I can easily test the model restrictions imposed through the set of feasible parameters
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ΘA
x . If such restrictions are valid and L = N − 1, then my parametric model collapses to the

model proposed by Brinch et al. (2017) and I find that10, for any pn ∈ Px,

E [A |X = x, P (W ) = pn, D = 0] =

∫ 1
pn

MA
(

u,θA
x,0

)

du

1− pn
(33)

E [A |X = x, P (W ) = pn, D = 1] =

∫ pn
0 MA

(

u,θA
x,1

)

du

pn
. (34)

I can, then, combine corollary 10 and equation (31) and (32) to bound ∆OO
Y ∗ (x, u):

Corollary 14 Fix u ∈ [0, 1] and x ∈ X arbitrarily.

Under assumptions 1-6, 7.1 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ y∗ −

MY
(

u,θY
x,0

)

MS
(

u,θS
x,0

) , (35)

and that

∆OO
Y ∗ (x, u) ≤

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) −
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) . (36)

Under assumptions 1-6, 7.2 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) −
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) , (37)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

MY
(

u,θY
x,0

)

MS
(

u,θS
x,0

) . (38)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on ∆OO
Y ∗ (x, u) are

given by

∆OO
Y ∗ (x, u) ≥ max

{

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) , y∗

}

−
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) ,

(39)

10Appendix A.7 contains a proof of this claim
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and that

∆OO
Y ∗ (x, u) ≤ min

{

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) , y∗

}

−
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) .

(40)

6 Further Work

This text is a working paper and still requires a few steps before it is finished. Currently,

I am working on a empirical application in which I analyze the wage effect of the Job Corps

Training Program. Such analysis builds upon the work by Lee (2009), Blanco et al. (2013),

Chen & Flores (2015) and Chen et al. (2017) by looking at the entire MTE function and

focusing on the heterogeneity of the treatment effect on wages. Another important future

step is implementing a Monte Carlo experiment that can measure the informativeness of the

proposed MTE bounds in a specific data generating process.
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Supporting Information
(Online Appendix)

A Proofs of the main results

A.1 Proof of Equation (4)

Note that

E [Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1] = E [Y ∗

0 |X = x, U = u, S0 = 1]

by assumption 8

=
E [S0 · Y

∗
0 |X = x, U = u ]

P [S0 = 1 |X = x, U = u ]

by the definition of conditional expectation

=
E [Y0 |X = x, U = u ]

E [S0 |X = x, U = u ]

=
mY

0 (x, u)

mS
0 (x, u)

. �

A.2 Proof of Equation (5)

First, observe that

mS
0 (x, u) := E [S0 |X = x, U = u ]

= P [Q (0, X) ≥ V |X = x, U = u ] (A.1)

by equation (2),

mS
1 (x, u) := E [S1 |X = x, U = u ]

= P [Q (1, X) ≥ V |X = x, U = u ] (A.2)

by equation (2),

∆S (x, u) := E [S1 − S0 |X = x, U = u ]

= mS
1 (x, u)−mS

0 (x, u)
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= P [Q (1, X) ≥ V > Q (0, X) |X = x, U = u ]

by equations (A.1) and (A.2) and assumption (8)

= P [S0 = 0, S1 = 1 |X = x, U = u ] (A.3)

by equation (2), and

∆NO
Y (x, u) := E [Y1 − Y0 |X = x, U = u, S0 = 0, S1 = 1]

= E [S1 · Y
∗
1 − S0 · Y

∗
0 |X = x, U = u, S0 = 0, S1 = 1]

= E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1] . (A.4)

Note also that:

mY
1 (x, u) := E [Y1 |X = x, U = u ]

= E [S1 · Y
∗
1 |X = x, U = u ]

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] · P [S0 = 1 |X = x, U = u ]

+ E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1] · P [S0 = 0, S1 = 1 |X = x, U = u ]

by assumption 8 and the Law of Iterated Expectations

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ·mS

0 (x, u) + ∆NO
Y (x, u) ·∆S (x, u) (A.5)

by equations (A.1), (A.3) and (A.4),

implying equation (5) after some rearrangement. �

A.3 Proof of Proposition 9

Note that

y∗ ≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ y∗ (A.6)

by the definition of y∗ and y∗. Observe also that

y∗ ≤ ∆NO
Y (x, u) ≤ y∗

30



by equation (A.4) and the definition of y∗ and y∗, implying, by equation (5), that

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

(A.7)

under assumption 7.1,

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] (A.8)

under assumption 7.2, and

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]

≤
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (A.9)

under assumption 7.3 (sub-case (a) or (b)). Combining equations (A.6)-(A.9), it is easy to

show that proposition 9 holds. �

A.4 Proof of Proposition 11

First, I prove proposition 11 under assumption 7.3 (sub-cases (a) and (b)). At the end of

this subsection, I prove proposition 11 under assumptions 7.1 and 7.2.

