Dominique, C-Rene
(2018):
*Assessing the Entropies of the Feigenbaum Strange Attractor and the S&P-500 Index as Factors Driving the Production of Information in Market Economies.*

PDF
MPRA_paper_89873.pdf Download (735kB) |

## Abstract

This note investigates two strange attractors, namely, the Feigenbaum attractor that arises in unimodal maps and the attractor of the S&P-500 Index in relation to their ability to produce market information.

Item Type: | MPRA Paper |
---|---|

Original Title: | Assessing the Entropies of the Feigenbaum Strange Attractor and the S&P-500 Index as Factors Driving the Production of Information in Market Economies. |

English Title: | Assessing the Entropies of the Feigenbaum Strange Attractor and the S&P-500 Index as Factors Driving the Production of Information in Market Economies. |

Language: | English |

Keywords: | Strange attractors, Fractional dimensions, Frequencies, SDIC, Information, Entropy |

Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis G - Financial Economics > G1 - General Financial Markets |

Item ID: | 89873 |

Depositing User: | C-Rene Dominique |

Date Deposited: | 07 Nov 2018 02:27 |

Last Modified: | 01 Oct 2019 11:21 |

References: | Alvarez-Ramirez, J. and Alvarez B. et al. (2008). Time Varying Hurst Exponent for the US Stock Market. Physica A, 1959-69. Bayraktar, E., Poor, V. H. et al. (2004). Estimating the Fractal Dimension of the S&P-500 Index Using Wavelet Analysis. Dep. Of Electrical Engineering, Princeton Univ.: Princeton, N. J. Berliner, M. (1992). Statistics, Probability and Chaos. Stat. Science, 7, (1), 69-90. Catsigeras, E. and Enrich, H. (1997). Persistence of the Feigenbaum Attractor in one-parameter Families. Commm Math. Phys.Preprint 97/11. Dominique, C-R. (2018). Could Noise Spectra of Strange Attractors Better Explain Wealth and Income Inequality? Evidence from the S&P-500 Index. Modern Economy, 9, 1-12. Eckmann, J. P. and Ruelle, D. (1986). Ergodic Theory of Chaos and Strange Attractors. Rev. of Modern Physics, 67, (3), 617-56. Feigenbaum, M. J. (1978). Quantitative Universality for a Class of Non-linear Transformations. Journal of Stat. Physics, 19, 25-52. Grassberger, P. (1981).On the Hausdorff Dimension of Fractal Attractors. J. of Stat. Physics, 26, 173-79. Grassberger, P. and Procaccia, I. (1983). Characterization of Strange Attractors. Phy. Rev. Letters, 50, 346-49. Gluzman, S. and Yukalov, V. I. (1998). Renormalization Group Analysis of October Market Crashes. Modern Phys. Letters B, 12, 75-84. Greene, M. T. and Fielitz B. D. (1977). Long Term Dependence in Common Stock Returns. Jour. of Financial Economics, 4, 339-49. Hurst, E. et al. (1951). Long-Term Storage: An Engineering Study. Transactions of the American Society of Civil Engineers, 110, 770-90. Kaplan, L. M. and Jay, K. (1993). Fractal Estimation from Noisy Data via Discrete Fractional Gaussian Noise and the Haar Basis. IEEE Transactions, 41, 3554-62. Kolmogorov, A. (1958). A New Metric Invariant of transitive Dynamic Systems and Automorphisms of Lebesgue Space. Dokl. Acad. Nauk, SSSR, 119, 861-64. Kutnetsov, S. P. an Osbaldestin, A. H. (2002). Generalized Dimensions of Feigenbaum’s Attractor from Renormalization-Group Functional Equation. http://citeseerx.ist.psu.edu/viewdoc/download? Doi-10.1.1.390. 8884 &rep-rep1&type, pdf; retrieved on Oct 3rd, 2018. Mandelbrot, B. (1974). Intermittent Turbulence and Self-Similar Cascades: Divergence of High Moments and Dimension of Carriers. J. of Fluid Mechanics, 62, 331-5 ……………. (2003). Multifractal Power Law Distributions: Negative and Critical Dimensions and Other Anomalies. J. of Stat. Physics, 110, 739-79. Mandelbrot B. and van Ness, J. W. (1968). Fractional and Brownian Motion, Fractional Noises, and Applications. SIAM Rev., 10, 422-37. Medio, A. (1992). Chaotic Dynamics: Theory and Applications to Economics. Cambridge Univ. Press: Cambridge. Monte, B. M. (1994). Chaos and the Stock Market. Masters Thesis Presented at the California State Univ., San Bernardino, CA, June. Olofsen, E. (1991). The Identification of Strange Attractors Using Experimental Time Series. Masters Thesis, Dept. of Physiology, Leiden Univ. Medical Center. Peters, E. (1991). A Chaotic Attractor for the S&P-500. Financial Analyst Journal, 47, 55-62. Renyi, A. (1970). Probability Theory. North-Holland: Amsterdam. ………… …(1995). On a New Axiomatic Theory of Probability. Acta Math., 6, 285-335. Robledo, A. and Moyano, L. G. (2009) Dynamics Towards the Feigenbaum Attractor. Brazilian Jour. of Phys.,39, 2A, August. Schroeder, M. (2009). Fractals, Chaos, Power Laws. Dover Pub. Inc.: New York. Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication. Univ. of Illinois: Urbana. Shaw, R. (1981). Strange Attractors, Chaotic Behavior, and Information Flow. Zfn.mpdl.de/ Reihe A136 Z-NA-1981-.36a-0080.pdf; retrieved on October 19th, 2018. Takens, F. (1981).Detecting Strange Attractors in Turbulence. In Rand, D. A. and Young, L. S. (eds) Dynamical Systems in Turbulence, 366-81. New York: Springer-Verlag. Thale, C. (2009). Further Remarks on the Mixed Fractional Brownian motion. Applied Math. Sci., 3, 1-17. |

URI: | https://mpra.ub.uni-muenchen.de/id/eprint/89873 |