A.4.1 Proof under Assumption 7.3 (sub-cases (a) and (b))

Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

arbitrarily. For brevity,

define α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

and γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
.
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Note that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

,

min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

})

⊆
(

y∗, y∗
)

,

(A.10)

and that

α (x, u) ∈

(

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗, y∗
)

.

(A.11)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X and, then, checking that equations

(15), (16) and (17) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0 ,Ỹ ∗
1 ,Ũ ,Ṽ ,Z,X in

twelve steps:

Step 1. For x /∈ X , FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗
0 ,Y ∗

1 ,U,V,Z,X (y0, y1, u, v, z, x).

Step 2. From now on, assume that x ∈ X . Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

it suffices to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X
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by writing

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗
0 ,Y ∗

1 ,U,V |X (y0, y1, u, v |x).

Step 4. From now on, assume that u ∈ [0, 1]. Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u 6= u, I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 8. From now on, assume that v ∈ [0, 1]. Since

F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = F

Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).

Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =























































mS
0 (x, u) ·

v

Q (0, x)
if v ≤ Q (0, x)

mS
0 (x, u) + ∆S (x, u) ·

v −Q (0, x)

Q (1, x)−Q (0, x)
if Q (0, x) < v ≤ Q (1, x)

mS
1 (x, u) +

(

1−mS
1 (x, u)

) v −Q (1, x)

1−Q (1, x)
if Q (1, x) < v

.
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Step 10. I write F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 11. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (0, x) < v

.

When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (0, x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y0 and v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (0, x) < v

.

which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

Step 12. When Y∗ is a bounded interval (case (a) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (1, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (0, x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y1 and v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1 if y∗ ≤ y1 and Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (1, x) < v

.

which are valid cumulative distribution functions because of equations (A.10) and (A.11).

Having defined the joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X , note that equa-

tions (A.10) and (A.11),
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and steps 7-12 ensure that equation (16) holds.

Now, I show, in three steps, that equation (15) holds.

Step 13. Observe that

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u,Q (0, x) ≥ Ṽ

]

by the definition of S̃0 and S̃1

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
1

∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]
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by the definition of conditional expectation

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ
] ∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by the law of iterated expectations

=

Q(0,x)
∫

0

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by the definition of expectation and by step 7

=

Q(0,x)
∫

0

α (x, u) dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by step 12

= α (x, u) (A.12)

by linearity of the Lebesgue Integral

Step 14. Notice that

E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u,Q (0, x) ≥ Ṽ

]

by the definition of S̃0 and S̃1

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by the definition of conditional expectation

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, Ṽ

] ∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by the law of iterated expectations
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=

Q(0,x)
∫

0

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

mY
0 (x, u)

mS
0 (x, u)

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by step 11

=
mY

0 (x, u)

mS
0 (x, u)

. (A.13)

Step 15. Note that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

− E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= α (x, u)−
mY

0 (x, u)

mS
0 (x, u)

by equations (A.12) and (A.13)

= δ (x, u)

by the definition of α (x, u) ,

ensuring that equation (15) holds.

Finally, I show, in two steps, that equation (17) holds.

Step 16. Fix (y, d, s, z) ∈ R
4 arbitrarily and observe that equation (17) can be simplified to:

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x)

⇔FỸ ,D̃,S̃,Z|X (y, d, s, z |x) · FX (x) = FY,D,S,Z|X (y, d, s, z |x) · FX (x)

⇔FỸ ,D̃,S̃,Z|X (y, d, s, z |x) = FY,D,S,Z|X (y, d, s, z |x) (A.14)
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Step 17. Notice that

FỸ ,D̃,S̃,Z|X (y, d, s, z |x)

= E

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}∣

∣

∣
X = x

]

=

∫

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

dFỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

because
(

Ỹ , D̃, S̃, Z
)

are functions of
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ , Z

)

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u 6= u}
]

dFỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u = u}
]

dFỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

by linearity of the Lebesgue Integral

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u 6= u}
]

dFỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

because P

[

Ũ = u
∣

∣

∣
X = x

]

= 0 by step 5

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u 6= u}] dFY ∗
0 ,Y ∗

1 ,U,V,Z|X (y0, y1, u, v, z |x)

by steps 2-6

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u 6= u}] dFY ∗
0 ,Y ∗

1 ,U,V,Z|X (y0, y1, u, v, z |x)

+

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u = u}] dFY ∗
0 ,Y ∗

1 ,U,V,Z|X (y0, y1, u, v, z |x)

because P [U = u |X = x ] = 0

=

∫

1 {(Y,D, S, Z) ≤ (y, d, s, z)} dFY ∗
0 ,Y ∗

1 ,U,V,Z|X (y0, y1, u, v, z |x)

by linearity of the Lebesgue Integral

= E [1 {(Y,D, S, Z) ≤ (y, d, s, z)}|X = x]

= FY,D,S,Z|X (y, d, s, z |x) ,

implying equation (17) according to equation (A.14).

I can, then, conclude that proposition 11 is true. �

As a remark, the above constructive proof defines random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

that

matches other important moments of the true data generating process besides the ones im-
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posed by proposition 11.

Remark 1. Note that

P

[

S̃0 = 1, S̃1 = 1
∣

∣

∣
X = x, Ũ = u

]

= P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by the definition of S̃0 and S̃1

= mS
0 (x, u) (A.15)

by step 9.

and that

P

[

S̃0 = 0, S̃1 = 1
∣

∣

∣X = x, Ũ = u
]

= P

[

Q (1, x) ≥ Ṽ > Q (0, x)
∣

∣

∣X = x, Ũ = u
]

by the definition of S̃0 and S̃1

= ∆S (x, u) (A.16)

by step 9.

Remark 2. Analogously to equation (A.12), I find that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

= γ (x, u) . (A.17)

Remark 3. Combining equations (A.5) and (A.15)-(A.17), I have that

E

[

Ỹ1

∣

∣

∣
X = x, Ũ = u

]

= mY
1 (x, u) .

A.4.2 Proof under Assumptions 7.1 and 7.2

I, now, prove proposition 11 under assumptions 7.1 and 7.2. In particular, I focus on

the case y∗ > −∞ and y∗ = +∞ (assumption 7.1) because it is more common in empirical

applications. The case y∗ = −∞ and y∗ < +∞ (assumption 7.2) is symmetric.

The proof under assumption 7.1 is equal to the proof under assumption 7.3(a). The only
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difference is that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

y∗,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⊆
(

y∗,+∞
)

,

(A.18)

and that

α (x, u) ∈

(

y∗,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗,+∞
)

.

(A.19)

A.5 Proof of Proposition 12

This proof is essentially the same proof of proposition 11 under assumption 7.3.(a) (ap-

pendix A.4.1). Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R arbitrarily. For brevity, define

α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

and γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
. Note that

α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.

I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X described by steps 1-12 in Appendix A.4.1 for the case of convex support

Y∗. Note that equation (19) is trivially true when Y∗ = R. Moreover, equations (18) and

(20) are valid by the argument described in steps 13-17 in Appendix A.4.1.

I can, then, conclude that proposition 12 is true. �

A.6 Proof of Equations (22) and (23)

I first prove that equation (22) holds. For any A ∈ {Y, S}, observe that

E [A |X = x, P (W ) = p,D = 0] = E [A0 |X = x, P (W ) = p,D = 0]

= E [A0 |X = x, P (W ) = p, P (W ) < U ]
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by equation (1)

= E [A0 |X = x, P (W ) = p, p < U ]

= E [A0 |X = x, p < U ]

by assumption (1)

=
E [1 {p < U} ·A0 |X = x ]

P [p < U |X = x ]

by the definition of conditional expectation

=
E [1 {p < U} ·A0 |X = x ]

1− p

by the normalization U |X ∼ Uniform [0, 1]

=
E [1 {p < U} · E [A0 |X = x, U = u ] |X = x ]

1− p

by the Law of Iterated Expectations

=

∫ 1
p
mA

0 (x, u) du

1− p

by the normalization U |X ∼ Uniform [0, 1] ,

implying that

∂E [A |X = x, P (W ) = p,D = 0]

∂p
=

−mA
0 (x, p)

1− p
+

E [1 {p < U} ·A0 |X = x ]

(1− p)2

=
−mA

0 (x, p)

1− p
+

E [1 {p < U} ·A0 |X = x ]

(1− p) · P [p < U |X = x ]

by the normalization U |X ∼ Uniform [0, 1]

=
−mA

0 (x, p)

1− p
+

E [A |X = x, P (W ) = p,D = 0]

1− p

Rearranging the last expression, I can derive equation (22):

mA
0 (x, p) = E [A |X = x, P (W ) = p,D = 0]

−
∂E [A |X = x, P (W ) = p,D = 0]

∂p
· (1− p) .
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Equation (23) is derived in an analogous way using E [A |X = x, P (W ) = p,D = 1] and

its derivative with respect to the propensity score. �

A.7 Proof of Equations (33) and (34)

We first prove that equation (33) holds. For any A ∈ {Y, S}, observe that

E [A |X = x, P (W ) = pn, D = 0] =

∫ 1
pn

mA
0 (x, u) du

1− pn

according to Appendix A.6

=

∫ 1
pn

MA
(

u,θA
x,0

)

du

1− pn

by equation (31).

Equation (34) is derived in an analogous way using E [A |X = x, P (W ) = pn, D = 1]. �
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B Numerical Example: MTE bounds (corollary 10) can be informative

Here, I provide a numerical example in which the bounds in equations (13) and (14) are

informative (i.e., tighter than y∗ − y∗) for any value of the latent variable U .

Let y∗ = 0 and y∗ = 1. Assume that there is no covariate and that, for any u ∈ [0, 1] ,

mS
0 (u) =

13

16
−

1

16
u

mS
1 (u) =

15

16
−

2

16
u

E [Y ∗
1 |U = u, S0 = 1, S1 = 1] =

5

16
−

4

16
u

∆NO
Y (u) =

9

16
−

2

16
u,

implying that

∆S (u) =
2

16
−

1

16
u

mY
1 (u) =

83− 70u+ 6u2

256
.

Moreover, assume that mY
0 (u) =

10

16
−

1

16
u, implying that

E [Y ∗
1 |U = u, S0 = 1, S1 = 1] =

−10 + u

−13 + u
.

Consequently, the target parameter is

∆OO
Y ∗ (u) =

95 + 41u− 4u2

−208 + 16u

and the lower and upper bounds in equations (13) and (14) are, respectively, given by

∆OO
Y ∗ (u) =

109 + 38u− 6u2

−208 + 16u
, and

∆OO
Y ∗ (u) =

77 + 54u− 6u2

−208 + 16u
.
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Figure B.1 plots the target parameter, ∆OO
Y ∗ (u), as a solid black line and the lower and

upper bounds, ∆OO
Y ∗ (u) and ∆OO

Y ∗ (u), as a gray area. Observe that the proposed bounds are

close to the target parameter in the entire unit interval. As a consequence, this numerical

example illustrates that the bounds in equations (13) and (14) can be informative about the

target parameter.

Figure B.1: Target Parameter and Its Bounds
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C MTE bounds under a Mean Dominance Assumption

In the literature about partial identification of treatment effects (Huber & Mellace (2015),

Huber et al. (2017)), mean or stochastic dominance assumptions are used to sharpen the

bounds on the parameter of interest. Here, I use one type of mean dominance assumption to

sharpen the bounds on ∆OO
Y ∗ given by corollary 10. In particular, I assume either

Assumption C.1.A The potential outcome when treated for the always-observed sub-population

is greater than or equal to the same parameter for the observed-only-when-treated sub-population:

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≥ E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1]

for any x ∈ X and u ∈ [0, 1]

or

Assumption C.1.B The potential outcome when treated for the always-observed sub-population

is less than or equal to the same parameter for the observed-only-when-treated sub-population:

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1]

for any x ∈ X and u ∈ [0, 1].

Note that assumption C.1.A implies that ∆NO
Y (x, u) ≤ mY

1 (x, u) by equations (A.4) and

(A.5), while assumption C.1.B implies that ∆NO
Y (x, u) ≥ mY

1 (x, u). As a consequence, by

following the same steps of the proof of corollary 10, I can derive:

Corollary C.2.A Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified. Define κ := min

{

mY
1 (x, u) , y∗

}

.

Under assumptions 1-6, 7.1, 8 and C.1.A, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.1)
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and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.2)

Under assumptions 1-6, 7.2, 8 and C.1.A, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.3)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.4)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)), 8 and C.1.A, the bounds on ∆OO
Y ∗ (x, u)

are given by

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.5)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.6)

and

Corollary C.2.B Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified. Define κ := max

{

mY
1 (x, u) , y∗

}

.

Under assumptions 1-6, 7.1, 8 and C.1.B, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.7)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.8)
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Under assumptions 1-6, 7.2, 8 and C.1.B, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.9)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.10)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)), 8 and C.1.B, the bounds on ∆OO
Y ∗ (x, u)

are given by

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (C.11)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− κ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (C.12)

The bounds in corollaries C.2.A and C.2.B can be identified using the strategies that were

described in sections 4 and 5.

47



D Bounds on the MTE for the Observed-only-when-treated Sub-population

Here, I use the same notation of section 3 and I am interested in the following target

parameter: mNO
1 (x, u) := E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1]. Following the same steps of

the proof of proposition 9, I can show that:

Proposition D.1 Suppose that the mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-

identified.

Under assumptions 1-6, 7.1 and 8, the bounds on mNO
1 (x, u) are given by

mNO
1 (x, u) := y∗ ≤ mNO

1 (x, u) ≤
mY

1 (x, u)− y∗ ·mS
0 (x, u)

∆S (x, u)
=: mNO

1 (x, u) . (D.1)

Under assumptions 1-6, 7.2 and 8, the bounds on mNO
1 (x, u) are given by

mNO
1 (x, u) :=

mY
1 (x, u)− y∗ ·mS

0 (x, u)

∆S (x, u)
≤ mNO

1 (x, u) ≤ y∗ =: mNO
1 (x, u) . (D.2)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on mNO
1 (x, u) are

given by

mNO
1 (x, u) :=

mY
1 (x, u)− y∗ ·mS

0 (x, u)

∆S (x, u)
≤ mNO

1 (x, u) ≤
mY

1 (x, u)− y∗ ·mS
0 (x, u)

∆S (x, u)
=: mNO

1 (x, u) .

(D.3)

Following the same proof of proposition 11 (see Remark 2 at the end of Appendix A.4.1),

I can also show that:

Proposition D.2 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)) and

8, the bounds mNO
1 and mNO

1 , given by proposition D.1, are point-wise sharp, i.e., for any

u ∈ [0, 1], x ∈ X and γ (x, u) ∈
(

mNO
1 (x, u) ,mNO

1 (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

m̃NO
1 (x, u) := E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

= γ (x, u) , (D.4)
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P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (D.5)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (D.6)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, following the same proof of proposition 12, I can also show that:

Proposition D.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and 8. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and γ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

m̃NO
1 (x, u) := E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 0, S̃1 = 1
]

= γ (x, u) , (D.7)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (D.8)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (D.9)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.
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E Negative Treatment Effect on the Selection Indicator

Even when sample selection is monotone (equation (2)), assumption 8 may be invalid in

some empirical applications. In particular, it might be the case that the following assumption

holds:

Assumption E.1 Treatment has a negative effect on the sample selection indicator for all

individuals, i.e., Q (0, x) > Q (1, x) > 0 for any x ∈ X .

I stress that this assumption is testable according to Machado et al. (2018).

With obvious modifications to the proofs of corollary 10 and propositions 11 and 12 (see

the proofs of propositions F.3 and F.4), I can show that the target parameter in section 3

can be bounded, that its bounds are sharp and that it is impossible to derive bounds for the

target parameter with only assumptions 1-6 and E.1. First, I state a result that is analogous

to corollary 10.

Proposition E.2 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified.

Under assumptions 1-6, 7.1 and E.1, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

=: ΛOO
Y ∗ (x, u) (E.1)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

− y∗ =: ΛOO
Y ∗ (x, u) . (E.2)

Under assumptions 1-6, 7.2 and E.1, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

− y∗ =: ΛOO
Y ∗ (x, u) (E.3)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

=: ΛOO
Y ∗ (x, u) . (E.4)
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Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and E.1, the bounds on ∆OO
Y ∗ (x, u) are

given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−min

{

mY
0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

, y∗

}

=: ΛOO
Y ∗ (x, u) (E.5)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−max

{

mY
0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

, y∗
}

=: ΛOO
Y ∗ (x, u) . (E.6)

Second, I state a result that is analogous to proposition 11.

Proposition E.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b))

and E.1, the bounds ΛOO
Y ∗ and ΛOO

Y ∗ , given by proposition E.2, are point-wise sharp, i.e., for

any u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

ΛOO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (E.7)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (E.8)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (E.9)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, I state a result that is analogous to proposition 12.

Proposition E.4 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and E.1. If Y∗ = R, then, for any
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u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (E.10)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (E.11)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (E.12)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.
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F Monotone Sample Selection

Depending on the results of the test proposed by Machado et al. (2018), a researcher

may want to be agnostic about the direction of the monotone selection problem and impose

only equation (2), while ruling out uninteresting cases. In such situation, it is reasonable to

assume:

Assumption F.1 Treatment has a monotone effect on the sample selection indicator for all

individuals, i.e., either (i) Q (1, x) > Q (0, x) > 0 for any x ∈ X or (ii) Q (0, x) > Q (1, x) >

0 for any x ∈ X .

I stress that assumption F.1 only strengthens equation (2) by ruling out the theoretically

uninteresting cases mention below assumption (8).

By combining corollary 10 and proposition E.2, I find that:

Proposition F.2 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified. Under assumptions 1-6, 7 and F.1, the bounds

on ∆OO
Y ∗ (x, u) are given by

ΥOO
Y ∗ (x, u) := min

{

∆OO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
}

≤ ∆OO
Y ∗ (x, u) (F.1)

≤ max
{

∆OO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
}

=: ΥOO
Y ∗ (x, u)

Most importantly, those bounds are also point-wise sharp:11

Proposition F.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X ×[0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)) and F.1,

the bounds ΥOO
Y ∗ and ΥOO

Y ∗ , given by corollary 10, are point-wise sharp, i.e., for any u ∈ [0, 1],

x ∈ X and δ (x, u) ∈
(

ΥOO
Y ∗ (x, u) ,ΥOO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

11The proof of propositions F.3 and F.4 are located at the end of Appendix F.
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such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (F.2)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (F.3)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (F.4)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, I state an impossibility result that is analogous to proposition 12.

Proposition F.4 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and F.1. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (F.5)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (F.6)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (F.7)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Proof of Proposition F.3. I only prove proposition F.3 under assumption 7.3 (sub-

cases (a) and (b)).The proofs of proposition F.3 under assumptions 7.1 and 7.2 are trivial

modifications of the proof presented below.

Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

ΥOO
Y ∗ (x, u) ,ΥOO

Y ∗ (x, u)
)

arbitrarily. For brevity,
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define

α (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

−δ (x, u) +
mY

1 (x, u)

mS
1 (x, u)

)

,

γ (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

mY
1 (x, u)− α (x, u) ·mS

0 (x, u)

∆S (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

mY
0 (x, u)− α (x, u) ·mS

1 (x, u)

−∆S (x, u)

)

,

Q (x) = min {Q (0, x) , Q (1, x)} ,

and

Q (x) = max {Q (0, x) , Q (1, x)} .

Note that

α (x, u) ∈
(

y∗, y∗
)

, (F.8)

and that

γ (x, u) ∈
(

y∗, y∗
)

. (F.9)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X and, then, checking that equations

(F.2), (F.3) and (F.4) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0 ,Ỹ ∗
1 ,Ũ ,Ṽ ,Z,X in

twelve steps:

Step 1. For x /∈ X , FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗
0 ,Y ∗

1 ,U,V,Z,X (y0, y1, u, v, z, x).

Step 2. From now on, assume that x ∈ X . Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

55



it suffices to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X

by writing

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗
0 ,Y ∗

1 ,U,V |X (y0, y1, u, v |x).

Step 4. From now on, assume that u ∈ [0, 1]. Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u 6= u, I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 8. From now on, assume that v ∈ [0, 1]. Since

F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = F

Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).
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Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =



























































mS
0 (x, u) ·

v

Q (x)
if v ≤ Q (x)

mS
0 (x, u) + ∆S (x, u) ·

v −Q (x)

Q (x)−Q (x)
if Q (x) < v ≤ Q (x)

mS
1 (x, u) +

(

1−mS
1 (x, u)

) v −Q (x)

1−Q (x)
if Q (x) < v

.

Step 10. I write F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 11. When Q (1, x) > Q (0, x) and Y∗ is a bounded interval (sub-case (a) in assumption 7.3),

I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) > Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y0 and v ≤ Q (x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (x) < v

.
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which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

When Q (1, x) < Q (0, x) and Y∗ is a bounded interval (case (a) in assumption 7.3), I

define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



















































1 {y0 ≥ α (x, u)} if v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1 {y0 ≥ γ (x, u)} if Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) < Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



































































































































































0 if y0 < y∗ and v ≤ Q (x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y0 and v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y0 < y∗ and Q (x) < v ≤ Q (x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and Q (x) < v ≤ Q (x)

1 if y∗ ≤ y0 and Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because of equations (F.8) and (F.9).
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Step 12. When Q (1, x) > Q (0, x) and Y∗ is a bounded interval (case (a) in assumption 7.3), I

define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) > Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y1 and v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (x) < v ≤ Q (x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (x) < v ≤ Q (x)

1 if y∗ ≤ y1 and Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because of equations (A.10) and (A.11).

When Q (1, x) < Q (0, x) and Y∗ is a bounded interval (sub-case (a) in assumption 7.3),
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I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



























1

{

y1 ≥
mY

1 (x, u)

mS
1 (x, u)

}

if v ≤ Q (x)

−−−−−−−−−− −−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) < Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



























































































0 if y1 < y∗ and v ≤ Q (x)

1−

mY
1 (x, u)

mS
1 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y1 and v ≤ Q (x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because
mY

1 (x, u)

mS
1 (x, u)

∈
[

y∗, y∗
]

.

Having defined the joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X , note that equa-

tions (F.8) and (F.9), the facts
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and
mY

1 (x, u)

mS
1 (x, u)

∈
[

y∗, y∗
]

, and steps 7-12

ensure that equation (F.3) holds.

Now, I show, in three steps, that equation (F.2) holds.

Step 13. Observe that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= 1 {Q (1, x) > Q (0, x)} · α (x, u) + 1 {Q (1, x) < Q (0, x)} ·
mY

1 (x, u)

mS
1 (x, u)

. (F.10)
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Step 14. Notice that

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= 1 {Q (1, x) > Q (0, x)} ·
mY

0 (x, u)

mS
0 (x, u)

+ 1 {Q (1, x) < Q (0, x)} · α (x, u) . (F.11)

Step 15. Note that Steps 13 and 14 imply that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) ,

ensuring that equation (F.2) holds.

Finally, to show that equation (F.4) holds, it suffices to follow steps 16 and 17 in Appendix

A.4.1.

I can, then, conclude that proposition F.3 is true.

Proof of Proposition F.4. This proof is essentially the same proof of proposition F.3

under assumption 7.3.(a). Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R arbitrarily. For brevity,

define

α (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

−δ (x, u) +
mY

1 (x, u)

mS
1 (x, u)

)

,

and

γ (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

mY
1 (x, u)− α (x, u) ·mS

0 (x, u)

∆S (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

mY
0 (x, u)− α (x, u) ·mS

1 (x, u)

−∆S (x, u)

)

.

Note that α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.

I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X described by steps 1-12 in the last proof for the case of convex support
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Y∗. Note that equation (F.6) is trivially true when Y∗ = R. Moreover, equations (F.5) and

(F.7) are valid by the argument described in the last proof

I can, then, conclude that proposition F.4 is true.
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G Sharpness and Impossibility Results with Smoothness Restrictions

In the main text, I imposed no smoothness condition on the joint distribution of (Y ∗
0 , Y

∗
1 , U, V, Z,X).

Here, I impose the following smoothness condition:

Assumption G.1 The conditional cumulative distribution functions FV |X,U are FY ∗
0 ,Y ∗

1 |X,U,V

are continuous functions of U.

As a consequence of this new assumption, propositions 11 and 12 have to be modified

to accommodate infinitesimal violations of the data restriction and to ensure that the extra

model restrictions imposed by assumption G.1 are also satisfied.

Proposition G.2 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)), 8 and

G.1, the bounds ∆OO
Y ∗ and ∆OO

Y ∗ , given by equations (13) and (14) are infinitesimally point-

wise sharp, i.e., for any ǫ ∈ R++, u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

,

there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (G.1)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (G.2)

F
Ṽ |X,Ũ

is a continuous function of Ũ , (G.3)

F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of Ũ , (G.4)

and
∣

∣

∣FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)
∣

∣

∣
≤ ǫ (G.5)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Proposition G.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6, 8 and G.1. If Y∗ = R, then, for any
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ǫ ∈ R++, u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such

that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (G.6)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (G.7)

F
Ṽ |X,Ũ

is a continuous function of Ũ , (G.8)

F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of Ũ , (G.9)

and
∣

∣

∣FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)
∣

∣

∣ ≤ ǫ (G.10)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

The proofs of propositions G.2 and G.3 are below. They are small modification of the

previous proofs.

Proof of Proposition G.2. I only prove proposition G.2 under assumption 7.3 (sub-

cases (a) and (b)).The proofs of proposition G.2 under assumptions 7.1 and 7.2 are trivial

modifications of the proof presented below.

Fix any sufficiently small ǫ ∈ R++, any u ∈ [0, 1], any x ∈ X and any δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

. For brevity, define α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

, γ (x, u) :=

mY
1 (x, u)− α (x, u) ·mS

0 (x, u)

∆S (x, u)
and ǫ :=

ǫ

2 · FX (x)
.
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Note that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

,

min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

})

⊆
(

y∗, y∗
)

,

(G.11)

and that

α (x, u) ∈

(

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗, y∗
)

.

(G.12)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X and, then, checking that conditions

(G.1)-(G.5) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0 ,Ỹ ∗
1 ,Ũ ,Ṽ ,Z,X in fourteen

steps:

Step 1. For x /∈ X , FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗
0 ,Y ∗

1 ,U,V,Z,X (y0, y1, u, v, z, x).

Step 2. From now on, assume that x ∈ X . Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

it suffices to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X
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by writing

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗
0 ,Y ∗

1 ,U,V |X (y0, y1, u, v |x).

Step 4. From now on, assume that u ∈ [0, 1]. Since

FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ |X (y0, y1, u, v |x) = F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u /∈ (u− ǫ, u+ ǫ), I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = FY ∗

0 ,Y ∗
1 ,V |X,U (y0, y1, v |x, u).

Step 8. From now on, assume that v ∈ [0, 1]. Since

F
Ỹ ∗
0 ,Ỹ ∗

1 ,Ṽ |X,Ũ
(y0, y1, v |x, u) = F

Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).

Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =























































mS
0 (x, u) ·

v

Q (0, x)
if v ≤ Q (0, x)

mS
0 (x, u) + ∆S (x, u) ·

v −Q (0, x)

Q (1, x)−Q (0, x)
if Q (0, x) < v ≤ Q (1, x)

mS
1 (x, u) +

(

1−mS
1 (x, u)

) v −Q (1, x)

1−Q (1, x)
if Q (1, x) < v

.
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Step 10. For any u ∈ (u− ǫ, u), I define

F
Ṽ |X,Ũ

(v |x, u) = F
Ṽ |X,Ũ

(v |x, u− ǫ) ·

(

u− u

ǫ

)

+ F
Ṽ |X,Ũ

(v |x, u) ·

(

u− u+ ǫ

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

For any u ∈ (u, u+ ǫ), I define

F
Ṽ |X,Ũ

(v |x, u) = F
Ṽ |X,Ũ

(v |x, u) ·

(

u+ ǫ− u

ǫ

)

+ F
Ṽ |X,Ũ

(v |x, u+ ǫ) ·

(

u− u

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

Note that F
Ṽ |X,Ũ

is a continuous function of Ũ , i.e., it satisfies restriction (G.3).

Step 11. I write F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 12. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (0, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (0, x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y0 and v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (0, x) < v

.

which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

Step 13. When Y∗ is a bounded interval (case (a) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (1, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (0, x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y1 and v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1 if y∗ ≤ y1 and Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (1, x) < v

.

which are valid cumulative distribution functions because of equations (G.11) and (G.12).

Step 14. For any u ∈ (u− ǫ, u), I define

F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u− ǫ, v ) ·

(

u− u

ǫ

)

+ F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) ·

(

u− u+ ǫ

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

For any u ∈ (u, u+ ǫ), I define

F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) ·

(

u+ ǫ− u

ǫ

)

+ F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u+ ǫ, v )

(

u− u

ǫ

)

,
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which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

Note that F
Ỹ ∗
0 ,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of Ũ , i.e., it satisfies restriction (G.4).

Having defined the joint cumulative distribution function FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X , note that equa-

tions (G.11) and (G.12),
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and steps 7-14 ensure that equation (G.2)

holds.

Now, I show, in three steps, that equation (G.1) holds.

Step 15. Observe that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u,Q (0, x) ≥ Ṽ

]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
1

∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, Ṽ

] ∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, Ṽ = v

]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=

Q(0,x)
∫

0

α (x, u) dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by step 13

= α (x, u) . (G.13)

Step 16. Notice that

E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]
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= E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u,Q (0, x) ≥ Ṽ
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
0

∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, Ṽ

] ∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

mY
0 (x, u)

mS
0 (x, u)

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by step 12

=
mY

0 (x, u)

mS
0 (x, u)

. (G.14)

Step 17. Note that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

− E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= α (x, u)−
mY

0 (x, u)

mS
0 (x, u)

by equations (G.13) and (G.14)

= δ (x, u)

by the definition of α (x, u) ,

ensuring that equation (G.1) holds.
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Finally, I show, in four steps, that equation (G.5) holds.

Step 18. Fix (y, d, s, z) ∈ R
4 arbitrarily and observe that expression (G.5) can be simplified to:

∣

∣

∣FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)
∣

∣

∣ ≤ ǫ

⇔
∣

∣

∣
FỸ ,D̃,S̃,Z|X (y, d, s, z |x) · FX (x)− FY,D,S,Z|X (y, d, s, z |x) · FX (x)

∣

∣

∣
≤ ǫ

⇔
∣

∣

∣
FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)

∣

∣

∣
≤

ǫ

FX (x)

⇔
∣

∣

∣
FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)

∣

∣

∣
≤ 2 · ǫ (G.15)

by the definition of ǫ.

Step 19. Notice that

FỸ ,D̃,S̃,Z|X (y, d, s, z |x )− FY,D,S,Z|X (y, d, s, z |x )

= E

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}∣

∣

∣X = x
]

− E [1 {(Y,D, S, Z) ≤ (y, d, s, z)}|X = x]

=

∫

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

1 {(Y,D, S, Z) ≤ (y, d, s, z)} dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u /∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

by linearity of the Lebesgue Integral

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

by steps 2-6

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )
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−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

≤

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

=

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFŨ |X (u |x )

= 2 · ǫ

by step 5.

Step 20. Following the same procedure of step 19, I have that:

FỸ ,D̃,S̃,Z|X (y, d, s, z |x )− FY,D,S,Z|X (y, d, s, z |x )

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

≥ −

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

= −

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFU |X (u |x )

= −2 · ǫ

Step 21. Combining steps 19 and 20, I find that

∣

∣

∣
FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)

∣

∣

∣ ≤ 2 · ǫ,

implying equation (G.5) according to equation (G.15).

I can, then, conclude that proposition G.2 is true.

Proof of Proposition G.3. This proof is essentially the same proof of proposition G.2 under

assumption 7.3.(a). Fix ǫ ∈ R++, u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

ar-

bitrarily. For brevity, define α (x, u) := δ (x, u)+
mY

0 (x, u)

mS
0 (x, u)

, γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)

and ǫ :=
ǫ

2 · FX (x)
. Note that α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.
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I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0 ,Ỹ ∗

1 ,Ũ ,Ṽ ,Z,X described by steps 1-14 in the proof of proposition G.2 for the case of

convex support Y∗. Note that equation (G.7) is trivially true when Y∗ = R. Moreover, equa-

tions (G.6) and (G.10) are valid by the argument described in steps 15-21 in the previous

proof.

I can, then, conclude that proposition G.3 is true.
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